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1. Introduction

A symmetric set is a set A on which a binary operation aob is defined
satisfying the following three axioms:

(1.1) aea=a,
(1.2) (xca)ea=x,
(1.3)  xo(acd) = ((xob)oa)ob.

The mapping S,: 4—A4 defined by xS,=xoca is a permutation on 4 by
(1.2), and it is called the symmetry around a. Corresponding to the axioms
above we have the following:

(1.1') aS,=a,
1.2y St=1,
(1.3)  Squp = Sus, = 7288, .

We denote by G(A) the permutation group on A generated by S,=
{Saslac4}. Since T°'S,T=S,r for ac A and TeG(4) by (1.3'), S, is a
set of involutions in G(A4) which is G(A)-invariant. The subgroup of G(A4)
generated by {S,S,|a, b= A} is called the group of displacements and is denoted
by H(A). The set S, is a symmetric set with binary operation S,0S,=

715,53 The mapping a—S, of 4 onto S, is a homomorphism, and if it is
an isomorphism, z.e. if a==b implies S, S, then A4 is called effective. If A4 is
effective then the center Z(G(A4)) of G(A4) is trivial.

REMARK. In [4] and [5] the group of displacements is denoted by G(4).

Now suppose that G is a group and A is a subset of G satisfying the
following:

(14) A is a set of involutions in G which is G-invariant,
(1.5) G is generated by 4.
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Then A4 is a symmetric set with the binary operation aocb=>5b""ab, and it is easy
to show that G(4) is isomorphic to G/Z(G). If a symmetric set 4’ is isomor-
phic to 4 then we say that A’ is embedded in a group G. In this case identi-
fying A’ with A we regard A’ as a set of involutions in G. The subgroup
generated by {ab|a, b= A} is also called the group of displacements and is
denoted by H. If Z(G)=1 then A4 is said to be embedded faithfully in G.
Every effective symmetric set A is embedded faithfully in the group G(A4).

A symmetric set A is called homogeneous if it satisfies the following con-
ditions:

(1.6) a@ox=b has a solution x in 4 for any a, b A.

If A is homogeneous then S, is a conjugate class of involutions in G(4),
and the mapping ¢,: x—aox of 4 to A is surjective. Now suppose 4 is finite.
Then ¢, is also injective, and hence the solution x of aox=b is unique.
Especially aS,=+aS, if x+y. Thus a finite homogeneous summetric set
A is effective and can be embedded faithfully in a finite group G. Then the
condition (1.6) is equivalent to the following:

(1.7) for any a,be A there is c€ 4 such that ¢ 'ac=b.

In this way every finite homogeneous symmetric set A can be regarded
as a conjugate class of involutions in a finite group G satisfying (1.5) and (1.7).
The purpose of this paper is to study the structure of finite homogeneous
symmetric sets in connection with finite groups generated by a conjugate class
of involutions satisfying (1.7). The following theorem, which will be proved
in the next section by using the Glauberman’s Z*-Theorem, is fundamental.

Theorem 1. Suppose a finite symmetric set A is embedded in agroup G.
Then A is homogeneous if and only if the group of displacements H is of odd order.

All sets considered in this paper are assumed to be finite. For a set
X, | X| denotes the cardinality of X and |X|, denotes the p-part of | X| for a
prime p. For a group G, O(G) denotes the maximal normal subgroup of G
of odd order, and Z*(G) is the subgroup containing O(G) such that Z*(G)/
O(G) coincides with the center of G/O(G). For a=G, the order of a is
denoted by o(a). When G acts on a set X the action is called semi-
regular if any a=1 of G has no fixed point. Other notation in group theory
is the same as in [3].

2. Proof of Theorem 1 and preliminary lemmas

We begin with the following lemma.

Lemma 1. Let a and b be two involutions in a group G. Then the sub-
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group <{a,b) generated by a and b is the dihedral group of order 2r, where r is
the order of ab. If r=o(ab) is odd then <{a,b)>—<ab)>=alab) is a conjugate
class of involutions in {a,b) satisfying (1.7).

Proof. Let x=ab. Then <a, b>=<a, x> and we have

=1, ¥ =1, a'xa=x".
Thus <a, b) is the dihedral group of order 2r. If r is odd, then since ¥ ‘ax’=
ax* we have {x‘ax’|0=<i<r}=alx>=<a, b>—<ab>. Hence alx) is the con-
jugate class in {a, b> containing a, and for any element ¢ of a{x) there is an
integer 7 such that c=ax*. Then c=(ax’)"'a(ax’). Since ax’cEalx), alx)
satisfies (1.7).

From now on we assume that 4 is a symmetric set which is embedded in
a group G.

ReMARK. For e, ac 4, the cycle generated by a with a base point e which
is defined in [5] coincides with the following sequence of elements of A:

e,a = e(ea), e(ea)’, e(ea)’, - - .

Now suppose H=<ab|a, b= A) is of odd order. Then by Lemma 1 4
satsifies (1.7) and hence 4 is homogeneous. Thus the “if”” part of Theorem 1
is proved. '

To prove the “only if” part, we assume that A satisfies (1.7).

Lemma 2. Under the assumption above we have the following:

(i) For a,be A the element ¢ of A satisfying ¢ 'ac=>b is unique.

(ii) For ac A4, ANCg(a)={a}.

(iii) | 4] s odd.

(iv) If a,b= A then o(ab) is odd, {ab) acts on A semi-regularly and hence
o(ab) divides | A|.

(v) For a fixed e A, H={ealac A>=GC".

(vi) H is of odd order.

Proof. (i) By (1.7) the mapping x—x"'ax of A to A is surjective, and
hence injective.

(ii) Since a 'aa=a, the assertion follows from (i).

(iii) For ac A, the group <a)> of order 2 acts on 4 and it fixes only a.
Hence | 4] is odd.

(iv) Let D=<a,b>. Then {a)> acts on aP={d 'ad| d= D}, and since
a fixes only a in aP, |aP| is odd. On the other hand <{b)> also acts on 4?, and
since |aP| is odd b fixes an element y of @”. Then by (ii) y=bca”. Hence
b=(ab)‘a(ab)’=a(ab)* for some i. Thus (ab)* '=1 and hence o(ab) is odd.



402 M. Kano, H. Nacao anp N. NoBusawa

Now suppose (ab)~*c(aby=c for some cEA. Then a 'ca=[(ab)a]™
c[(ab)’a]. Since (ab)ac A by Lemma 1, we have a=(ab)'a by (i) and hence
(aby)=1. Thus if (ab)’=1 then (ab)’ has no fixed element in A.

(v) For a,be A, ab=(ea) '(eb). Hence H=<ab|a, b A>=<ealac A>.
Since G={A>=H UeH, |G: H| <2 and G'<H. On the other hand for ac 4
there is an element & of A4 such that a=b"'eb, and then ea=e 'b"'eb=G’.
Hence G'=H.

(vi) Let a be an element of 4. Then by (iv), for any g=G, g 'a 'ga
is of odd order. Then by the Glauberman’s Z*-Theorem([2], Theorem 1)
we have a=Z*(G). Since G=<{4), G=Z*(G) and hence O(G)=G'=H.

The “only if” part of Theorem 1 is proved in (vi) of Lemma 2. Now
since G is of even order we have |G: H|=2. By the Feit-Thompson’s theroem
G is solvable and by the Sylow’s theroem all involutions are conjugate. Thus
we have the following

Corollary. If a homogeneous symmetric set A is embedded in a group G,
then G is solvable, |G: H|=2, |H| is odd and A is the only conjugate class of

involutions in G.

Let e be a fixed element of 4. Then e induces an involutive automor-
phism of the group H of odd order. Let V(e)=Cule) and K(e)=
{keH|e 'ke=k™'}. Then we have the following

Lemma 3. (i) Each coset of V(e) in H contains only one element of K(e),
and hence | H: V(e)| =|K(e)|.

(ii) K(e)={ealac A}, |A|=|K(e)| and H=<{K(e)).

(iii) If a prime p divides |H| then p also divides |A|. In particular if
|A| is a power of a prime p then H is a p-group.

(iv) Any e-invarian p-subgroup of H is contained in an e-invariant Sylow
p-subgroup of H. If P is an e-invariant Sylow p-subgroup of H, then

4|, = |K(e)l ,= |PNK(e)|, | V(e)| ,= |IPNV(e)]| .
(v) H is abelian if and only if H=K(e).
Proof. For the proofs of (i) and (v) see Lemma 2.1 in [1].
(i1) Since 4 is the conjugate class in G containing e, we have
|[A| = |G:Cgle)| = |H: Cyle)l = |H: V(e)| = | K(e)| .

Now evindently {ea|lac A4} CK(e). Hence we have K(e)={ealac A} and
H=<K(e)).
(iii) If p does not divide |4|=|K(e)|, then a Sylow p-subgroup of
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V(e) is a Sylow p-subgroup of H. 'Then by (v) of Lemma 2.1 in [1] p does not
divide |{K(e)>|=|H]|, which is a contradiction.

(v) If H is abelian then K(e) is a subgroup, and hence H=K(e). Con-
versely suppose that H=K{(e). Then for x, ye H (xy) '=(xy)’=x*y*=x"'y" "
Hence x and y commute and H is abelian.

3. Symmetric sets which are also groups

Let X be any group. Then defining the binary operation on X by setting
xoy=yx~'y X is a symmetric set. In this case we say that the symmetric set
X is also a group.

Theorem 2. Let A be a symmetric set which is also a group. Then A is
homogeneous if and only if A is of odd order.

Proof. If A is homogeneous then by (iii) of Lemma 2 |A4]| is odd.

Conversely suppose that 4 is a group of odd order. It suffices to show
that the mapping wx—aox=xa 'x is injective, and hence surjective. Since
A is of odd order the mapping x—x* of 4 to A is bijective. Let a=b* and
assume xb~?x=yb~’y. Then we have (bx 'b)’=(by 'b)’ bx"'b=by b and
hence x=y.

The following is obtained in [5]. For the completeness we shall prove
it in a slightly different way.

Theorem 3. Let A be an effective symmetric set. Then the following
conditions are equivalent :

(1) Ais also an abelian group.

(ii) The group of displacements H(A) is abelian.

(iii) H(A)={S.S.lac A}, where e is a fixed element of A.

Furtheromre if one of the conditions is satisfied then A is homogeneous and
hence | A| is odd.

Proof. (i)=>(ii) Suppose that A4 is also an abelian group. Then acb=
ba*b=a"'b*. Since =xS,S,=xe*a*,S,S, and S,S, commute. Hence
H(A)=<S.S.|ac 4> is abelian

(i))=>(iii) Letebe a fixed element of A. Then, since H(A4) is abelian and
S, inverts S,S,, S, inverts every element of H(A). Suppose H(A) has an
involution 7. 'Then T commutes with S,, hence T is in the center Z(G(4))
of G(4), which is a contradiction. Thus H(A) is of odd order, and by
Theorem 1 A is homogeneous. By (v) of Lemma 3 we have H(A)={S,S.|
ac A}.

(iii)=>(i) Suppose H(A)={S.S,|ac A}. Since S, inverts every element
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of H(A), H(A) is an abelian group. Then it is easy to see that the mapping
a—S,S, of A onto H(A) is an isomorphism of symmetric sets. Thus 4 is
also an abelian group.
The last half of the theorem has been shown in the proof of (ii)=>(iii).
A symmetric set 4 is called abelian if H(A) is abelian group.

4. Symmetric subsets

Let A be a symmetric set. A4 subset B of A is called a symmetric subset of
A if boceB for any b,ceB. If B is a symmetric subset of 4 then Boa is
also a symmetric subset, and if 4 is homogeneous then B is also homogeneous
and BN Boa=¢ for ac A—B.

From now on we assume that 4 is a homogeneous symmetric set which is
embedded in a group G, and let H=<{ab|a,b=A>. If B is a symmetric
subset of 4 then B is embedded in Gz=<B>. Let Hz=<bc|b, c€ B).

Theorem 4. (i) Let B be a subset of A and e B. Then B is a symmetric
subset if and only if there exists an e-invariant subgroup J of H such that B=e/=
{iglie]}.

(i1) A symmetric subset B is abelian if and only if there exists an e-invariant
abelian subgroup J of H scuh that B=e.

Proof. If B is a symmetric subset of A, then Hz=<eb|b=B) is e-
invariant and B=e#s. By Theorem 3 B is abelian if and only if Hj is abelian.
Suppose conversely that ] is an e-invariant subgroup of H and B=e¢/. Then
for j,ke ] &/ of=e"*e’e*=k'(jk ) %¢(jk*)’kse/. Hence B is a symmetric
subset.

Theorem 5. If B is a symmetric subest of a homogeneous symmetric set A,
then |B| divides |A|.

Proof. Let eB and p a prime division of |B|. By (iv) of Lemma 3
there is an e-invariant Sylow p-subgroup Q of Hy and Q is contained in an
e-invariant p-subgroup P of H. Then

4], = [PNK(e) ,=21QNK(e)|,= |Bl,.
Hence | B| divides | 4].

A symmetric subset B of A is called a symmetric p-subset if | B| is a power
of p, and B is called a symmetric Sylow p-subset if |B|=|A]|, Then we have
the following Sylow’s theorem for homogeneous symmetric sets.

Theorem 6. Let C be a symmetric p-subset of a homogeneous symmetric
set A. Then C is contained in a symmetric Sylow p-subset of A. Two symmetric
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Sylow p-subsets of A are isomorphic.

Proof. Let eeC. By (iii) of Lemma 3 H_ is an e-invariant p-subgroup
of H and is contained in an e-invariant Sylow p-subgroup P of H. Let B=¢".
Then C=e#¢Z B, and since

|B| = |P:PNV(e)| = |PNK(e)| = | 4],

B is a symmetric Sylow p-subset of A.

Now let B’ be any symmetric Sylow p-subset of 4. Then there is an
element a of 4 such that B“=e. Let B”=B’*. Then H - is an e-invariant
p-subgroup and is contained in an e-invariant Sylow p-subgroup P” of H.
Since B”=eHs<¢f” and |B”|=|A4|,=|e"”|, we have B’=e?”. By (ii)
of Theorem 2.2 in [3], Chapter 6 there is an element x of Cg(e) such that
P”"=P*. Then B”=¢"=(¢’)*=B* and hence B'=(B")*=B*. Thus B’ is
isomorphic to B.

5. Symmetric quotient sets

Suppose that an equivalence relation ~ in a symmetric set A satisfies the
following condition: if a~a’ and b~b" then aob~a’cd’. Denote the equi-
valence class containing a by a*. Then the set of all equivalence classes
A*=A|~ is a symmetric set with the binary operation a*ob*=(acb)*. We
call 4* a symmetric quotient set of A and an equivalence class is called a
coset. Since boc~aca=a for b, c=a*, each coset is a symmetric subset of 4.

Now suppose 4 is homogeneous. Then a symmetric quotient set A* of
A is also homogeneous. Let e 4 and B=e*. If x~eca then xoa~(eoa)oa
=e and hence x=(xca)oac Boa. Thus (eca)*CBoa. On the other hand if
b~e then boa~eoa. Hence BoaC(eoa)* and we have (eoa)*=Boa. Since
A is homogeneous every coset can be written in a form Boa with ac 4. There-
fore A* is uniquely determined by a coset B, and hence we may denote A* by
A[B. A symmetric subset B of A4 is called normal in A if B is a coset of some
symmetric quotient set of 4.

Let A be a homogeneous symmetric set embedded in a group G, H=
{abla, b A> and e A. If J is a subgroup of H which is normal in G,
then A=A mod J is a symmetric set which is homomorphic to 4, and A
is embedded in G=G/J. Then the group of its displacements is H=H]/].

Theorem 7. (i) Let B be a symmetric subset of A containing e. Then B
is normal in A if and only if there exists a normal subgroup | of G such that
JCH and B=e’. In this case A|B is isomorphic to A=A mod J.

(ii) Let B be a symmetric normal subset of A. Then A|B is abelian if
and only if there exists a normal subgroup J of G such that B=e/, J—H and
H|] is abelian.
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Proof. Suppose first that J is a normal subgroup of G contained in H.
Let G=G|J and A={a=aJ|acA}. Let a*={bcA|b=a}. Then A*=
{a*|ac 4} is a symmetric quotient set of 4 and A*~=A. Suppose a=b for
a,beA. Then b=aj with j= ], and since a and b are involutions a ‘ia=j"".
Since J is of odd order there is an element ¢ of J such that #*=j. Then
a‘ia=i~* and we have b=i"‘aica’/. Conversely if ba’ then a=b. Thus
we have a*=a’ and @’ is a coset. By Theorem 3 A(=~A*=A/e’) is abelian
if and only if H=H/] is an abelian group.

Suppose next that B=e¢* is a coset of a symmetric quotient set A* of A.

If a*=b* then for ce€4 (a°)*=(b°)*, and hence (a*)*=(b*)* for any
x€G. Since B°=B’ we have B®*=B. Let J=<ab|a,be 4, a*=b*)>. Then
J is a normal subgroup of G contained in H and ¢/ € B. Since Hp=<eb|bs
B>< ], and B=e¢"5, we have ¢/=B.

By using the solvability of H, we have the following

Corollary 1. If A is a homogeneous syimmetric set, then there is a chain of
symmetric subsets

A= B,DB,D>--DB, = {e}
such that B;,, is normal in B; and B;|B;., is abelian.

Let Z be the center of H. Then Z is clearly a normal subgroup of G and
hence by Theorem 7 ¢ is a normal symmetric subset of 4 which is abelian
by (ii) of Theorem 4. In [4] ¢Z is called the center of A(relative to a base
point ). Now suppose that A is faithfully embedded in G. Then |é#|=
|Z|. If A is a symmetric p-set then H is a p-group by (iii) of Lemma 3
and hence H has a non-trivial center. Thus we have

Corollary 2. If A is a homogeneous symmetric p-set, then the center of A
relative to a base point e is not trivial.
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