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A ring R with identity is called left QF-3' if the injective hull E(R) of the
left i?-module R is torsionless. This class of rings and the other related genera-
lizations of quasi-Frobenius rings have been studied by a number of authors.

Recently, Jans [7] has given a torsion theoretic characterization of left
QF-3' rings (cf. also Kato [8] and Tsukerman [14]). The purpose of this
paper is, generalizing this idea, to consider a module theoretic generalization of
left QF-3' rings. We shall say that a left i?-module Q is QF-3' if its injective
hull E(Q) is torsionless with respect to Q> i.e., E(Q) can be embedded in a direct
product of copies of Q.

The main theorem of § 1 will give some equivalent conditions for Q to be
QF-3'.

In §2, we shall discuss basic properties of QF-3' 2?-modules and study
a relation between QF-3' i?-modules and cogenerators for i?-mod.

We shall treat, in §3, QF-3' i?-modules with zero singular submodule.
We shall give some results relating the notions of Q-torsionless i?-modules and
non-singular i?-modules. In particular we shall show that, if Q is faithful,
these notions coincide if and only if Q is QF-3' and has zero singular submodule.
We shall also give another characterization of a QF-3' i?-module with zero
singular submodule making use of its injective submodules.

After completed this paper, we found that the similar results were obtained
by Bican [2] and wrought a slight change in the paper.

Throughout this paper, R will denote an associative ring with identity and
i?-mod the category of unital left i?-modules and i?-homomorphisms. We
shall deal only with left i?-modules and so i?-modules will mean unital left
i?-modules. E(M) will always denote the injective hull of a left i?-module M
and rM(*) the right annihilator of * in M.

*> The authors are indebted to the referee for helpful suggestions.
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1. Preliminaries

A subfunctor r of the identity functor of i?-mod is called a preradical of
j?-mod. It is called idempotent if r(r(M))=r(M) and a radical if r(M/r(M))=
0 for all i?-modules M. To each preradical r we associate two classes of i2-
modules, namely

T(r) = {M \r(M)=M} and F(r) = {M \r(M)=0} .

In case a preradical r is idempotent and is a radical, the pair (T(r), F(r)) forms
a torsion theory for i?-mod in the sense of [5],

In the class of all preradicals of i?-mod, there is a partial ordering in which
r^r2 means that r^Mjdr^M) for all i?-modules M. For each preradical r
there exists a largest idempotent preradical f smaller than or equal to r and a
smallest radical f larger than or equal to r. It is easy to see that T(r)=T(r) and
F(F)=F(r). Moreover, if r is idempotent, then so is F, and f is a radical if r is.

Let Q be an i?-module and let us define

kQ(M) = Π Ker(/)
fe=U<:MQ)

for each i?-module M. Then ΛQ is a radical of i?-mod such that kQ(Q)=0.
Moreover it is a unique maximal one of those preradicals r of i?-mod for which
r(Q)=0f and kEiQ:> is a unique maximal one of those left exact radicals r of R-
mod for which r(Q)=0. As is well-known, every left exact radical of jR-mod
is of the form kE for some injective i?-module E. For example, we can take
E as the direct product of injective hulls of all cyclic torsion-free i?-modules

Since kQ<^kQ/ for each submodule Qf of Q and kECQ:> is idempotent, we

have kEiQ^kQ^kQ.
The class T(kQ) coincides with the class {M | HomR(M, Q)=0} and is closed

under taking homomorphic images, direct sums and extensions. So this is
a torsion class in i?-mod and the corresponding torsion-free class coincides
with F(£Q). On the other hand, the class of /?-modules F(kQ) is not a torsion-
free class in general. This is closed under taking submodules and direct pro-
ducts, but not extensions in general (see e.g. [16, Example B]). As is well-
known, Q is a cogenerator for F(kQ). Moreover, an JR-module M is in ¥(kQ)
if (and only if) it can be embedded in a direct product of copies of Q. How-
ever, for simple i?-modules we have

Proposition 1.1. A simple R-module S is in F(kQ) if and only if there
exists an R-monomorphism of S into Q.

The proof is easy and so we will omit it.
As was mentioned above, F(kQ) is not closed under taking extensions.
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The following proposition shows when it is closed under taking extensions.

Evidently this is the case if Q is injective.

Proposition 1.2. The following conditions on an R-module Q are equivalent:

(1) F(ΛQ) is closed under taking extensions, i.e., it becomes a torsion-free class.

(2) kQ=kQy i.e., kQ is idempotent.

(3)

Bican [2] has obtained the same result independently, and so we will omit

the proof.

The class T(kQ) is a torsion class, but it is not, in general, closed under

taking submodules (e.g., see [16]). Concerning this, we have

Proposition 1.3. For an R-module Q, the following conditions are equi-

valent :

(1) Ύ(kQ) is closed under taking submodules.

(2) kQ=kECQ» i.e., kQ is left exact.

(3)

Proof. (1)=Φ(2). Suppose that T(kQ) is closed under taking submodules.

Then, since ko^kQ, kQ(Q)=0 and, since the corresponding torsion-free class

F(kQ) of Ύ(kQ) is closed under taking injective hulls, we have kQ(E(Q))=0.

So kQ^kEW and hence kQ=kECς».

(2)=#>(3) is clear and since kEcςn is left exact, (3) implies (1).

This proposition was also proved in Bican [2] by a different method.

Combining this with Proposition 1.2, we have

Theorem 1.4. The following conditions on an R-module Q are equivalent:

(1) (T(kQ), ¥(kQ)) forms a hereditary torsion theory for i?-mod.

(2) T(kQ) is closed under taking submodules and Ί?(kQ) is closed under taking

extensions.

(3) kQ=kECQy

(4) kQ is left exact.

(5) F(kQ) is closed under taking injective hulls.

(6) ¥(kQ) is closed under taking essential extensions.

(7) F(&Q) contains an injective R-module M with kM(Q)=0.

(8) E(Q)^F(kQ).

(9) T(A β )=T(A J K 0 ) ) and F(kQ)=F(kE(φ).

Proof. Here we show only that (7) implies (8). The proof of the other

is easy. Since kM(Q)=0, Qc ΠM, a direct product of copies of M, and hence

E(Q)C ΐ[M. F(kQ) is closed under taking direct products and submodules and

so we have £(£)<= F(£Q).
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The equivalence of (3), (4) and (8) was also proved in Bican [2]. In case
Q=R, the equivalence of these conditions, except for (1), (4), (5) and (9), was
shown by Colby and Rutter [4], Jans [7], and Kato [8].

2. QF-3' R-modules

Recall that a ring R is left QF-3' if the injective hull of the Λ-module R
is torsionless, i.e., kR(E(R))=0. Recently, Jans [7] has shown that R is left
QF-3/ if and only if F(kR) is closed under taking extensions and T(kR) is closed
under taking submodules (cf. also Kato [8] and Tsukerman [14]). From this
point of view we now make the following definition.

DEFINITION. An i?-module Q is called QF-3' if Q satisfies each one of
the conditions of Theorem 1.4.

It follows from this definition that every injective i?-module is QF-3'.
The following example pointed out by Tsukerman without proof shows that
there exist non-injective QF-3' i?-modules.

EXAMPLE 2.1. Every direct sum of injective i?-modules is QF-3'.
To see this, let j2=ΣλeΛ®ζ?λ D e a direct sum of injective i?-modules.

Then F ( y c F ( A Q ) for all λ and hence I L E E A Q A ^ F ^ ) . Since QczE(Q)cz
U^ΛQX, E(Q)£ΞF(kQ) and thus Q is QF-3'.

Proposition 2.2. (1) Every direct product of QF-3' R-modules is QF-3'.
(2) Every direct sum of QF-37 R-modules is QF-3'.

Proof. (1) Let Q=UX^AQX be a direct product of QF-3' i?-modules.
Then F(kQλ)dF(kQ) for all λ and hence Π ^ A ^ ^ ^ F ^ ) . Since Qd
E(Q)CZUX<=AE(QX), E(Q)EΞF(kQ) and thus Q is QF-3'. The proof of (2) is
similar to that of (1) and so it will be omitted.

It should be noted that, as we shall show later, direct summands of a QF-3'
i?-module need not be QF-3' in general.

Proposition 2.3. Every essential extension of a QF-3' R-module is QF-3'.

Proof. Suppose that Q is QF-3' and Qf is an essential extension of Q.
Then we can assume that QczQrc:E(Q) and hence we have kEiQ^kQf^kQ,
By Theorem 1.4, kQ=kQ' and thus Qr is QF-3' again by Theorem 1.4.

It follows from this that every rational extension of a QF-3' i?-module is
also QF-3'. This appeared in [13] for left QF-3' rings.

Let Q be an Λ-module. As is easily seen, Q is faithful if and only if
kQ(R)=0 and this is so if and only if kQ^kR. On the other hand, Q is torsionless
if and only if kR(Q)=0, or equivalently, kR^kQ. Therefore if Q is both
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faithful and torsionless, then we have kQ=kR. Applying Theorem 1.4, we have

Theorem 2.4. For a ring R, the following conditions are equivalent:

(1) R is a left QF-3'ring.

(2) The R-module R is QF-37.

(3) There exists a QF-3 / R-module Q which is both faithful and torsionless.

Proposition 2.5. Let Q be an R-module.

(1) If Q is a QF-37 R-module with non-zero socle, then the ίnjective hull of

every simple submodule of Q is isomorphic to a submodule of Q.

(2) If the injective hull of every cyclic submodule of Q is isomorphic to a

submodule of Q, then Q is QF-37.

Proof. (1) Let S be a simple submodule of Q. Take *(Φθ) in E(S).
Then there exists αx(Φθ) in Rxf] S. S is in F(kQ) and so E(S) is in ¥(kQ) by
Theorem 1.4. We can find an i?-homomorρhism /: E(S)^>Q such that
/(<z#)Φθ. Hence we have/(5)Φθ and/must be a monomorphism.

(2) Take *(Φθ) in E(Q). There exists ax (Φθ) in RxΓiQ. By as-
sumption, E(Rax)aQ, and the inclusion mapping Rax^E{Rax) can be ex-
tended to an i?-homomorphism /: E(Q)-+Q such that /(#)Φθ, which shows
that Q is QF-37.

Clearly, for a direct sum Q of injective i?-modules, the injective hull of
every cyclic submodule is isomorphic to a submodule of Q and so (2) above
gives another proof of Example 2.1.

As an immediate consequence of this proposition, we have at once

Corollary 2.6. For an R-module Q with non-zero socle, the following con-

ditions are equivalent:

(1) Q is indecomposable and QF-3 7.
(2) Q=E(S) for every simple submodule S of Q.
(3) Q=E(Q') for every non-zero submodule Qf of Q.

Proposition 2.7. Let Q be an R-module. If every cyclic submodule of Q

is QF-37, then Q is itself QF-37.

Proof. Take x(Φθ) in E{Q) and claim that there exists an i?-homomor-
phism / * : E(Q)^>Q with /*(#)Φθ. Choose an element a in R such that
tfx(ΦO) is in Q. Then we have RaxdE(Rax)dE(Q) and E(Q)=E(Rax)®Q1

for some submodule Q1 of E(Q). By assumption, Rax is QF-37 and so there
exists an i?-homomorphism /: E(Rax)^>Rax such that f(ax)Φθ. Then it is
easy to see that the composition/*: E(Q)-+Q of/ and the projection mapping
E(Q)^>E(Rax) has the desired property.

As a direct consequence of this, we see that if every cyclic i?-module is

QF-3^ then every i?-module is also QF-37. This was proved by Tsukerman
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[14] under the assumption that R is left hereditary.
Recall that an i?-module 0 is a cogenerator for i?-mod if F(kQ)=R-mod.

Therefore, a cogenerator for i?-mod is necessarily QF-3'. We now consider
the question of when a QF-3' i?-module becomes a cogenerator for i?-mod. To
do this we shall prove

Proposition 2.8. For an R-module 0 (4= 0), the following conditions are
equivalent:

(1) 0 contains a copy of every simple R-module.
(2) Every simple R-module belongs to F(kQ).
(3) For every simple R-module S, Hom^S, 0)4=0.
(4) For every maximal left ideal m of Ry rρ(m)Φθ.
(5) For every proper left ideal tn of R, rQ(m)Φθ.
(6) For every non-zero finitely generated R-module M, Hom1?(M, 0)4=0.
(7) For every non-zero cyclic R-module M, HomR(M, 0)4=0.
(8) E(Q) is a cogenerator for i?-mod.
(9) Every non-zero injective R-module M with AM(0)=O is a cogenerator

for i?-mod.

Proof. We shall show only (7)=^(8)=#(9)^>(1).
(7)==*(8). Let M be an Λ-module. Take #(4=0) in M. Then by as-

sumption there exists a non-zero i?-homomorphism /: Rx-^Q. Since E(Q) is
injective, it can be extended to an /?-homomorphism / ' : M->E(Q) and f/(x)=
/(#)4=0. This shows that E(Q) is a cogenerator for i?-mod.

(8)=#>(9). Since kM(Q) = 0, Qd ΐ[M, a direct product of copies of M,
and hence E(Q)czJlM. Then we have R-mod = F(kECQJ(zF(kτiM). It
follows that J[M is a cogenerator for i?-mod and so is M by [12, Lemma 1].

(9)=Ξ>(1). Since E(Q) is a cogenerator for i?-mod, for every simple R-
module S, there exists a non-zero i?-homomorphism /: S->E(Q). S is simple,
so / must be a monomorphism. Since f(S) Π 04=0, f(S) Π Q=f(S) and hence
f(S) is contained in 0.

An i?-module satisfying (1) and (8) was called lower distinguished by
Azumaya [1] and a quasi-cogenerator by Morita [10] respectively.

Generalizing results due to Kato [8], Jans [6] and Sugano [12], we have

Theorem 2.9. The following conditions on an R-module 0 are equivalent :
(1) 0 is a cogenerator for i?-mod.
(2) 0 is QF-3' and contains a copy of every simple R-module.
(3) Σ λ e Ξ Λ θ ^ S ^ e F ^ ) , where {Sλ} λ€ΞΛ be a complete set of representatives

for the isomorphism classes of simple R-modules.
(4) There exists a cogenerator for i?-mod contained in F(kQ).
(5) Every R-module M with kM(Q)=0 is a cogenerator for i?-mod.
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(6) Q is faithful QF-3/ and F(kQ) is closed under taking homomorphic im-
ages.

Proof. (1)=Φ(2)=#>(3) follow from Proposition 1.1 and Theorem 1.4 and
(3)=>(4) and (5)=Φ(6) are easy.

(4)=#>(5). Let N be a cogenerator for i?-mod contained in F(kQ) and let
M be an i?-module with kM(Q)=0. Then we have kM^kQ^kN and F(kN)=
i?-mod. Hence F(kM)=R-mod as desired.

(6)=^(1). By assumption, there exists a class T of i?-modules such that
(T(kQ)y F(kQ)y T) forms a 3-fold torsion theory for i?-mod in the sense of [9].
It follows from Lemma 2.1 of [9] that kQ(M)=kQ(R)-M for each j?-module M.
Hence it results that F(kQ)=R-mod since Q is faithful.

3. Non-singular QF-3/ R-modules

In case the singular submodule Z(£))=0, we can give a simple criterion

for Q being QF-3'.

Theorem 3.1. Let Q be an R-module with Z(Q)=0. Then Q is QF-3'

if and only if Ύ(kQ) is closed under taking submodules.

This was also obtained by the same method in Bican [2] and we will omit
the proof.

As is well-known, the functor Z of i?-mod which assigns to each i?-module
M its singular submodule Z(M) is a left exact preradical of i?-mod. It is to be
noted that, for this preradical, F(Z) is nothing but the torsion-free class of the
so-called Goldie torsion theory. We shall now give other characterizations of
non-singular QF-3' i?-modules by means of the functor Z. To do this, we
first prove the following which appeared in Colby and Rutter [4] for the case
Q=R.

Proposition 3.2. The following conditions on an R-module Q are equi-

valent :

(1) Z{Q)=0.
(2)
(3)

Proof. (1)=K2). Since Z^kQy we have
(2)=Φ(3). Let M be in T(Z). Take / in Hom^M, Q) and x in M. Then,

since AnnΛ(#) is essential in R, so is Ann^Q^tf)) and hence f(x) is in Z(Q). But
by assumption (2) Z(Q)=0 and this implies that M is contained in T(kQ).

(3)=#>(1). Since Z is an idempotent preradical, Z(Q) is in T(Z) and hence
is in Ύ(kQ). This shows that HomR(Z(Q), Q)=0 and Z(Q)=0.
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Lemma 3 3. Let Q be a faithful R-module. Then we have

(1) T(ksm)<zT(Z)9 and
(2)

Proof. (1) For every i?-module M in Ύ(kECQ:>) and every element x in M,
we shall claim that Ann^ac) is essential in R. Suppose that tπ is a non-zero
left ideal in R such that AnnR(x) Π m=0. Define /: mx-^R such that f{ax)=a
for αetπ. Clearly this is a well defined i?-homomorphism. Let a be a non-
zero element of m. Then there exists an i?-homomorphism^: R-^E{Q) such
that g(a) + 0 since E(Q) is faithful. The composition map gofi τnx->E(Q)
can be extended to an i?-homomorphism h: M->E(Q) and h(ax)=g(f(ax))=
j(α)Φθ. Thus we have HomR(M, E(Q))^0, but this is a contradiction. Simi-
larly we can show that (2) holds.

It follows from Lemma 3.3 that, if Q is faithful and non-singular, then
E(Q) is a cogenerator for F(Z). However, we can show that this is also true
for more general QF-3/ i?-modules.

Theorem 3.4. For a faithful R-module Q, the following conditions are
equivalent :

(1) Q is QF-3' and Z(Q)=0.
(2)
(3)
(4) kQ=Z.
(5) Q is a cogenerator for F(Z).

Proof. (l)=t>(2) and (1)=#>(3) follow from Proposition 3.2 and Lemma 3.3.

(2)^(1). By Proposition 3.2, Z(Q)=0. Since Ύ(Z) is closed under
taking submodules, so is Ύ(kQ). Therefore, Q is QF-3' by Theroem 3.1.

(3)=Φ(1). By Proposition 3.2, Z(Q)=0. Since F(Z) is closed under
taking injective hulls, so is ¥(kQ). Therefore, Q is QF-3/ by Theorem 1.4.

(4)=§>(1) follows from Theorem 1.4 since Z is left exact. So we assume
(2) and also (3). By Proposition 3.2, Z(Q)=0 and we have Z <>kQ. F(kQ)=
F(Z) is closed under taking extensions and so by Proposition 1.2 kQ is
idempotent. For each i?-module M, kQ(M)<=Ί(kQ)=T(Z) and kQ(M)=
Z(kQ(M))cZ(M). Therefore we have kQ^Z.

(3)2:(5). The fact that Q is a cogenerator for F(Z) means that Z(Q)=0
and F(Z)aF(kQ), or equivalently F(Z)=F(AQ) by Proposition 3.2. This
completes the proof of the theorem.

In [4], it was given a similar characterization, except for (4) and (5), of
non-singular left QF-3 rings in case these are semi-primary, and (4) may be
viewed as a generalization of a result of [15].

In Proposition 2.3 we have shown that every essential extension of a QF-3r
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i?-module is QF-37. However, in case it is non-singular, we have

Corollary 3.5. Let Q be a faithful QF-37 R-module and let Q' be a non-
singular R-module such that QdQ\ Then Qf is also QF-37.

Proof. By Proposition 3.2 and Theorem 3.4, F(Z)=F(A ρ)cF(ϋ ρ/)cF(Z).
Hence we have F(AQ/)=F(Z) and Qf is QF-37.

As another corollary to this theorem, we have

Corollary 3.6. For a ring R with Z(RR)=0 and its maximal ring of left
quotients Q, the following conditions are equivalent:

(1) Every non-singular R-module is torsionless y i.e., R is a cogenerator for
F(Z).

(2) R is a left QF-37 ring.
(3) RQ is torsionless.

Recently, Cateforis [3] has given a necessary and sufficient condition for
a non-singular i?-module to be a cogenerator for F(Z). The following theorem
is motivated by his Theorem 1.1, and provides alternative characterizations of
non-singular QF-37 ϋ-modules to that given in Theorem 3.4.

Theorem 3.7. For a non-singular R-module Q, the following conditions are
equivalent:

(1) Q is faithful and QF-37.
(2) Q contains non-zero injective submodules and the sum Q* of all such

injective submodules is faithful.
(3) There exists a faithful submodule Qo of Q such that Qo contains the in-

jective hull of every one of its finitely generated submodules.

Before proving the theorem, we shall quote Lemma 0.2 of [3] and give
its proof for the sake of completeness.

Lemma 3.8. If A is an injective R-module and B is a non-singular R-
module, then, for every R-homomorphism f: A-+B, both Ker(/) and Im(/)
are injective.

Proof. Since A is injective, we can assume that Ker(/)cZ?(Ker(/))c A
Take *(Φθ) in £(Ker(/)) and a(Φθ) in R. If ax=0, then a is in Raf)
AnnR(f(x)). If ax^O, then we can find fozΛ (Φθ) in i?^nKer(/) for
some b in R. Since f(bax) = 0 and iαφO, Ra Γ\ AimR(f(x)) + 0. At any
rate, we have Ra Π AxmR(f(x))Φθ and hence AnnR(f(x)) is essential in R.
f(x) is then in Z(B) = 0. Therefore, x is in Ker(/) which shows that
Ker(/)=£(Ker(/)).

Proof of Theorem 3.7. (1)=^(2). By assumption, HomR(E(Q), Q)φO



416 Y. KURATA AND H. KATAYAMA

and so by Lemma 3.8 Q contains certainly non-zero injective submodules.
Moreover kQ*(E(Q))=kQ(E(Q)) again by Lemma 3.8. Hence we have kQ*(Q)=O
which implies that kQ*f^kQ and Q* is faithful. (Moreover in this case kQ=kQ*
holds.)

(2)=Φ(3). For every finite family {M19 M2> ~ ,Mn} of non-zero injective
submodules of Q, 2?- i Mt is a homomorphic image of an injective i?-module
Σ ? - i Φ ^ * a n c * so by Lemma 3.8 it is also injective. It follows from this that
Q* contains the injective hull of every one of its finitely generated submodules.

(3>Φ(1). By Proposition 2.5 Qo is QF-3'. Qo is faithful and Q is non-
singular, so by Corollary 3.5 Q is also QF-3'. (Here we shall point out
that kQ=kQo holds. To see this it is sufficient to show that kQo(Q)=O. Take
#(Φθ) in E(Q). Then Ann^ac) is not essential in R so we can find tf(Φθ) in
R such that Raf)AnnR(x)=0. Since ax is a non-zero element of E(Q), there
exists some bax(Φθ) in Raxf)Q. ba is a non-zero element in R and Qo is
faithful and so for some x0 in Qo we have baxoΦθ. Then the mapping /:
Rbax-+Rbax0 given by f(rbax)—rbax0, for r in R, is a well-defined i?-homomor-
phism. By assumption, E(Rbaxo)dQo and so/has an extension/*: E(Q)->Q0

and /*(*)Φ0. Thus kQo(E(Q))=O and kQo(Q)=0.)

To illustrate the theorem, we shall give some examples.

EXAMPLE 3.9. Let R be the ring of 2 x 2 upper triangular matrices over a
field K. Then it is a faithful non-singular left module over itself. It has only
one non-zero injective left ideal, namely

/O K\

vo κJ>
and this is also a faithful i?-module. Hence R is a QF-3' i?-module with

)κ)
There is no faithful left ideal of R properly contained in i?*, so we have Ro

Λ*. Moreover i?=i?*0i? / , where

R> (
R = \ 0 0

and is not QF-3'.

EXAMPLE 3.10. Let R be as above and Q the ring of all 2 x 2 matrices
over K. Then Q is also a faithful non-singular i?-module and is QF-37 since
Q=E(RR). In this case, Q=Q* and we may take for Qo, for example, as

IK 0\ /0 K\ IK K\

\κ o/' vo *:/' o r δ = \κ κι -
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Hence the submodule Qo in the theorem is not uniquely determined within
isomorphisms.

REMARK. Let Q be a faithful, non-singular QF-37 i?-module. Then
there exist faithful submodules Q* and Qo of Q with properties mentioned in
Theorem 3.7. As was pointed out in the proof of the theorem, kQ*=kQ0=kQ

hold and hence by Theorem 1.4 both ρ* and Qo are also QF-3'. These, as
well as Q and E(Q), are faithful, non-singular QF-37 i?-modules. Clearly Q*
includes Qo and moreover it is a unique maximal one of those submodules of Q
which contain the injective hull of every one of its finitely generated sub-
modules. Since each injective submodule of Q is that of Q*, we can conclude
that Q* coincides with the sum of all non-zero injective submodules of £)*,
i.e., (Q*)*=Q*.

Let us suppose furthermore that every direct sum of non-singular in-
jective i?-modules is injective. For example, we may take a finite dimensional
ring R in the sense that it contains no infinite direct sum of submodules.
Then Q* is itself injective and hence Q can be decomposed into a direct sum
of submodules £)* and Qf\ Q=Q*(BQ' Since £)* is a unique maximal non-
zero injective submodule of Q, if (2'φO, then Q' does not contain any non-zero
injective submodule of Q. Therefore by Lemma 3.8 HomR(E(Q')y Q')=0.
This shows that Qf can not be QF-3'.
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