ON t-DESIGNS

Dijen K. RAY-CHAUDHURI* and Richard M. WILSON**

(Received January 14, 1975)

Introduction and preliminaries

An incidence structure is a triple $S=(X, \mathcal{A}, \mathcal{G})$ where X and \mathcal{A} are disjoint sets and $\mathcal{I} \subseteq X \times \mathcal{A}$. Elements $x \in X$ are called points and elements $A \in \mathcal{A}$ are called blocks of S. A point x and a block A are incident iff $(x, A) \in \mathcal{J}$. For any block $A,(A)$ will denote the set of points incident with A.

Let v, k, t and λ be integers with $v \geq k \geq t \geq 0$ and $\lambda \geq 1$. An $S_{\lambda}(t, k, v)$ ($a t$-design on v points with block size k and index λ) is an incidence structure $D=(X, \mathcal{A}, \mathcal{I})$ such that
(i) $|X|=v$,
(ii) $|(A)|=k$ for every $A \in \mathcal{A}$,
(iii) for every t-subset T of X, there are exactly λ blocks $A \in \mathcal{A}$ with $T \subseteq(A)$.
It is well known that every $S_{\lambda}(t, k, v)$ has exactly $b=\lambda\binom{v}{t} /\binom{k}{t}$ blocks and more generally, for any i-subset I of points $(0 \leq i \leq t)$, the number of blocks A of the design with $I \subseteq(A)$ is

$$
b_{i}=\lambda \frac{\binom{v-i}{t-i}}{\binom{k-i}{t-i}}
$$

independent of the subset I [2].

[^0]An $S_{\lambda}(t, k, v)$, say $D=(X, \mathcal{A}, \mathcal{J})$, is simple when the mapping $A \mapsto(A)$ from \mathcal{A} into $\mathscr{P}_{k}(X)$ (the class of all k-element subsets of X) is injective; and D is trivial when the mapping $A \mapsto(A)$ is (surjective and) m-to-one for some integer m, i.e. each k-subset "occurs as a block" exactly m times. In this latter case, evidently $\lambda=m\binom{v-t}{k-t}$.

The well known Fisher's Inequality (see [2]) asserts that the number b of blocks of an $S_{\lambda}(2, k, v)$ is at least v, under the assumption $v \geq k+1$. A. Ja. Petrenjuk [4] proved in 1968 that $b \geq\binom{ v}{2}$ for any $S_{\lambda}(4, k, v)$ with $v \geq k+2$ and conjectured that $b \geq\binom{ v}{s}$ in any $S_{\lambda}(2 s, k, v)$ with $v \geq k+s$. This conjecture is established in the following section.

This condition shows the nonexistence of certain t-designs. For example, Petrenjuk's Inequality shows that $S_{5}(4,22,79)$ do not exist even though the b_{i} 's $(0 \leq i \leq 4)$ are integral. We might note that a hypothetical $S_{2}\left(4, k, 2+\frac{1}{2}(k-1)(k-2)\right)$ would satisfy $b=\binom{v}{2}$ (and the b_{i} 's are integral when $k \neq 1(\bmod 4))$, but no such designs exist by the corollary of Theorem 5 below. The inequality $b \geq\binom{ v}{3}$ rules out the entire family of 6-designs with

$$
\begin{aligned}
& v=120 m \\
& k=60 m \\
& \lambda=(20 m-1)(15 m-1)(12 m-1),
\end{aligned}
$$

(for which the b_{i} 's are integral).
By a tight t-desigh (t even, say $t=2 s$) we mean an $S_{\lambda}(t, k, v)$ with $v \geq k+s$ and $b=\binom{v}{s}$. As examples, we have the trivial designs $S_{\lambda}(2 s, k, k+s)$ where $\lambda=\binom{k-s}{k-2 s}$. An example of a tight 4-design is the well known $S_{1}(4,7,23)$ where $b=253=\binom{23}{2}$. N. Ito [3] has recently shown, using Theorem 5 below, that the only nontrivial tight 4-desighns are the $S_{1}(4,7,23)$ and its complement, an $S_{52}(4,16,23)$. Tight t-designs with $t \geq 4$ seem to be very rare.

Our proof of Petrenjuk's conjecture uses only elementary linear algebra and the observation that the nunber of blocks of an $S_{\lambda}(t, k, v)$ which are incident with some i points and not incident some other j points is constant (i.e., depends only on i, j, and the parameters; not the particular sets of points) whenever $i+j \leq t$.

Proposition 1. Let $(X, \mathcal{A}, \mathcal{J})$ be an $S_{\lambda}(t, k, v)$. Let i and j be nonnegative integers with $i+j \leq t$. Then for any subsets $I, J \subseteq X$ with $|I|=i,|J|=j$,
$I \cap J=\phi$, the number of blocks $A \in \mathcal{A}$ such that $I \subseteq(A)$ and $J \cap(A)=\phi$ is exactly

$$
b_{i}^{j}=\lambda \frac{\binom{v-i-j}{k-i}}{\binom{v-t}{k-t}}
$$

Proof. By inclusion-exclusion,

$$
b_{i}^{j}=\sum_{r=0}^{j}(-1)^{r}\binom{j}{r} b_{i+r}
$$

In view of the above expression for b_{i}, we have $b_{i}^{j}=\lambda c$ where

$$
c=\sum_{r=0}^{j}(-1)^{r}\binom{j}{r}\binom{v-i-r}{t-i-r}\binom{k-i-r}{t-i-r}^{-1}
$$

But in the case of the trivial design $\left(X, \mathscr{P}_{k}(X), \in\right), \lambda=\binom{v-t}{k-t}$ and $b_{i}^{j}=\binom{v-i-j}{k-i}$, from which we deduce the simpler expression $c=\binom{v-i-j}{k-i}\binom{v-t}{k-t}^{-1}$.

As a corollary, the complement $(X, \mathcal{A},(X \times \mathcal{A})-\mathcal{I})$ of an $S_{\lambda}(t, k, v)$ is an $S_{\lambda^{*}}(t, v-k, v)$ with

$$
\lambda^{*}=b_{0}^{t}=\lambda\binom{v-t}{k}\binom{v-t}{k-t}^{-1}
$$

(unless $v<k+t$, in which case the original $S_{\lambda}(t, k, v)$ is evidently trivial).

2. Generalizations of Fisher's inequality

For any set Y, we denote by $V(Y)$ the free vector space over the rationals generated by Y, i.e. $V(Y)$ consists of all formal sums $\alpha=\sum_{y \in Y} a_{y} y$ with rational coefficients a_{y} and formal addition and scalar multiplication. The "unit vectors" $y, y \in Y$, by definition provide a basis for $V(Y)$.

Theorem 1. The existence of an $S_{\lambda}(t, k, v)$ with t even, say $t=2 s$, and $v \geq k+s$ implies

$$
b \geq\binom{ v}{s}
$$

where b is the number of blocks of the design. In fact, the number of distinct subsets (A) is itself at least $\binom{v}{s}$.

Proof. Let $D=(X, \mathcal{A}, \mathcal{I})$ be an $S_{\lambda}(t, k, v)$ and put $V_{s}=V\left(\mathscr{P}_{s}(X)\right)$, where $\mathscr{P}_{s}(X)$ is the class of all s-element subsets of X. For each block A of D, define a vector $\hat{A} \in V_{s}$ as the "sum" of all s-subsets of (A), i.e.

$$
\hat{A}=\Sigma\left(S: S \in \mathscr{P}_{s}(X), S \subseteq(A)\right)
$$

We claim that the set of vectors $\{\hat{A}: A \in \mathcal{A}\}$ spans V_{s}. Since V_{s} has dimension $\binom{v}{s}$, the theorem follows immediately.

Let $S_{0} \in \mathscr{P}_{s}(X)$. To show S_{0} belongs to the span of $\{\hat{A}: A \in \mathcal{A}\}$, we introduce the vectors

$$
E_{i}=\Sigma\left(S: S \in \mathscr{P}_{s}(X),\left|S \cap S_{0}\right|=s-i\right)
$$

(so $E_{0}=S_{0}$) and

$$
F_{i}=\Sigma\left(\hat{A}: A \in \mathcal{A},\left|(A) \cap S_{0}\right|=s-i\right)
$$

for $i=0,1, \cdots, s$. Now for $S_{1} \in \mathscr{P}_{s}(X)$ with $\left|S_{1} \cap S_{0}\right|=s-i$, the coefficient of S_{1} in the sum F_{r} is the number of blocks A such that $S_{1} \subseteq(A)$ and $\left|(A) \cap S_{0}\right|=$ $s-r$; and this number is $\binom{i}{r} b_{s-r+i}^{r}$ with the notation of Proposition 1. Thus

$$
F_{r}=\sum_{i=r}^{s}\binom{i}{r} b_{s-r+i}^{r} E_{i} \quad(r=0,1, \cdots, s) .
$$

The above system of linear equations is triangular and the diagonal coefficients $b_{s}^{r}(r=0,1, \cdots, s)$ are all nonzero under our hypothesis $v \geq k+s$. Thus we can solve for the E_{i} 's (in particular, for $E_{0}=S_{0}$) as linear combinations of the F_{r} 's. Since the F_{r}^{\prime} 's are by definition in the span of $\{\hat{A}: A \in \mathcal{A}\}$, we have $S_{0} \in$ span $\{\hat{A}: A \in \mathcal{A}\}$ for every $S_{0} \in \mathscr{P}_{s}(X)$, and our claim is verified.

Corollary. The existence of an $S_{\lambda}(t, k, v)$ with t odd, say $t=2 s+1$ and $(v-1) \geq k+$ s implies the inequality

$$
b=\frac{\lambda\binom{v}{2 s+1}}{\binom{k}{2 s+1}} \geq \frac{\lambda\binom{v-1}{2 s}}{\binom{k-1}{2 s}}+\binom{v-1}{s} \geq 2\binom{v-1}{s}
$$

Proof. Let $D=(X, \mathcal{A}, \mathcal{I})$ be an $S_{\lambda}(t, k, v)$ and $x \in X$. Let \mathcal{A}^{\prime} be the class of blocks incident with x and $\mathcal{A}^{\prime \prime}$ be the class of blocks not incident with x. Observe that both $D^{\prime}=\left(X^{\prime}, \mathcal{A}^{\prime}, \mathcal{J} \cap\left(X^{\prime} \times \mathcal{A}^{\prime}\right)\right)$ and $D^{\prime \prime}=\left(X^{\prime}, \mathcal{A}^{\prime \prime}, \mathcal{G} \cap\left(X^{\prime} \times \mathcal{A}^{\prime \prime}\right)\right)$, where $X^{\prime}=X-\{x\}$, are $2 s-$ designs and apply Theorem 1 .

The above inequality also rules out infinitely many parameters for which b_{i} 's are integers, $i=0,1, \cdots, t$.

Theorem 2. Let $D=(X, \mathcal{A}, \mathcal{I})$ be an $S_{\lambda}(t, k, v)$ where $t=2 s$ and $v \geq k+s$. If there exists a partition $\mathcal{A}=\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \cdots \cup \mathcal{A}_{r}$ such that each substructure $\left(X, \mathcal{A}_{i}, \mathcal{G} \cap\left(X \times \mathcal{A}_{i}\right)\right)$ is an $S_{\lambda_{i}}(s, k, v)$ for some positive integers λ_{i}, then

$$
b=|\mathcal{A}| \geq\binom{ v}{s}+r-1
$$

Proof. With the notation of Theorem 1, the vectors $\{\hat{A}: A \in \mathcal{A}\}$ span V. But observe that

$$
\sum\left\{\hat{A}: A \in \mathcal{A}_{i}\right\}=\lambda_{i} \sum\left(S: S \in \mathscr{P}_{s}(X)\right)=\lambda_{i} \hat{X}, \text { say }
$$

So if we choose one block A_{i} from each \mathcal{A}_{i}, then $\left\{\hat{A}: A \in \mathcal{A}-\left\{A_{1}, \cdots, A_{r}\right\}\right\} \cup$ $\{\hat{X}\}$ spans V. The stated inequality follows.

3. Tight t-designs

Recall that a tight t-design $(t=2 s)$ is an $S_{\lambda}(t, k, v)$ with $v \geq k+s$ and

$$
b=\lambda\binom{v}{t} /\binom{k}{t}=\binom{v}{s} .
$$

In view of Theorem 1, tight designs are simple. In this section we extend the well known result that two distinct blocks of a symmetric design (tight 2-design) have exactly λ common incident points (see Theorem 4 below).

Theorem 3. Let X be a v-set and \mathcal{A} a class of k-subsets of X such that for distinct $A, B \in \mathcal{A}$,

$$
|A \cap B| \in\left\{\mu_{1}, \mu_{2}, \cdots, \mu_{s}\right\}
$$

where $k>\mu_{1}>\mu_{2}>\cdots>\mu_{s} \geq 0$. Then

$$
|\mathcal{A}| \leq\binom{ v}{s} .
$$

Proof. Let $V=V(\mathcal{A})$. For each $S \in \mathscr{P}_{s}(X)$, define a vector

$$
\bar{S}=\sum(A: A \in \mathcal{A}, A \supseteq S)
$$

We claim that the vectors $\left\{\bar{S}: S \in \mathscr{P}_{s}(X)\right\}$ span V. Since V has dimension $|\mathcal{A}|$, the theorem will follow.

Write $\mu_{0}=k$. Let $A_{0} \in \mathcal{A}$ be given. Define

$$
H_{i}=\sum\left(B: B \in \mathcal{A},\left|B \cap A_{0}\right|=\mu_{i}\right)
$$

for $i=0,1, \cdots, s\left(\right.$ note $\left.H_{0}=A_{0}\right)$. For $r=0,1, \cdots, s$, we see that

$$
G_{r}=\sum\left(\bar{S}: S \in \mathscr{P}_{s}(X),\left|S \cap A_{0}\right|=r\right)=\sum_{i=0}\binom{\mu_{i}}{r}\binom{k-\mu_{i}}{s-r} H_{i}
$$

by comparing the coefficient of each $A \in \mathcal{A}$ on both sides of the equation. We now show that the coefficient matrix of this system of $s+1$ linear equations is
nonsingular, so that we can solve for the H_{i} 's in terms of the $G^{\prime}{ }_{r} \mathrm{~s}$. In particular, we then have $H_{0}=A_{0} \in \operatorname{span}\left\{G_{0}, G_{1}, \cdots, G_{r}\right\} \subseteq \operatorname{span}\left\{\bar{S}: S \in \mathcal{P}_{s}(X)\right\}$.

So consider the $s+1$ row vectors

$$
v_{r}=\left(\binom{\mu_{0}}{r}\binom{k-\mu_{0}}{s-r},\binom{\mu_{1}}{r}\binom{k-\mu_{1}}{s-r}, \cdots,\binom{\mu_{s}}{r}\binom{k-\mu_{s}}{s-r}\right),
$$

$r=0,1, \cdots, s$. Suppose $c_{0} v_{0}+c_{1} v_{1}+\cdots+c_{s} v_{s}=0$. This means that the polynomial

$$
p(x)=\sum_{r=0}^{s} c_{r}\binom{x}{r}\binom{k-x}{s-r}
$$

of degree $\leq s$ has $s+1$ distinct roots $\mu_{0}, \mu_{1}, \cdots, \mu_{s}$ and hence is the zero polynomial. Now $p(0)=c_{0}\binom{k}{s}$, so $c_{0}=0$; then $p(1)=c_{1}\binom{k-1}{s-1}$, so $c_{1}=0$; and, inductively, $c_{0}=c_{1}=\cdots=c_{s}=0$. That is, v_{0}, \cdots, v_{s} are linearly independent. This completes the proof.

Theorem 4. Let $D=(X, \mathcal{A}, \mathcal{I})$ be an $S_{\lambda}(t, k, v)$ with $t=2 s$ and $v \geq k+s$. Then there are at least s distinct elements in the set

$$
\{|(A) \cap(B)|: A \in \mathcal{A}, B \in \mathcal{A}, A \neq B\}
$$

and there are exactly s distinct elements if and only if D is a tight t-design.
Proof. In view of Theorems 1 and 3, it remains only to show that for any tight t-design, there exist s integers $\mu_{1}, \mu_{2}, \cdots, \mu_{s}$ with $0 \leq \mu_{i}<k$ so that $|(A) \cap(B)| \in\left\{\mu_{1}, \cdots, \mu_{s}\right\}$ for distinct blocks A and B. Let $D=(X, \mathcal{A}, \mathcal{J})$ be a tight $S_{\lambda}(t, k, v)$. With the notation of Theorem 1 , the $b=\binom{v}{s}$ vectors $\{\hat{A}: A \in \mathcal{A}\}$ must, since they span V_{s}, be a basis for V_{s}.

Fix $A_{0} \in \mathcal{A}$ and for $B \in \mathcal{A}$, write $\mu_{B}=\left|(B) \cap\left(A_{0}\right)\right|$. For $i=0,1, \cdots, s$, define vectors

$$
\begin{aligned}
& M_{i}=\sum\left(S: S \in \mathscr{P}_{s}(X),\left|S \cap\left(A_{0}\right)\right|=i\right), \\
& N_{i}=\sum\left(\binom{\mu_{B}}{i} \hat{B}: B \in \mathcal{A}\right)
\end{aligned}
$$

Now given $S \in \mathscr{P}_{s}(X)$ with $\left|S \cap\left(A_{0}\right)\right|=i$, the coefficient of S in the sum N_{r} is

$$
\Sigma\left(\binom{\mu_{B}}{r}: B \in \mathcal{A}, S \subseteq(B)\right)
$$

i.e., the number of ordered pairs (B, R) in $\mathcal{A} \times \mathscr{P}_{r}(X)$ such that $S \subseteq(B)$ and $R \subseteq\left(A_{0}\right) \cap(B)$. For any r-subset $R \subseteq\left(A_{0}\right)$ with $|R \cap S|=j$, the number of blocks B such that (B, R) satisfies the above conditions is b_{s+r-j}. Thus the coefficient of S in N_{r} is

$$
\begin{aligned}
& c_{r}^{i}=\sum_{j=0}^{i}\binom{i}{j}\binom{k-i}{r-j} b_{s+r-j} ; \text { and so } \\
& N_{r}=\sum_{i=0}^{s} c_{r}^{i} M_{i} \quad(r=0,1, \cdots, s)
\end{aligned}
$$

The $s+1$ vectors $N_{r}-c_{r}^{8} M_{s}$ are contained in the span of $M_{0}, M_{1}, \cdots, M_{s-1}$; hence there exist rationals $a_{0}, a_{1}, \cdots, a_{s}$, not all zero, such that

$$
\begin{aligned}
& \sum_{r=0}^{s} a_{r}\left(N_{r}-c_{r}^{s} M_{s}\right)=0, \text { or } \\
& \sum_{r=0}^{s} a_{r} \sum_{B \in \mathcal{J}}\left(\binom{\mu_{B}}{r} \hat{B}-c_{r}^{s} \hat{A}_{0}\right)=0 .
\end{aligned}
$$

Now $\{\hat{A}: A \in \mathcal{A}\}$ is a basis for V_{s}, so for $B \neq A_{0}$, the coefficient

$$
\sum_{r=0}^{s} a_{r}\binom{\mu_{B}}{r}
$$

of \hat{B} must be 0 . That is, for any $B \neq A_{0}$, the intersection number μ_{B} is a root of the polynomial

$$
f(x)=\sum_{r=0}^{s} a_{r}\binom{x}{r}
$$

of degree at most s. Finally, note that the coefficients c_{r}^{t} are (and hence $f(x)$ can be chosen to be) independent of the block A_{0} : all intersection numbers are roots of $f(x)$.

The polynomials $f(x)$ described in the proof of Theorem 4 have been found explicitly by P. Delsarte [1]. As an example, we consider the case $t=4$. The equations of Theorem 4 are

$$
\begin{aligned}
& N_{0}=b_{2} M_{0}+b_{2} M_{1}+b_{2} M_{2}, \\
& N_{1}=k b_{3} M_{0}+\left(b_{2}+(k-1) b_{3}\right) M_{1}+\left(2 b_{2}+(k-2) b_{3}\right) M_{2}, \\
& \left.N_{2}=\binom{2}{k} b_{4} M_{0}+\left(\binom{k-1}{2} b_{4}+(k-1) b_{3}\right) M_{1}+\left(\binom{k-2}{2} b_{4}+2(k-2) b_{3}+b_{2}\right)\right) M_{2} .
\end{aligned}
$$

Using the relation $b_{2}=\binom{k}{2}$ in a tight 4-design, one verifies that

$$
\left(b_{2}-b_{3}\right) N_{2}-(k-1)\left(b_{3}-b_{4}\right) N_{1}+\left(2 b_{3}\left(b_{3}-b_{4}\right)-b_{4}\left(b_{2}-b_{3}\right)\right) N_{0}
$$

is a scalar multiple of $M_{2}=\hat{A}_{0}$. For a block $B \neq A_{0}$, the coefficient of \hat{B} in the above expression must be zero, i.e.,

$$
\mu_{B}\left(\mu_{B}-1\right)-\frac{2(k-1)\left(b_{3}-b_{4}\right)}{\left(b_{2}-b_{3}\right)} \mu_{B}+\frac{4 b_{3}\left(b_{3}-b_{4}\right)}{\left(b_{2}-b_{3}\right)}-2 b_{4}=0 .
$$

Rewriting the coefficients in terms of v, k, and λ, we have

Theorem 5. The two "intersection numbers" μ_{1}, μ_{2} of a tight 4-design $S_{\lambda}(4, k, v)$ are the roots of the polynomial

$$
f(x)=x^{2}-\left(\frac{2(k-1)(k-2)}{(v-3)}+1\right) x+\lambda\left(2+\frac{4}{k-3}\right)
$$

Application of Theorem 5 yields the well known fact that any two distinct blocks of an $S_{1}(4,7,23)$ meet in 1 or 3 points.

Since $f(x)$ has integral roots, it must have integral coefficients, and we have the

Corollary. The existence of a tight 4-desigh $S_{\lambda}(4, k, v)$ implies $v-3$ divides $2(k-1)(k-2)$, and $k-3$ divides 4λ.

In [1], Delsarte observes that Theorems 4 and 5 are similar to Lloyd's Theorem on perfect codes. Indeed, Delsarte develops a theory of designs and codes (emphasizing a "formal duality") in the context of association schemes. Contained therein are results analogous to the above for orthogonal arrays of strength t, the analogue of Theorem 1 being Rao's bound.

We conclude with the following remarks.
Let $D=(X, \mathcal{A}, \mathcal{J})$ be a tight $S_{\lambda}(t, k, v)$ with $t=2 s$ and $v \geq k+s$. Let $J(s, v)$ denote the association scheme whose points are the s-element subsets of X (see [1]). Let N be a ($0-1$)-matrix whose rows are indexed by elements of $\mathscr{P}_{s}(X)$ and columus are indexed by the blocks of D. At the row corresponding to S and column corresponding to a block A, the entry of N is 1 iff $S \subseteq(A)$. The matrix $N N^{T}$ belongs to the Bose-Mesner algebra of the scheme $J(s, v)$. The matrix $N N^{\boldsymbol{T}}$ is obviously rationally congruent to the identity matrix. Using the properties of the algebra of $J(s, v)$, it is possible to compute the HasseMinkowski invariant of $N N^{\boldsymbol{T}}$ and obtain some more necessary conditions for the existence of tight $2 s$-designs. (See also [5].)

The Ohio State University

References

[1] P. Delsarte: An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Repts. Suppl. 1973, No. 10, Centrex Publ. Co., Eindhoven, Netherlands, 1973.
[2] P. Dembowski: Finite Geometries, Springer-Verlag, Berlin, 1968.
[3] N. Ito: On tight 4-designs, Osaka J. Math. 12 (1975), 493-522.
[4] A. Ja. Petrenjuk: On Fisher's inequality for tactical configurations (Russian), Mat. Zametki 4 (1968), 417-425.
[5] A. Ja. Petrenjuk: Tactical configurations and Chowla-Ryser conditions (Russian), Kombinatornyi Anal. Vyp. 1 (1971), 42-46.

[^0]: Abstract: We present the generalization (conjectured by A. Ja. Petrenjuk) of Fisher's Inequality $b \geq v$ for 2-designs and Petrenjuk's Inequality $b \geq\binom{ v}{2}$ for 4-designs. The t-designs satisfying the inequality with equality may be considered as generalizations of the symmetric 2-designs ($b=v$) and have the property that there are exactly $\frac{1}{2} t$ possible values for the size of the intersection of two distinct blocks, these values being computable from the parameters.

 * This research was supported in part by ONR NOOO14-67-A-0232-0016 (OSURF 3430A2).
 ** This research was supported in part by N.S.F. Grant GP-28943 (OSURF Project No. 3228-A1).

