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1. Introduction

In this paper conditions are obtained under which all solutions of certain real
non-autonomous nonlinear differential equations tend to zero as /—»oo.

Theorem 1 is concerned with the system of differential equations;

(1.1) & = A(t)x+f(t, x)

where x, f are w-dimensional vectors, A(f) is a bounded continuously differen-
tiate nXn matrix for ί^O, and/(Z, x) is continuous in (ί, x) for t^Q, ||#||<°o,
here || ||denotes the Euclidean norm.

Theorem 2 is concerned with the differential equation of the third order;

(1.2) x+a(t)f(x, Λ, x)x+b(t)g(x9 x)+c(t)h(x) = p(t, x, i, x)

where a(t), b(t)y c(t) are positive continuously differentiate and /, g, h, p are
continuous real-valued functions depending only on the arguments shown, and
the dots indicate the differentiation with respect to t.

The asymptotic property of solutions of third order differential equations
has received a considerable amount of attention during the past two decades,
particularly when (1.2) is autonomous. Many of these results are summarized in
[11].

A few authors have studied non-autonomous third order differential equa-
tions. K. E. Swick [13] considered the following equations

(1.3) x+p(t)x+q(t)g(Λ)+r(t)h(x) - 0 ,

(1.4) *+/(*, Λ, t)x+q(t)g(x)+r(t)h(x) = 0 ,

with the assumption that q(t), r(t) are positive, bounded and monotone
decreasing.

In [6], the author studied the asymptotic behavior of the solutions of the
equation
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(1.5) x+a(t)f(x9 x) x+b(t)g(x, Λ)*+c(t)h(x) = e(t)

under the assumptions that | a'(ί) \ , | b\ί) \ , | c'(t) \ and | e(t) \ are integrable and

suitable conditions on/, g, h. Here we assume the condition

1 Γ^+r

lim sup — {| a'(s)+b',(s)+ \ c'(s) \ } ds<7
C/.Ό-K03,00) V Jt

where γ is a sufficiently small positive constant.

Conditions on p(ΐ, x, xy x) are also relaxed, for example p(ty x, y, z) may be

unbounded for x2-{-y2-\-zz.

Recently H. O. Tejumola [15] established conditions under which all solu-

tions of equations of the form

(1.6) "x+f(x, x, x) x+g(x, x)+h(x) = p(t, x, &, x)

tend to zero as ί->oo. Theorem 2 develops Tejumola's result [15; Theorem 1]

to the non-autonomous equations of the form (1.2).

The main tools used in this work are Theorem A and Liapunov functions.

Theorem A would be especially convenient to study the non-autonomous

differential equations.

2. Auxiliary theorem

Consider a system of differential equations

(2.1) x == F(t, x)

where x and F are ra-dimensional vectors.

Theorem A. Suppose that F(ΐ, x) of (2.1) is continuous in IχRn (1= [0, oo ))
and that there exists a Liapunov function V(ty x), continuously differ entίable in

IχRn, satisfying the following conditions;

( i ) a(\\x\\)^V(t, x)^b(\\x\\), where a(r)<=CIP (the family of continuous and
increasing positive definite functions), α(r)->oo as r->oo and ό(r)

(ϋ) Fc2.ι>(*, x) = lim sup -f (V(t+h, x+hF(t, x))- V(t, x)}
A->0 t ft '

^ -cV(t, x)+\ί(t)V(t9 ^+^(0(1 + ̂ , x)) ,

where c>0 is a constant and X£(i)^0 (/=!, 2) are continuous functions
satisfying

I rt+v
(2.2) lim sup — I \1(s)ds<c ,

C / . t ^C00,00) V Jt
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(2.3) (t+l \2(s)ds -> 0 as t -> oo .
Jt

Then, any solution x(t) of (2.1) is uniform-bounded and satisfies x(t)-*Q as

The following is an immediate consequence of Theorem A.

Corollary. Under the assumptions in Theorem A, if

where L(t) is a continuous function satisfying

(2.2)' lim sup -1 Γ °L(τWτ<0 ,
C/.^-K0*,00} V Jt

then any solution x(t) o/(2.1) is uniform bounded and satisfies x(t)-*Q as

REMARK. The condition (2.3) can be replaced by

(2.3V pT°λ2(τWτ->0 as t -> oo
Jt

where τ0>0 is an arbitrary constant.

3. Proof of Theorem A

Proof of Theorem A. Let £>0 be chosen such that — >£ and

(3.1) limsup — f\(r)rfT^c-3£ .
(/, * -/^C00,03) S — t J t

Let T0>0 such that

limsup -- λ1(τ)rfτ+6 for
s — t*t α.^-o^ c00,00),? — tit

and ί^ Γ0+ί. Γ0 does not depend on t and s.

Using (3.1) and above inequality, we have

(3.2) — \\l(r)dr^c-28 for t^TQ and s^TQ+t .

Sτ0
Λ>ι(r)dτ} ^K. Then it is easy

0
to show that for all ί^ί^O, we have

(3.3) ^-cc*-«+/^(T)
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Now we consider the function U(t, x) defined by

(3.4) U(t, x) = V(t, x)e-** j°V e-^-'^^^ds 9

and show that

(3.5) e-c a(\\x\\)£U(t, x)£ — b(\\x\\) for all ί^O and

To verify the right-hand side inequality in (3.5), we use the inequality (3.3).
Then we obtain

(3.6) e~**\ e*se~c<s~"+5t

λ*Mdτds ^ e~**\ e*sKe~2^s~"ds
Jt Jt

~~ y
A short calculation shows the left-hand side inequality in (3.5), i.e.

S °° fs Γ/4-1 *s

6 c J / CIS •^>- €• \ 6 θ •* * Wo
ί Jί

^_ c I β o t

Jt

Therefore we have

(3.8) e-c V(t, x) ^ Z7(ί, x) g — K(ί, Λ)
c

and using the hypothesis (i) of Theorem A, we obtain (3.5).
From (3.4) it follows that

άW*, x)

- €V(t, x)e-ίtesse-cίs-t^Sl^
M"-ds

+ {ί-λι(ί)} V(t, x)e-*' Γέ' e-^-^S'^^ds- V(t, x)

^ {-cV(t, x)+\1(t)V(t, *)+λ,(ί)(l + Γ(ί, *))} e-

-€U(t, *)+ {e-λ,(ί)} t/(ί, *)- F(ί, x).

Using (3.6), we obtain
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(3.9) U^(t, x) ^ ~6U(t, x)+ λ2(0(l + V(t, x)) .

From (3.8) and (3.9), we have

(3.10) UCSΛ>(t, x) ^ {-e+

Set

W(t) = U(t, x(t))

where x(t), x(t0)=xoy is any solution of (2.1). Then the inequality (3.10) implies

d

dt x ' - l ' ε

This immediately gives

W(t) S . . .
J t Q

Jζ Tζ

where g(t)——£+—ec\2(t) and h(t)——X2(0

Using the hypothesis (2.3), we can choose a constant T>0 so that

— for t>l-\-ΐn and tn>T.2

8 t — Z 0 J f o 2

Let K>0 be a constant satisfying exp -
2 8 Jo

Then for all t^t0^0 we have

(3.11) U(t, x(t)) ^ ̂ - {b(\\x0\\)e-*«-W2+ Γ e~^-^2 \2(s)ds} .
8 J *o

Using the left-hand side of (3.5), we find that all the solutions of (2.1) are
uniform-bounded .

Furthermore the condition (2.3) implies that

U(t, x(t)) -> 0 as t -* oo .

Therefore by the inequality (3.5) we have

x(t) -> 0 as t — > oo .

Q.E.D.

Proof of Corollary. Let c>0 be an arbitrary positive constant. By as-
sumption (ϋy, we have
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F«.2)(f, x) ^ -cV(t, x)+ (c+L(t)} V(t, x)+\2

It now follows from (2.2)' that

i rt+v
lim sup — \ {c+L(r)} dr < c ,

C/,»)-X~,~) V J*

which establishes the assumption of Theorem A, and thus the proof is completed.
Q.E.D.

4. Theorems

Let A(t) satisfy the hypothesis (i) of the following Theorem 1 and P(t)
be a solution of the matrix equation

(4.1)

Notice that P(t) is bounded for bounded A(t).
The following propositions are due to J. R. Dickerson [2].

Proposition A. xτP(i)x^C \\x\\2, where C is a positive constant.

Proposition B. | xτP(t)x\ ^ 2\\A(t)\\ ||P(ί)|| xrP(t)x, where P(t) and A(t)
denote the time derivative of matrices P(t) and A(t) respectively.

Theorem 1. Suppose that the following conditions are satisfied',
( i ) there exists a positive constant TO such that

the real parts of all the eigenvalues of A(t) ̂  — TO < 0 for all t ^> 0,

(ii) li
c

where P1=lim sup | |P(ί)| |,

(iϋ) \\f(t, X)\\^

where γ(ί) is a non-negative continuous function on [0, oo),

(iv) 7(s)ds->0 as t -> oo (ί = 1, 2) .

Then, all solutions x(t) of (1.1) are uniform-bounded and satisfy x(t)-*Q as

REMARK. It may be shown by examples [16] that the smallness of
is essential, even if the condition (i) is satisfied.

Next, we consider the equation (1.2) and assume that g(x, y), gx(x> y),
f(x, y, z),fx(x, y, z) zndfz(xy y, z) are continuous for all (x, y, z)^R3 and h(x)
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is continuously differentiable for all x^R1.

Theorem 2. Suppose that a(t), b(t), c(t) are continuously differentiable on
[0, oo) and g(x, Q)=h(Q)=Q and the following conditions are satisfied',

( i ) A ̂  a(t) ̂  α0>0, B ̂  b(t) ̂  00>0, C ̂  c(t) ̂

for t^I= [0, oo),

(ii) h(x)/x^

(iii) f^f(x,y,z)^f0>0 for all (x, y, z) and g ̂  ̂ ^- ^ go>0
y

for all jΦO and x ,

(iv)

for all (ΛI, y,

(v)

τ £0

where μ1 and μ2 are arbitrarly fixed constants satisfying

(vii)

where γ w α ίmα// positive constant whose magnitude depends only on the
constants appeared in (i)^(vi), and b+(t)=max (b'(t), 0),

(viii) \p(t, x, y, z)\ ^ p(t){l+(x2+y2+zJ'2}+Δ(x2+y2+zJ'2

where Δ is a positive constant and p(t) is a non-negative continuous function^

S /+1
p(s)ds-^>Q as t-> oo .

Then there exists a finite constant 8=£(A, a0, By b0, C, c0, δ, //0, g, gQ h
such that if Δfg£ then every solution x(t) of '(1.2) ί> uniform-bounded and satisfies

x(t) -> 0, Λ(ί) -> 0, 55(ί) -> 0 ΛJ ί -> oo .

REMARK. It should be pointed out that in the special case/= 1 (so that the
assumption (iv) is automatically satisfied) Theorem 2 reduces to the author's
earlier result [7; Theorem 2]. Also in another special case in which
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a(t)f(x,yy *) = fl, b(t)g(x, y)==by and c(t)h(x) = cx in (1.2) (so that all the con-

ditions (ii)^(iv) and (vi) are trivially fulfilled) the hypothesis (i) and (v) reduce

to

β>0, ό>0, £>0, ab— c>0

which is the Routh-Hurwitz criterion for the asymptotic stability in the large

of the zero solution of the equation

x+ax+bx +cx = 0 .

5. Proof of theorems

Proof of Theorem 1 . We consider the Liapunov function

(5.1) V(t, x) = x

By virtue of Proposition A and the boundedness of P(t\ there exist positive

constants C and P2 such that

(5.2) C\\x\\* ^ V(t, x) ^ P2\\x\\* .

A simple calculation shows that

Fα.ι>(f, x) = *TP(t)x+xTP(t)X+xTP(t)x

= -xτx+fτ(t, x)P(t)x+xτP(t)f(t, x)+xτP(t)x .
•

Applying Proposition B to the function xτP(t)x, we obtain

^α.o(ί, *) ̂  -|W

Using (5.1), (5.2) and (iii) of Theorem 1, we have

?α..>(f, *) ^ --+211^)11 ||^(ί)||F(ί, *)

We'll show that

lim sup 1 Γ" {— -J_^+2||P(τ)|| \\A(r)\\\dr<0 .
σ^^c^-o v Jt ( ||^P(T)|| )

Let ρ0 be a positive number such that

P« = ϊk~ lίm SUP -2Pι cw-x00.00) v
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Given £>0, there exists a positive number T such that IJP^IKP^έ for all

r^ T. This implies also

177<τ^:<-4r+!o for all r^T.

Using these inequalities, we have

lim sup -i ΓΊ-—^+2\\P(τ)\\ \\A(r)\\\dr
σ,")-κ<~,~) -z; Jt ( ||P(τ)|| J

< lim sup -1Γ"{ — L+^

If f is chosen so that

1

then we have

lim sup — Γ+l>f —— h2||P(τ)||
* \ I ι ι τ~»/ \ 1 1 ' ' > ''CW-K VΌI; it ( ||P(τ)||

Hence, the assumptions of Corollary hold and the proof of Theorem 1 is
completed. Q.E.D.

Proof of Theorem 2. The equation (1.2) is equivalent to the system

(5.3)

z = —a(t)f(x, y, z}z—b(i)g(x, y)—c(t)h(x)+ρ(t, x, y, z).

We consider the Liapunov function

(5.4) V(t, x, y, z) - V& x, y, z)+V2(t, x, y, *)+VΛ(t, x, y, z)

where Vly V2 and V3 are defined by

(5.5) 2V, = 2μιc(t) \Xh(ξ)dξ+2c(t)h(x)y+2b(t) \9g(x,
Jo Jo

+2μίa(t)\

(5.6) 2V2 = μJ>(t)goX*+2α(t)f0c(t) \"h(ξ)dξ +«
Jo

~μ2y
2+2b(t)

+2μ2xz+2α(i)f0yz+2c(t)h(x)y ,
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(5.7) 2F3 = 2a\t)f0 ftx, ,,
JO

and μ ι>0, ^2>0 are two arbitrarily fixed constants such that

0 o 0
We shall prove the following two properties of V:

(5.8) /v (**+/+**) <ς F(ί, *, y, z) £

for all (ΛJ, y, .srJeΛ3 and

(5.9) F(,3) ̂  -D

along any solution (x(t), y(t)y z(t)) of (5.3), where Z>1̂ Z>5 are certain positive
constants.

At first we verify (5.8).

From the inequality — -<μι<a0f0 there exists a positive number δ0 such

that M)£o(l-A) ><?/*! and a0f0(l-S0)> μι. Thus we have

2F, = 2μAt} Γ ίl -Mil} ̂ )^+MίJo I hλ >

+^\y {μιb(t)g(x, ιj)-
μι Jo

l Γ {α(ί)/(ΛT, 7, 0)-
Jo

+2/tlΠα(<)/(*, 17, 0)-Jo i i—
— _ AΛ_

^(1— δ0)

Denoting 2£>e=min l*sB£<Ft bΰg, -- ^L+μ^/.-.JίL, δ ,}, we have
I «! Λ(l— 00) 1 — S0 )
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It is easy to see that there exists a positive number D7 such that

V,(t, x,y, *)=g A (*2+/+*2)

Hence we obtain

A (*2+/+*2) ̂  V,(tt x, y, *) £ A (*2+/+*2) .

As before we have

2V, = A*ϊ[?ΛO-/*J*2+/*2ί«i+flϊ(t)/.Iy+«ί

+ 2μ2a(t)ft)xy + 2μ2xs+ 2a(t)f0yz

+2a(t)fac(t) h(ξ)dξ+2b(t) yg(x, rj)drι-μ2y*+2c(t)h(X)y

We find easily that

0,

!**(*)} = f ΓAίfJί^-A'^rff ^ 0,
h ) h Jo

Then we have a positive number D8 such that

0 ̂  F2(ί, jc, y, z) ̂  D8.(x2+y*+z2) .

We can see also that

2F3 - 2

0 ̂  27,(ί, x, y, z) :S

Therefore there exist positive numbers Dλ and Z)2 such that

(5.8) A(*2+

Next we prove the inequality (5.9). Along any solution (x(t), y(t), z(t)) of

(5.3), we have
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y, *)-

\ gx(x, n}d η+ μ1a(t)y\ fx(x, v,
J o J o

-μιa(t)[f(x, y, z)-f(x, y, Q)]yz

+ μιc'(t) Γ h(ξ)dξ+c'(t}h(X}y+V(t) \*g(x,
Jo Jo

+ μ1a'(t) \yf(xy 77, ϋ)-ηdη+(μ^y+z)ρ(t, x, y, z)

y

2

y
y

ί. *. J. *)
and

y, 0)-

o

Thus we obtain

{μAt)+fo[a'(t)c(t)+a(t)c'(t)]} \*h(ξ)dξ
Jo
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where

Hence

)->(*, y, 0)]y* .

y

y,

y J μ1

+a(t){μl+a(t)fll}lf(X, y, g)-ftx, y,

By the assumptions
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C^.A, = 0 ,

Applying the Mean Value Theorem, we have for 0< | 2\ < \z\

[f(x, y, *)-/(*, y, 0)]yz = /,(*, y, 2)yz2 ^ 0 .

Therefore there exists a positive number D3 such that for all (#, y,

From (ii), (iii), (iv) and (v) it is easy to show that there exists a positive
number Z)4 such that

a'(t)\+b'+(ΐ)+\c'(t)\)(x2+y2+z2)

t, xy y, z) .

Setting D9=max {μ2, μ^Af^ 2}, we have

{μ2x+[μ1+a(t)f0]y+2z}p(t, x, y, z)

Let D5=\/3~Z)9. Then we obtain the inequality (5.9).

We are now ready for the principal subsidiary results needed for the com-

pletion of the proof of Theorem 2. Application to (5.9) with the assumption

(viii) leads to

tf

Let Δ be fixed, in what follows, to satisfy

(5.W) LS-ffc

Using the inequalities (5.8) and (5.10), we have

\( V\/2

Assume

lim sup— (t+V {\ a'(s) \ +b'+(s)+ \ c'(s) \}
CW-KM,~) V Jt 2D2DA
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Now Theorem A will be used to prove the uniform boundedness of solutions

of (1.2) and that for any solution x(t)

x2(t)+£2(t)+x2(t) -> 0 as t -> oo .

This completes the proof of Theorem 2. Q.E.D.

Acknowledgement: The author is indebted to the editor and referees whose
suggested revisions have improved the exposition of this paper.
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