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A ring R with identity is called left QF-3’ if the injective hull E(R) of the
left R-module R is torsionless. This class of rings and the other related genera-
lizations of quasi-Frobenius rings have been studied by a number of authors.

Recently, Jans [7] has given a torsion theoretic characterization of left
QF-3’ rings (cf. also Kato [8] and Tsukerman [14]). The purpose of this
paper is, generalizing this idea, to consider a module theoretic generalization of
left QF-3" rings. We shall say that a left R-module Q is QF-3’ if its injective
hull E(Q) is torsionless with respect to Q, i.e., E(Q) can be embedded in a direct
product of copies of Q.

The main theorem of §1 will give some equivalent conditions for Q to be
QF-3'.

In §2, we shall discuss basic properties of QF-3’ R-modules and study
arelation between QF-3’ R-modules and cogenerators for R-mod.

We shall treat, in §3, QF-3' R-modules with zero singular submodule.
We shall give some results relating the notions of Q-torsionless R-modules and
non-singular R-modules. In particular we shall show that, if Q is faithful,
these notions coincide if and only if Q is QF-3’ and has zero singular submodule.
We shall also give another characterization of a QF-3' R-module with zero
singular submodule making use of its injective submodules.

After completed this paper, we found that the similar results were obtained
by Bican [2] and wrought a slight change in the paper.

Throughout this paper, R will denote an associative ring with identity and
R-mod the category of unital left R-modules and R-homomorphisms. We
shall deal only with left R-modules and so R-modules will mean unital left
R-modules. E(M) will always denote the injective hull of a left R-module M
and 7p(*) the right annihilator of * in M.

*) The authors are indebted to the referee for helpful suggestions.
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1. Preliminaries

A subfunctor r of the identity functor of R-mod is called a preradical of
R-mod. It is called idempotent if 7(r(M))=r(M) and a radical if r(M/[r(M))=
0 for all R-modules M. To each preradical r we associate two classes of R-
modules, namely

T(r) = {M |r(M)=M} and F(r) = {M |r(M)=0} .

In case a preradical r is idempotent and is a radical, the pair (T(r), F(r)) forms
a torsion theory for R-mod in the sense of [5].

In the class of all preradicals of R-mod, there is a partial ordering in which
r,=<r, means that r,(M)Cr,(M) for all R-modules M. For each preradical r
there exists a largest idempotent preradical # smaller than or equal to 7 and a
smallest radical 7 larger than or equal to ». It is easy to see that T(#)=T(r) and
F(7)=F(r). Moreover, if r is idempotent, then so is 7, and # is a radical if 7 is.

Let Q be an R-module and let us define

B(M)= N Ker(f)
fEHOlnR(M Q)

for each R-module M. Then kg is a radical of R-mod such that kg(Q)=0.
Moreover it is a unique maximal one of those preradicals r of R-mod for which
r(Q)=0, and kg, is a unique maximal one of those left exact radicals r of R-
mod for which 7(Q)=0. As is well-known, every left exact radical of R-mod
is of the form kg for some injective R-module E. For example, we can take
E as the direct product of injective hulls of all cyclic torsion-free R-modules
(e.g., see [11]).

Since ko<ky for each submodule Q' of Q and kg, is idempotent, we
have kE(Q) §13Q <ke.

The class T(kg) coincides with the class {M | Homg(M, Q)=0} and is closed
under taking homomorphic images, direct sums and extensions. So this is
a torsion class in R-mod and the corresponding torsion-free class coincides
with F(£g). On the other hand, the class of R-modules F(ko) is not a torsion-
free class in general. This is closed under taking submodules and direct pro-
ducts, but not extensions in general (see e.g. [16, Example B]). As is well-
known, Q is a cogenerator for F(kgy). Moreover, an R-module M is in F(ky)
if (and only if) it can be embedded in a direct product of copies of Q. How-
ever, for simple R-modules we have

Proposition 1.1. A simple R-module S is in F(ko) if and only if there
exists an R-monomorphism of S into Q.

The proof is easy and so we will omit it.
As was mentioned above, F(kg) is not closed under taking extensions.
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The following proposition shows when it is closed under taking extensions.
Evidently this is the case if Q is injective.

Proposition 1.2. The following conditions on an R-module Q are equivalent :
(1) F(ky) is closed under taking extensions, i.e., it becomes a torsion-free class.
(2) ko=koq, i.e., ko is idempotent.

(3) F(ko)=F(ko)-

Bican [2] has obtained the same result independently, and so we will omit
the proof.

The class T(kg) is a torsion class, but it is not, in general, closed under
taking submodules (e.g., see [16]). Concerning this, we have

Proposition 1.3. For an R-module Q, the following conditions are equi-
valent :

(1) T(kg) is closed under taking submodules.

(2) ko=krw) ie., ko is left exact.

() T(ke)=T(kzw))-

Proof. (1)=(2). Suppose that T(ke) is closed under taking submodules.
Then, since ko=<ko, ko(Q)=0 and, since the corresponding torsion-free class
F(ko) of T(ko) is closed under taking injective hulls, we have ko(E(Q))=0.
So ko=kge, and hence l§Q=kE(Q).

(2)=(3) is clear and since kg, is left exact, (3) implies (1).

This proposition was also proved in Bican [2] by a different method.

Combining this with Proposition 1.2, we have

Theorem 1.4. The following conditions on an R-module Q are equivalent :

(1) (T(kg), F(kg)) forms a hereditary torsion theory for R-mod.

(2) T(kg) s closed under taking submodules and F(ko) is closed under taking
extensions.

(3) ko=Fkg)-

(4) kg s left exact.

(5) F(kg) is closed under taking injective hulls.

(6) F(kg) is closed under taking essential extensioms.

(7) F(kg) contains an injective R-module M with kp(Q)=0.

(8) E(Q)eF(ko).

(9) T(ke)=T(krw) and F(ko)=F(kzw))-

Proof. Here we show only that (7) implies (8). The proof of the other
is easy. Since ky(Q)=0, O 1M, a direct product of copies of M, and hence
E(Q)CTIM. F(ko)is closed under taking direct products and submodules and
so we have E(Q)e F(ko).
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The equivalence of (3), (4) and (8) was also proved in Bican [2]. In case
O=R, the equivalence of these conditions, except for (1), (4), (5) and (9), was
shown by Colby and Rutter [4], Jans [7], and Kato [8].

2. QF-3' R-modules

Recall that a ring R is left QF-3’ if the injective hull of the R-module R
is torsionless, i.e., Rgx(E(R))=0. Recently, Jans [7] has shown that R is left
QF-3' if and only if F(kg) is closed under taking extensions and T(kg) is closed
under taking submodules (cf. also Kato [8] and Tsukerman [14]). From this
point of view we now make the following definition.

DeFINITION. An R-module Q is called QF-3" if Q satisfies each one of
the conditions of Theorem 1.4.

It follows from this definition that every injective R-module is QF-3’.
The following example pointed out by Tsukerman without proof shows that
there exist non-injective QF-3/ R-modules.

ExampLE 2.1. Every direct sum of injective R-modules is QF-3’.

To see this, let O=3",,D O, be a direct sum of injective R-modules.
Then F(kg,)CF(kg) for all A and hence [I,c,0,=F(kg). Since Qc E(Q)C
1,20 E(Q)=F(ko) and thus Q is QF-3'.

Proposition 2.2. (1) Every direct product of QF-3’ R-modules is QF-3’.
(2) Every direct sum of QF-3" R-modules is QF-3'.

Proof. (1) Let O=TI,c20, be a direct product of QF-3’ R-modules.
Then F(ko,)CF(kg) for all A and hence [l e E(Q))EF(kg). Since QC
E(Q)C T1,eaE(0)), E(Q)=F(kg) and thus Q is QF-3'. The proof of (2) is

similar to that of (1) and so it will be omitted.

It should be noted that, as we shall show later, direct summands of a QF-3’
R-module need not be QF-3’ in general.

Proposition 2.3. Every essential extension of a QF-3’ R-module is QF-3’.

Proof. Suppose that Q is QF-3’ and Q’ is an essential extension of Q.
Then we can assume that Qc Q’C E(Q) and hence we have kg, <ko/<kq.
By Theorem 1.4, ko=ko and thus Q' is QF-3’ again by Theorem 1.4.

It follows from this that every rational extension of a QF-3’ R-module is
also QF-3'. This appeared in [13] for left QF-3’ rings.

Let O be an R-module. As is easily seen, Q is faithful if and only if
ko(R)=0 and this is so if and only if kg<kg. On the other hand, Q is torsionless
if and only if kg(Q)=0, or equivalently, kr<k,. Therefore if Q is both
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faithful and torsionless, then we have ko=Fkg. Applying Theorem 1.4, we have

Theorem 2.4. For a ring R, the following conditions are equivalent :
(1) R s a left QF-3' ring.

(2) The R-module R is QF-3'.

(3) There exists a QF-3" R-module Q which is both faithful and torsionless.

Proposition 2.5. Let Q be an R-module.

(1) If Qis a QF-3’ R-module with non-zero socle, then the injective hull of
every simple submodule of Q is isomorphic to a submodule of Q.

(2) If the injective hull of every cyclic submodule of Q is isomorphic to a
submodule of Q, then Q is QF-3'.

Proof. (1) Let S be a simple submodule of Q. Take x(=+0) in E(S).
Then there exists ax(#0) in RxN.S. S isin F(kg) and so E(S) is in F(kg) by
Theorem 1.4. We can find an R-homomorphism f: E(S)—Q such that
flax)=0. Hence we have f(S)#0 and f must be a monomorphism.

(2) Take x(=0) in E(Q). There exists ax (+0) in RxNQ. By as-
sumption, E(Rax)CQ, and the inclusion mapping Rax— E(Rax) can be ex-
tended to an R-homomorphism f: E(Q)—Q such that f(x)=3=0, which shows
that Q is QF-3".

Clearly, for a direct sum Q of injective R-modules, the injective hull of
every cyclic submodule is isomorphic to a submodule of Q and so (2) above
gives another proof of Example 2.1.

As an immediate consequence of this proposition, we have at once

Corollary 2.6. For an R-module Q with non-zero socle, the following con-
ditions are equivalent :

(1) O is indecomposable and QF-3'.

(2) QO=E(S) for every simple submodule S of Q.

(3) O=E(Q’) for every mon-zero submodule Q' of Q.

Proposition 2.7. Let Q be an R-module. If every cyclic submodule of Q
is QF-3', then Q is itself QF-3'.

Proof. Take x(=+0) in E(Q) and claim that there exists an R-homomor-
phism f*: E(Q)—~Q with f*(x)%=0. Choose an element @ in R such that
ax(#0) is in Q. Then we have RaxC E(Rax)C E(Q) and E(Q)=E(Rax)®Q,
for some submodule Q, of E(Q). By assumption, Rax is QF-3’ and so there
exists an R-homomorphism f: E(Rax)— Rax such that f(ax)#=0. Then it is
easy to see that the composition f*: E(Q)—Q of f and the projection mapping
E(Q)—E(Rax) has the desired property.

As a direct consequence of this, we see that if every cyclic R-module is
QF-3’, then every R-module is also QF-3’. This was proved by Tsukerman
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[14] under the assumption that R is left hereditary.

Recall that an R-module Q is a cogenerator for R-mod if F(kg)=R-mod.
Therefore, a cogenerator for R-mod is necessarily QF-3'. We now consider
the question of when a QF-3" R-module becomes a cogenerator for R-mod. To
do this we shall prove

Proposition 2.8. For an R-module Q (# 0), the following conditions are
equivalent :

(1) O contains a copy of every simple R-module.

(2) Every simple R-module belongs to F(kg).

(3) For every simple R-module S, Homg(S, Q)+0.

(4) For every maximal left ideal m of R, ro(m)=0.

(5) For every proper left ideal m of R, ro(m)=0.

(6) For every mom-zero finitely generated R-module M, Homg(M, Q)=0.

(7) For every non-zero cyclic R-module M, Homg(M, Q)=0.

(8) E(Q) is a cogenerator for R-mod.

(9) Every nom-zero injective R-module M with ky(Q)=0 is a cogenerator
for R-mod.

Proof. We shall show only (7)=(8)=(9)=(1).

(7)=(8). Let M be an R-module. Take x(=0) in M. Then by as-
sumption there exists a non-zero R-homomorphism f: Rx—Q. Since E(Q) is
injective, it can be extended to an R-homomorphism f’: M —E(Q) and f'(x)=
f(x)=£0. This shows that E(Q) is a cogenerator for R-mod.

(8)=(9). Since ky(Q)=0, OQcII M, a direct product of copies of M,
and hence E(Q)c [IM. Then we have R-mod=F(kgq,)CF (knnm). It
follows that [] M is a cogenerator for R-mod and so is M by [12, Lemma 1].

(9)=(1). Since E(Q) is a cogenerator for R-mod, for every simple R-
module S, there exists a non-zero R-homomorphism f: S—E(Q). S is simple,
so f must be a monomorphism. Since f(S)NQ=+0, f(S)N O=f(S) and hence
f(S) is contained in Q.

An R-module satisfying (1) and (8) was called lower distinguished by
Azumaya [1] and a quasi-cogenerator by Morita [10] respectively.

Generalizing results due to Kato [8], Jans [6] and Sugano [12], we have

Theorem 2.9. The following conditions on an R-module Q are equivalent :

(1) O is a cogenerator for R-mod.

(2) Q is QF-3' and contains a copy of every simple R-module.

(B) 2 eaPE(S,)EF(kg), where {S,} \en be a complete set of representatives
for the isomorphism classes of simple R-modules.

(4) There exists a cogenerator for R-mod contained in F(kg).

(5) Every R-module M with ky(Q)=0 is a cogenerator for R-mod.
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(6) O is faithful QF-3' and F(kg) is closed under taking homomorphic im-
ages. :

Proof. (1)=>(2)=(3) follow from Proposition 1.1 and Theorem 1.4 and
(3)=(4) and (5)=(6) are easy.

(4)=(5). Let N be a cogenerator for R-mod contained in F(kg) and let
M be an R-module with k4(Q)=0. Then we have kyy<ko=<ky and F(ky)=
R-mod. Hence F(k))=R-mod as desired.

(6)=(1). By assumption, there exists a class T of R-modules such that
(T(ke), F(kg), T) forms a 3-fold torsion theory for R-mod in the sense of [9].
It follows from Lemma 2.1 of [9] that ko(M)=ko(R)-M for each R-module M.
Hence it results that F(kg)=R-mod since Q is faithful.

3. Non-singular QF-3’ R-modules

In case the singular submodule Z(Q)=0, we can give a simple criterion
for Q being QF-3'.

Theorem 3.1. Let Q be an R-module with Z(Q)=0. Then Q is QF-3’
if and only if T(kg) is closed under taking submodules.

This was also obtained by the same method in Bican [2] and we will omit
the proof.

As is well-known, the functor Z of R-mod which assigns to each R-module
M its singular submodule Z(M) is a left exact preradical of R-mod. It is to be
noted that, for this preradical, F(Z) is nothing but the torsion-free class of the
so-called Goldie torsion theory. We shall now give other characterizations of
non-singular QF-3' R-modules by means of the functor Z. To do this, we
first prove the following which appeared in Colby and Rutter [4] for the case

O=R.

Proposition 3.2. The following conditions on an R-module Q are equi-
valent :

(1) 2(Q)=0.

(2) F(ko)F(2).

() T(Z)cT(ke)-

Proof. (1)=(2). Since Z =<k, we have F(ko)CF(Z).

(2)=(3). Let M be in T(Z). Take fin Homg(M, Q) and xin M. Then,
since Anng(x) is essential in R, so is Anng(f(x)) and hence f(x) is in Z(Q). But
by assumption (2) Z(Q)=0 and this implies that M is contained in T(kg).

(3)=(1). Since Z is an idempotent preradical, Z(Q) is in T(Z) and hence
is in T(kg). This shows that Homg(Z(Q), 0)=0 and Z(Q)=0.
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Lemma 3.3. Let Q be a faithful R-module. Then we have
(1) T(kew)CT(Z), and
(2) F(2)CF(krw)-

Proof. (1) For every R-module M in T(kz,) and every element x in M,
we shall claim that Anng(x) is essential in R. Suppose that m is a non-zero
left ideal in R such that Anng(x) N m=0. Define f: mx— R such that f(ax)=a
for acm. Clearly this is a well defined R-homomorphism. Let a be a non-
zero element of m. Then there exists an R-homomorphism g: R—E(Q) such
that g(a)#0 since E(Q) is faithful. The composition map gof: mx— E(Q)
can be extended to an R-homomorphism k: M—E(Q) and h(ax)=g(f(ax))=
g(a)#0. Thus we have Homy(M, E(Q))==0, but this is a contradiction. Simi-
larly we can show that (2) holds.

It follows from Lemma 3.3 that, if Q is faithful and non-singular, then
E(Q) is a cogenerator for F(Z). However, we can show that this is also true
for more general QF-3’ R-modules.

Theorem 3.4. For a faithful R-module Q, the following conditions are
equivalent :

(1) Qs QF-3' and Z(Q)=0.

(2) T(ke)=T(Z).

(3) Flke)=F(2).

4) ko=Z.

(5) O is a cogenerator for F(Z).

Proof. (1)=(2) and (1)=(3) follow from Proposition 3.2 and Lemma 3.3.

(2=(1). By Proposition 3.2, Z(Q)=0. Since T(Z) is closed under
taking submodules, so is T(kg). Therefore, O is QF-3" by Theroem 3.1.

(3)=(1). By Proposition 3.2, Z(Q)=0. Since F(Z) is closed under
taking injective hulls, so is F(kg). Therefore, O is QF-3’ by Theorem 1.4.

(4)=(1) follows from Theorem 1.4 since Z is left exact. So we assume
(2) and also (3). By Proposition 3.2, Z(Q)=0 and we have Z <kq. F(ko)=
F(Z) is closed under taking extensions and so by Proposition 1.2 kg is
idempotent. For each R-module M, ko(M)&T(ke)=T(Z) and ko(M)=
Z(ko(M))c Z(M). Therefore we have ko <Z.

(3)2(5). The fact that Q is a cogenerator for F(Z) means that Z(Q)=0
and F(Z)CF(kg), or equivalently F(Z)=F(kg) by Proposition 3.2. This
completes the proof of the theorem.

In [4], it was given a similar characterization, except for (4) and (5), of
non-singular left QF-3 rings in case these are semi-primary, and (4) may be
viewed as a generalization of a result of [15].

In Proposition 2.3 we have shown that every essential extension of a QF-3’
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R-module is QF-3’. However, in case it is non-singular, we have

Corollary 3.5. Let Q be a faithful QF-3' R-module and let Q' be a non-
singular R-module such that QcQ’. Then Q' is also QF-3.

Proof. By Proposition 3.2 and Theorem 3.4, F(Z)=F(ko) C F(ko/) C F(Z).
Hence we have F(kg/)=F(Z) and Q" is QF-3'.

As another corollary to this theorem, we have

Corollary 3.6. For a ring R with Z(xR)=0 and its maximal ring of left
quotients Q, the following conditions are equivalent :

(1) Every non-singular R-module is torsionless, i.e., R is a cogenerator for
F(Z).

(2) R s aleft QF-3' ring.

(3) rQ is torsionless.

Recently, Cateforis [3] has given a necessary and sufficient condition for
a non-singular R-module to be a cogenerator for F(Z). The following theorem
is motivated by his Theorem 1.1, and provides alternative characterizations of
non-singular QF-3’ R-modules to that given in Theorem 3.4.

Theorem 3.7. For a non-singular R-module Q, the following conditions are
equivalent :

(1) O is faithful and QF-3’.

(2) Q contains nom-zero injective submodules and the sum Q* of all such
injective submodules is faithful.

(3) There exists a faithful submodule Q, of Q such that Q, contains the in-
jective hull of every ome of its finitely generated submodules.

Before proving the theorem, we shall quote Lemma 0.2 of [3] and give
its proof for the sake of completeness.

Lemma 3.8. If A is an injective R-module and B is a non-singular R-
module, then, for every R-homomorphism f: A— B, both Ker(f) and Im(f)
are injective.

Proof. Since 4 is injective, we can assume that Ker(f)c E(Ker(f))c 4.
Take x(=+0) in E(Ker(f)) and a(=0) in R. If ax=0, then a is in Ran
Anng(f(x)). If ax=0, then we can find bax(30) in Rax Ker(f) for
some b in R. Since f(bax)=0 and ba=0, Ra N Anng(f(x))=+=0. At any
rate, we have Ra N Anng(f(x))#=0 and hence Anng(f(x)) is essential in R.
f(x) is then in Z(B)=0. Therefore, x is in Ker(f) which shows that
Ker(f)—E(Ker(f)).

Proof of Theorem 3.7. (1)=(2). By assumption, Homg(E(Q), Q)+0
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and so by Lemma 3.8 Q contains certainly non-zero injective submodules.
Moreover ko«(E(Q))=ko(E(Q)) again by Lemma 3.8. Hence we have kg«(Q)=0
which implies that kg« <k and Q% is faithful. (Moreover in this case ko=Fkq=
holds.)

(2)=(3). For every finite family {M,, M,, ---, M,.} of non-zero injective
submodules of Q, 3., M; is a homomorphic image of an injective R-module
>%1®M; and so by Lemma 3.8 it is also injective. It follows from this that
O* contains the injective hull of every one of its finitely generated submodules.

(3)=(1). By Proposition 2.5 Q, is QF-3’. Q, is faithful and Q is non-
singular, so by Corollary 3.5 Q is also QF-3’. (Here we shall point out
that kg=Fkq, holds. To see this it is sufficient to show that ko (Q)=0. Take
x2(=0) in E(Q). Then Anng(x) is not essential in R so we can find a(=0) in
R such that RaN Anng(x)=0. Since ax is a non-zero element of E(Q), there
exists some bax(+0) in RaxN Q. ba is a non-zero element in R and Q, is
faithful and so for some x, in Q, we have bax,#0. Then the mapping f:
Rbax— Rbax, given by f(rbax)=rbax,, for r in R, is a well-defined R-homomor-
phism. By assumption, E(Rbax,)C O, and so f has an extension f*: E(Q)—Q,
and f*(x)3=0. Thus ko (E(Q))=0 and kg (Q)=0.)

To illustrate the theorem, we shall give some examples.

ExampLE 3.9. Let R be the ring of 2X 2 upper triangular matrices over a
field K. Then it is a faithful non-singular left module over itself. It has only
one non-zero injective left ideal, namely

6D
0 K/’
and this is also a faithful R-module. Hence R is a QF-3’ R-module with
R* — 0 K )
~—\0 K/°

There is no faithful left ideal of R properly contained in R*, so we have R,=
R*. Moreover R=R*@PR’, where

K 0
R = ( 0 0)
and is not QF-3’,
ExampLE 3.10. Let R be as above and Q the ring of all 22 matrices

over K. Then Q is also a faithful non-singular R-module and is QF-3" since
O=E(gR). In this case, Q=0* and we may take for Q,, for example, as

ko) G %) oro=(k &)
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Hence the submodule Q, in the theorem is not uniquely determined within
isomorphisms.

RemMARK. Let O be a faithful, non-singular QF-3’ R-module. Then
there exist faithful submodules O* and Q, of Q with properties mentioned in
Theorem 3.7. As was pointed out in the proof of the theorem, kor=ko,=Fkq
hold and hence by Theorem 1.4 both O* and Q, are also QF-3’. These, as
well as Q and E(Q), are faithful, non-singular QF-3' R-modules. Clearly O*
includes Q, and moreover it is a unique maximal one of those submodules of Q
which contain the injective hull of every one of its finitely generated sub-
modules. Since each injective submodule of Q is that of O*, we can conclude
that Q* coincides with the sum of all non-zero injective submodules of O¥,
ie., (Q*)*=0*.

Let us suppose furthermore that every direct sum of non-singular in-
jective R-modules is injective. For example, we may take a finite dimensional
ring R in the sense that it contains no infinite direct sum of submodules.
Then Q* is itself injective and hence Q can be decomposed into a direct sum
of submodules O* and Q’: Q=0*®Q’. Since O* is a unique maximal non-
zero injective submodule of Q, if Q’=0, then Q’ does not contain any non-zero
injective submodule of Q. Therefore by Lemma 3.8 Homg(E(Q’), Q)=0.
This shows that O’ can not be QF-3".
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