ON THE LOOP-ORDER OF A FIBRE SPACE

Dedicated to Professor Ryoji Shizuma on his 60-th birthday

Yasukuni FURUKAWA and Yasutoshi NOMURA

(Received January 20, 1975)

Introduction

Let ΩX denote the space of loops on a based topological space X. M. Sugawara [8] called the order of the identity class $1_{\Omega X}$ of ΩX in the group [$\Omega X, \Omega X]$ the loop-order of X, denoted by $l(X)$, and proved ([8], Theorem 3) that, for a Hurewicz fibration $F \rightarrow E \rightarrow B, l(E)$ is a divisor of the multiple $l(B) \cdot l(F)$.

The aim in this note is to determine, using a technique of Larmore and Thomas [2], the loop-order of a total space obtained as a 2-stage Postnikov tower and to discuss that of a space obtained as a 3-stage Postnikov tower.

In this note, let p denote a fixed prime. Let $\mathcal{A}(p)$ denote the $\bmod p$ Steenrod algebra, and let $\varepsilon: \mathcal{A}(p) \rightarrow \mathcal{A}(p)$ denote the Kristensen map of degree -1 , which is a derivation and is given by

$$
\begin{array}{ll}
\varepsilon\left(S q^{n}\right)=S q^{n-1}(n \geqq 1) & \text { if } p=2, \\
\varepsilon(\Delta)=1, \quad \varepsilon\left(P^{k}\right)=0 \quad(k \geqq 0) & \text { if } \quad p>2,
\end{array}
$$

(cf. [2], Proposition 3.5; [5]). We shall write $\varepsilon(\alpha)=\widetilde{\alpha}$.
Also denote by $K_{n}=K\left(Z_{p}, n\right)$ the Eilenberg-MacLane complex of type $\left(Z_{p}, n\right)$. Let E_{1} and E_{2} be principal fibre spaces with classifying classes

$$
\left\{\theta_{1}, \theta_{2}, \cdots, \theta_{m}\right\}: K_{n} \rightarrow{\underset{j}{ }}_{m}^{X} K_{n+r_{j}}, \quad 0<r_{1} \leqq r_{2} \leqq \cdots \leqq r_{m} \leqq n-3
$$

and
respectively, where θ_{j} and γ_{i} are cohomology operations of degree r_{j} and $r-s_{i}$, regarded as elements of $\mathcal{A}(p)$, and $\pi_{i}: \underset{i=1}{k} K_{n+s_{t}} \rightarrow K_{n+s_{i}}$ is the projection on the i-th factor. We then obtain

Theorem A. $l\left(E_{1}\right)=p^{2}$ if, and only if, there exists $j, 1 \leqq j \leqq m$, such that $\tilde{\theta}_{j}$ does not belong to the left $\mathcal{A}(p)$-module, $\sum_{t=1}^{j-1} \mathcal{A}(p) \theta_{t}$, of $\mathcal{A}(p)$ generated by
$\theta_{1}, \cdots, \theta_{j-1}$.
Theorem B. $l\left(E_{2}\right)=p^{2}$ if, and only if, there exists $i, 1 \leqq i \leqq k$, such that $\tilde{\gamma}_{i}$ does not belong to the right $\mathcal{A}(p)$-module, $\sum_{t=i+1}^{k} \gamma_{t} \mathcal{A}(p)$, of $\mathcal{A}(p)$ generated by $\gamma_{i+1}, \cdots, \gamma_{k}$.

The following corollary is a restatement of Theorem 1.3 of L. Smith [5].
Corollary 1. Let E be a fibre space induced from the path-fibration on K_{n+r} by $\theta=\theta \iota_{n}$: $K_{n} \rightarrow K_{n+r}$, where $0<r \leqq n-3$ and ι_{n} denotes the fundamental class. Then $l(E)$ is p^{2} if, and only if, $\tilde{\theta} \neq 0$.

We next consider the situation shown in the diagram below:
(*)

where we set

$$
\begin{aligned}
& A=K_{n}, \quad B=\underset{i=1}{m} K_{n+r_{i}}, \quad L=K_{n+s}, \quad 0<r_{1} \leqq r_{2} \leqq \cdots \leqq r_{m} \leqq s \leqq n-3 \\
& \alpha=\left\{\alpha_{1}, \cdots, \alpha_{m}\right\}, \quad \alpha_{i} \in \mathcal{A}(p), \quad \operatorname{deg} \alpha_{i}=r_{i} \\
& \beta=\theta l=\sum_{i=1}^{m}\left(\Omega \pi_{i}\right)^{*} \beta_{i}, \quad \beta_{i} \in \mathcal{A}(p), \quad \operatorname{deg} \beta_{i}=s-r_{i}+1
\end{aligned}
$$

and where K and E are principal fibre spaces with classifying classes α and θ. Let

$$
\psi: \bigcap_{i=1}^{m}\left(\operatorname{Ker} \alpha_{i} \cap \operatorname{Ker} \widetilde{\alpha}_{i}\right) \rightarrow \operatorname{Coker} \sum_{i=1}^{m}\left(\beta_{i}+\tilde{\beta}_{i}\right)
$$

denote a secondary operation associated with the relation $\sum_{i=1}^{m}\left[\tilde{\beta}_{i} \alpha_{i}+\right.$ $\left.(-1)^{s-r_{i}+1} \beta_{i} \widetilde{\alpha}_{i}\right]=0$, which is deduced from $\sum_{i=1}^{m} \beta_{i} \alpha_{i}=0 \quad$ by taking the map ε.

Theorem C. Suppose that, for all $i=1, \cdots, m, \tilde{\alpha}_{i} \in \sum_{k=1}^{i-1} \mathcal{A}(p) \alpha_{k}$.

1) If there exists j such that $\tilde{\beta}_{j} \notin \sum_{k=j+1}^{m} \beta_{k} \mathcal{A}(p)$, then $l(E)=p^{2}$.
2) If $\operatorname{deg} \beta_{m}>1$ (i.e., $s>r_{m}$) and if

$$
\begin{aligned}
& \psi(\Omega \rho) \equiv \equiv \bmod \sum_{i=1}^{m} {\left[\beta_{i} H^{n+r_{i}-3}\left(\Omega K ; Z_{p}\right)+\tilde{\beta}_{i} H^{n+r_{i}-2}\left(\Omega K ; Z_{p}\right)\right] } \\
&+(\Omega \rho)^{*} H^{n+s-2}\left(\Omega A ; Z_{p}\right),
\end{aligned}
$$

then $l(E)=p^{2}$.
3) If for all $i=1, \cdots, m, \tilde{\beta}_{i} \in \sum_{k=j+1}^{m} \beta_{k} \mathcal{A}(p)$, and if $\operatorname{deg} \beta_{m}>1$ and

$$
\begin{aligned}
& (\Omega \rho) * H^{n+s-2}\left(\Omega A ; Z_{p}\right) \subset \sum_{i=1}^{m} \beta_{i} H^{n+r_{i}-3}\left(\Omega K ; Z_{p}\right) \\
& \psi(\Omega \rho) \equiv 0 \bmod \sum_{i=1}^{m} \beta_{i} H^{n+r_{i}-3}\left(\Omega K ; Z_{p}\right)
\end{aligned}
$$

then $l(E)=p$.
Corollary 2. Suppose that, for all $i, \widetilde{\alpha}_{i} \in \sum_{k=1}^{i-1} \mathcal{A}(p) \alpha_{k}$ and $\tilde{\beta}_{i} \in \sum_{k=j+1}^{m} \beta_{k} \mathcal{A}(p)$ and that the homogeneous part $\mathcal{A}(p)$ of degree $s-1$ is contained in $\sum_{k=1}^{m} \beta_{k} \mathcal{A}(p)+$ $\sum_{k=1}^{m} \mathcal{A}(p) \alpha_{k}$. If $\operatorname{deg} \beta_{m}>1$ and the homogeneous part of $\mathcal{A}(p)$ of degree $s-r_{i}$ is trivial for all i, then $l(E)=p$.

Theorem D. Suppose that there exists i such that $\widetilde{\alpha}_{i} \notin \sum_{k=1}^{i-1} \mathcal{A}(p) \alpha_{k}$. If $(\Omega \rho)^{*}\left[\sum_{i=1}^{m}(-1)^{r_{i}} \tilde{\beta}_{i} \widetilde{\alpha}_{i}\right] \neq 0 \bmod \sum_{i=1}^{m} \beta_{i} H^{n+r_{i}-3}\left(\Omega K ; Z_{p}\right)$, then $l(E)=p^{3} ;$ otherwise $l(E)=p^{2}$.

Corollary 3. Suppose that there exists i such that $\widetilde{\alpha}_{i} \notin \sum_{k=1}^{i-1} \mathcal{A}(p) \alpha_{k}$.

1) If $\sum_{i=1}^{m}(-1)^{r_{i}} \tilde{\beta}_{i} \widetilde{\alpha}_{i} \notin \sum_{k=1}^{m}\left\{\beta_{k} \mathcal{A}(p)+\mathcal{A}(p) \alpha_{k}\right\}$ and if

$$
\sum_{i=1}^{m} \beta_{i}: \bigoplus_{i=1}^{m} H^{n+r_{i}-3}\left(\Omega^{2} B\right) \rightarrow H^{n+s-2}\left(\Omega^{2} B\right)
$$

is monic, then $l(E)=p^{3}$.
2) If $\sum_{i=1}^{m}(-1)^{r_{i} \tilde{\beta}_{i} \widetilde{\alpha}_{i} \in \sum_{i=1}^{m}\left\{\beta_{k} \mathcal{A}(p)+\mathcal{A}(p) \alpha_{k}\right\} \text {, then } l(E)=p^{2} . ~ . ~ . ~}$

Remark. $\sum_{i=1}^{m} \beta_{i}$ is monic in each of the following cases:
i) $\beta_{i}=S q^{a_{i}}, a_{1}>a_{2}>\cdots>a_{m}, a_{i} \geqq 2\left(r_{i}-r_{1}-1\right)$ for $p=2$;
ii) β_{i} are of the form $P^{a_{i}}$ or $\Delta P^{a_{i}}$ and are all distinct, and ($2 p-2$) $a_{i} \geqq$ $p\left(r_{i}-r_{1}-1\right)$ for $p>2$.

1. A basic theorem

In this note we work in the category of based spaces having the homotopy types of $C W$ complexes and based continuous maps, and we don't distinguish
between a map and the homotopy class it represents. Let $\pi: E \rightarrow K$ be the principal fibre space with $\theta: K \rightarrow L$ as classifying map and let $j: \Omega L \rightarrow E$ denote the fibre inclusion. Let p denote a fixed prime. A map of degree $p^{k}(k>0)$ of $S=S^{1}$ yields the Puppe sequence

$$
S \xrightarrow{p^{k}} S \xrightarrow{i} P \xrightarrow{q} S^{2} \xrightarrow{p^{k}} S^{2} \longrightarrow \cdots .
$$

Form the commutative diagram

where rows and columns are fibration sequences and \#indicates induced maps of function spaces.

We now assume that K and L are loop spaces. Larmore and Thomas [2] have defined a sort of functional operation

$$
\Phi_{k}:\left[X, K^{s}\right] \cap \operatorname{Ker}\left(p^{k \sharp}\right) * \cap \operatorname{Ker} \theta_{*}^{S} \rightarrow\left[X, L^{S^{2}}\right] / \theta_{*}^{S^{2}}\left[X, K^{S^{2}}\right]+\left(p^{k \sharp}\right) *\left[X, L^{S^{2}}\right]
$$

by setting $\Phi_{k}=\left(q^{*}\right) \pi_{*}^{-1} \theta_{*}^{P}\left(i^{*}\right) \pi_{*}^{-1}$, with the property that, for $x \in\left[X, E^{S}\right]$ such that $\left(p^{k z}\right) * \pi_{*}^{S} x=0$,

$$
\begin{equation*}
p^{k} x \equiv-j_{*}^{S} \Phi_{k}\left(\pi_{*}^{S} x\right) \bmod j_{*}^{S} p^{k}\left[X, \Omega L^{S}\right] \tag{1.1}
\end{equation*}
$$

where we have made the adjoint identification $\left[X, L^{S^{2}}\right]=\left[X, \Omega L^{s}\right]$ (cf. Theorem 3.2 of [3]).

In what follows we assume that
(1.2) $l(K)$ and $l(L)$ are divisors of p^{k};
(1.3) $\left[\Omega^{2} L, \Omega^{2} K\right]=0$;
(1.4) $\left[\Omega^{2} L, Y\right] \stackrel{(\Omega j)^{*}}{\rightleftarrows}[\Omega E, Y] \stackrel{(\Omega \pi)^{*}}{\rightleftarrows}[\Omega K, Y] \stackrel{(\Omega \theta)^{*}}{\rightleftarrows}[\Omega L, Y]$ is exact for $Y=\Omega^{2} L$ and $\Omega^{2} K$, (this condition may be verified using Theorem 6.5 of Sugawara [7]).
Taking $X=\Omega E, x=1_{\Omega E}$ in (1.1), we then have

Theorem 1.5. With the hypotheses (1.2), (1.3) and (1.4), we have
1)

$$
p^{k} 1_{\Omega E}=-(\Omega j)_{*} \Phi_{k}(\Omega \pi)
$$

2) Write $\Psi_{k}(E)$ for the subset $(\Omega \pi)^{*^{-1}} \Phi_{k}(\Omega \pi)$ of $\left[\Omega K, \Omega^{2} L\right]$.

Then $\Psi_{k}(E)$ is non-empty and is a coset of $(\Omega \theta) *\left[\Omega L, \Omega^{2} L\right]+\left(\Omega^{2} \theta\right)_{*}\left[\Omega K, \Omega^{2} K\right]$ such that $p^{k} 1_{\Omega E}=0$ if, and only if,

$$
\Psi_{k}(E) \equiv 0 \bmod (\Omega \theta) *\left[\Omega L, \Omega^{2} L\right]+\left(\Omega^{2} \theta\right)_{*}\left[\Omega K, \Omega^{2} K\right]
$$

Proof. 1) is obvious by (1.1) and (1.2). Consider the commutative diagram

Since $(\Omega j)^{*} \Omega \pi=0=i_{*}^{*}(\Omega j)^{*}\left(i_{*}^{*}\right)^{-1} \Omega \pi$ and q_{*}^{*} and the left i_{*}^{*} are monic by virtue of (1.2) and (1.3), we see that $(\Omega j) * \Phi_{k}(\Omega \pi)=0$, and hence there exists $y \in\left[\Omega K, \Omega^{2} L\right]$ with $(\Omega \pi)^{*} y \in \Phi_{k}(\Omega \pi)$, which shows that $\Psi_{k}(E)$ is non-empty. By diagramchasing we may easily verify that $(\Omega \pi)^{*^{-1}} \operatorname{Ker}(\Omega j)_{*}=(\Omega \pi)^{*^{-1}}\left(\Omega^{2} \theta\right)_{*}\left[\Omega E, \Omega^{2} K\right]$ coincides with $(\Omega \theta) *\left[\Omega L, \Omega^{2} L\right]+\left(\Omega^{2} \theta\right) *\left[\Omega K, \Omega^{2} K\right]$. The last assertion follows from 1), since $p^{k} 1_{\Omega E}=0$ iff $\Phi_{k}(\Omega \pi)=\operatorname{Ker}(\Omega j)_{*}$.

We note that the assignment $\theta \rightarrow \Psi_{1}(E)$ is dual to Toda's derivative θ ([9], p. 209).

2. Proofs of Theorems A and B

We may prove Corollary 1 in the introduction as follows. Let $\theta: K_{n} \rightarrow K_{n+r}$. Then, by Corollary 3.7 of [2], $\Psi_{1}(E)=(-1)^{n+r+1}{\tilde{\theta} l_{n-1}}$. Hence our assertion follows from 2) of Theorem 1.5.

We now consider more general situation. Let

$$
\begin{aligned}
& K=\chi_{i=1}^{k} K_{n+s_{i}}, \quad L=\chi_{j=1}^{m} K_{n+r_{j}}, \\
& 0=s_{1} \leqq s_{2} \leqq \cdots \leqq s_{k}<r_{1} \leqq r_{2} \leqq \cdots \leqq r_{m} \leqq n-3, \\
& \theta=\left\{\theta_{1}, \cdots, \theta_{m}\right\}, \\
& \theta_{j}=\sum_{i=1}^{k} \pi_{i}^{*} \theta_{j i}, \quad \theta_{j i} \in \mathcal{A}(p), \quad \operatorname{deg} \theta_{j i}=r_{j}-s_{i},
\end{aligned}
$$

where $\pi_{i}: K \rightarrow K_{n+s_{i}}$ is the projection on the i-th factor. Then Theorems A and B are consequences of the following

Theorem 2.1. Let E be the principal fibre space with the above θ as classifying class. Then $l(E)=p^{2}$ if, and only if, there exist j and $i, 1 \leqq j \leqq m, 1 \leqq i \leqq k$, such that

$$
\widetilde{\theta}_{j i} \notin \sum_{t=1}^{j-1} \mathcal{A}(p) \theta_{t i}+\sum_{t=i+1}^{k} \theta_{j t} \mathcal{A}(p) .
$$

Proof. Introduce the diagram

where p_{i} denotes the projection on the second factor, l_{j} the injection and vertical maps are homotopy equivalences as given in Proposition 3.3 of [2]. Here we take the cofibre of $p: S \rightarrow S$ for $P . \quad \varphi$ is defined by

$$
\begin{aligned}
& \varphi^{*}\left(\iota_{n+r_{j}-2} \times 1\right)=\sum_{i=1}^{k} \pi_{i}^{*}\left[\theta_{j i} \iota_{n+s_{i}-2} \times 1+(-1)^{n+r} j 1 \times \widetilde{\theta}_{j i} \iota_{n+s_{i}-1}\right] \\
& \varphi^{*}\left(1 \times \iota_{n+r_{j}-1}\right)=\sum_{i=1}^{k} \pi_{i}^{*}\left(1 \times \theta_{j i} \iota_{n+s_{i}-1}\right) .
\end{aligned}
$$

We see from Theorem 3.6 of [2] that the above diagram homotopy-commutes.
Apply $[\Omega E$,$] to the above diagram. Since \theta_{j}^{P}=\sum_{i=1}^{k} \theta_{j_{i}}^{P} \pi_{i}^{P}, \theta^{P}=\left\{\theta_{1}^{P}, \cdots, \theta_{m}^{P}\right\}$ and since

$$
\begin{aligned}
& l_{j *\left(\sum_{i=1}(-1)^{n+r_{j}}(\Omega \pi)^{*}\left(\Omega \pi_{i}\right)^{*} \widetilde{\theta}_{j i} l_{n+s_{i}-1}\right)} \quad=\left(\sum_{i=1}^{k}(-1)^{n+r_{j}}(\Omega \pi)^{*}\left(\Omega \pi_{i}\right)^{*} \widetilde{\theta}_{j i} l_{n+s_{i}-1}, 0\right),
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{*}\left(0, \Omega\left(\pi_{1} \pi\right) ; \cdots ; 0, \Omega\left(\pi_{k} \pi\right)\right)=\left(\sum_{i=1}^{k}(-1)^{n+r_{j}}(\Omega \pi)^{*}\left(\Omega \pi_{i}\right)^{*} \widetilde{\theta}_{j i} \iota_{n+s_{i}-1}, 0\right)
\end{aligned}
$$

by $\theta_{j}(\Omega \pi)=0$, it follows that the j-th component of $\Phi_{1}(\Omega \pi)$ has a representative $(\Omega \pi)^{*} \sum_{i=1}^{k}(-1)^{n+r_{j}\left(\Omega \pi_{i}\right) * \tilde{\theta}_{j i} l_{n+s_{i}-1} \text {. Hence }}$

$$
\sum_{i=1}^{k}(-1)^{n+r_{j}\left(\Omega \pi_{i}\right) * \widetilde{\theta}_{j i} \iota_{n+s_{i}-1}}
$$

represents the j-th component of $\Psi_{1}(E)$.
Now, by the Kunneth theorem, we compute $\left(\Omega^{2} \theta_{j}\right) *\left[\Omega K, \Omega^{2} K\right]+$ $\left(\Omega^{2} \pi_{j}\right) *(\Omega \theta) *\left[\Omega L, \Omega^{2} L\right]$ as follows:

$$
\begin{aligned}
& \left(\Omega^{2} \theta_{j}\right)_{*}\left[\Omega K, \Omega^{2} K\right]=\sum_{t=1}^{k}\left(\Omega^{2} \theta_{j t}\right)_{*} H^{n+s_{t}-2}\left(\Omega K ; Z_{p}\right) \\
& =\left\{\sum_{t=1}^{k} \theta_{j t} \sum_{i=1}^{k}\left(\Omega \pi_{i}\right)^{*} \alpha_{t i} l_{n+s_{i}-1} ; \alpha_{t i} \in \mathcal{A}(p)\right. \\
& \left.\operatorname{deg} \alpha_{t i}=s_{t}-s_{i}-1\right\}
\end{aligned} \begin{aligned}
\left(\Omega^{2} \pi_{j}\right) *(\Omega \theta)^{*}\left[\Omega L, \Omega^{2} L\right] & =H^{n+r_{j}-2}\left(\Omega L ; Z_{p}\right)\left(\Omega \theta_{1}, \cdots, \Omega \theta_{m}\right) \\
& =\sum_{t=1}^{m} H^{n+r_{j}-2}\left(Z_{p}, n+r_{t}-1 ; Z_{p}\right)\left(\Omega \theta_{t}\right) \\
& =\sum_{t=1}^{m} \sum_{i=1}^{k} H^{n+r_{j}-2}\left(Z_{p}, n+r_{t}-1 ; Z_{p}\right)\left(\theta_{t i}\right)\left(\Omega \pi_{i}\right)
\end{aligned}
$$

These complete the proof of Theorem 2.1.
In connection with Corollary 1 we examine some elements in the kernel of the Kristensen map $\varepsilon: \mathcal{A}(2) \rightarrow \mathcal{A}(2)$. Let $S q\left(i_{1}, \cdots, i_{k}\right)$ denote $S q^{i_{1} \cdots S q^{i_{k}} \text {. Then, }}$ using the Adem relation $S q(2 m-1, m)=0(m \geqq 1)$, we may easily verify

Proposition 2.2. The following elements are in the kernel of ε :

$$
\begin{aligned}
& S q(3 k)+\sum_{i=1}^{k} S q(3 k-i, i), \quad k \geqq 1 \\
& S q(6 k+1)+S q(6 k, 1)+\sum_{i=1}^{k} S q(6 k+1-2 i, 2 i)+\sum_{j=2}^{2 k} S q(6 k-j, j, 1), \quad k \geqq 1 \\
& \sum_{i=1}^{k} S q(6 k+3-2 i, 2 i+1)+\sum_{j=2}^{2 k+1} S q(6 k+3-j, j, 1), \quad k \geqq 1 \\
& Q+S q(6 k-1,2,1)+S q(6 k-2,3,1)+\sum_{j=2}^{k} S q(6 k-2 j+1,2 j, 1)+\sum_{r=4}^{2 k} S q(6 k-r, r, 2)
\end{aligned}
$$

where

$$
Q=\left\{\begin{array}{l}
S q(6 k+2)+S q(6 k+1,1)+S q(6 k, 2)+S q(6 k-2,4) \\
\quad+\sum_{i=2}^{k / 2}[S q(6 k-4 i+3,4 i-1)+S q(6 k-4 i+2,4 i)] \quad \text { for } k \text { even }, \\
S q(6 k-1,3)+\sum_{i=1}^{(k-1) / 2}[S q(6 k-4 i+1,4 i+1)+S q(6 k-4 i, 4 i+2]
\end{array} \quad \text { for } k \text { odd } ;\right. \text {; }
$$

where

$$
R=\left\{\begin{array}{cc}
S q(6 k+5)+\sum_{i=1}^{3} S q(6 k+5-i, i)+\sum_{i=1}^{k / 2}[S q(6 k+5-4 i, 4 i) & \\
+S q(6 k+4-4 i, 4 i+1)] & \text { for } k \text { even }, \\
\sum_{i=1}^{(k-1) / 2}[S q(6 k-4 i+3,4 i+2)+S q(6 k-4 i+2,4 i+3)] & \text { for } k \text { odd. }
\end{array}\right.
$$

We mention some examples. The loop-order of the fibre space with classifying class $\left\{S q^{i_{1}}, \cdots, S q^{i_{k}}\right\}, 0<i_{1} \leqq i_{2} \leqq \cdots \leqq i_{k}$, is 4 , but those of fibre spaces with classifying classes $S q^{3}+S q^{2} S q^{1}, S q^{4} S q^{2}+S q^{2} S q^{4}, S q^{7}+S q^{6} S q^{1}+S q^{5} S q^{2}+S q^{4} S q^{2} S q^{1}$ are 2. The loop-order of the fibre space with classifying class $\left\{P^{k}, \Delta P^{k}\right\}(k \geqq 1)$ is p.

3. Proof of Theorem \mathbf{C}

First we prove 1). Introduce the commutative diagram

where the square is a pull-back. Observe that the fibre of l_{0} is homotopy-equivalent to that of l, i.e., ΩA. Since $\pi_{0}: E_{0} \rightarrow \Omega B$ is a principal fibration with $\beta=\theta l$ as classifying map, we have $l\left(E_{0}\right)=p^{2}$ by Theorem B, and hence it follows from the exact sequence

$$
\left[\Omega E_{0}, \Omega^{2} A\right] \longrightarrow\left[\Omega E_{0}, \Omega E_{0}\right] \xrightarrow{\left(\Omega l_{0}\right)_{*}}\left[\Omega E_{0}, \Omega E\right]
$$

and from the $\left(n+r_{1}-2\right)$-connectedness of E_{0} that the order of Ωl_{0} is p^{2} and $l(E)$ is a multiple of p^{2}. Also, since $l(K)=p$ by Theorem A, we see that $l(E)=p^{2}$.

We now proceed to prove 2) and 3). Note that, in the situation (*), θ determines a secondary operation $\varphi: \bigcap_{i=1}^{m} \operatorname{Ker} \alpha_{i} \rightarrow \operatorname{Coker} \sum_{i=1}^{m} \beta_{i}$ associated with the relation $\sum_{i=1}^{m} \beta_{i} \alpha_{i}=0$ (cf. Adams [1], Spanier [6]). Take the cofibre P of $p^{k}: S \rightarrow S$
$(k=1,2)$. Applying the functor ($)^{P}$ to the diagram $(*)$, we see similarly that θ^{P} determines a secondary operation

$$
\bar{\rho}:\left[X, A^{P}\right] \cap \operatorname{Ker} \alpha^{P} \rightarrow\left[X, L^{P}\right] / \operatorname{Im} \beta^{P}
$$

associated with $\beta^{P}(\Omega \alpha)^{P}=0$, where

$$
\begin{aligned}
(\Omega \alpha)^{P} & ={\underset{i=1}{m}\left(\alpha_{i} \times 1+(-1)^{n+r_{i}-1} \lambda_{k}\left(1 \times \tilde{\alpha}_{i}\right), 1 \times \alpha_{i}\right),}^{\beta^{P}}=\sum_{i=1}^{m}\left(\Omega \pi_{i}^{P}\right)^{*}\left\{\beta_{i} \times 1+(-1)^{n+s} \lambda_{k}\left(1 \times \tilde{\beta}_{i}\right), 1 \times \beta_{i}\right\}, \quad\left(\lambda_{1}=1, \lambda_{2}=0\right)
\end{aligned}
$$

Let $t: L^{P} \rightarrow \Omega^{2} L$ denote a projection with $t q^{*} \simeq 1$ and let $e: \Omega A \rightarrow A^{P}$, $e: \Omega B \rightarrow B^{P}$ denote injections with $i^{*} e \simeq 1$. Then

$$
\begin{aligned}
& \alpha^{P} e=\left\{(-1)^{n+r_{1}} \lambda_{k} \tilde{\alpha}_{1}, \alpha_{1} ; \cdots ;(-1)^{n+r_{m}} \lambda_{k} \tilde{\alpha}_{m}, \alpha_{m}\right\}, \\
& t \beta^{P}=\sum_{i=1}^{m}\left(\Omega \pi_{i}^{P}\right)^{*}\left(\beta_{i} \times 1+(-1)^{n+s} \lambda_{k}\left(1 \times \tilde{\beta}_{i}\right)\right)
\end{aligned}
$$

Consider the following commutative diagram

where $\bar{\rho}$ is the pull-back of ρ^{P} by e, hence the principal fibration with classifying $\operatorname{map} \alpha^{P} e$. We denote by $\psi_{k}(\theta)$ the secondary operation determined by $t \theta^{P} \varepsilon$, which is associated with $\left(t \beta^{P}\right) \Omega\left(\alpha^{P} e\right)=0$. Since $\alpha_{i}(\Omega \rho)=0$ yields $\widetilde{\alpha}_{i}(\Omega \rho)=0$ for $k=1$ with $\widetilde{\alpha}_{i} \in \sum_{j=1}^{i-1} \mathcal{A}(p) \alpha_{j}$ and since $\lambda_{2}=0$, we may define $\overline{\mathcal{P}}(0, \Omega \rho)$ and $\psi_{k}(\theta)(\Omega \rho)$. Note that $\psi_{k}(\theta)(\Omega \rho)$ is the first component of $\overline{\mathcal{\rho}}(0, \Omega \rho)$.

Lemma 3.2. Let $k=1$ or 2. Suppose $\operatorname{deg} \beta_{m}>1$ for $k=1$. Then there exists $f: \Omega K \rightarrow \bar{K}$ such that $\bar{\rho} f=\Omega \rho$ and $t \theta^{P} \varepsilon f$ represents both $\psi_{k}(\theta)(\Omega \rho)$ and $\Psi_{k}(E)$. Moreover, if $k=2, i^{*} \varepsilon f \simeq 1$ and $f(\Omega l) \simeq \bar{l}(\Omega e)$.

Proof. Assume first $k=1$ and $\operatorname{deg} \beta_{m}>1$. Take $x: \Omega E \rightarrow K^{P}$ with $i_{*}^{*} x=\pi^{S}$. Since $\left[\Omega^{2} L, K^{P}\right]=0$ by $s>r_{m}$, we have $(\Omega j)^{*} x=0$, and hence we may pick $y \in\left[K^{s}, K^{P}\right]$ with $x=(\Omega \pi)^{*} y$. Further, since $\left[\Omega K, A^{s^{2}}\right]=0$, we may set $\rho^{P} y=(0, z)$ for $z=i_{*}^{*} \rho^{P} y=(\Omega \rho) i_{*}^{*} y$. We have

$$
(0, z(\Omega \pi))=(0, z)(\Omega \pi)=\rho^{P} y(\Omega \pi)=\rho^{P} x=\left(0,(\rho \pi)^{S}\right)
$$

by $i_{*}^{*} \rho^{P} x=(\rho \pi)^{S}$ and $\left[\Omega E, \Omega^{2} A\right]=0$. Therefore,

$$
z-\Omega \rho \in \operatorname{Ker}(\Omega \pi)^{*}=(\Omega \theta)^{*}[\Omega L, \Omega A]=0
$$

This gives rise to $\rho^{P} y=(0, \Omega \rho)=e(\Omega \rho)$, which yields $f: \Omega K \rightarrow \bar{K}$ with $\bar{\rho} f=\Omega \rho$, $\varepsilon f=y$. Now $\Phi_{1}(\Omega \pi)$ has, by definition, a representative $\left(q_{*}^{*}\right)^{-1} \theta^{P}(x)$. Thus

$$
\Phi_{1}(\Omega \pi)=t_{*} q_{*}^{*} \Phi_{1}(\Omega \pi) \ni t_{*} \theta^{P}(x)=t_{*} \theta^{P} y(\Omega \pi) .
$$

This shows that $t \theta^{P} y=t \theta^{P} \varepsilon f$ represents $\Psi_{1}(E)$ and $\psi_{1}(\theta)(\Omega \rho)$.
Next let $k=2$; then, $\alpha^{P} e \simeq e(\Omega \alpha)$ by virtue of the expression of $\alpha^{P} e$, and hence one gets an induced map $\bar{e}: \Omega K \rightarrow K^{P}$ which makes the following diagram homotopy-commute:

Since $i^{*} e \simeq 1$, it follows from the five lemma that $i^{*} \bar{e}$ is a homotopy equivalence with a homotopy inverse $\xi: \Omega K \rightarrow \Omega K$. Thus, by factoring \bar{e}, we may find $f: \Omega K \rightarrow \bar{K}$ such that $\bar{e} \xi=\varepsilon f, \bar{\rho} f=\Omega \rho, i^{*} \varepsilon f \simeq 1$ and $\varepsilon f(\Omega l) \simeq \varepsilon \bar{l}(\Omega e)$. Since the fibre of $e: \Omega A \rightarrow A^{P}$ is homotopy-equivalent to the loop space of that of $i^{{ }^{*}}$ by inspection of the relative mapping sequence for $i^{\sharp} e \simeq 1$ (cf. [4], Lemma 2.1 (ii)), and since the fibre of i^{*} is $\Omega^{2} A$, we see from $\left[\Omega^{2} B, \Omega^{3} A\right]=0$ that $\varepsilon_{*}:\left[\Omega^{2} B, \bar{K}\right] \rightarrow$ $\left[\Omega^{2} B, K^{P}\right]$ is monic. This implies that $f(\Omega l) \simeq \bar{l}(\Omega e) . \quad i^{\sharp} \varepsilon f \simeq 1$ implies $i^{\sharp}(\varepsilon f(\Omega \pi))$ $\simeq \Omega \pi$, hence $t q_{*}^{*}\left(q_{*}^{*}\right)^{-1} \theta^{P} \varepsilon f(\Omega \pi)$ represents $\Phi_{2}(\Omega \pi)$. q.e.d.

Now let $k=1$. We observe that

$$
\begin{aligned}
t_{*} \beta^{P}\left[\Omega K, \Omega B^{P}\right] & t_{*} \beta^{P} q_{*}^{*}\left[\Omega K, \Omega^{3} B\right] \\
& =\left(\Omega^{2} \beta\right)_{*}\left[\Omega K, \Omega^{3} B\right] \\
& =\left(\Omega^{2} \theta\right)_{*}\left[\Omega K, \Omega^{2} K\right] \quad \text { by }\left[\Omega K, \Omega^{2} A\right]=0,
\end{aligned}
$$

and that, if $\tilde{\beta}_{i} \in \sum_{j=i+1}^{m} \beta_{j} \mathcal{A}(p)$ then

$$
t_{*} \beta^{P}\left[\Omega K, \Omega B^{P}\right]=\left(\Omega^{2} \beta\right)_{*}\left[\Omega K, \Omega^{3} B\right] .
$$

Thus we may infer from Theorem $1.5,2)$ that $\psi_{1}(\theta)(\Omega \rho) \equiv 0 \bmod t_{*} \beta^{P}\left[\Omega K, \Omega B^{P}\right]$
implies $p 1_{\Omega E} \neq 0$. Since $\psi(\Omega \rho)$ differs from $\psi_{1}(\theta)(\Omega \rho)$ by an element of $(\rho f)^{*}\left[\Omega A, \Omega^{2} L\right]=(\Omega \rho)^{*}\left[\Omega A, \Omega^{2} L\right]$, the assertions 2) and 3) of Theorem C are obtained.

Corollary 2 is obtained from 3) of Theorem C, by noting that the sequence $H^{n+s-2}\left(\Omega^{2} B\right)=H^{n+s-2}\left(\bigwedge_{i=1}^{m} K_{n+r_{i}-2}\right) \leftarrow H^{n+s-2}(\Omega K) \stackrel{(\Omega \rho)^{*}}{\leftrightarrows} H^{n+s-2}(\Omega A)$ is exact and $H^{n+s-2}(\Omega A)$ is contained in $\sum_{j=i+1}^{m} \beta_{j} \mathcal{A}(p)+\operatorname{Ker}(\Omega \rho)^{*}$.

By the way, we examine the extent to which $\psi_{k}(\theta)(\Omega \rho)$ may be altered with θ being a universal example of a secondary operation associated with $\beta(\Omega \alpha)=0$.

Proposition 3.3. $\quad \psi_{1}\left(\theta+\rho^{*} \gamma\right)(\Omega \rho)=\psi_{1}(\theta)(\Omega \rho) \pm(\Omega \rho)^{*} \widetilde{\Omega \gamma}$, $\psi_{2}\left(\theta+\rho^{*} \gamma\right)(\Omega \rho)=\psi_{2}(\theta)(\Omega \rho)$ for $\gamma \in[A, L]$.

Proof. Since t can be delooped, we have

$$
\begin{aligned}
t\left(\theta^{P}+\gamma^{P} \rho^{P}\right) \varepsilon f & =t \theta^{P} \varepsilon f+t \gamma^{P} \rho^{P} \varepsilon f \\
& =t \theta^{P} \varepsilon f+t \gamma^{P} e(\Omega \rho) \\
& =t \theta^{P} \varepsilon f+\left(\Omega^{2} \gamma \times 1\right) e(\Omega \rho) \pm \lambda_{k}(1 \times \widetilde{\Omega \gamma}) e(\Omega \rho) \\
& =t \theta^{P} \varepsilon f \pm \lambda_{k}(\widetilde{\Omega \gamma})(\Omega \rho)
\end{aligned}
$$

4. Proof of Theorem D

In this section let P and P^{\prime} be cofibres of $p^{2}: S \rightarrow S$ and of $p: S \rightarrow S$ respectively. Given a generalized Eilenberg-MacLane space Z, let

$$
Z^{S^{2}} \underset{t}{\stackrel{q^{*}}{\rightleftarrows}} Z^{P} \underset{e}{\stackrel{i^{\#}}{\rightleftarrows}} Z^{S}
$$

and

$$
Z^{s^{2}} \underset{t^{\prime}}{\stackrel{q^{\prime}}{\leftrightarrows}} Z^{P^{\prime}} \underset{e^{\prime}}{\stackrel{i^{\prime \prime}}{\leftrightarrows}} Z^{S}
$$

denote product representations.
Introduce the following commutative diagram

in which rows and columns are Puppe sequences by the 3×3 lemma (cf. Nomura [4], Lemma 1.2) and $(1, p)$ and $\left(0, i^{\prime}\right)$ are induced maps.

Lemma 4.2. (4.1) induces a fibration sequence

$$
K_{n}^{P^{\prime}} \stackrel{(1, p)^{\ddagger}}{\rightleftarrows} K_{n}^{P} \stackrel{\left(0, i^{\prime}\right)^{\ddagger}}{\rightleftarrows} K_{n}^{P^{\prime}} \stackrel{\left(0, q^{\prime}\right)^{\sharp}}{\rightleftarrows} K_{n}^{S^{P^{\prime}}}
$$

which is homotopically equivalent to

$$
K_{n-2} \times K_{n-1} \stackrel{1 \times 0}{\longleftarrow} K_{n-2} \times K_{n-1} \stackrel{0 \times 1}{\longleftarrow} K_{n-2} \times K_{n-1} \stackrel{T(0 \times 1)}{\longleftrightarrow} K_{n-3} \times K_{n-2}
$$

where $T: K_{n-1} \times K_{n-2} \rightarrow K_{n-2} \times K_{n-1}$ denotes the switching map.
Proof. From the diagram (4.1) one can form the homotopy-commutative diagram

Then $t^{\prime}(1, p)^{\ddagger} \in H^{n-2}\left(K_{n}^{P} ; Z_{p}\right) \cong H^{n-2}\left(K_{n-2} \times K_{n-1} ; Z_{p}\right)$ is a multiple of the projection $t: K_{n-2} \times K_{n-1} \rightarrow K_{n-2}$. Since $t^{\prime}(1, p)^{\ddagger} q^{\#} \simeq t^{\prime} q^{\prime \#} \simeq 1$, it follows that $t^{\prime}(1, p)^{\sharp} \simeq t$. This shows that $(1, p)^{\ddagger}$ is essentially 1×0 and that $t\left(0, i^{\prime}\right)^{\ddagger} \simeq$ $t^{\prime}(1, p)^{\ddagger}\left(0, i^{\prime}\right)^{\ddagger} \simeq 0$. Hence $\left(0, i^{\prime}\right)^{\ddagger}$ is essentially 0×1 and, by $i^{\prime \prime}\left(0, q^{\prime}\right)^{\ddagger} \simeq 0$ and $t^{\prime}\left(0, q^{\prime}\right)^{\ddagger} \simeq\left(S i^{\prime}\right)^{\sharp}$, we see that $\left(0, q^{\prime}\right)^{\sharp}$ is homotopy-equivalent to $T(0 \times 1)$.

Consider now the homotopy-commutative diagram

where \bar{K} is, as in (3.1), the fibre of $\alpha^{P} e$ and K^{\prime} is the fibre of $\alpha^{P^{\prime}}(1 \times 0) e$. Note that K^{\prime} is homotopy-equivalent to $\Omega A \times \Omega B^{P^{\prime}}$ because of $(1 \times 0) e \simeq 0$. The maps
1×0 induce a map $\chi: K \rightarrow K^{\prime}$.
Let $f: \Omega K \rightarrow \bar{K}$ be a map constructed in Lemma 3.2 for $k=2$. Then one gets the homotopy-commutative diagram

Since $\chi f(\Omega l) \simeq \chi \bar{l}(\Omega e) \simeq l^{\prime} \Omega(1 \times 0)(\Omega e) \simeq 0$ by $\Omega(1 \times 0)(\Omega e) \simeq 0$, we may find f^{\prime} : $\Omega A \rightarrow K^{\prime}$ such that

$$
\begin{equation*}
f^{\prime}(\Omega \rho) \simeq \chi f \tag{4.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
t \theta^{P} \varepsilon f \simeq t^{\prime} \theta^{P^{\prime}} \varepsilon^{\prime} f^{\prime}(\Omega \rho) \tag{4.4}
\end{equation*}
$$

Further, since $\rho^{P^{\prime}} \varepsilon^{\prime} f^{\prime} \simeq 0$, there exists $g: \Omega A \rightarrow \Omega B^{P^{\prime}}$ such that

$$
\begin{equation*}
l^{P^{\prime}} g \simeq \varepsilon^{\prime} f^{\prime} \tag{4.5}
\end{equation*}
$$

Therefore, by (4.4) and $\theta l=\beta$,

$$
\begin{equation*}
t \theta^{P} \varepsilon f \simeq t^{\prime} \beta^{P^{\prime}} g(\Omega \rho) \tag{4.6}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
T(0 \times 1) g(\Omega \rho) \simeq-\alpha^{P^{\prime}} e^{\prime}(\Omega \rho) \tag{4.7}
\end{equation*}
$$

For this purpose, introduce the commutative diagram

Apply the functor [ΩK,] to the above diagram and observe that

$$
\alpha^{P} e(\Omega \rho) \simeq \alpha^{P} e \bar{\rho} f \simeq \alpha^{P} \rho^{P} \varepsilon f \simeq 0, \quad(1 \times 0) e(\Omega \rho) \simeq 0
$$

Since, by Lemma 3.2, (4.3) and (4.5),

$$
\rho^{P} \varepsilon f=e(\Omega \rho), \quad(1, p)^{*} \varepsilon f \simeq l^{P^{\prime}} g(\Omega \rho), \quad(0 \times 1) e^{\prime}(\Omega \rho) \simeq e(\Omega \rho)
$$

we can apply two kinds of functional operations to $e(\Omega \rho) \in\left[\Omega K, A^{P}\right]$ to yield $g(\Omega \rho) \in\left[\Omega K, \Omega B^{P^{\prime}}\right]$ and $\left[T_{*}(0 \times 1)_{*}\right]^{-1} \alpha^{P^{\prime}} e^{\prime}(\Omega \rho) \in\left[\Omega K, B^{S P^{\prime}}\right]$. Thus, according to Spanier [6],

$$
-g(\Omega \rho) \equiv\left[T_{*}(0 \times 1)_{*}\right]^{-1} \alpha^{P^{\prime}} e^{\prime}(\Omega \rho) \bmod \alpha_{*}^{S P^{\prime}}\left[\Omega K, A^{S P^{\prime}}\right]+(1 \times 0)_{*}\left[\Omega K, B^{S P}\right]
$$

under the adjoint isomorphism. Hence (4.7) follows from the fact that $\left[\Omega K, \Omega A^{P^{\prime}}\right]=0$ and $[T(0 \times 1)]_{*}(1 \times 0)_{*}=0$.

We now compute, by the expression for $t^{\prime} \beta^{P^{\prime}}$ and $\alpha^{P^{\prime}} e^{\prime}$ in $\S 3$,

$$
\begin{aligned}
t^{\prime} \beta^{P^{\prime}} g(\Omega \rho) & =(\Omega \rho)^{*} g^{*} \sum_{j=1}^{m} \pi_{j}^{P^{\prime} *}\left(\beta_{j} \times 1+(-1)^{n+s} 1 \times \tilde{\beta}_{j}\right) \\
& \equiv(\Omega \rho)^{*} g^{*} \sum_{j=1}^{m}(-1)^{n+s} \pi_{j}^{P^{\prime} *}\left(1 \times \tilde{\beta}_{j}\right) \bmod (\Omega \rho)^{*}\left(\Omega^{2} \beta\right) *\left[\Omega A, \Omega^{3} B\right] \\
& =(-1)^{n+s}(\Omega \rho)^{*} g^{*} \sum_{j=1}^{m} \pi_{j}^{P^{\prime} *}\left(\Omega i^{\prime *}\right)^{*} \tilde{\beta}_{j} \\
& =(-1)^{n+s}(\Omega \rho)^{*} g^{*}\left(\Omega i^{\prime *}\right)^{*} \sum_{j=1}^{m} \pi_{j}^{*} \tilde{\beta}_{j} \\
& =(-1)^{n+s}(\Omega \rho)^{*} g^{*}\left(t^{\prime} T(0 \times 1)\right)^{*} \sum_{j=1}^{m} \pi_{j}^{*} \tilde{\beta}_{j} \\
& =(-1)^{n+s+1}(\Omega \rho)^{*}\left(t^{\prime} \alpha^{\left.P^{\prime} e^{\prime}\right)^{*} \sum_{j=1}^{m} \pi_{j}^{*} \tilde{\beta}_{j}}\right. \\
& =(-1)^{s+1}(\Omega \rho)^{*} \sum_{j=1}^{m}(-1)^{r} \tilde{\beta}_{j} \widetilde{\alpha}_{j} .
\end{aligned}
$$

This reveals that $(-1)^{s+1} \sum_{j=1}^{m}(-1)^{r}{ }_{j} \tilde{\beta}_{j} \tilde{\alpha}_{j}$ represents $\Psi_{2}(E)$ by Lemma 3.2, since $(\Omega \rho)^{*}\left(\Omega^{2} \beta\right)_{*}\left[\Omega A, \Omega^{2} B\right]$ is contained in the indeterminacy, $\left(\Omega^{2} \theta\right)_{*}\left[\Omega K, \Omega^{2} K\right]=$ $\left(\Omega^{2} \beta\right)_{*}\left[\Omega K, \Omega^{3} B\right]$, of $\Psi_{2}(E)$. Therefore, Theorem D follows from Theorem 1.5 and from the fact $p^{2} \mid l(E)$ is a consequence of the exact sequence

$$
[\Omega E, \Omega K] \stackrel{(\Omega \pi)^{*}}{\rightleftarrows}[\Omega K, \Omega K] \stackrel{(\Omega \theta)^{*}}{\rightleftarrows}[\Omega L, \Omega K]=0
$$

Corollary 3,1) follows from Theorem D by inspecting the exact ladder

and by observing that the left hand $\left(\Omega^{2} \beta\right)_{*}$ may be identified with

$$
\sum_{i=1}^{m} \beta_{i}: \oplus H^{n+r i_{i}^{-3}}\left(\Omega^{2} B\right) \rightarrow H^{n+s-2}\left(\Omega^{2} B\right) .
$$

5. Some examples

As an illustration of Theorems C and D in the introduction, we list some relations in $\mathcal{A}(p)$ to which the theorems are applicable:
i) Relations to which Theorem C, 1), is applicable:

$$
\begin{aligned}
& \left(P^{k} \Delta\right) P^{p-1}=0 \quad(2 \leqq k<p) \\
& \left(P^{p} \Delta\right) P^{k}+(k-1) \Delta P^{p+k}-\left(\Delta P^{p+k-1}\right) P^{1}=0 \quad(1<k<p)
\end{aligned}
$$

ii) Relations to which Theorem C, 2) is applicable:

$$
\begin{aligned}
\left(\Delta P^{k p}\right) P^{k-1}-P^{k p}\left(\Delta P^{k-1}\right)-P^{k p-1}\left(\Delta P^{k}\right)=0 \quad(k \geqq 2, k \equiv 0 \bmod p, \\
\left.p>3, k<\left(p^{2 p-4}+2 p-3\right)\left(p^{2}-1\right)^{-1}\right) .
\end{aligned}
$$

iii) Relations to which Corollary 2 is applicable:

$$
\begin{aligned}
& P^{p-1} P^{1}=0 \quad(p>3) \\
& P^{p} P^{p+2}-P^{2 p+1} P^{1}=0
\end{aligned}
$$

iv) Relations to which Corollary 3, 2) is applicable:

$$
\begin{aligned}
& S q^{2 k-1} S q^{k-1}+S q^{2 k-2} S q^{k}=0 \quad(k \geqq 2), \\
& S q^{2 k-1} S q^{k-3}+S q^{2 k-2} S q^{k-2}+S q^{2 k-4} S q^{k}=0 \quad(k \geqq 4), \\
& S q^{2 k-1} S q^{k-5}+S q^{2 k-2} S q^{k-4}+S q^{2 k-3} S q^{k-3}+S q^{2 k-6} S q^{k}=0 \quad(k \geqq 6) .
\end{aligned}
$$

v) Relations to which Corollary 3,1) is applicable:

$$
\begin{array}{ccc}
l(E)=8 & \text { iff } & S q^{2 k-2} S q^{k-1} \notin \mathcal{A}(2) S q^{k}+S q^{2 k-1} \mathcal{A}(2) \\
& & \text { for } S q^{2 k-1} S q^{k}=0 \quad(k \geqq 1), \\
l(E)=8 & \text { iff } & S q^{2 k-2} S q^{k-7} \notin \mathcal{A}(2) S q^{k-6}+\mathcal{A}(2) S q^{k-4}+\mathcal{A}(2) S q^{k} \\
& & +S q^{2 k-1} \mathcal{A}(2)+S q^{2 k-3} \mathcal{A}(2)+S q^{2 k-7} \mathcal{A}(2) \\
& \text { for } \quad S q^{2 k-1} S q^{k-6}+S q^{2 k-3} S q^{k-4}+S q^{2 k-7} S q^{k}=0 \quad(k \geqq 9) .
\end{array}
$$

Aichi University of Education
Osaka University

References

[1] J.F. Adams: On the non-existence of elements of Hopf invariant 1, Ann. of Math. 72 (1960), 20-104.
[2] L.L. Larmore and E. Thomas: Group extensions and principal fibrations, Math. Scand. 30 (1972), 227-248.
[3] L.L. Larmore and E. Thomas: Group extensions and twisted cohomology theories, Illinois J. Math. 17 (1973), 397-410.
[4] Y. Nomura: The Whitney join and its dual, Osaka J. Math. 7 (1970), 353-373.
[5] L. Smith: Secondary cohomology theories, Indiana Univ. Math. J. 23 (1974), 899923.
[6] E. Spanier: Secondary operations on mappings and cohomology, Ann. of Math. 75 (1962), 260-282.
[7] M. Sugawara: On the homotopy-commutativity of groups and loop spaces, Mem. Coll. Sci., Univ. of Kyoto, Ser A, 33 (1960), 257-269.
[8] M. Sugawara: Order of the identity class of a loop space, J. Sci. Hiroshima Univ. Ser A-I, 30 (1966), 131-136.
[9] H. Toda: Algebra of stable homotopy of Z_{p}-spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197-251.

