Lin, **I.-P.** Osaka J. Math. 12 (1975), 433-439

PRODUCTS OF TORSION THEORIES AND APPLICATIONS TO COALGEBRAS

I-Peng LIN

(Received March 25, 1974)

1. Introduction

Throughout this note R is a ring with 1. We shall write $| \leq R$ if / is a right ideal of R. A non-empty set of right ideals Γ of R is called a Gabriel filter if it satisfies

T1. If $I \in \Gamma$ and $r \in R$, then $(I:r) \in \Gamma$.

T2. If / is a right ideal and there exists $J \in \Gamma$ such that $(I:r) \in \Gamma$ for every $r \in J$, then $I \in \Gamma$.

It is well-known [4] that there is a one to one correspondence between Gabriel filters of R and hereditary torsion theories for the category of right R-modules. W. Schelter [3] investigated products of torsion theories or equivalently of Gabriel filters that for a family of pairs $\{(R_i, \Gamma_i), \Gamma_i: \text{Gabriel filter of } R_i\}$, $\Gamma_0 = \{D \leq \pi R_i | D \supseteq \sum_{\oplus} D_i, D_i \in \Gamma_i\}$ is a Gabriel filter of the product ring πR_i , furthermore the ring of right quotient of πR_i with respect to Γ_0 is isomorphic to the product of rings of right quoteint of R_i with respect to $\Gamma_i:(\pi R_i)_{\Gamma_0} \cong \pi(R_i)_{\Gamma_i}$. This result generalizes one of Y. Utumi theorems [6]. In this paper these two sets $\Gamma_1 = \{D \leq \pi R_i | D \supseteq \pi D_i, D_i \in \Gamma_i\}$ and $\Gamma_2 = \{D \leq \pi R_i | D \supseteq \pi D_i D_i \in \Gamma_i$ and almost all $D_i = R_i\}$ will be studied. Γ_1 does not always satisfy T2. A necessary and sufficient condition for Γ_1 to be a Gabriel filter is given. It follows that Γ_1 is a better notion of products of perfect torsion theories. However Γ_2 is a Gabriel filter of πR_i , and we use this fact to prove that over an algebraically closed field, cocommutative coalgebra has a torsion rat functor if and only if each space of primitives of its irreducible components is finitedimensional.

For a coalgebra (C, Δ, ε) over a field K, there exists a natural algebra structure on its dual space $C^* = \operatorname{Hom}_K (C, K)$ induced by the diagonal map Δ and every left comodule (M, ϕ_M) over C can be defined as a right C^* -module by $mc^* = (c^* \otimes 1)\phi_M(m), m \in M, c^* \in C^*$. Moreover a right C*-module M is called a rational module if it is a left comodule (M, ϕ_M) over C and its right C*-module structure is derived in the way described above. With these observations we can embed the category of left C-comodules $C\mathcal{M}$, as a full subcategory, into the category of right C*-modules \mathcal{M}_{c^*} . A subspace / of C* is callect cofinite

closed if $I = V^{\perp}$ for some finite-dimensional subspace V of C.

We assume the reader is familiar with torsion theories of modules and elementary coalgebra theories. The terminology and notation are those of Stenstrom [4] and Sweedler [5].

2. Some properties

In this section we derive some properties of Γ_1 and Γ_2 . For convenience, we write a pair (R_i, Γ_i) as Γ_i is a Gabriel filter of R_i . The following are easily proved.

Lemma 1. If I is a right ideal of R and there exists $J \in \Gamma$ such that $(I:r) \in \Gamma$ for r runs through a family of generators of J, then $I \in \Gamma$.

Lemma 2. Γ_1 , Γ_2 satisfy T1.

Proposition 1. If $\{(R_i, \Gamma_i)_{i \in I}\}$ is a family of pairs and each Γ_i has a cofinal family of *n*-generated right ideals (for a fixed integer ri), then $\Gamma_1 = \{D \leq \pi R_i | D \supseteq \pi D_i, D_i \in \Gamma_i, all \ i \in I\}$ is a Gabriel filter of πR_i . Moreover $(\pi R_i)_{\Gamma_i} \cong \pi(R_i)_{\Gamma_i}$.

Proof. It only has to check T2 for Γ_1 . Let $T \leq \pi R_i$ and $D \in \Gamma_1$ such that $(T: \text{rf}) \in \Gamma_i$ for every $d \in D$. We can assume $D = \pi D_i, D_i \in \Gamma_i$ and each D_i has n generators; x_i^1, \dots, x_i^n . Construct n elements of πD_i as $x^1 = (x_i^1), \dots, x^n = (x_i^n)$, then we have $(T: x^j) \in \Gamma_1$. Therefore for each $j = 1, \dots, n$, there is $\pi D_i^{(j)}$ where $D_i^{(j)} \in \Gamma_i$ such that $x^j \pi D_i^{(j)} c T$. However for fixed i the finite sum $J_i = \sum_{j=1}^n x_i^j D_i^{(j)} \in \Gamma_i$ by Lemma 1 and $\pi J_i = x^1 \pi D_i^{(1)} + \dots + x^n \pi D_i^{(n)}$. This shows that $\pi J_i \subset T \in \Gamma_1$.

Next we find an isomorphism from $\pi(R_i)_{\Gamma_i}$ to $(\pi R_i)_{\Gamma_i}$. Let $([f_i]) \in (\pi R_i)_{\Gamma_i}$, where $f_i \in \operatorname{Hom}_{R_i}(D_i, R_i/(t_i(R_i)))$ and $[f_i]$ is its equivalent class in $(R_i)_{\Gamma_i}$, and define a πR_i -homomorphism / from πD_i to $\pi R_i/t(\pi R_i)$ as $f_i((d_i)) = (f_i(d_i))$. Since $t(\pi R_i) = \pi t(R_i)$, $\pi(R_i/t(R_i)) \cong \pi R_i/t(\pi R_i)$ we have a well-defined map α from $\pi(R_i)_{\Gamma_i}$ to $(\pi R_i)_{\Gamma_i}$, as $\alpha([f_i]) = [/]$, for if f_i and f'_i agree on D_i for each i, then the corresponding f and f' agree on πD_i . It is routine to check that a is a one to one ring-homomorphism. Let $f: \pi D_i \to \pi R_i/t(\pi R_i)$ a πR_i -homomorphism, $D \in \Gamma_i$ and define $f_i = \pi_i fe_i$, where e_i is the ith-inclusion, π_i is the ithprojection. Then $\alpha([f_i]) = [f]$. Thus α is an isomorphism.

Note. (1) we agree that n generators of right ideals are not necessary distinct.

(2) In proposition 1, Γ_1 also has a cofinal family of n-generated right ideals.

Proposition 2. If $\{(R_i, \Gamma_i), i \in I\}$ is a family of pairs, then $\Gamma_2 = \{I \leq \pi R_i | I \supseteq \pi D_i, D_i \in \Gamma_i \text{ and almost all } D_i = R_i\}$ is a Gabriel filter of πR_i .

Proof. Similarly it only has to check T_2 for Γ_2 . Let $I \leq \pi R_i$ and $D \in \Gamma_2$ such that $(/: d) \in \Gamma_2$ for all $d \in D$. We can assume $D = \pi D_i, D_i \in \Gamma_i$ and except for $D_{i_k}, k=I, \dots, n$, all other D_i are equal to R_i . Let $e \in \pi D_i$ be an element with i_k -th component=0, other component=1. It follows that there is a right ideal of the form πJ_i with $J_i \in \Gamma_i$ and almost all Ji = Ri such that $I \supseteq e \pi J_i$. Also for each $d_{i_k} \in D_{i_k}$, there exists a right ideal $J_{i_k}^{(a)} \in \Gamma_{i_k}$ such that $I \supseteq e_{i_k}(d_{i_k}J_{i_k}^{(p)})$, where e_{i_k} is the i_k th inclusion. Now take $H_{i_k} = \sum d_{i_k}J_{i_k}^{(a)}$, the sum runs through all elements of D_{i_k} . We have $H_{i_k} \in \Gamma_{i_k}$ and

(*)
$$I \supseteq e \pi J_i + e_{i_1}(H_{i_1}) + \dots + e_{i_n}(H_{i_n})$$
.

However the right side of (*) is of the form πJ_i with $J_i \in \Gamma_i$ and almost all $J_i = R_i$. Thus $I \in \Gamma_2$.

3. Products of perfect torsion theories

For a fixed ring R with a perfect Gabriel filter Γ , we will investigate the notion of their products.

The following two theorems (Chapt. 13, [4]) motivate our definition.

Theorem A. The following properties of a pair (R, Γ) are equivalent:

(1) Ker $(M \rightarrow M \otimes_R R_{\Gamma}) = t(M)$ for all right *R*-module *M*.

(2) $\psi_R(I)R_{\Gamma} = R_{\Gamma}$ for every $I \in \Gamma$.

Theorem B. If ϕ : $A \rightarrow B$ is a ring homomorphism. The following statements are equivalent:

(1) ϕ is an epimorphism and makes B into a flat left A-module.

(2) The family Γ of right ideal I of A such that $\phi(I)B = B$ is a Gabriel filter, and there exists a ring isomorphism $\sigma: B \to A_{\Gamma}$ such that $\sigma \phi = \psi_A$.

(3) The following two conditions are satisfied;

(3a) for every $b \in B$, there exists a finite subset $T_n = \{(s_1, b_1), \dots, (s_n, b_n)\}$ of AxB such that $b\phi(s_i) \in \phi(A)$ and $\sum_i \phi(s_i) b_i = 1$.

(3b) if $\phi(a) = 0$, then there exists a finite subset $S_n = \{(s_1, b_1), \dots, (s_n, b_n)\}$ such that $as_i = 0$ and $\sum_i \phi(s_i)b_i = 1$.

Note. A Gabriel filter Γ of a ring *R* is called perfect if it has properties listed in Theorem *A*. If Γ is perfect, then

(1) Γ has a cofinal family of finitely generated right ideals.

(2) $\Gamma = \{I \leq R | \psi_R(I) R_\Gamma = R_\Gamma\}.$

DEFINITION. If Γ is a perfect Gabriel filter of R, for each $b \in R_{\Gamma}$ define Ind $b = \inf |T_n|$, T_n runs through all subsets of $R \times R_{\Gamma}$ that satisfy Theorem B, 3(a).

If $\psi_R(r)=0$, define Ind $r = \text{Inf } |S_n|, S_n$ runs through all subsets of $R \times R_r$ that satisfy Theorem B, (3b). Then let

Ind
$$R_{\Gamma} = \text{Max} \{ \sup_{b \in R_{\Gamma}} (\text{Ind } b), \sup_{\psi_{\mathcal{P}}(r) = 0} (\text{Ind } r) \}$$
.

Theorem 3. The following statements are equivalent for a perfect Gabriel filter Γ of R.

(1) Γ has a confinal family of *n*-generated right ideals.

(2) $\Gamma_i = \{I \leq \pi R | I \supseteq \pi D_i, D_i \in \Gamma\}$ is a Gabriel filter of πR , for any direct product of R.

(3) I id R_{Γ} is finite.

Proof. (1) \Rightarrow (2). By Proposition 1.

(2) \Rightarrow (3). If Γ_1 is a Gabriel filter, then it is perfect. Suppose there is a sequence $\{b_1, b_2, \dots, b_n, \dots | b_n \in R_{\Gamma}\}$ such that Ind $b_n > \text{Ind } b_{n-1}$. Consider the countable product πR of R and the element $x = (b_1, b_2, \dots)$. Then we have $s_1, \dots, s_t \in \pi R, x_1, \dots$, tf, $e(\tau\tau, R)_{\Gamma} \gamma r J_{\Gamma}^2$ such that $x \psi(s_i) \in \psi \pi R$ and $\sum \psi(s_i) x_i = 1$. Projecting to each component, Ind $b_n \leq t$ for each n. This is a contradiction. Similarly we can prove that $\sup_{\psi_R(r) = 0} \{\text{Ind } r\}$ is finite.

(3) \Rightarrow (1). If Ind R_{Γ} is finite, then any direct product πR_{Γ} of R_{Γ} satisfies Theorem B, (3). So the product πR_{Γ} is a ring of right quotient of πR with respect to this perfect Gabriel filter $\Gamma = \{D \leq \pi R | \phi(D) \pi R_{\Gamma} = \pi R_{\Gamma}.\}$ Applying the well-ordering theorem to the family Γ , the right ideal πD_i is in Γ . So πD_i contains a *n*-generated right ideal $J \in \overline{\Gamma}$. For each $i J_i$, the *i*-th projection of J, is contained in D_i . Since $\psi_R(J_i)R_{\Gamma} = R_{\Gamma}, J_i \in \Gamma$. This shows that Γ has a cofinal family of *n*-generated right ideals.

EXAMPLE. Let Z be the ring of integers, $\Gamma = \{\text{all non-zero ideals of } Z\}$, take a countable product πZ of Z, then $\Gamma_0 = \{I \leq \pi Z \mid I \supseteq \sum_{\oplus} D_i, D_i \in \Gamma\}$ is not a perfact Gabriel filter. However $\Gamma_1 = \{/ \leq \pi Z \setminus I \supseteq \pi D_i, D_i \in \Gamma\}$ is perfact.

4. Applications to coalgebras

In this section we consider a subfunctor of the identity for the category of right C*-module \mathcal{M}_{C^*} and study when this subfunctor defines a hereditary torsion theory. The main effect is to classify some types of cocommutative coalgebras. If C is a coalgebra, for a right C*-module M there is a unique maximal rational submodule M^{rat} of M. Actually $M^{\text{rat}} = \{m \in M | \text{Ann}(m) \text{ is}$ cofinite closed in C*}. There are some properties of \mathcal{M}_{C^*} .

(1) If (M, ϕ_M) is a left *C*-comodule, *M* can be considered as a right *C**-module by $mc^* = (c^* \otimes 1)\phi_M(m)$. Then $(M_{c^*})^{rat} = M$.

- (2) Direct sum of rational C^* -modules is rational.
- (3) $(C^{**})^{rat} = C.$
- (4) For a submodule N of a C*-module M, $N^{rat} = N \cap M^{rat}$.
- (5) Homomorphic image of a rational module is rational.

So we have a subfunctor rat of the identity on \mathfrak{M}_{C^*} just assigned each C^{*}-module M the maximal rational submodule M^{rat} and each homomorphism /: $M \rightarrow N$ the restriction map $f: M^{\mathrm{rat}} \rightarrow N^{\mathrm{rat}}$.

DEFINITION. A coalgebra C is said to have torsion rat functor if rat is a left exact radical of \mathcal{M}_{C^*} .

Note. If C has the torsion rat functor, then

(1) the category of left C-comodules or equivalently of rational right C^* -modules is the torsion class.

(2) the corresponding Gabriel filter is

 $\Gamma = \{I \leq C^* \mid I \text{ is cofinite closed in } C^*\}$.

EXAMPLE. Let V be an infinite dimensional vector space and C=C(V) denote the connected coalgebra $K \otimes V$ with

$$\Delta(v) = 1 \otimes v + v \otimes 1 \qquad \forall v \in V$$

$$\delta(l) = 1$$

$$\varepsilon(v) = 0 \qquad \forall v \in V.$$

Take a basis $\{v_i | i \in I\}$ of V and let $\{v_i^* | i \in \tilde{I}\}$ be its dual independent set in V^* . Extending this set to a basis $\{v_i^* | i \in I\}$ of V^* . We construct a linear map / from C^* to K as

$$\begin{cases} f(v_i^*) = 1 \text{ if } i \in I \\ f(1) = 1 \end{cases}$$

this element $f \in C = C^{**rat}$, however $fv^* = f(v^*) l \in C$ for any $v^* \in V^*$. So $(C^{**}/C^{**rat})^{rat} \neq 0$.

The following proposition is proved in [2, p. 521].

Proposition. Suppose C is a coalgebra and $0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$ is an exact sequence of right C*-modules with M' and M'' rational. If the annihilator of each $m'' \to M''$ is a finitely generated right ideal, then M is rational.

Note. From the proposition, we see that if C^* is a right Noetherian, then C has the torsion rat functor. In particular the universal cocommutative pointed irreducible coalgebra B(V) over a finite dimensional vector space V has the torsion rat functor.

Proposition 4. If D is a subcoalgebra of C, then D has the torsion rat functor provided C has.

Proof. There exists a ring epimorphism $\pi: \mathbb{C}^* \to D^*$. Every D^* -module M is a \mathbb{C}^* -module by $mc^* = m\pi(c^*)$. Thus $(M_{D^*})^{\mathrm{rat}} = (M_{C^*})^{\mathrm{rat}}$ and $(M_{D^*}/M_{D^*})^{\mathrm{rat}} = (M_{C^*}/M_{C^*})^{\mathrm{rat}} = 0$.

Corollary 5. For any pointed irreducible cocommutative coalgebra C, it has the torsion rat functor if and only if its space of primitive elements P(C) is finite-dimensional.

Proof. If P(C) is infinite-dimensional, the connected sub-coalgebra $D=K\oplus P(C)$ of C does not have the torsion rat functor. Conversely if P(C) is finite-dimensional there is an inclusion map from C to the universal cocommutative pointed irreducible coalgebra over P(C). So by Proposition 4 C has the torsion rat functor.

Theorem 6. (*) If $\{C_i | i \in I\}$ is a family of coalgebras and C_i has the torsion rat functor for each $i \in I$. Then the direct sum $C = \sum_{\oplus} C_i$ has the torsion rat functor.

Proof. Let $\Gamma_i = \{D_i \leq Cf | D_i \text{ is cofinite closed in } C_i^*\}$, and $\Gamma = \{D \leq C^* = \pi C_i^* D \text{ is cofinite closed in } C^*\}$. By proposition 2 $\Gamma_2 = \{I \leq \pi C_i^* | I \geq \pi D_i, D_i \in \Gamma_i \text{ and almost all } D_i = C_i^*\}$ is a Gabriel filter of $C^* = \pi C_i^*$. Hence it is sufficient to show that $\Gamma = \Gamma_2$. If $D \in \Gamma$, then $D = V^{\perp}$ for a finite dimensional subspace $V \circ f C = \sum_{\oplus} C_i$, and so $V \subseteq C_i \oplus \cdots \oplus C_{i_n}$ for some *n*.

For each i, let V_i be the projection of V to C_i . Then V_i is a finitedimensional subspace, almost all $V_i = 0$ and $V \subseteq \pi V_i$. Hence we have $\pi V_i^{\perp} \subseteq V^{\perp} = D \in \Gamma_2$. Conversely suppose $I \in \Gamma_2$, since / contains a cofinite closed subspace πD_i , so / is also cofinite closed. Thus $\Gamma = \Gamma_2$.

Corollary 7. Over an algebraically closed field, a cocommutative coalgebra has the torsion rat functor if and only if each space of primitives of its irreducible components is finite-dimensional.

Proof. Over an algebrically closed field, a cocommutative coalgebra is a direct sum of its pointed irreducible components. So by Theorem 6 and Corollary 5, we have this result.

NATIONAL TAIWAN UNIVERSITY

^(*) This theorem also appeared in [1], here we use the notion of products of torsion theories to give a different proof.

PRODUCTS OF TORSION THEORIES

References

- [1] I-Peng Lin: On homological properties of coalgebras, Thesis, University of Illinois at Chicago Circle, 1973.
- [2] D. Radford: Coreflexive coalgebras, J. Algebra 26 (1973), 512-535.
- [3] W. Schelter: Products of torsion theories, Arch. Math. 22 (1971) 590-596.
- [4] B. Stenstrom: Rings and Modules of Quotients, Lecture Notes in Math. 237, Berlin 1971.
- [5] M. Sweedler: Hopf Algebra, Benjamin, W. A., New York, 1969.
- [6] Y. Utumi: On quotient rings, Osaka J. Math. 8 (1956), 1-18.