Kyuno, S. Osaka J. Math. 12 (1975), 639-645

ON THE RADICALS OF Γ -RINGS

SHOJI KYUNO

(Received October 17, 1974)

1. Introduction

N. Nobusawa [1] introduced the notion of a Γ -ring, more general than a ring, and proved analogues of the Wedderburn-Artin theorems for simple Γ rings and for semi-simple Γ -rings; Barnes [2] obtained analogues of the classical Noether-Lasker theorems concerning primary representations of ideals for Γ rings; Luh [3, 4] gave a generalization of the Jacobson structure theorem for primitive Γ -rings having minimum one-sided ideals, and obtained several other structure theorems for simple Γ -rings; Coppage-Luh [5] introduced the notions of Jacobson radical, Levitzki nil radical, nil radical and strongly nilpotent radical for Γ -rings and Barnes' [2] prime radical was studied further. Also, inclusion relations for these radicals were obtained, and it was shown that the radicals all coincide in the case of a Γ -ring which satisfies the descending chain condition on one-sided ideals.

In this paper the notions of semi-prime ideals are extended to Γ -rings, and it is shown that all of the following conditions are equivalent: (1) Q is a semiprime ideal. (2) Q^c is an *n*-system. (3) The Γ -residue class ring M/Q contains no non-zero strongly nilpotent ideals. (4) The prime radical P(Q) of the ideal Q coincides with Q. Also, the following characterization of P(M) is obtained. P(M) is a semi-prime ideal which is contained in every semi-prime ideal in M. Let R be the right operator ring of a Γ -ring M. For $P \subseteq R$ and for $Q \subseteq M$ we define $P^* = \{x \in M : [\Gamma, x] \subseteq P\}$ and $Q^{*'} = \{\sum_i [\alpha_i, x_i] \in R : M(\sum_i [\alpha_i, x_i]) \subseteq Q\}$. In [5] the following theorem was proved. If P(M) is the prime radical of the right operator ring R of the Γ -ring M, then $P(M) = P(R)^*$.

We show the following result dual to the above theorem, $P(R)=P(M)^{*'}$. As a result, it is obtained that $P(M)^{*'*}=P(M)$ and $P(R)^{**'}=P(R)$. The similar properties hold for the Levitzki nil radical and Jacobson radical. Also, some radical properties are cosidered.

2. Preliminaries

Let *M* and Γ be additive abelian groups. If for all $a, b, c \in M$, and $\alpha, \beta \in \Gamma$,

S. KYUNO

the following conditions are satisfied, (1) $a\alpha b \in M$ (2) $a(\alpha + \beta)b = a\alpha b + a\beta b$, $a\alpha(b+c) = a\alpha b + a\alpha c$, $(a+b)\alpha c = a\alpha c + b\alpha c$ (3) $(a\alpha b)\beta c = a\alpha(b\beta c)$, then following Barnes [2], M is called a Γ -ring. If these conditions are strengthened to, (1') $a\alpha b \in M$, $\alpha a\beta \in \Gamma$ (2') same as (2) (3') $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$ (4) $x\gamma y = 0$ for all x, $y \in M$ implies $\gamma = 0$, then M is called a Γ -ring in the sense of Nobusawa [1]. If A and B are subsets of a Γ -ring M and $\Theta \subseteq \Gamma$, we denote $A \Theta B$, the subset of M consisting of all finite sums of the form $\sum a_i \alpha_i b_i$, where $a_i \in A$, $b_i \in B$, and $\alpha_i \in \Theta$. For singleton subsets we abbreviate this notation, for example, $\{a\} \Theta B = a \Theta B$. A right (left) ideal of a Γ -ring M is an additive subgroup I of M such that $I \cap M \subseteq I$ ($M \cap I \subseteq I$). If I is both a right ideal and a left ideal, then we say that I is an ideal, or a two-sided ideal of M. For each a of a Γ -ring M, the smallest right ideal containing a is called the principal right ideal generated by a and is denoted by $|a\rangle$. Similarly we define $\langle a|$ and $\langle a\rangle$, the principal left and two-sided (respectively) ideals generated by a. Let I be an ideal of a Γ -ring M. If for each a+I, b+I in the factor group M/I, and each $\gamma \in \Gamma$, we define $(a+I)\gamma(b+I) = a\gamma b+I$, then M/I is a Γ -ring which we shall call the Γ -residue class ring of M with respect to I. Let M be a Γ -ring and F the free abelian group generated by $\Gamma \times M$. Then

$$A = \{ \sum n_i(\gamma_i, x_i) \in F : a \in M \Rightarrow \sum n_i a \gamma_i x_i = 0 \}$$

is a subgroup of F. Let R = F/A, the factor group, and denote the coset $(\gamma, x) + A$ by $[\gamma, x]$. It can be verified easily that $[\alpha, x] + [\alpha, y] = [\alpha, x+y]$ and $[\alpha, x] + [\beta, x] = [\alpha + \beta, x]$ for all $\alpha, \beta \in \Gamma$ and $x, y \in M$. We define a multiplication in R by

$$\sum_{i} [\alpha_i, x_i] \sum_{j} [\beta_j, y_j] = \sum_{i,j} [\alpha_i, x_i \beta_j y_j].$$

If we define a composition on $M \times R$ into M by $a \sum_{i} [\alpha_{i}, x_{i}] = \sum_{i} a\alpha_{i}x_{i}$ for $a \in M, \sum_{i} [\alpha_{i}, x_{i}] \in R$, then M is a right R-module, and we call R the right operator ring of the Γ -ring M. Similarly we may construct a left operator ring L of M so that M is a left L-module. If A is a right (left) ideal of R(L), then MA(AM) is an ideal of M. For subsets $N \subseteq M, \Phi \subseteq \Gamma$, we denote by $[\Phi, N]$ the set of all finite sums $\sum_{i} [\gamma_{i}, x_{i}]$ in R, where $\gamma_{i} \in \Phi, x_{i} \in N$, and we denote by $[(\Phi, N)]$ the set of all elements $[\varphi, x]$ in R, where $\varphi \in \Phi, x \in N$. Thus, in particular, $R = [\Gamma, M]$. For $P \subseteq R$ we define $P^{*} = \{a \in M : [\Gamma, a] = [\Gamma, \{a\}] \subseteq P\}$. It then follows that if P is a right (left) ideal of R, then P^{*} is a right (left) ideal of M. Also, for any collection C of sets in R, $\bigcap_{P \in C} P^{*} = (\bigcap_{P \in C} P)^{*}$. For $Q \subseteq M$ we define $Q^{*'} = \{\sum_{i} [\alpha_{i}, x_{i}] \in R : M(\sum_{i} [\alpha_{i}, x_{i}]) \subseteq Q\}$. Then it follows that if Q is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R. Also for any collection $P^{*'}$ is a right (left) ideal of R.

640

tion \mathcal{D} of sets in M, $\bigcap_{q \in \mathcal{D}} \mathcal{Q}^{*'} = (\bigcap_{q \in \mathcal{D}})^{*'}$. For other notions relevant to Γ -rings we refer to [5].

3. Semi-primeness

Following Barnes [2] an ideal P of a Γ -ring M is prime if for any ideals A, $B \subseteq M$, $A \cap B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. A subset S of M is an m-system in M if $S = \phi$ or if a, $b \in S$ implies $\langle a \rangle \Gamma \langle b \rangle \cap S \neq \phi$. Barnes [2] has shown that an ideal P is prime if and only if its complement P^c is an *m*-system. The prime radical P(A) of the ideal A in a Γ -ring M is the set consisting of those elements r of M with the property that every m-system in M which contains rmeets A (that is, has nonempty intersection with A). The prime radical of the zero ideal in a Γ -ring M may be called the prime radical of the Γ -ring M which we denote by P(M). Barnes [2] has characterized P(M) as the intersection of all prime ideals of M. We now make the following definition. An ideal Q in a Γ -ring M is said to be a semi-prime ideal if and only if it has the following property: If A is an ideal in M such that $A \Gamma A \subseteq Q$, then $A \subseteq Q$. It is clear that a prime ideal is semi-prime. Moreover, the intersection of any set of semiprime ideals is a semi-prime ideal. It follows easily by induction that if Q is a semi-prime ideal and A is an ideal and $(A\Gamma)^{*}A = (A\Gamma A\Gamma \cdots A\Gamma)A \subseteq Q$ for an arbitary positive integer n, $A \subseteq Q$. Following Coppage-Luh [5] a subset S of M is strongly nilpotent if there exists a positive integer n such that $(S\Gamma)^n S=0$. We state the following theorem whose proof we omit since it can be established by very easy modifications of the proof of Theorem 4.11 in [6].

Theorem 3.1. An ideal Q in a Γ -ring M is a semi-prime ideal in M if and only if the Γ -residue class ring M|Q contains no nonzero strongly nilpotent ideals.

The following result is easy to prove.

Theorem 3.2. If Q is an ideal in a Γ -ring M, the following conditions are equivalent: (1) Q is a semi-prime ideal. (2) If $a \in M$ such that $\langle a \rangle \Gamma \langle a \rangle \subseteq Q$, then $a \in Q$.

A set N of elements of a Γ -ring M is said to be an *n*-system if $N = \phi$ or if $a \in N$ implies $\langle a \rangle \Gamma \langle a \rangle \cap N \neq \phi$. The equivalence of conditions (1) and (2) of Theorem 3.2 assures us that an ideal Q in a Γ -ring M is semi-prime if and only if its complement Q^c is an *n*-system. By proofs analogous to Lemma 4.14 and Theorem 4.15 in McCoy [6] we have the following results.

Lemma 3.3. If N is an n-system in a Γ -ring M and $a \in N$, there exists an *m*-system L such that $a \in L$ and $L \subseteq N$.

Theorem 3.4. An ideal Q in a Γ -ring M is a semi-prime ideal in M if and

only if P(Q)=Q.

In view of Barnes' characterization of P(M) as the intersection of all prime ideals of M (Theorem 7 in [2]) we have the following immediate corollary to the preceding theorem.

Corollary 3.5. If Q is an ideal in a Γ -ring M, then P(Q) is the smallest semiprime ideal in M which contains Q.

We have the following characterization of P(M) which follows immediately from Corollary 3.5 and Theorem 7 in [2].

Theorem 3.6. P(M) is a semi-prime ideal which is contained in every semiprime ideal in M.

4. The prime radical

Coppage-Luh [5] have proved the following Lemma 4.1 and Theorem 4.2.

Lemma 4.1. If P is a prime ideal of R, then P^* is a prime ideal of M.

Theorem 4.2. If P(R) is the prime radical of the right operator ring R of the Γ -ring M, then $P(M)=P(R)^*$.

We prepare the following lemma.

Lemma 4.3. If Q is a prime ideal of M, then $Q^{*'}$ is a prime ideal of R.

This proof is found in the proof of Theorem 4.1 in [5]. We now prove the following theorem dual to Theorem 4.2.

Theorem 4.4. If P(R) is the prime radical of the right operator ring R, then $P(R)=P(M)^{*'}$.

Proof. Let P be a prime ideal of R, by Lemma 4.1 P* is a prime ideal of M. Let us set $P^*=Q$. Then by Lemma 4.3 $Q^{*'}$ is a prime ideal of R. Since $Q^{*'}=\{r\in R: Mr\subseteq Q\}=\{r\in R: [\Gamma, Mr]\subseteq P\}$, it follows that $RQ^{*'}=[\Gamma, M]Q^{*'}=[\Gamma, MQ^{*'}]\subseteq P$. Thus by the primeness of P, $Q^{*'}\subseteq P$. Also, $[\Gamma, MP]=[\Gamma, M]P=RP\subseteq P$. Hence, $P\subseteq Q^{*'}$. Therefore $P=Q^{*'}$. It follows that P(R), which is the intersection of all prime ideals of R, contains $\bigcap_{\substack{Q\in \mathcal{Q}\\Q\in \mathcal{Q}}}Q^{*'}=(\bigcap_{\substack{Q\in \mathcal{Q}\\Q\in \mathcal{Q}}}Q)^{*'}=(\bigcap_{\substack{Q\in \mathcal{Q}\\Q\in \mathcal{Q}}}Q)^{*'}$, where \mathcal{D} is a certain collection of prime ideals of M. But $(\bigcap_{\substack{Q\in \mathcal{Q}\\Q\in \mathcal{Q}}})^{*'}=(\bigcap_{\substack{Q\in \mathcal{Q}\\Q\in \mathcal{Q}}}Q)^{*'}$, where the intersection is taken over all prime ideals of M. Since, by Lemma 4.3 each $Q^{*'}$ is a prime ideal of R, and P(R) is the intersection of all prime ideals of R, it follows $P(R)\subseteq P(M)^{*'}$. Thus $P(R)=P(M)^{*'}$.

RADICALS OF *I*-RINGS

The following result is a consequence of Theorem 4.2 and Theorem 4.4.

Theorem 4.5. If P(R) is the prime radical of the right operator ring R, then $P(M)=P(M)^{*'*}$ and $P(R)=P(R)^{**'}$.

The next theorem follows immediately from previous Theorem 4.4 and Theorem 4.2 in [5].

Theorem 4.6. If I is an ideal of a Γ -ring M, then $P(I)^{*'}=I^{*'}\cap P(R)$, where P(I) denotes the prime radical of I considered as a Γ -ring.

5. The Levitzki nil radical

Following Coppage-Luh [5] a subset S of a Γ -ring M is locally nilpotent if for any finite set $F \subseteq S$ and any finite set $\Phi \subseteq \Gamma$, there exists a positive integer n such that $(F\Phi)^n F=0$. Also the Levitzki nil radical of M is the sum of all locally nilpotent ideals of M and is denoted by $\mathcal{L}(M)$.

Coppage-Luh [5] have proved the next theorem.

Theorem 5.1. If M is a Γ -ring then $\mathcal{L}(M) = \mathcal{L}(R)^*$, where $\mathcal{L}(R)$ is the Levitzki nil radical of the right operator ring R of M.

We know the following result whose proof will be found in Jacobson [7], p. 163.

Theorem 5.2. $\mathcal{L}(R)$ is a locally nilpotent ideal.

We prove the following two lemmas.

Lemma 5.3. If J is a locally nilpotent ideal of a Γ -ring M, then $J^{*'}$ is a locally nilpotent ideal of R, where R is the right operator ring of M.

Proof. A finite subset of $J^{*'}$ is a subset of $[\phi_1, F_1]$, where ϕ_1 is a finite subset of Γ and F_1 is a finite subset of M. Since $M[\phi_1, F_1] \subseteq J$, $M\phi_1F_1 \subseteq J$. Thus $F_1\phi_1F_1$ is a finite subset of J. Since J is locally nilpotent, $(F_1\phi_1F_1\phi_1)^nF_1\phi_1F_1=0$ for some n. Hence, $(F_1\phi_1)^{2n+1}F_1=0$. Thus $[\phi_1, F_1]^{2n+2}=[\phi_1, (F_1\phi_1)^{2n+1}F_1]=$ $[\phi_1, 0]=0$. Then $J^{*'}$ is locally nilpotent.

Lemma 5.4. If M is a Γ -ring then $\mathcal{L}(R) \subseteq \mathcal{L}(M)^{*'}$, where $\mathcal{L}(R)$ is the Levitzki nil radical of the right operator ring R of M.

Proof. Since $\mathcal{L}(R)$ is an ideal by Theorem 5.2., we have $R\mathcal{L}(R) \subseteq \mathcal{L}(R)$, so $[\Gamma, M] \mathcal{L}(R) \subseteq \mathcal{L}(R)$, that is, $[\Gamma, M\mathcal{L}(R)] \subseteq \mathcal{L}(R)$. Thus, $M\mathcal{L}(R) \subseteq \mathcal{L}(R)^*$. By Theorem 5.1., we get $M\mathcal{L}(R) \subseteq \mathcal{L}(M)$. Therefore $\mathcal{L}(R) \subseteq \mathcal{L}(M)^{*'}$.

Theorem 5.5. If M is a Γ -ring then $\mathcal{L}(M)^{*'} = \mathcal{L}(R)$, where $\mathcal{L}(R)$ is the

Levitzki nil radical of the right operator ring R of M.

Proof. In view of Lemma 5.3 and the fact that $\mathcal{L}(M)$ is a locally nilpotent ideal (Theorem 7.1 in [5]), we know that $\mathcal{L}(M)^{*'}$ is a locally nilpotent ideal of R. By the definition of $\mathcal{L}(R)$, $\mathcal{L}(M)^{*'} \subseteq \mathcal{L}(R)$. On the other hand by Lemma 5.4, $\mathcal{L}(R) \subseteq \mathcal{L}(M)^{*'}$. Hence $\mathcal{L}(M)^{*'} = \mathcal{L}(R)$.

The next theorem follows from Theorem 5.1 and Theorem 5.5.

Theorem 5.6. If $\mathcal{L}(R)$ is the Levitzki nil radical of the right operator ring R of a Γ -ring M, then $\mathcal{L}(M)^{*'*} = \mathcal{L}(M)$ and $\mathcal{L}(R)^{**'} = \mathcal{L}(R)$.

The next theorem follows immediately from previous Theorem 5.5 and Theorem 7.3 in [5].

Theorem 5.7. If I is an ideal of a Γ -ring M, then $\mathcal{L}(I)^{*'} = I^{*'} \cap \mathcal{L}(R)$.

6. The Jacobson radical

Following Copppage-Luh [5] an element a of a Γ -ring M is right quasiregular (abbreviated rqr) if, for any $\gamma \in \Gamma$, there exists $\eta_i \in \Gamma$, $x_i \in M$, $i=1,2,\dots,n$ such that

$$x\gamma a + \sum_{i=1}^{n} x\eta_i x_i - \sum_{i=1}^{n} x\gamma a\eta_i x_i = 0$$
 for all $x \in M$.

A subset S of M is rqr if every element in S is rqr. $\mathcal{J}(M) = \{a \in M : \langle a \rangle \text{ is } rqr\}$ is the right Jacobson radical of M. Copppage-Luh [5] have shown the following Lemma 6.1 and Theorem 6.2.

Lemma 6.1. An element a of a Γ -ring M is rqr if and only if, for all $\gamma \in \Gamma$, $[\gamma, a]$ is rqr in the right operator ring R of M.

Theorem 6.2. If M is a Γ -ring then $\mathcal{J}(M) = \mathcal{J}(R)^*$, where $\mathcal{J}(R)$ denotes the Jacobson radical of the right operator ring R of M.

We prove the following theorem dual to Theorem 6.2.

Theorem 6.3. If M is a Γ -ring, then $\mathcal{J}(R) = \mathcal{J}(M)^{*'}$.

Proof. If $\sum_{i} [\gamma_i, x_i] \in \mathcal{J}(M)^{*'}$, then for all $x \in M$

$$x(\sum_{i} [\gamma_i, x_i]) = \sum_{i} x \gamma_i x_i \in \mathcal{J}(M).$$

By Theorem 6.2, for all $\gamma \in \Gamma$

$$[\gamma, \sum_{i} x \gamma_{i} x_{i}] = [\gamma, x] \sum_{i} [\gamma_{i}, x_{i}] \in \mathcal{J}(R).$$

Hence $R \sum_{i} [\gamma_i, x_i]$ is rqr. By the difinition of $\mathcal{J}(R), \sum_{i} [\gamma_i, x_i] \in \mathcal{J}(R)$ and then

RADICALS OF *I*-RINGS

$$\mathcal{J}(M)^{*'} \subseteq \mathcal{J}(R). \quad \text{If } \sum_{i} [\delta_i, x_i] \in \mathcal{J}(R), \text{ for all } \gamma \in \Gamma \text{ and all } x \in M$$
$$[\gamma, x] \sum [\delta_i, x_i] = [\gamma, \sum x \delta_i x_i] \in \mathcal{J}(R).$$

Thus

$$\langle [\gamma, \sum x \delta_i x_i] \rangle = \{ [\gamma, a] \in \mathbb{R} : a \in \langle \sum x \delta_i x_i \rangle \} \subseteq \mathcal{J}(\mathbb{R}) .$$

Hence, $[\gamma, a]$ is rqr for all $\gamma \in \Gamma$ and for $a \in \langle \sum x \delta_i x_i \rangle$. By Lemma 6.1 $\langle \sum x \delta_i x_i \rangle$ is rqr and then $x(\sum [\delta_i, x_i]) = \sum x \delta_i x_i \in \mathcal{J}(M)$, that is, $M(\sum [\delta_i, x_i]) \subseteq \mathcal{J}(M)$. Therefore $\sum [\delta_i, x_i] \in \mathcal{J}(M)^{*'}$. Then $\mathcal{J}(R) \subseteq \mathcal{J}(M)^{*'}$. Thus the proof is completed.

By Theorem 6.2 and Theorem 6.3 we have the following theorem.

Theorem 6.4.
$$\mathcal{J}(M) = \mathcal{J}(M)^{*'*}$$
 and $\mathcal{J}(R) = \mathcal{J}(R)^{**'}$.

The next result follows from Theorem 6.3 and Theorem 8.4 in [5].

Theorem 6.5. If I is an ideal in a Γ -ring M, $\mathcal{J}(I)^{*'}=I^{*'}\cap \mathcal{J}(R)$.

TOHOKU GAKUIN UNIVERSITY

References

- N. Nobusawa: On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81– 89.
- [2] W.E. Barnes: On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
- [3] J. Luh: On primitive Γ-rings with minimal one-sided ideals, Osaka J. Math. 5 (1968) 165-173.
- [4] J. Luh: On the theory of simple Γ -rings, Michigan Math. J. 16 (1969), 65-75.
- [5] W.E. Coppage and J. Luh: Radicals of gamma rings, J. Math. Soc. Japan 23 (1971), 40-52.
- [6] N.H. McCoy: The Theory of Rings, Macmillan, N.Y. 1964.
- [7] N. Jacobson: Structure of Rings, revised ed., Amer. Math. Soc. Colloquim Publ. 37, Providence, 1964.