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1. Introduction

A symmetric set is a set A on which a binary operation aob is defined
satisfying the following three axioms:

(1.1) aoa = a,

(1.2) (χoa)oa = x,

(1.3) χo(aob) = ((χob)oά)ob .

The mapping Sa: A^A defined by xSa—χoa is a permutation on A by
(1.2), and it is called the symmetry around a. Corresponding to the axioms
above we have the following:

(l.iO
(1.20

(1.30

aSa = a,

Saob — SaSb = SaSb .

We denote by G(A) the permutation group on A generated by SA—
{SΛ\a<ΞA}. Since T~ιSaT=SaT for CLΪΞA and T<=G(A) by (1.30, SA is a
set of involutions in G(A) which is G(^4)-invariant. The subgroup of G(A)
generated by {SaSb \ a, b^A} is called the group of displacements and is denoted
by H(A). The set SA is a symmetric set with binary operation SaoSb=
S^SaSfr The mapping at-+Sa of A onto SA is a homomorphism, and if it is
an isomorphism, i.e. if aφb implies SaφSb then A is called effective. If A is
effective then the center Z(G(A)) of G(A) is trivial.

REMARK. In [4] and [5] the group of displacements is denoted by G(A).
Now suppose that G is a group and A is a subset of G satisfying the

following:

(1.4) A is a set of involutions in G which is G-invariant,

(1.5) G is generated by A.
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Then A is a symmetric set with the binary operation aob=b~1ab, and it is easy
to show that G(A) is isomorphic to G/Z(G). If a symmetric set Ar is isomor-
phic to A then we say that A' is embedded in a group G. In this case identi-
fying Af with A we regard A' as a set of involutions in G. The subgroup
generated by {ab\a, b^A} is also called the group of displacements and is
denoted by H. If Z(G)=1 then A is said to be embedded faithfully in G.
Every effective symmetric set A is embedded faithfully in the group G{A).

A symmetric set A is called homogeneous if it satisfies the following con-
ditions:

(1.6) aoχ—b has a solution x in A for any a,b^A.

If A is homogeneous then SA is a conjugate class of involutions in G(A),
and the mapping φa: χ\-^aoχ oϊAto A is surjective. Now suppose A is finite.
Then φa is also injective, and hence the solution x of aoχ=b is unique.
Especially aSxΦaSy if x=£y. Thus a finite homogeneous summetric set
A is effective and can be embedded faithfully in a finite group G. Then the
condition (1.6) is equivalent to the following:

(1.7) for any ayb^A there is c^A such that c~1ac=b.

In this way every finite homogeneous symmetric set A can be regarded
as a conjugate class of involutions in a finite group G satisfying (1.5) and (1.7).

The purpose of this paper is to study the structure of finite homogeneous
symmetric sets in connection with finite groups generated by a conjugate class
of involutions satisfying (1.7). The following theorem, which will be proved
in the next section by using the Glauberman's Z*-Theorem, is fundamental.

Theorem 1. Suppose a finite symmetric set A is embedded in a group G.
Then A is homogeneous if and only if the group of displacements H is of odd order.

All sets considered in this paper are assumed to be finite. For a set
X, I X\ denotes the cardinality of X and | X\ p denotes the />-part of \X\ for a
prime p. For a group G, O{G) denotes the maximal normal subgroup of G
of odd order, and Z*{G) is the subgroup containing O(G) such that Z*(G)/
O(G) coincides with the center of GjO{G). For a^G, the order of a is
denoted by o{a). When G acts on a set X the action is called semi-
regular if any β φ l of G has no fixed point. Other notation in group theory
is the same as in [3].

2. Proof of Theorem 1 and preliminary lemmas

We begin with the following lemma.

Lemma 1. Let a and b be two involutions in a group G. Then the sub-
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group ζa, by generated by a and b is the dihedral group of order 2r, where r is
the order of ab. If r=o(ab) is odd then (a,by — ζaby=a(aby is a conjugate
class of involutions in (a, by satisfying (1.7).

Proof. Let x=ab. Then ζβ, by=(ay #> and we have

a2 = 1, xr = 1, a~xxa = ΛΓ1 .

Thus ζβ, by is the dihedral group of order 2r. If r is odd, then since x~iaxi=
ax2i we have {x~iaxi\Q<ίί<r}=aζxy=<β} by — <αό>. Hence α<#> is the con-
jugate class in ζa, by containing a, and for any element c of aζxy there is an
integer i such that c=ax2i. Then c=(axi)~1a(axi). Since aafGaζx>, a(xy
satisfies (1.7).

From now on we assume that A is a symmetric set which is embedded in
a group G.

REMARK. For e, a^A, the cycle generated by a with a base point e which
is defined in [5] coincides with the following sequence of elements of A:

eya = e(ea)y e(ea)2, e(ea)\

Now suppose H—ζab\a, b^Ay is of odd order. Then by Lemma 1 A
satsifies (1.7) and hence A is homogeneous. Thus the "if" part of Theorem 1
is proved.

To prove the "only if" part, we assume that A satisfies (1.7).

Lemma 2. Under the assumption above we have the following:
( i ) For a, b^A the element c of A satisfying c~1ac—b is unique.
(ii) Fora^A,AΠCG(a)={a}.
(iii) \A\ is odd.
(iv) If a,b^A then o(ab) is odd, ζaby acts on A semi-regularly and hence

o(ab) divides \A\.
(v) For a fixed e<=A,H=<ea\a<=Ay=G'.
(vi) H is of odd order.

Proof, (i) By (1.7) the mapping x\-*x~xax of A to A is surjective, and
hence injective.

(ii) Since a~1aa—a> the assertion follows from (i).
(iii) For a^A, the group <α> of order 2 acts on A and it fixes only a.

Hence \A\ is odd.
(iv) Let D=ζa,by. Then <<z> acts on aD={d~1ad\ d^D}, and since

a fixes only a in aD, \aD\ is odd. On the other hand <ό> also acts on aD> and
since \aD\ is odd b fixes an element y of aD. Then by (ii) y=b^aD. Hence
b=(ab)~ia(ab)i=a(ab)2i for some i. Thus (ab)2ί~1=ί and hence o{ab) is odd.
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Now suppose {ab)'ic{ab)i=c for some c^A. Then a~1ca=[{ab)id\"λ

c[(ab)*a]. Since {cArfa^A by Lemma 1, we have a=(abya by (i) and hence

(ab)'=l. Thus if (αδ)'Φl then (ah)* has no fixed element in A.

(v) For as bϊΞA, ab=(ea)-\eb). Hence H=<ab\a, b<aAy=(ea\a<^A>.

Since G=<A>=H\JeH, | G: # | ^ 2 and G ' ^ # . On the other hand for atΞA

there is an element b oί A such that a=b~1eb, and then ea=e"1b'1eb^G\

Hence G ' = # .
(vi) Let tf be an element of A. Then by (iv), for any g^G,g~1a~1ga

is of odd order. Then by the Glauberman's Z*-Theorem([2], Theorem 1)
we have atΞZ*(G\ Since G=<A>,G=Z*(G) and hence 0{G)^LG'=H.

The "only if" part of Theorem 1 is proved in (vi) of Lemma 2. Now
since G is of even order we have | G: H\ =2. By the Feit-Thompson's theroem
G is solvable and by the Sylow's theroem all involutions are conjugate. Thus
we have the following

Corollary. If a homogeneous symmetric set A is embedded in a group G,

then G is solvable, \G: H\ = 2 , \H\ is odd and A is the only conjugate class of

involutions in G.

Let e be a fixed element of A. Then e induces an involutive automor-
phism of the group H of odd order. Let V(e)—CH(e) and K(e)=
{k^H\e~1ke=k~1}. Then we have the/ollowing

L e m m a 3. (i) Each coset of V(e) in H contains only one element of K(e)>

and hence \H: V(e)\ = \K(e)\.

( i i ) K(e)={ea\a*ΞA)9\A\ = \K(e)\ and H=<K(e)>.

(iii) If a prime p divides \H\ then p also divides \A\. In particular if

\A\ is a power of a prime p then H is a p-group.

(iv) Any e-invarian psubgroup of H is contained in an e-invariant Sylow

p-subgroup of H. If P is an e-invariant Sylow p-subgroup of H, then

= \K{e)\p= \PΠK(e)\, \V(e)\p= \Pf)V(e)\ .

(v) H is abelίan if and only if H=K(e).

Proof. For the proofs of (i) and (v) see Lemma 2.1 in [1].
(ii) Since A is the conjugate class in G containing e, we have

\A\ = \G: CG(e)\ = \H: CH{e)\ = \H: V(e)\ = \K{e)\ .

Now evindently {ea\aeA}c,K(e). Hence we have K{e) — {ea\a^Λ} and
H=<K(e)>.

(iii) If p does not divide | A \ = | K(e) | , then a Sylow />-subgroup of
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V(e) is a Sylow />-subgrouρ of H. Then by (v) of Lemma 2.1 in [1] p does not
divide | (K(e)y | = | H | , which is a contradiction.

(v) If H is abelian then K(e) is a subgroup, and hence H=K(e). Con-
versely suppose that H=K(e). Then for x,y^H {xy)~1=(xy)e=xeye=x~1y~1.
Hence x and y commute and H is abelian.

3. Symmetric sets which are also groups

Let X be any group. Then defining the binary operation on X by setting
χoy=yχ~1y X is a symmetric set. In this case we say that the symmetric set
X is also a group.

Theorem 2. Let A be a symmetric set which is also a group. Then A is

homogeneous if and only if A is of odd order.

Proof. If A is homogeneous then by (iii) of Lemma 2 \A\ is odd.
Conversely suppose that A is a group of odd order. It suffices to show

that the mapping χ\-^aoχ=χa~1x is injective, and hence surjective. Since
A is of odd order the mapping xh^x2 of A to A is bijective. Let a=b2 and
assume xb~2x=yb~2y. Then we have (bx~1b)2=(by~1b)2,bx~1b=by~1b and

hence x=y.

The following is obtained in [5]. For the completeness we shall prove
it in a slightly different way.

Theorem 3. Let A be an effective symmetric set. Then the following

conditions are equivalent:

( i ) A is also an abelian group.

( i i ) The group of displacements H(A) is abelian.

(iii) H(A)= {SβSa\a^A}, where e is a fixed element of A.

Furtheromre if one of the conditions is satisfied then A is homogeneous and

hence \A\ is odd.

Proof. (i)=#>(ii) Suppose that A is also an abelian group. Then aob=

ba-1b=a~1b2. Since xSeSa=xe~2a2, SeSa and SeSb commute. Hence

H{A)=iSeSa\a^Ay is abelian
(ii)=ϋ>(iii) Let e be a fixed element of A. Then, since H(A) is abelian and

Se inverts SβSa, Se inverts every element of H(A). Suppose H(A) has an
involution T. Then T commutes with Se, hence T is in the center Z(G(A))
of G(A)y which is a contradiction. Thus H(A) is of odd order, and by
Theorem 1 A is homogeneous. By (v) of Lemma 3 we have H(A)={SβSa\

==>(i) Suppose H(A)={SβSa\a^A}. Since Se inverts every element
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of H(A), H(A) is an abelian group. Then it is easy to see that the mapping
a\-^SβSa of A onto H(A) is an isomorphism of symmetric sets. Thus A is
also an abelian group.

The last half of the theorem has been shown in the proof of (ii)=#(iii).
A symmetric set A is called abelian if H(A) is abelian group.

4. Symmetric subsets

Let Abe a symmetric set. A subset B of A is called a symmetric subset of
A if boc^B for any b,c^B. If B is a symmetric subset of A then Boa is
also a symmetric subset, and if A is homogeneous then B is also homogeneous
and BΠBoa=φ for a(=A—B.

From now on we assume that A is a homogeneous symmetric set which is
embedded in a group G, and let H=ζab\a,b^Ay. If JB is a symmetric
subset of A then B is embedded in G j B=<S>. Let HB=<Jbc\b,c^Ey.

Theorem 4. (i) Let B be a subset of A and ^ G δ . Then B is a symmetric
subset if and only if there exists an e-invariant subgroup J of H such that B=eJ=

(ii) A symmetric subset B is abelian if and only if there exists an e-invariant
abelian subgroup J of H scuh that B=eJ.

Proof. If B is a symmetric subset of A, then HB—(jeb\b^By is e-
invariant and B=eH*. By Theorem 3 B is abelian if and only if HB is abelian.
Suppose conversely that / is an ^-invariant subgroup of H and B=eJ. Then
for jyk^J eJoek=e'kejek=k~1(jk~1)~ee(jk~1)ek^eJ. Hence B is a symmetric
subset.

Theorem 5 If B is a symmetric subest of a homogeneous symmetric set A,
then \B\ divides \A\.

Proof. Let e^B and p a prime division of \B\. By (iv) of Lemma 3
there is an e-invariant Sylow />-subgroup Q of HB and Q is contained in an
^-invariant />-subgroup P of H. Then

\A\p = \PnK(e)\p^\QΠK(e)\p= \B\P.

Hence \B\ divides \A\.

A symmetric subset B of A is called a symmetric ^-subset if \B\ is a power
of py and B is called a symmetric Sylow p-subset if | B \ = | A \ p. Then we have
the following Sylow's theorem for homogeneous symmetric sets.

Theorem 6. Let C be a symmetric p-subset of a homogeneous symmetric
set A. Then C is contained in a symmetric Sylow p-subset of A. Two symmetric
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Sylow p-subsets of A are isomorphic.

Proof. Let e^C. By (iii) of Lemma 3 Hc is an e-invariant ^-subgroup
of H and is contained in an ^-invariant Sylow />-subgroup PoίH. Let B=eF\
Then C=eίIoa:By and since

B is a symmetric Sylow />-subset of A.
Now let Br be any symmetric Sylow />-subset of A. Then there is an

element a of A such that B'a^e. Let B"=B'a. Then ΉBrr is an ^-invariant
/>-subgroup and is contained in an ^-invariant Sylow ^-subgroup P" of H.
Since B " = * * J / ' ^ " and \B"\ = 1^| p= \e?"\, we have W=f". By (ii)
of Theorem 2.2 in [3], Chapter 6 there is an element x of CH(e) such that
P " = P*. Then B"=ep"=(ep)x=Bx and hence B'={B")a=Bxa. Thus B' is
isomorphic to B.

5. Symmetric quotient sets

Suppose that an equivalence relation ~ in a symmetric set A satisfies the
following condition: if a^a' and b~b' then aob^a'ob''. Denote the equi-
valence class containing α by α*. Then the set of all equivalence classes
A*=Aj~ is a symmetric set with the binary operation α*oft*=(αoδ)*. We
call A* a symmetric quotient set of A and an equivalence class is called a
coίe*. Since boc~aoa=a for 6, cGα*, each coset is a symmetric subset of A.

Now suppose 4̂ is homogeneous. Then a symmetric quotient set A* of
4̂ is also homogeneous. Let e^A and B=e*. If x^eoa then χoa~(eoά)oa

=e and hence #=(#o#)o#ei?oa. Thus (£o#)*c;J3oα. On the other hand if
b~e then boa~eoa. Hence SoflC(eoα)* and we have (eoά)*=Boa. Since
4̂ is homogeneous every coset can be written in a form Boa with a^A. There-

fore A* is uniquely determined by a coset B> and hence we may denote A* by
^4/5. A symmetric subset B of 4̂ is called normal in 4̂ if B is a coset of some
symmetric quotient set of A.

Let A be a homogeneous symmetric set embedded in a group G, i / =
ζab\a, b^Ay and e e A If / is a subgroup of H which is normal in G,
then A=A mod / is a symmetric set which is homomorphic to A, and A
is embedded in G=G/J. Then the group of its displacements is H=HjJ.

Theorem 7. (i) Let B be a symmetric subset of A containing e. Then B

is normal in A if and only if there exists a normal subgroup J of G such that

J<ZH and B=eJ. In this case AjB is isomorphic to A=A modj.

(ii) Let B be a symmetric normal subset of A. Then AjB is abelian if

and only if there exists a normal subgroup J of G such that B=eJ

yJ^H and

HjJ is abelian.
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Proof. Suppose first that / is a normal subgroup of G contained in H.
Let G=G/J and A={a=aJ\aeίA}. Let a*={beϊA\Ί)=a}. Then A*=
{a*\a^A} is a symmetric quotient set of A and A*—A. Suppose a=b for
a,b^A. Then b—aj with j^J, and since a and b are involutions a~xw—]~λ.
Since / is of odd order there is an element / of / such that i2=j. Then
a'Ha—i'1 and we have i=/"WGfl ; . Conversely if ί G α ; then a=b. Thus
we have a*=aJ and aJ is a coset. By Theorem 3 A{^A*=A\eJ} is abelian
if and only if H—HjJ is an abelian group.

Suppose next that B=e* is a coset of a symmetric quotient set ^4* of A.
I fα*=ό* then for CEΞA (ac)*={bc)*, and hence (α*)*=(ό*)* for any

X<EΞG. Since £ " = £ * we have Bab=B. Let J=<ab\ a, beϊA, a*=ό*>. Then
J is a normal subgroup of G contained in H and eJζZB. Since HB=ζeb\b^.
By^Jy and B=eH^y we have eJ=B.

By using the solvability of i/, we have the following

Corollary 1. If A is a homogeneous symmetric set, then there is a chain of
symmetric subsets

A = B0Z)B1^~Z)Bn= {e}

such that Bi+1 is normal in B{ and Bi/Bi+1 is abelian.

Let Z be the center of H. Then Z is clearly a normal subgroup of G and
hence by Theorem 7 e2 is a normal symmetric subset of A which is abelian
by (ii) of Theorem 4. In [4] ez is called the center of ^(relative to a base
point e). Now suppose that A is faithfully embedded in G. Then \ez\ =
\Z\. If A is a symmetric />-set then i/ is a />-grouρ by (iii) of Lemma 3
and hence H has a non-trivial center. Thus we have

Corollary 2. If A is a homogeneous symmetric p-set, then the center of A
relative to a base point e is not trivial.
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