ON A GENERALIZATION OF QF-3' RINGS*

Dedicated to Professor Kiiti Morita for the celebration of his sixtieth birthday.

Yoshini KURATA and Hisao KATAYAMA

(Received February 20, 1975)

A ring R with identity is called left QF-3' if the injective hull $E(R)$ of the left R-module R is torsionless. This class of rings and the other related generalizations of quasi-Frobenius rings have been studied by a number of authors.

Recently, Jans [7] has given a torsion theoretic characterization of left QF-3' rings (cf. also Kato [8] and Tsukerman [14]). The purpose of this paper is, generalizing this idea, to consider a module theoretic generalization of left $\mathrm{QF}-3^{\prime}$ rings. We shall say that a left R-module Q is $\mathrm{QF}-3^{\prime}$ if its injective hull $E(Q)$ is torsionless with respect to Q, i.e., $E(Q)$ can be embedded in a direct product of copies of Q.

The main theorem of $\S 1$ will give some equivalent conditions for Q to be QF-3'.

In §2, we shall discuss basic properties of QF-3' R-modules and study a relation between QF-3' R-modules and cogenerators for R-mod.

We shall treat, in §3, QF-3' R-modules with zero singular submodule. We shall give some results relating the notions of Q-torsionless R-modules and non-singular R-modules. In particular we shall show that, if Q is faithful, these notions coincide if and only if Q is $\mathrm{QF}-3^{\prime}$ and has zero singular submodule. We shall also give another characterization of a $\mathrm{QF}-3^{\prime} R$-module with zero singular submodule making use of its injective submodules.

After completed this paper, we found that the similar results were obtained by Bican [2] and wrought a slight change in the paper.

Throughout this paper, R will denote an associative ring with identity and R-mod the category of unital left R-modules and R-homomorphisms. We shall deal only with left R-modules and so R-modules will mean unital left R-modules. $E(M)$ will always denote the injective hull of a left R-module M and $r_{M}(*)$ the right annihilator of $*$ in M.

[^0]
1. Preliminaries

A subfunctor r of the identity functor of R-mod is called a preradical of R-mod. It is called idempotent if $r(r(M))=r(M)$ and a radical if $r(M / r(M))=$ 0 for all R-modules M. To each preradical r we associate two classes of R modules, namely

$$
\mathbf{T}(r)=\{M \mid r(M)=M\} \text { and } \mathbf{F}(r)=\{M \mid r(M)=0\} .
$$

In case a preradical r is idempotent and is a radical, the pair $(\mathbf{T}(r), \mathbf{F}(r))$ forms a torsion theory for $R-\bmod$ in the sense of [5].

In the class of all preradicals of R-mod, there is a partial ordering in which $r_{1} \leqq r_{2}$ means that $r_{1}(M) \subset r_{2}(M)$ for all R-modules M. For each preradical r there exists a largest idempotent preradical \hat{r} smaller than or equal to r and a smallest radical \bar{r} larger than or equal to r. It is easy to see that $\mathbf{T}(\hat{r})=\mathbf{T}(r)$ and $\mathbf{F}(\vec{r})=\mathbf{F}(r)$. Moreover, if r is idempotent, then so is \vec{r}, and \hat{r} is a radical if r is.

Let Q be an R-module and let us define

$$
k_{Q}(M)=\bigcap_{f \in \operatorname{Hom}_{R^{(M, Q)}}} \operatorname{Ker}(f)
$$

for each R-module M. Then k_{Q} is a radical of R - \bmod such that $k_{Q}(Q)=0$. Moreover it is a unique maximal one of those preradicals r of R-mod for which $r(Q)=0$, and $k_{E(Q)}$ is a unique maximal one of those left exact radicals r of R mod for which $r(Q)=0$. As is well-known, every left exact radical of R-mod is of the form k_{E} for some injective R-module E. For example, we can take E as the direct product of injective hulls of all cyclic torsion-free R-modules (e.g., see [11]).

Since $k_{Q} \leqq k_{Q^{\prime}}$ for each submodule Q^{\prime} of Q and $k_{E(Q)}$ is idempotent, we have $k_{E(Q)} \leqq \hat{k}_{Q} \leqq k_{Q}$.

The class $\mathbf{T}\left(k_{Q}\right)$ coincides with the class $\left\{M \mid \operatorname{Hom}_{R}(M, Q)=0\right\}$ and is closed under taking homomorphic images, direct sums and extensions. So this is a torsion class in R-mod and the corresponding torsion-free class coincides with $\mathbf{F}\left(\hat{k}_{Q}\right)$. On the other hand, the class of R-modules $\mathbf{F}\left(k_{Q}\right)$ is not a torsionfree class in general. This is closed under taking submodules and direct products, but not extensions in general (see e.g. [16, Example B]). As is wellknown, Q is a cogenerator for $\mathbf{F}\left(k_{Q}\right)$. Moreover, an R-module M is in $\mathbf{F}\left(k_{Q}\right)$ if (and only if) it can be embedded in a direct product of copies of Q. However, for simple R-modules we have

Proposition 1.1. A simple R-module S is in $\mathbf{F}\left(k_{Q}\right)$ if and only if there exists an R-monomorphism of S into Q.

The proof is easy and so we will omit it.
As was mentioned above, $\mathbf{F}\left(k_{Q}\right)$ is not closed under taking extensions.

The following proposition shows when it is closed under taking extensions. Evidently this is the case if Q is injective.

Proposition 1.2. The following conditions on an R-module Q are equivalent:
(1) $\mathbf{F}\left(k_{Q}\right)$ is closed under taking extensions, i.e., it becomes a torsion-free class.
(2) $k_{Q}=\hat{k}_{Q}$, i.e., k_{Q} is idempotent.
(3) $\mathbf{F}\left(k_{Q}\right)=\mathbf{F}\left(\hat{k}_{Q}\right)$.

Bican [2] has obtained the same result independently, and so we will omit the proof.

The class $\mathbf{T}\left(k_{Q}\right)$ is a torsion class, but it is not, in general, closed under taking submodules (e.g., see [16]). Concerning this, we have

Proposition 1.3. For an R-module Q, the following conditions are equivalent:
(1) $\mathbf{T}\left(k_{Q}\right)$ is closed under taking submodules.
(2) $\hat{k}_{Q}=k_{E(Q)}$, i.e., \hat{k}_{Q} is left exact.
(3) $\mathbf{T}\left(k_{Q}\right)=\mathbf{T}\left(k_{E(Q)}\right)$.

Proof. (1) \Rightarrow (2). Suppose that $\mathbf{T}\left(k_{Q}\right)$ is closed under taking submodules. Then, since $\hat{k}_{Q} \leqq k_{Q}, \hat{k}_{Q}(Q)=0$ and, since the corresponding torsion-free class $\mathbf{F}\left(\hat{k}_{Q}\right)$ of $\mathbf{T}\left(k_{Q}\right)$ is closed under taking injective hulls, we have $\hat{k}_{Q}(E(Q))=0$. So $\hat{k}_{Q} \leqq k_{E(Q)}$ and hence $\hat{k}_{Q}=k_{E(Q)}$.
$(2) \Rightarrow(3)$ is clear and since $k_{E(Q)}$ is left exact, (3) implies (1).
This proposition was also proved in Bican [2] by a different method.
Combining this with Proposition 1.2, we have
Theorem 1.4. The following conditions on an R-module Q are equivalent:
(1) $\left(\mathbf{T}\left(k_{Q}\right), \mathbf{F}\left(k_{Q}\right)\right)$ forms a hereditary torsion theory for R-mod.
(2) $\mathbf{T}\left(k_{Q}\right)$ is closed under taking submodules and $\mathbf{F}\left(k_{Q}\right)$ is closed under taking extensions.
(3) $k_{Q}=k_{E(Q)}$.
(4) k_{Q} is left exact.
(5) $\mathbf{F}\left(k_{Q}\right)$ is closed under taking injective hulls.
(6) $\mathbf{F}\left(k_{Q}\right)$ is closed under taking essential extensions.
(7) $\mathbf{F}\left(k_{Q}\right)$ contains an injective R-module M with $k_{M}(Q)=0$.
(8) $E(Q) \in \mathbf{F}\left(k_{Q}\right)$.
(9) $\mathbf{T}\left(k_{Q}\right)=\mathbf{T}\left(k_{E(Q)}\right)$ and $\mathbf{F}\left(k_{Q}\right)=\mathbf{F}\left(k_{E(Q)}\right)$.

Proof. Here we show only that (7) implies (8). The proof of the other is easy. Since $k_{M}(Q)=0, Q \subset \Pi M$, a direct product of copies of M, and hence $E(Q) \subset \Pi M . \quad \mathbf{F}\left(k_{Q}\right)$ is closed under taking direct products and submodules and so we have $E(Q) \in \mathbf{F}\left(k_{Q}\right)$.

The equivalence of (3), (4) and (8) was also proved in Bican [2]. In case $Q=R$, the equivalence of these conditions, except for (1), (4), (5) and (9), was shown by Colby and Rutter [4], Jans [7], and Kato [8].

2. QF-3' R-modules

Recall that a ring R is left $\mathrm{QF}-3^{\prime}$ if the injective hull of the R-module R is torsionless, i.e., $k_{R}(E(R))=0$. Recently, Jans [7] has shown that R is left QF-3' if and only if $\mathbf{F}\left(k_{R}\right)$ is closed under taking extensions and $\mathbf{T}\left(k_{R}\right)$ is closed under taking submodules (cf. also Kato [8] and Tsukerman [14]). From this point of view we now make the following definition.

Definition. An R-module Q is called $\mathrm{QF}-3^{\prime}$ if Q satisfies each one of the conditions of Theorem 1.4.

It follows from this definition that every injective R-module is $\mathrm{QF}-3^{\prime}$. The following example pointed out by Tsukerman without proof shows that there exist non-injective $\mathrm{QF}-3^{\prime} R$-modules.

Example 2.1. Every direct sum of injective R-modules is QF-3'.
To see this, let $Q=\sum_{\lambda \in \Lambda} \oplus Q_{\lambda}$ be a direct sum of injective R-modules. Then $\mathbf{F}\left(k_{Q_{\lambda}}\right) \subset \mathbf{F}\left(k_{Q}\right)$ for all λ and hence $\Pi_{\lambda \in \Lambda} Q_{\lambda} \in \mathbf{F}\left(k_{Q}\right)$. Since $Q \subset E(Q) \subset$ $\Pi_{\lambda \in \Lambda} Q_{\lambda}, E(Q) \in \mathbf{F}\left(k_{Q}\right)$ and thus Q is $\mathrm{QF}-3^{\prime}$.

Proposition 2.2. (1) Every direct product of QF-3' R-modules is QF-3'. (2) Every direct sum of QF-3' R-modules is $\mathrm{QF}-3^{\prime}$.

Proof. (1) Let $Q=\Pi_{\lambda \in \Lambda} Q_{\lambda}$ be a direct product of $\mathrm{QF}-3^{\prime} R$-modules. Then $\mathbf{F}\left(k_{Q_{\lambda}}\right) \subset \mathbf{F}\left(k_{Q}\right)$ for all λ and hence $\Pi_{\lambda \in \Lambda} E\left(Q_{\lambda}\right) \in \mathbf{F}\left(k_{Q}\right)$. Since $Q \subset$ $E(Q) \subset \prod_{\lambda \in \Lambda} E\left(Q_{\lambda}\right), E(Q) \in \mathbf{F}\left(k_{Q}\right)$ and thus Q is $\mathrm{QF}-3^{\prime}$. The proof of (2) is similar to that of (1) and so it will be omitted.

It should be noted that, as we shall show later, direct summands of a QF-3' R-module need not be $\mathrm{QF}-3^{\prime}$ in general.

Proposition 2.3. Every essential extension of a QF-3' R-module is $\mathrm{QF}-3^{\prime}$.
Proof. Suppose that Q is $\mathrm{QF}-3^{\prime}$ and Q^{\prime} is an essential extension of Q. Then we can assume that $Q \subset Q^{\prime} \subset E(Q)$ and hence we have $k_{E(Q)} \leqq k_{Q^{\prime}} \leqq k_{Q}$. By Theorem 1.4, $k_{Q}=k_{Q^{\prime}}$ and thus Q^{\prime} is QF-3' again by Theorem 1.4.

It follows from this that every rational extension of a QF-3' R-module is also QF-3'. This appeared in [13] for left $\mathrm{QF}-3^{\prime}$ rings.

Let Q be an R-module. As is easily seen, Q is faithful if and only if $k_{Q}(R)=0$ and this is so if and only if $k_{Q} \leqq k_{R}$. On the other hand, Q is torsionless if and only if $k_{R}(Q)=0$, or equivalently, $k_{R} \leqq k_{Q}$. Therefore if Q is both
faithful and torsionless, then we have $k_{Q}=k_{R}$. Applying Theorem 1.4, we have
Theorem 2.4. For a ring R, the following conditions are equivalent:
(1) R is a left QF-3' ring.
(2) The R-module R is QF-3'.
(3) There exists a QF-3' R-module Q which is both faithful and torsionless.

Proposition 2.5. Let Q be an R-module.

(1) If Q is a QF-3' R-module with non-zero socle, then the injective hull of every simple submodule of Q is isomorphic to a submodule of Q.
(2) If the injective hull of every cyclic submodule of Q is isomorphic to a submodule of Q, then Q is QF-3'.

Proof. (1) Let S be a simple submodule of Q. Take $x(\neq 0)$ in $E(S)$. Then there exists $a x(\neq 0)$ in $R x \cap S . \quad S$ is in $\mathbf{F}\left(k_{Q}\right)$ and so $E(S)$ is in $\mathbf{F}\left(k_{Q}\right)$ by Theorem 1.4. We can find an R-homomorphism $f: E(S) \rightarrow Q$ such that $f(a x) \neq 0$. Hence we have $f(S) \neq 0$ and f must be a monomorphism.
(2) Take $x(\neq 0)$ in $E(Q)$. There exists $a x(\neq 0)$ in $R x \cap Q$. By assumption, $E(\operatorname{Rax}) \subset Q$, and the inclusion mapping $R a x \rightarrow E(R a x)$ can be extended to an R-homomorphism $f: E(Q) \rightarrow Q$ such that $f(x) \neq 0$, which shows that Q is $\mathrm{QF}-3^{\prime}$.

Clearly, for a direct sum Q of injective R-modules, the injective hull of every cyclic submodule is isomorphic to a submodule of Q and so (2) above gives another proof of Example 2.1.

As an immediate consequence of this proposition, we have at once
Corollary 2.6. For an R-module Q with non-zero socle, the following conditions are equivalent:
(1) Q is indecomposable and QF-3'.
(2) $Q=E(S)$ for every simple submodule S of Q.
(3) $Q=E\left(Q^{\prime}\right)$ for every non-zero submodule Q^{\prime} of Q.

Proposition 2.7. Let Q be an R-module. If every cyclic submodule of Q is $\mathrm{QF}-3^{\prime}$, then Q is itself $\mathrm{QF}-3^{\prime}$.

Proof. Take $x(\neq 0)$ in $E(Q)$ and claim that there exists an R-homomorphism $f^{*}: E(Q) \rightarrow Q$ with $f^{*}(x) \neq 0$. Choose an element a in R such that $a x(\neq 0)$ is in Q. Then we have $\operatorname{Rax} \subset E(\operatorname{Rax}) \subset E(Q)$ and $E(Q)=E(R a x) \oplus Q_{1}$ for some submodule Q_{1} of $E(Q)$. By assumption, Rax is QF-3' and so there exists an R-homomorphism $f: E(R a x) \rightarrow R a x$ such that $f(a x) \neq 0$. Then it is easy to see that the composition $f^{*}: E(Q) \rightarrow Q$ of f and the projection mapping $E(Q) \rightarrow E(R a x)$ has the desired property.

As a direct consequence of this, we see that if every cyclic R-module is QF-3', then every R-module is also QF-3'. This was proved by Tsukerman
[14] under the assumption that R is left hereditary.
Recall that an R-module Q is a cogenerator for R - \bmod if $\mathbf{F}\left(k_{Q}\right)=R$-mod. Therefore, a cogenerator for R-mod is necessarily QF-3'. We now consider the question of when a QF-3' R-module becomes a cogenerator for R-mod. To do this we shall prove

Proposition 2.8. For an R-module $Q(\neq 0)$, the following conditions are equivalent:
(1) Q contains a copy of every simple R-module.
(2) Every simple R-module belongs to $\mathbf{F}\left(k_{Q}\right)$.
(3) For every simple R-module $S, \operatorname{Hom}_{R}(S, Q) \neq 0$.
(4) For every maximal left ideal \mathfrak{m} of $R, r_{Q}(\mathfrak{m}) \neq 0$.
(5) For every proper left ideal \mathfrak{m} of $R, r_{Q}(\mathfrak{m}) \neq 0$.
(6) For every non-zero finitely generated R-module $M, \operatorname{Hom}_{R}(M, Q) \neq 0$.
(7) For every non-zero cyclic R-module $M, \operatorname{Hom}_{R}(M, Q) \neq 0$.
(8) $E(Q)$ is a cogenerator for R-mod.
(9) Every non-zero injective R-module M with $k_{M}(Q)=0$ is a cogenerator for R-mod.

Proof. We shall show only $(7) \Rightarrow(8) \Rightarrow(9) \Rightarrow(1)$.
$(7) \Rightarrow(8)$. Let M be an R-module. Take $x(\neq 0)$ in M. Then by assumption there exists a non-zero R-homomorphism $f: R x \rightarrow Q$. Since $E(Q)$ is injective, it can be extended to an R-homomorphism $f^{\prime}: M \rightarrow E(Q)$ and $f^{\prime}(x)=$ $f(x) \neq 0$. This shows that $E(Q)$ is a cogenerator for R-mod.
$(8) \Rightarrow(9)$. Since $k_{M}(Q)=0, Q \subset \Pi M$, a direct product of copies of M, and hence $E(Q) \subset \Pi M$. Then we have $R-\bmod =\mathbf{F}\left(k_{E(Q)}\right) \subset \mathbf{F}\left(k_{\text {пI }}\right)$. It follows that ΠM is a cogenerator for $R-\bmod$ and so is M by [12, Lemma 1].
$(9) \Rightarrow(1)$. Since $E(Q)$ is a cogenerator for R-mod, for every simple R module S, there exists a non-zero R-homomorphism $f: S \rightarrow E(Q) . \quad S$ is simple, so f must be a monomorphism. Since $f(S) \cap Q \neq 0, f(S) \cap Q=f(S)$ and hence $f(S)$ is contained in Q.

An R-module satisfying (1) and (8) was called lower distinguished by Azumaya [1] and a quasi-cogenerator by Morita [10] respectively.

Generalizing results due to Kato [8], Jans [6] and Sugano [12], we have
Theorem 2.9. The following conditions on an R-module Q are equivalent:
(1) Q is a cogenerator for R-mod.
(2) Q is $\mathrm{QF}-3^{\prime}$ and contains a copy of every simple R-module.
(3) $\sum_{\lambda \in \Lambda} \oplus E\left(S_{\lambda}\right) \in \mathbf{F}\left(k_{Q}\right)$, where $\left\{S_{\lambda}\right\}_{\lambda \in \Lambda}$ be a complete set of representatives for the isomorphism classes of simple R-modules.
(4) There exists a cogenerator for R-mod contained in $\mathbf{F}\left(k_{Q}\right)$.
(5) Every R-module M with $k_{M}(Q)=0$ is a cogenerator for R-mod.
(6) Q is faithful $\mathrm{QF}-3^{\prime}$ and $\mathbf{F}\left(k_{Q}\right)$ is closed under taking homomorphic images.

Proof. $(1) \Rightarrow(2) \Rightarrow(3)$ follow from Proposition 1.1 and Theorem 1.4 and $(3) \Rightarrow(4)$ and $(5) \Rightarrow(6)$ are easy.
$(4) \Rightarrow(5)$. Let N be a cogenerator for R-mod contained in $\mathbf{F}\left(k_{Q}\right)$ and let M be an R-module with $k_{M}(Q)=0$. Then we have $k_{M} \leqq k_{Q} \leqq k_{N}$ and $\mathbf{F}\left(k_{N}\right)=$ R-mod. Hence $\mathbf{F}\left(k_{M}\right)=R$-mod as desired.
$(6) \Rightarrow(1) . \quad$ By assumption, there exists a class \mathbf{T} of R-modules such that ($\left.\mathbf{T}\left(k_{Q}\right), \mathbf{F}\left(k_{Q}\right), \mathbf{T}\right)$ forms a 3-fold torsion theory for R - \bmod in the sense of [9]. It follows from Lemma 2.1 of [9] that $k_{Q}(M)=k_{Q}(R) \cdot M$ for each R-module M. Hence it results that $\mathbf{F}\left(k_{Q}\right)=R-\bmod$ since Q is faithful.

3. Non-singular QF-3' R-modules

In case the singular submodule $Z(Q)=0$, we can give a simple criterion for Q being QF-3'.

Theorem 3.1. Let Q be an R-module with $Z(Q)=0$. Then Q is $\mathrm{QF}-\mathbf{3}^{\prime}$ if and only if $\mathbf{T}\left(k_{Q}\right)$ is closed under taking submodules.

This was also obtained by the same method in Bican [2] and we will omit the proof.

As is well-known, the functor Z of R-mod which assigns to each R-module M its singular submodule $Z(M)$ is a left exact preradical of R-mod. It is to be noted that, for this preradical, $\mathbf{F}(Z)$ is nothing but the torsion-free class of the so-called Goldie torsion theory. We shall now give other characterizations of non-singular QF-3' R-modules by means of the functor Z. To do this, we first prove the following which appeared in Colby and Rutter [4] for the case $Q=R$.

Proposition 3.2. The following conditions on an R-module Q are equivalent:
(1) $Z(Q)=0$.
(2) $\mathbf{F}\left(k_{Q}\right) \subset \mathbf{F}(Z)$.
(3) $\mathbf{T}(Z) \subset \mathbf{T}\left(k_{Q}\right)$.

Proof. (1) $\Rightarrow(2)$. Since $Z \leqq k_{Q}$, we have $\mathbf{F}\left(k_{Q}\right) \subset \mathbf{F}(Z)$.
$(2) \Rightarrow(3)$. Let M be in $\mathbf{T}(Z)$. Take f in $\operatorname{Hom}_{R}(M, Q)$ and x in M. Then, since $\operatorname{Ann}_{R}(x)$ is essential in R, so is $\operatorname{Ann}_{R}(f(x))$ and hence $f(x)$ is in $Z(Q)$. But by assumption (2) $Z(Q)=0$ and this implies that M is contained in $\mathbf{T}\left(k_{Q}\right)$.
$(3) \Rightarrow(1)$. Since Z is an idempotent preradical, $Z(Q)$ is in $\mathbf{T}(Z)$ and hence is in $\mathbf{T}\left(k_{Q}\right)$. This shows that $\operatorname{Hom}_{R}(Z(Q), Q)=0$ and $Z(Q)=0$.

Lemma 3.3. Let Q be a faithful R-module. Then we have
(1) $\mathbf{T}\left(k_{E(Q)}\right) \subset \mathbf{T}(Z)$, and
(2) $\mathbf{F}(Z) \subset \mathbf{F}\left(k_{E(Q)}\right)$.

Proof. (1) For every R-module M in $\mathbf{T}\left(k_{E(Q)}\right)$ and every element x in M, we shall claim that $\operatorname{Ann}_{R}(x)$ is essential in R. Suppose that m is a non-zero left ideal in R such that $\operatorname{Ann}_{R}(x) \cap \mathfrak{m}=0$. Define $f: \mathfrak{m} x \rightarrow R$ such that $f(a x)=a$ for $a \in \mathfrak{m}$. Clearly this is a well defined R-homomorphism. Let a be a nonzero element of \mathfrak{m}. Then there exists an R-homomorphism $g: R \rightarrow E(Q)$ such that $g(a) \neq 0$ since $E(Q)$ is faithful. The composition map $g \circ f: \mathfrak{m} x \rightarrow E(Q)$ can be extended to an R-homomorphism $h: M \rightarrow E(Q)$ and $h(a x)=g(f(a x))=$ $g(a) \neq 0$. Thus we have $\operatorname{Hom}_{R}(M, E(Q)) \neq 0$, but this is a contradiction. Similarly we can show that (2) holds.

It follows from Lemma 3.3 that, if Q is faithful and non-singular, then $E(Q)$ is a cogenerator for $F(Z)$. However, we can show that this is also true for more general QF-3' R-modules.

Theorem 3.4. For a faithful R-module Q, the following conditions are equivalent:
(1) Q is $\mathrm{QF}-3^{\prime}$ and $Z(Q)=0$.
(2) $\mathbf{T}\left(k_{Q}\right)=\mathbf{T}(Z)$.
(3) $\mathbf{F}\left(k_{Q}\right)=\mathbf{F}(Z)$.
(4) $k_{Q}=Z$.
(5) Q is a cogenerator for $\mathbf{F}(Z)$.

Proof. $(1) \Rightarrow(2)$ and $(1) \Rightarrow(3)$ follow from Proposition 3.2 and Lemma 3.3. $(2) \Rightarrow(1)$. By Proposition 3.2, $Z(Q)=0$. Since $\mathbf{T}(Z)$ is closed under taking submodules, so is $\mathbf{T}\left(k_{Q}\right)$. Therefore, Q is $\mathrm{QF}-3^{\prime}$ by Theroem 3.1.
$(3) \Rightarrow(1)$. By Proposition 3.2, $Z(Q)=0$. Since $F(Z)$ is closed under taking injective hulls, so is $\mathbf{F}\left(k_{Q}\right)$. Therefore, Q is $\mathrm{QF}-3^{\prime}$ by Theorem 1.4.
$(4) \Rightarrow(1)$ follows from Theorem 1.4 since Z is left exact. So we assume (2) and also (3). By Proposition 3.2, $Z(Q)=0$ and we have $Z \leqq k_{Q} . \quad \mathbf{F}\left(k_{Q}\right)=$ $\mathbf{F}(Z)$ is closed under taking extensions and so by Proposition $1.2 k_{Q}$ is idempotent. For each R-module $M, k_{Q}(M) \in \mathbf{T}\left(k_{Q}\right)=\mathbf{T}(Z)$ and $k_{Q}(M)=$ $Z\left(k_{Q}(M)\right) \subset Z(M)$. Therefore we have $k_{Q} \leqq Z$.
(3) $\overrightarrow{(}(5)$. The fact that Q is a cogenerator for $\mathbf{F}(Z)$ means that $Z(Q)=0$ and $\mathbf{F}(Z) \subset \mathbf{F}\left(k_{Q}\right)$, or equivalently $\mathbf{F}(Z)=\mathbf{F}\left(k_{Q}\right)$ by Proposition 3.2. This completes the proof of the theorem.

In [4], it was given a similar characterization, except for (4) and (5), of non-singular left QF-3 rings in case these are semi-primary, and (4) may be viewed as a generalization of a result of [15].

In Proposition 2.3 we have shown that every essential extension of a QF-3'
R-module is QF-3'. However, in case it is non-singular, we have
Corollary 3.5. Let Q be a faithful $\mathrm{QF}-3^{\prime} R$-module and let Q^{\prime} be a nonsingular R-module such that $Q \subset Q^{\prime}$. Then Q^{\prime} is also $\mathrm{QF}-3^{\prime}$.

Proof. By Proposition 3.2 and Theorem 3.4, $\mathbf{F}(Z)=\mathbf{F}\left(k_{Q}\right) \subset \mathbf{F}\left(k_{Q^{\prime}}\right) \subset \mathbf{F}(Z)$. Hence we have $\mathbf{F}\left(k_{Q^{\prime}}\right)=\mathbf{F}(Z)$ and Q^{\prime} is $\mathrm{QF}-3^{\prime}$.

As another corollary to this theorem, we have
Corollary 3.6. For a ring R with $Z\left({ }_{R} R\right)=0$ and its maximal ring of left quotients Q, the following conditions are equivalent:
(1) Every non-singular R-module is torsionless, i.e., R is a cogenerator for $\mathrm{F}(Z)$.
(2) R is a left QF-3' ring.
(3) ${ }_{R} Q$ is torsionless.

Recently, Cateforis [3] has given a necessary and sufficient condition for a non-singular R-module to be a cogenerator for $\mathbf{F}(Z)$. The following theorem is motivated by his Theorem 1.1, and provides alternative characterizations of non-singular QF-3' R-modules to that given in Theorem 3.4.

Theorem 3.7. For a non-singular R-module Q, the following conditions are equivalent:
(1) Q is faithful and QF-3'.
(2) Q contains non-zero injective submodules and the sum Q^{*} of all such injective submodules is faithful.
(3) There exists a faithful submodule Q_{0} of Q such that Q_{0} contains the injective hull of every one of its finitely generated submodules.

Before proving the theorem, we shall quote Lemma 0.2 of [3] and give its proof for the sake of completeness.

Lemma 3.8. If A is an injective R-module and B is a non-singular R module, then, for every R-homomorphism $f: A \rightarrow B$, both $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$ are injective.

Proof. Since A is injective, we can assume that $\operatorname{Ker}(f) \subset E(\operatorname{Ker}(f)) \subset A$. Take $x(\neq 0)$ in $E(\operatorname{Ker}(f))$ and $a(\neq 0)$ in R. If $a x=0$, then a is in $R a \cap$ $\operatorname{Ann}_{R}(f(x))$. If $a x \neq 0$, then we can find $b a x(\neq 0)$ in $\operatorname{Rax} \cap \operatorname{Ker}(f)$ for some b in R. Since $f(b a x)=0$ and $b a \neq 0, R a \cap \operatorname{Ann}_{R}(f(x)) \neq 0$. At any rate, we have $R a \cap \operatorname{Ann}_{R}(f(x)) \neq 0$ and hence $\operatorname{Ann}_{R}(f(x))$ is essential in R. $f(x)$ is then in $Z(B)=0$. Therefore, x is in $\operatorname{Ker}(f)$ which shows that $\operatorname{Ker}(f)=E(\operatorname{Ker}(f))$.

Proof of Theorem 3.7. (1) $\Rightarrow(2)$. By assumption, $\operatorname{Hom}_{R}(E(Q), Q) \neq 0$
and so by Lemma 3.8 Q contains certainly non-zero injective submodules. Moreover $k_{Q^{*}}(E(Q))=k_{Q}(E(Q))$ again by Lemma 3.8. Hence we have $k_{Q^{*}}(Q)=0$ which implies that $k_{Q^{*}} \leqq k_{Q}$ and Q^{*} is faithful. (Moreover in this case $k_{Q}=k_{Q^{*}}$ holds.)
$(2) \Rightarrow(3)$. For every finite family $\left\{M_{1}, M_{2}, \cdots, M_{n}\right\}$ of non-zero injective submodules of $Q, \sum_{i=1}^{n} M_{i}$ is a homomorphic image of an injective R-module $\sum_{i=1}^{n} \oplus M_{i}$ and so by Lemma 3.8 it is also injective. It follows from this that Q^{*} contains the injective hull of every one of its finitely generated submodules.
$(3) \Rightarrow(1)$. By Proposition $2.5 Q_{0}$ is $\mathrm{QF}-3^{\prime} . Q_{0}$ is faithful and Q is nonsingular, so by Corollary $3.5 Q$ is also QF-3'. (Here we shall point out that $k_{Q}=k_{Q_{0}}$ holds. To see this it is sufficient to show that $k_{Q_{0}}(Q)=0$. Take $x(\neq 0)$ in $E(Q)$. Then $\operatorname{Ann}_{R}(x)$ is not essential in R so we can find $a(\neq 0)$ in R such that $R a \cap A n n_{R}(x)=0$. Since $a x$ is a non-zero element of $E(Q)$, there exists some $b a x(\neq 0)$ in $R a x \cap Q . \quad b a$ is a non-zero element in R and Q_{0} is faithful and so for some x_{0} in Q_{0} we have $b a x_{0} \neq 0$. Then the mapping f : $R b a x \rightarrow R b a x_{0}$ given by $f(r b a x)=r b a x_{0}$, for r in R, is a well-defined R-homomorphism. By assumption, $E\left(R b a x_{0}\right) \subset Q_{0}$ and so f has an extension $f^{*}: E(Q) \rightarrow Q_{0}$ and $f^{*}(x) \neq 0$. Thus $k_{Q_{0}}(E(Q))=0$ and $k_{Q_{0}}(Q)=0$.)

To illustrate the theorem, we shall give some examples.
Example 3.9. Let R be the ring of 2×2 upper triangular matrices over a field K. Then it is a faithful non-singular left module over itself. It has only one non-zero injective left ideal, namely

$$
\left(\begin{array}{ll}
0 & K \\
0 & K
\end{array}\right),
$$

and this is also a faithful R-module. Hence R is a $\mathrm{QF}-3^{\prime} R$-module with

$$
R^{*}=\left(\begin{array}{ll}
0 & K \\
0 & K
\end{array}\right)
$$

There is no faithful left ideal of R properly contained in R^{*}, so we have $R_{0}=$ R^{*}. Moreover $R=R^{*} \oplus R^{\prime}$, where

$$
R^{\prime}=\left(\begin{array}{rr}
K & 0 \\
0 & 0
\end{array}\right)
$$

and is not $\mathrm{QF}-\mathbf{3}^{\prime}$.
Example 3.10. Let R be as above and Q the ring of all 2×2 matrices over K. Then Q is also a faithful non-singular R-module and is QF-3' since $Q=E\left({ }_{R} R\right)$. In this case, $Q=Q^{*}$ and we may take for Q_{0}, for example, as

$$
\left(\begin{array}{ll}
K & 0 \\
K & 0
\end{array}\right),\left(\begin{array}{ll}
0 & K \\
0 & K
\end{array}\right), \text { or } Q=\left(\begin{array}{ll}
K & K \\
K & K
\end{array}\right)
$$

Hence the submodule Q_{0} in the theorem is not uniquely determined within isomorphisms.

Remark. Let Q be a faithful, non-singular $\mathrm{QF}-3^{\prime} R$-module. Then there exist faithful submodules Q^{*} and Q_{0} of Q with properties mentioned in Theorem 3.7. As was pointed out in the proof of the theorem, $k_{Q^{*}}=k_{Q_{0}}=k_{Q}$ hold and hence by Theorem 1.4 both Q^{*} and Q_{0} are also $\mathrm{QF}-3^{\prime}$. These, as well as Q and $E(Q)$, are faithful, non-singular QF-3' R-modules. Clearly Q^{*} includes Q_{0} and moreover it is a unique maximal one of those submodules of Q which contain the injective hull of every one of its finitely generated submodules. Since each injective submodule of Q is that of Q^{*}, we can conclude that Q^{*} coincides with the sum of all non-zero injective submodules of Q^{*}, i.e., $\left(Q^{*}\right)^{*}=Q^{*}$.

Let us suppose furthermore that every direct sum of non-singular injective R-modules is injective. For example, we may take a finite dimensional ring R in the sense that it contains no infinite direct sum of submodules. Then Q^{*} is itself injective and hence Q can be decomposed into a direct sum of submodules Q^{*} and $Q^{\prime}: Q=Q^{*} \oplus Q^{\prime}$. Since Q^{*} is a unique maximal nonzero injective submodule of Q, if $Q^{\prime} \neq 0$, then Q^{\prime} does not contain any non-zero injective submodule of Q. Therefore by Lemma $3.8 \operatorname{Hom}_{R}\left(E\left(Q^{\prime}\right), Q^{\prime}\right)=0$. This shows that Q^{\prime} can not be QF-3'.

Yamaguchi University

References

[1] G. Azumaya: Completely faithful modules and self-injective rings, Nagoya Math. J. 27 (1966), 697-708.
[2] L. Bican: QF-3' modules and rings, Comment. Math. Univ. Carolinae 14 (1973), 295-303.
[3] V.C. Cateforis: Minimal injective cogenerators for the class of modules of zero singular submodule, Pacific J. Math. 40 (1972), 527-539.
[4] R.R. Colby and E.A. Rutter, Jr.: Semi-primary QF-3 rings, Nagoya Math. J. 32 (1968), 253-258.
[5] S.E. Dickson: A torsion theory for abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235.
[6] J.P. Jans: Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259.
[7] -: Torsion associated with duality, Tôhoku Math. J. 24 (1972), 449-452.
[8] T. Kato: Torsionless modules, Tôhoku Math. J. 20 (1968), 233-242.
[9] Y. Kurata: On an n-fold torsion theory in the category ${ }_{R} \mathbf{M}$, J. Algebra 22 (1972), 559-572.
[10] K. Morita: Localizations in categories of modules. I, Math. Z. 114 (1970), 121144.
[11] B. Stenström: Rings and Modules of Quotients, Lecture Notes in Math. 237, Springer-Verlag, Berlin.Heidelberg.New York, 1971.
[12] K. Sugano: A note on Azumaya's theorem, Osaka J. Math. 4 (1967), 157-160.
[13] H. Tachikawa: On left QF-3 rings, Pacific J. Math. 32 (1970), 255-268.
[14] G.M. Tsukerman: Pseudo-injective modules and self-pseudo-injective rings, Math. Notes. 7 (1970), 220-226.
[15] D.Y. Wei: On the concept of torsion and divisibility for general rings, Illinois J. Math. 13 (1969), 414-431.
[16] L.E.T. Wu, H.Y. Mochizuki and J.P. Jans: A characterization of QF-3 rings, Nagoya Math. J. 27 (1966), 7-13.

[^0]: *) The authors are indebted to the referee for helpful suggestions.

