ON A PROBLEM OF STOLL CONCERNING A COHOMOLOGY MAP FROM A FLAG MANIFOLD INTO A GRASSMANN MANIFOLD

Yozo MATSUSHIMA

(Received April 18, 1975)

Introduction and summary. The main purpose of this article is to answer a problem of W. Stoll which arose in his recent study [6] of value distribution of Schubert zeros.

We denote by A a p-tuple of non-negative integers $\left\{a_{1}, a_{2}, \cdots, a_{p}\right\}$ such that $0 \leqq a_{1} \leqq a_{2} \leqq \cdots \leqq a_{p} \leqq q$ and let $m=p+q$. A flag F of type A is a sequence $\left\{V_{a_{1}+1}, V_{a_{2}+2}, \cdots, V_{a_{p}+p}\right\}$ of linear subspaces in \boldsymbol{C}^{m}, where the subscript indicates the dimension of each subspace, such that $V_{a_{1+1}} \subset V_{a_{2}+2} \subset \cdots \subset V_{a_{p}+p}$. The totality $F(A)$ of flags of type A is called the flag manifold of type A. It is a projective algebraic manifold on which the unitary group $U(m)$ acts transitively. For each flag F of type A, there is associated a Schubert variety $(A ; F)$ which is an irreducible algebraic subvariety of the Grassmann manifold $\operatorname{Gr}(p, m)$ of p-planes in \boldsymbol{C}^{m}. The Schubert variety $(A ; F)$ consists of all p-planes V such that $\operatorname{dim} V \cap V_{a_{i}+i} \geqq i$ for all $i=1,2, \cdots, p$. We denote by $S(A)$ the subset of $G r(p, m) \times F(A)$ consisting of all pairs (V, F) such that $V \in(A ; F)$. It is proved that $S(A)$ is an irreducible analytic subvariety of $G r(p, m) \times F(A)$ [2]. The projection maps of $\operatorname{Gr}(p, m) \times F(A)$ onto $G r(p, m)$ and $F(A)$ induce holomorphic surjective maps π and σ of $S(A)$ onto $G r(p, m)$ and $F(A)$ respectively. Then $S(A)$ is a holomorphic fiber bundle over $F(A)$ of projection σ whose typical fibre is the Schubert variety. $S(A)$ is also a holomorphic fibre bundle over $\operatorname{Gr}(p, m)$ [2] and the operation π_{*} of fibre integration is defined.

Let λ be a differential form of type ($f-r, f-r$) on the flag manifold $F(A)$, where f denotes the complex dimension of $F(A)$ and r is a non-negative integer. We assume that λ is invariant by the action of the unitary group $U(m)$ on $F(A)$. The group $U(m)$ acts also on $S(A)$ in a natural way and the pullback $\sigma^{*} \lambda$ is invariant by $U(m)$. The projection $\pi: \quad S(A) \rightarrow G r(p, m)$ commutes with the action of $U(m)$ on $S(A)$ and $G r(p, m)$ and the fibre integration π_{*} is functorial. Hence $\pi_{*}\left(\sigma^{*} \lambda\right)$ is also invariant by the action of $U(m)$ on $\operatorname{Gr}(p, m)$. Since $\operatorname{Gr}(p, m)$ is a symmetric space, a differential form on $\operatorname{Gr}(p, m)$ which is invariant by $U(m)$ is harmonic with respect to any invariant Kaehler metric.

Hence $\pi_{*}\left(\sigma^{*} \lambda\right)$ represents a cohomology class of type $(p q-|A|-r, p q-|A|-r)$, where $|A|=\Sigma a_{i}$ and $p q$ is the complex dimension of $\operatorname{Gr}(p, m)$.

We take the standard basis $\left\{e_{1}, \cdots, e_{m}\right\}$ of C^{m} and denote by V_{k}^{0} the k-plane spanned by $\left\{e_{1}, \cdots, e_{k}\right\}$ and call $F^{0}=\left\{V_{a_{1}+1}^{0}, \cdots, V_{a_{p}+p}^{0}\right\}$ the standard flag of type A. We also call $\left(A ; F^{0}\right)$ the standard Schubert variety and denote this by (A). The standard Schubert varieties (B), where $B=\left\{b_{1}, \cdots, b_{p}\right\}$ and $\Sigma b_{i}=r+\Sigma a_{i}$, form a basis of the homology group of dimension $2(|A|+r)$ of $G r(p, m)$ and the Poincare duals $C(B)$ of (B) form a basis of the cohomology group of type $(p q-|A|-r, p q-|A|-r)$. Therefore $\pi_{*}\left(\sigma^{*} \lambda\right)$ is a linear combination of these Poincare duals $C(B)$ with the condition $|B|=\Sigma b_{i}=$ $|A|+r$.

In the paper [6], Stoll defines a differential form $\hat{\lambda}$ of type $(f-1, f-1)$ on $F(A)$ which is invariant by $U(m)$ and which corresponds to the integral average of so-called Levine form. He asked the question that in the expression of $\pi_{*}\left(\sigma^{*} \hat{\lambda}\right)$ by the Poincaré duals $C(B)$, for what kind of B the Poincaré dual $C(B)$ can appear with non-zero coefficient?

In this paper we prove the following theorem which answers the question of Stoll.

Theorem. Let λ be a differential form of type $(f-r, f-r)$ on the flag manifold $F(A)$ which is invariant by the action of the unitary group $U(m)$.

Let

$$
\pi_{*}\left(\sigma^{*} \lambda\right)=\Sigma d_{B} C(B)
$$

where the summation extends over all $B=\left\{b_{1}, \cdots, b_{p}\right\}$ such that $\Sigma b_{i}=r+\Sigma a_{i}$. If the coefficient d_{B} is non-zero, then B verifies the following condition: there exist s indices $j_{1}, \cdots, j_{s}\left(1 \leqq j_{1}<j_{2}<\cdots<j_{s} \leqq p, s \leqq r\right)$ and s positive integers n_{1}, \cdots, n_{s} with the condition $\Sigma n_{k}=r$ such that

$$
b_{j_{k}}=a_{j_{k}}+n_{k} \quad \text { for } k=1,2, \cdots, s
$$

and

$$
b_{j}=a_{j} \quad \text { for } j \neq j_{k}
$$

An application of the theorem is discussed in the paper of Stoll [6]. We discuss here special cases. The case $r=0$. In this case λ is a volume element on $F(A)$ invariant by $U(m)$ and $\pi_{*}\left(\sigma^{*} \lambda\right)$ is a scalar multiple of $C(A)$. Hence there is an invariant volume element on $F(A)$ such that $\pi_{*}\left(\sigma^{*} \lambda\right)=C(A)$. The case $r=1$. In this case λ is of type $(f-1, f-1)$ and $\pi_{*}\left(\sigma^{*} \lambda\right)$ is a linear combination of those $C(B)$ with non-zero coefficient verifying the condition that $b_{j}=a_{j}$ except for one index j_{1} and $b_{j_{1}}=a_{j_{1}}+1$. This condition on B means that the Schubert variety (B) of dimension $|B|$ contains the Schubert variety (A) of dimension $|B|-1$ as a "boundary component" with respect to the

Schubert cell decomposition of $\operatorname{Gr}(p, m)$.
The proof of Theorem is group theoretical and we use the results of Kostant $[3, a, b]$ on the de Rham duals of Schubert varieties. The papers of Kostant deal with more general case of homogeneous compact Kaehler manifolds and the proof in the general case is very complex. Therefore we have included in this paper proofs of these results in our special case of the Grassmann manifold in $\S 3$ and in an appendix. The proof of our theorem will be completed in §4.

1. Fibre bundle structures of $\boldsymbol{S}(\boldsymbol{A})$. In this section we introduce several notations which we use throughout this paper. By A, B, \cdots we shall denote p-tuples $\left\{a_{1}, a_{2}, \cdots, a_{p}\right\},\left\{b_{1}, b_{2}, \cdots, b_{p}\right\} \cdots$ of integers such that

$$
0 \leqq a_{1} \leqq a_{2} \leqq \cdots \leqq a_{p} \leqq q, 0 \leqq b_{1} \leqq b_{2} \leqq \cdots \leqq b_{p} \leqq q, \cdots
$$

where q is a fixed positive integer and we set

$$
m=p+q
$$

For each A we denote by $|A|$ the sum $\sum a_{i}$:

$$
\begin{equation*}
|A|=\Sigma a_{i} \tag{1.1}
\end{equation*}
$$

and we define k_{i} by

$$
\begin{equation*}
k_{i}=a_{i}+i \quad(i=1,2, \cdots, p) \tag{1.2}
\end{equation*}
$$

We have

$$
1 \leqq k_{1}<k_{2}<\cdots<k_{p} \leqq m .
$$

A flag F of type A is an increasing sequence $F=\left\{V_{k_{1}}, \cdots, V_{k_{p}}\right\}$ of linear subspaces of $\boldsymbol{C}^{\boldsymbol{m}}$, where the subscript indicates the dimension of each linear subspace. The totality $F(A)$ of flags of type A is called the flag manifold of type A. We denote by $\operatorname{Gr}(p, m)$ the Grassmann manifold of p-dimensional linear subspaces of $\boldsymbol{C}^{\boldsymbol{m}}$. We denote by $\left\{e_{1}, e_{2}, \cdots, e_{m}\right\}$ the standard basis of \boldsymbol{C}^{m} and denote by V_{k}^{0} the k-dimensional subspace spanned by $\left\{e_{1}, \cdots, e_{k}\right\}$. We call $F^{0}=\left\{V_{k_{1}}^{0}, \cdots, V_{k_{p}}^{0}\right\}$ the standard flag of type A. We denote by o the point in $\operatorname{Gr}(p, m)$ represented by V_{p}^{0} and call the point o the origin of $\operatorname{Gr}(p, m)$.

The groups $G L(m, C)$ and $U(m)$ act transitively on $F(A)$ and we can represent $F(A)$ as homogeneous spaces of these two groups:

$$
\begin{gather*}
F(A)=G L(m, C) / P_{A}=U(m) / H_{A} \\
H_{A}=P_{A} \cap U(m) \tag{1.3}
\end{gather*}
$$

where P_{A} (resp. H_{A}) consists of all $h \in G L(m, C)$ (resp. $h \in U(m)$) such that
$h \cdot F^{0}=\left\{h V_{k_{1}}^{0}, \cdots, h V_{k_{p}}^{0}\right\}=F^{0}$. We shall denote by π_{F} the projection

$$
\begin{equation*}
\pi_{F}: U(m) \rightarrow F(A)=U(m) / H_{A} . \tag{1.4}
\end{equation*}
$$

The groups $G L(m, C)$ and $U(m)$ act transitively also on $G r(p, m)$ and we have

$$
\begin{gather*}
G r(p, m)=G L(m, C) / P=U(m) / U(p) \times U(q) \\
U(p) \times U(q)=P \cap U(m), \tag{1.5}
\end{gather*}
$$

where P consists of all $h \in G L(m, C)$ such that $h \cdot o=o$. The subgroup P consists of all $h \in G L(m, C)$ of the form

$$
h=\left(\begin{array}{cc}
h_{1} & * \tag{1.6}\\
0 & h_{2}
\end{array}\right), h_{1} \in G L(p, C), h_{2} \in G L(q, C)
$$

and $U(p) \times U(q)=P \cap U(m)$ is the subgroup of $U(m)$ of all the unitary matrices h of the form

$$
h=\left(\begin{array}{cc}
h_{1} & 0 \tag{1.7}\\
0 & h_{2}
\end{array}\right), h_{1} \in U(p), h_{2} \in U(q)
$$

We denote by π_{G} the projection

$$
\begin{equation*}
\pi_{G}: G L(m, C) \rightarrow G r(p, m)=G L(m, C) / P \tag{1.8}
\end{equation*}
$$

For each flag F of type A let

$$
\begin{equation*}
(A ; F)=\left\{V \in G r(p, m) \mid \operatorname{dim} V \cap V_{k_{i}} \geqq i, i=1, \cdots, p\right\} \tag{1.9}
\end{equation*}
$$

$(A ; F)$ is an irreducible algebraic subvariety of dimension $|A|$ of $\operatorname{Gr}(p, m)$ and called the Schubert variety of type A (corresponding to F) [1]. We shall denote $\left(A ; F^{0}\right)$ simply by (A) and we call (A) the standard Schubert variety of type A. If F is a flag of type A, then there exists $g \in G L(m, C)$ such that $g \cdot F^{0}=F$. Then we have

$$
g(A)=(A ; F)
$$

In particular, if $h \in P_{A}$, then $h F^{0}=F^{0}$ and we have

$$
h(A)=(A)
$$

for all $h \in P_{A}$. Thus the group P_{A} acts on the standard Schubert variety (A).
The standard Schubert varieties (A) with the condition $|A|=r$ form a basis of the homology group $H_{2 r}(\operatorname{Gr}(p, m), Z)$.

A flag \widetilde{F} is an increasing sequence $\left\{V_{1}, V_{2}, \cdots, V_{m}\right\}$ of m linear subspaces of $\boldsymbol{C}^{\boldsymbol{m}}$ and let

$$
\rho(\widetilde{F})=\left\{V_{k_{1}}, \cdots, V_{k_{p}}\right\}
$$

Then $\rho(\widetilde{F})$ is a flag of type A. Let $(A ; \widetilde{F})^{*}$ be the set of all $V \in G r(p, m)$ such that $\operatorname{dim} V \cap V_{k_{i}} \geqq i$ for all $i=1,2, \cdots, p$ and $\operatorname{dim} V \cap V_{k_{i}-1}<i$ for all i such that $k_{i}-k_{i-1}=a_{i}-a_{i-1}+1>1$, where we let $k_{0}=0, a_{0}=0$.

Obviously we have $(A ; \widetilde{F})^{*} \subset(A ; \rho(\widetilde{F}))$ and we have also

$$
(A ; \rho(\widetilde{F}))=(A ; \widetilde{F})^{*} \cup\left(\bigcup_{a_{i}>a_{i-1}}\left(A_{i} ; F_{i}\right)\right)
$$

where we put $A_{i}=\left\{a_{1}, \cdots, a_{i-1}, a_{i}-1, \cdots, a_{p}\right\}$ for all i such that $a_{i}>a_{i-1}\left(a_{0}=0\right)$ and $F_{i}=\left\{V_{k_{1}}, \cdots, V_{k_{i-1}}, V_{k_{i}-1}, \cdots, V_{k_{p}}\right\}$ [1]. Moreover $(A ; \widetilde{F})^{*}$ is biholomorphic to $C^{|A|}$ and hence it is a cell of (real) dimension $2|A|$ and $(A ; \widetilde{F})^{*}$ is Zariski open in (A; $\rho(\widetilde{F})$).

We denote by \widetilde{F}^{0} the standard flag $\left\{V_{1}^{0}, V_{2}^{0}, \cdots, V_{m}^{0}\right\}$ and denote $\left(A ; \widetilde{F}^{0}\right)^{*}$ by $(A)^{*}$ and call $(A)^{*}$ the standard Schubert cell of type A. Then we have

$$
G r(p, m)=\bigcup_{A}(A)^{*} \quad \text { (disjoint union) }
$$

and this gives a cell decomposition of $\operatorname{Gr}(p, m)$.
Let

$$
\begin{equation*}
S(A)=\{(V, F) \in G r(p, m) \times F(A) \mid V \in(A ; F)\} \tag{1.10}
\end{equation*}
$$

$S(A)$ is an irreducible analytic subvariety of $\operatorname{Gr}(p, m) \times F(A)$ [2]. The group $U(m)$ acts on $G r(p, m) \times F(A)$ by $g(V, F)=(g V, g F)$ and since we have $g \cdot(A ; F)$ $=(A ; g F)$, we also have $g \cdot S(A)=S(A)$. Thus $U(m)$ acts on $S(A)$.

Let $\widetilde{\pi}$ and $\tilde{\sigma}$ be the projection maps from $\operatorname{Gr}(p, m) \times F(A)$ onto $\operatorname{Gr}(p, m)$ and $F(A)$ respectively. These maps are equivariant with respect to the action of $U(m)$. Then $\tilde{\pi}$ and $\tilde{\sigma}$ induce holomorphic and surjective maps π and σ of $S(A)$ to $G r(p, m)$ and $F(A)$.

If $F \in F(A)$, then $\sigma^{-1}(F)=(A ; F) \times\{F\}$ and the fibres of σ is biholomorphic to the Schubert variety $(A) . S(A)$ is a holomorphic P_{A}-bundle over $F(A)$ associated with the principal P_{A}-bundle $G L(m, C) \rightarrow F(A)$ [2].

Let

$$
f=\operatorname{dim}_{C} F_{A}
$$

Since $\operatorname{dim}_{C}(A)=|A|$, we have

$$
\operatorname{dim}_{C} S(A)=f+|A|
$$

$S(A)$ is also a holomorphic P-bundle over $\operatorname{Gr}(p, m)$ associated with the principal P-bundle $G L(m, C) \rightarrow G r(p, m)$ [2] and the operator π_{*} of fibre integration is defined. The operator π_{*} sends a form of type (u, v) on $S(A)$ to a form of type $(u-t, v-t)$ on $\operatorname{Gr}(p, m)$, where

$$
t=f+|A|-p q
$$

and

$$
p \cdot q=\operatorname{dim}_{C} G r(p, m)
$$

The operator π_{*} commutes with the action of $U(m)$ on $S(A)$ and $\operatorname{Gr}(p, m)$. Hence, if η is a form on $S(A)$ invariant by $U(m)$, so is $\pi_{*} \eta$.

Let λ be a form of type $(f-r, f-r)$ on $F(A)$ invariant by $U(m)$. The pullback $\sigma^{*} \lambda$ is a form of type $(f-r, f-r)$ on $S(A)$ and is also invariant by $U(m)$. Then $\pi_{*}\left(\sigma^{*} \lambda\right)$ is a form of type $(p q-|A|-r, p q-|A|-r)$ on $G r(p, m)$ invariant by $U(m)$. However a form on $\operatorname{Gr}(p, m)$ is invariant by $U(m)$ if and only if it is harmonic with respect to a Kaehler metric invariant by $U(m)$.

For a standard Schubert variety (B) we shall denote by $C(B)$ the Poincaré dual of $(B) . \quad C(B)$ is a form of type $(p q-|B|, p q-|B|)$ invariant by $U(m)$ such that

$$
\int_{(B)} \psi=\int_{G r(p, m)} C(B) \wedge \psi
$$

for any closed form ψ of type $(|B|,|B|)$.
The Poincare duals $C(B)$ with the condition $|B|=u$ form a basis of the vector space of all invariant forms of degree $2 u$. Since $\pi_{*}\left(\sigma^{*} \lambda\right)$ is an invariant form of type ($p q-|A|-r, p q-|A|-r$), we have

$$
\begin{equation*}
\pi_{*}\left(\sigma^{*} \lambda\right)=\sum_{|B|=||| |+r} d_{B} C(B) \tag{1.11}
\end{equation*}
$$

The de Rham dual (or simply the dual) of a standard Schubert variety (B) is the invariant form ξ_{B} of type $(|B|,|B|)$ such that

$$
\int_{(D)} \xi_{B}=\delta_{B, D}
$$

for all D satisfying $|D|=|B|$. Then we have

$$
\int_{G r(p, m)} C(D) \wedge \xi_{B}=\delta_{B, D}
$$

for all D such that $|D|=|B|$. Then we get

$$
d_{B}=\int_{\theta r(p, m)} \pi_{*}\left(\sigma^{*} \lambda\right) \wedge \xi_{B},|B|=|A|+r
$$

However from a well-known property of fibre integration, the right hand side is equal to the integral

$$
\int_{s(A)} \sigma^{*} \lambda \wedge \pi^{*} \xi_{B}
$$

and we obtain

$$
\begin{equation*}
d_{B}=\int_{S(A)} \sigma^{*} \lambda \wedge \pi^{*} \xi_{B},|B|=|A|+r \tag{1.12}
\end{equation*}
$$

We are going to transform the integral to an integral over $U(m) \times(A)$.
We now define a map

$$
\mu: U(m) \times(A) \rightarrow S(A)
$$

by

$$
\mu(g, V)=\left(g V, g F^{0}\right), g \in U(m), V \in(A)
$$

As $V \in(A), g V \in g(A)=\left(A ; g F^{0}\right)$ and hence $g V \in\left(A ; g F^{0}\right)$ and $\mu(g, V) \in S(A)$. The map μ is surjective. For, let $(W, F) \in S(A)$. Then there exists $g \in U(m)$ such that $g F^{0}=F$ and as $W \in(A ; F), V=g^{-1} W \in g^{-1}(A ; F)=\left(A ; F^{0}\right)=(A)$ and we get $\mu(g, V)=(W, F)$. Moreover we see also that for any $(g, V) \in U(m)$ $\times(A), \mu^{-1}(\mu(g, V))=\left\{\left(g h, h^{-1} V\right) \mid h \in H_{A}\right\}$.

The group H_{A} acts on $U(m) \times(A)$ from the right by

$$
(g, V) \cdot h=\left(g h, h^{-1} V\right), h \in H_{A},
$$

and the action of H_{A} on $U(m) \times(A)$ is free.
We show that $U(m) \times(A)$ is a principal fibre bundle over $S(A)$ with structure group H_{A}. To see this we first choose an open covering $\left\{Q_{a}\right\}$ of $F(A)$ such that over each open set \mathcal{U}_{a} a section $s_{a}: \mathcal{U}_{\infty} \rightarrow U(m)$ of the fibre bundle $\pi_{F}: U(m) \rightarrow F(A)$ exists. Let

$$
c V_{a}=S(A) \cap\left(G r(p, m) \times \mathcal{V}_{a}\right) .
$$

Then $\left\{\mathcal{V}_{a}\right\}$ is an open covering of $S(A)$. We define $\tau_{a}: C V_{a b} \rightarrow U(m) \times(A)$ as follows. Let $q=(V, F) \in C V_{a}$. Then $\sigma(q) \in \mathcal{V}_{a}$ and $s_{a}(\sigma(q)) \in U(m)$ is defined. Let

$$
\tau_{a}(q)=\left(s_{a}(\sigma(q)), s_{a}(\sigma(q))^{-1} \pi(q)\right)
$$

Since $\pi_{F}(g)=g F^{0}$ for $g \in U(m)$ and $\pi_{F}\left(s_{a}(\sigma(q))=\sigma(q)=F\right.$, we have $F=s_{a}(\sigma(q)) F^{0}$. We have also $s_{a}(\sigma(q))^{-1} \pi(q)=s_{a}(\sigma(q))^{-1} V$ and $V \in(A ; F)$ and hence $s_{a}(\sigma(q))^{-1} \pi(q)$ $\in\left(A ; F^{0}\right)=(A)$. This shows that $\tau_{a}(q) \in U(m) \times(A)$ and also that

$$
\mu\left(\tau_{\omega}(q)\right)=(\pi(q), \sigma(q))=q
$$

There is a map $g_{\beta a}: \mathcal{U}_{a} \cap \mathcal{U}_{\beta} \rightarrow H_{A}$ such that $s_{a}(x)=s_{\beta}(x) \cdot g_{\beta a}(x)$ for $x \in \mathcal{U}_{\omega} \cap \mathcal{U}_{\beta}$. Then

$$
g_{\beta_{\infty} \circ \sigma: \subset V_{\infty} \cap \subset V_{\beta} \rightarrow H_{A}}
$$

is defined and we have

$$
\tau_{a}(q)=\tau_{\beta}(q) g_{\beta_{a}}(\sigma(q)) \quad \text { for } q \in \mathcal{V}_{a} \cap \subset V_{\beta}
$$

We define

$$
\begin{equation*}
\phi_{a}: H_{A} \times V_{a} \rightarrow \mu^{-1}\left(V_{a}\right) \tag{1.14}
\end{equation*}
$$

by

$$
\phi_{a}(h, q)=\tau_{a}(q) \cdot h .
$$

It is easy to see that $U(m) \times(A)$ is a principal fibre bundle over $S(A)$.
We have to notice here that the maps $\mu, \tau_{a}, g_{\beta_{\infty} \circ} \circ, \phi_{a}$ defined above are not only continuous but also differentiable at every simple points of the domains of these maps. Hence the pullbacks of differential forms by these maps are defined.

To simplify the notation we put

$$
\eta=\sigma^{*} \lambda \wedge \pi^{*} \xi_{B}
$$

We prove now the following lemma.
Lemma 1.1. Let θ_{A} be a left invariant form on $U(m)$ such that its restriction to the subgroup H_{A} is a left invariant volume element on H_{A} with

$$
\int_{H_{A}} \theta_{A}=1 .
$$

Let $\omega_{A}=s_{1}^{*} \theta_{A}$ be the pullback of θ_{A} to $U(m) \times(A)$ by $s_{1}: U(m) \times(A) \rightarrow U(m)$. Then we have

$$
\begin{equation*}
\int_{S(\boldsymbol{A})} \eta=\int_{\sigma(m) \times(\boldsymbol{s})} \omega_{A} \wedge \mu^{*} \eta . \tag{1.15}
\end{equation*}
$$

Proof. It is easy to see that there exists a left invariant form θ_{A} satisfying our condition. We denote by $\theta_{A}{ }^{\prime}$ the restriction of θ_{A} to H_{A}. Since H_{A} is a compact connected Lie group, every left invariant volume element is also right invariant (see [4]). The fibre E of $U(m) \times(A)$ over a point $q \in S(A)$ is the orbit of a point $u \in E$ by the right action of H_{A}. Let $i_{E}: E \rightarrow U(m) \times(A)$ be the inclusion map and $i_{u}: H_{A} \rightarrow E$ a map defined by $i_{u}(h)=u h$. Then $\left(s_{1} \circ i_{E} \circ i_{u}\right)$ $(h)=s_{1}(u h)=s_{1}(u) \cdot h=L_{s_{1}(u)} h$, where $L_{g}(g \in U(m))$ denotes the left translation of $U(m)$ by g. Pulling back θ_{A} by the map $s_{1} \circ i_{E} \circ i_{u}: H_{A} \rightarrow U(m)$ we get $i_{u}^{*}\left(i_{E}^{*} \omega_{A}\right)$. On the other hand pulling back θ_{A} by the map $H_{A} \rightarrow U(m)$ defined by $L_{s_{1}(u)} \circ i_{H}$, i_{H} being the inclusion map of H_{A} into $U(m)$, we get $\theta_{A}{ }^{\prime}$, because θ_{A} is left invariant. However these two maps $H_{A} \rightarrow U(m)$ are equal and we get

$$
\begin{equation*}
i_{u}^{*}\left(i_{E}^{*} \omega_{A}\right)=\theta_{A}^{\prime} . \tag{1.16}
\end{equation*}
$$

We now choose an open covering $\left\{V_{a}\right\}$ of $S(A)$ as we did before. To prove (1.15) it is enough to show

$$
\begin{equation*}
\int_{\mathcal{V}_{a}} \eta=\int_{\mu^{-1}\left(\mathcal{C} \mathcal{V}_{a}\right)} \omega_{A} \wedge \mu^{*} \eta \tag{1.17}
\end{equation*}
$$

for each \mathcal{V}_{a}. From now on we fix \mathcal{V}_{a} and drop the index α. We shall prove later that

$$
\begin{equation*}
\phi^{*}\left(\omega_{A} \wedge \mu^{*} \eta\right)=p_{H}^{*} \theta_{A} \wedge p_{C}^{*} \eta \tag{1.18}
\end{equation*}
$$

where $\phi=\phi_{a}$ is defined by (1.14) and p_{H} and $p_{\mathcal{V}}$ are the projections of $H_{A} \times \mathcal{V}$ onto H_{A} and \mathcal{V}. We have the commutative diagram

The integral on the right hand side of (1.17) is equal to

$$
\int_{\left.H_{A} \times C\right)} p_{H}^{*} \theta_{A} \wedge p_{C V}^{*} \eta
$$

by (1.18). Then by Fubini theorem this integral is equal to

$$
\int_{\mathcal{V}}\left\{\int_{H_{A}} \theta_{A}\right\} \eta=\int_{V} \eta
$$

and this proves (1.17). Hence to prove the lemma it remains to prove (1.18). To prove (1.18) we show that the restrictions of $\phi^{*} \omega_{A}$ and $p_{H}^{*} \theta_{H}$ on $H_{A} \times\{q\}$ on each $q \in \mathcal{V}$ are equal. For, let $u=\tau(q)$ and let E be the fibre $\mu^{-1}(q)$ over q. Then $u \in E$ and the following diagram is comutative:

where ϕ_{q} and $p_{H, q}$ are restrictions of ϕ and p_{H} on $H_{A} \times\{q\}$. The restriction of $\phi^{*} \omega_{A}$ to $H_{A} \times\{q\}$ is equal to $\phi_{u}^{*}\left(i_{E}^{*} \omega_{A}\right)$ and this is equal to $p_{H, q}^{*}\left(i_{u}^{*}\left(i_{E}^{*} \omega_{A}\right)\right)$. However by (1.16), $i_{u}^{*}\left(i_{E}^{*} \omega_{A}\right)$ is equal to $\theta_{A}{ }^{\prime}$, the restriction of θ_{A} on H_{A}. Now $p_{H, q}^{*} \theta_{A}{ }^{\prime}$ is the restriction of $p_{H}^{*} \theta_{A}{ }^{\prime}$ to $H_{A} \times\{q\}$ and this proves our assertion.

Let $q \in \mathscr{V}$ and $h \in H_{A}$ and let $\left\{x_{1}, \cdots, x_{k}\right\}$ and $\left\{y_{1}, \cdots, y_{l}\right\}$ be local coordinates around q and h respectively. We express $p^{*} \eta, p_{H}^{*} \theta_{A}$ and $\phi^{*} \omega_{A}$ locally in the form $p^{*} \eta=a(x) d x_{1} \wedge \cdots \wedge d x_{k}, p_{H}^{*} \theta_{A}{ }^{\prime}=b(y) d y_{1} \wedge \cdots \wedge d y_{l}$ and $\phi^{*} \omega_{A}=c(x, y)$ $d y_{1} \wedge \cdots \wedge d y_{l}+\omega^{\prime}$, where ω^{\prime} denotes the sum of the terms involving $d x$. Since
$p_{H}^{*} \theta_{A}=\phi^{*} \omega_{A}$ on $H \times\left\{q^{\prime}\right\}$ for every $q \in V$ we have $c(x, y)=b(y)$ and $\phi^{*} \omega_{A}=$ $p_{H}^{*} \theta_{A}+\omega^{\prime}$. However $\omega^{\prime} \wedge p^{*} \eta=0$ and hence $\phi^{*} \omega_{A} \wedge p_{C}^{*} \eta=p_{H}^{*} \theta_{A} \wedge p_{C}^{*} \eta$. However $p_{C V}=\mu^{\circ} \phi$ by (1.19) and we have $p^{*} \eta=\phi^{*}\left(\mu^{*} \eta\right)$ and $\phi^{*} \omega_{A} \wedge p_{C V}^{*} \eta=$ $\phi^{*}\left(\omega_{A} \wedge \mu^{*} \eta\right)$ and (1.18) is proved. From Lemma 1.1 and (1.12) we get

$$
d_{B}=\int_{\sigma(m) \times(\boldsymbol{A})} \omega_{A} \wedge \mu^{*} \sigma^{*} \lambda \wedge \mu^{*} \pi^{*} \xi_{B}
$$

However $\sigma \circ \mu=\pi_{F} \circ s_{1}$ and hence $\omega_{A} \wedge \mu^{*} \sigma^{*} \lambda=s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right)$. Let $\beta=\pi \circ \mu$. Then $\mu^{*} \pi^{*} \xi_{B}=\beta^{*} \xi_{B}$ and $\beta: U(m) \times(A) \rightarrow G r(p, m)$ is defined by

$$
\begin{equation*}
\beta(g, V)=g V, V \in(A), g \in U(m) \tag{1.20}
\end{equation*}
$$

Since the Schubert cell $(A)^{*}$ is a Zariski open set in (A), we can replace an integral over $U(m) \times(A)$ by an integral over $U(m) \times(A)^{*}$.

Summing up we get
Lemma 1.2. Let λ be a $U(m)$-invariant form of type $(f-r, f-r)$ on $F(A)$ and let

$$
\pi_{*}\left(\theta^{*} \lambda\right)=\sum_{|B|=|A|+r} d_{B} \cdot C(B)
$$

Then the coefficient d_{B} is given by the integral

$$
\begin{equation*}
d_{B}=\int_{\sigma(m) \times(A))^{*}} s_{1}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \beta^{*} \xi_{B} \tag{1.21}
\end{equation*}
$$

where $s_{1}: U(m) \times(A)^{*} \rightarrow U(m)$ is the projection, θ_{A} is a form on $U(m)$ difined in Lemma 1.1, the map $\beta: U(m) \times(A)^{*} \rightarrow G r(p, m)$ is defined by (1.20) and ξ_{B} is the de Rham dual of the Schubert variety (B).

In the next section we transform the integral (1.21) into an integral over $U(m) \times N(A)$, where $N(A)$ is a complex simply connected abelian Lie subgroup of $G L(\boldsymbol{m}, \boldsymbol{C})$.

2. The abelian complex Lie group acting simply transitively on

 a Schubert cell. We prove first the following elementary lemma.Lemma 2.1. A p-dimensional linear subspace V of C^{m} belongs to the $S c h u$ bert cell $(A)^{*}$ if and only if V has a basis of the form $\left\{e_{k_{1}}+v_{1}, e_{k_{2}}+v_{2}, \cdots, e_{k_{p}}+v_{p}\right\}$, where $v_{i} \in V_{k_{i}-1}^{0}$ for $i=1,2, \cdots, p$; here $A=\left\{a_{1}, \cdots, a_{p}\right\}, k_{i}=a_{i}+i, k_{0}=a_{0}=0$ and V_{k}^{0} is the subspace spanned by $\left\{e_{1}, e_{2}, \cdots, e_{k}\right\}$ for $k \geqq 1$ and $V_{0}^{0}=\{0\}$.

Proof. Suppose that V has a basis of the from $\left\{e_{k_{1}}+v_{1}, \cdots, e_{k_{p}}+v_{p}\right\}$. Then $e_{k_{j}}+v_{j} \in V_{k_{i}}^{0}$ for $j \leqq i$ and hence $\operatorname{dim} V \cap V_{k_{i}}^{0} \geqq i$. If $\operatorname{dim} V \cap V_{k_{i}}^{0}>i$, $V \cap V_{k_{i}}^{0}$ would contain a non-zero vector v which is a linear combination of
$e_{k_{l}}+v_{l}$ with $l>i$. On the other hand since $v \in V_{k_{i}}^{0}, v$ is a linear combination of $e_{1}, \cdots, e_{k_{i}}$. So we have $v=a_{1} e_{1}+\cdots+a_{k_{i}} e_{k_{i}}=b_{i+1}\left(e_{k_{i+1}}+v_{i+1}\right)+\cdots+b_{p}\left(e_{k_{p}}+v_{p}\right)$. It follows from this that $b_{p}=0$ and inductively $b_{p_{-1}}=0, \cdots, b_{i+1}=0$ and hence $v=0$, a contradiction. Hence we must have $\operatorname{dim} V \cap V_{k_{i}}^{0}=i$ for all $i=1,2, \cdots, p$. Suppose now that $k_{i}-k_{i-1}>1$. Then $k_{i}-1>k_{i-1}$ and $e_{k_{j}}+v_{j}$ with $j<i$ belongs to $V_{k_{i}-1}^{0}$ and $v_{i} \in V_{\boldsymbol{k}_{\boldsymbol{i}-1} .}^{0}$. Suppose that $\operatorname{dim} V \cap V_{k_{i}-1}^{0} \geqq i$. Since $V_{k_{i}-1}^{0} \subset V_{k}^{0}$ and $\operatorname{dim} V \cap V_{k_{i}}^{0}=i$, we would have $\operatorname{dim} V \cap V_{k_{i}-1}^{0}=i$ and so $V \cap V_{k_{i}-1}^{0}=V \cap$ $V_{k_{i} .}^{0}$ Then $e_{k_{i}}+v_{i} \in V \cap V_{k-1}^{0}$ and hence $e_{k_{i}}=\left(e_{k_{i}}+v_{i}\right)-v_{i}$ belongs to $V_{k_{i}-1}^{0}$ and this is a contradiction. Hence we have $\operatorname{dim} V \cap V_{k_{i}-1}^{0}<i$ and this shows that $V \in(A)^{*}$.

Suppose now that $V \in(A)^{*}$. Then we have $\operatorname{dim} V \cap V_{k_{1}}^{0} \geq 1$ and if $k_{1}-k_{0}$ $=k_{1}>1$, we have also $\operatorname{dim} V \cap V_{k_{1-1}}^{0}=\{0\}$. If v is a non-zero vector in $V \cap V_{k_{1}}^{0}$ we can write $v=a e_{k_{1}}+w, w \in V_{k_{1-1}}^{0}$ and $a \neq 0$, for if $a=0$, then $v=w \in V \cap V_{k_{1-1}}^{0}$ $=\{0\}$ and so $v=0$. From this we see that $V \cap V_{k_{1}}^{0}$ is one-dimensional and has a basis u_{1} of the form $u_{1}=e_{k_{1}}+v_{1}, v_{1} \in V_{k_{1-1}}^{0}$. Suppose that we have already shown that $\operatorname{dim} V \cap V_{k_{j}}^{0}=j$ and $V \cap V_{k_{j}}^{0}$ has a basis $\left\{u_{1}, \cdots, u_{j}\right\}$, where u_{s} is of the form $u_{s}=e_{k_{s}}+v_{s}, v_{s} \in V_{k_{s}-1}^{0}$, for $j=1,2, \cdots, i-1$. Consider now $V \cap V_{k_{i}}$. We have $\operatorname{dim} V \cap V_{k_{i}} \geqq i$ and if $k_{i}-k_{i-1}>1$, we have also $\operatorname{dim} V \cap V_{k_{i}-1}<i$. Then we have $\operatorname{dim} V \cap V_{k_{i}}>\operatorname{dim} V \cap V_{k_{i}-1}$, for, this is trivial in the case $k_{i}-k_{i-1}$ >1 and when $k_{i}-k_{i-1}=1$, we have $V_{k_{i}-1}^{0}=V_{k_{i-1}}^{0}$ and $\operatorname{dim} V \cap V_{k_{i-1}}^{0}=i-1$ by our assumption of induction and so we have $\operatorname{dim} V \cap V_{k_{i}}^{0}>\operatorname{dim} V \cap V_{k_{i}-1}^{0}$ also in this case. Then there is a vector $v \in V \cap V_{k_{i}}^{0}, v \notin V_{k_{i}-1}^{0}$ and we can write $v=a e_{k_{i}}+w, w \in V_{k_{i}-1}^{0}, a \neq 0$. Let $u_{i}=a^{-1} v$. Then $u_{i}=e_{k_{i}}+v_{i} . v_{i} \in V_{k_{i}-1}^{0}$ and $V \cap V_{k_{i}}^{0}$ is spanned by u_{i} and $V \cap V_{k_{i}-1}^{0}$. As we have $k_{i}-1 \geqq k_{i-1}, V_{k_{i}-1}^{0} \supset V_{k_{i-1}}^{0}$ and so $V \cap V_{k_{i-1}}^{0} \supset V \cap V_{k_{i-1}}^{0}$ and $\operatorname{dim} V \cap V_{k_{i-1}}^{0} \geqq \operatorname{dim} V \cap V_{k_{i-1}}^{0}=i-1$ and the equality holds when $k_{i}-1=k_{i-1}$. However $V \in(A)^{*}$ and we have dim $V \cap V_{k_{i-1}}^{0}<i$ when $k_{i}-1>k_{i-1}$. Hence we have always $\operatorname{dim} V \cap V_{k_{i}-1}^{0}=i-1$ and so we get $\operatorname{dim} V \cap V_{k_{i}}^{0}=i$ and $V \cap V_{k_{i}-1}^{0}=V \cap V_{k_{i-1}}^{0}$. Then $V \cap V_{k_{i}}^{0}$ is spanned by $\left\{u_{1}, \cdots, u_{i-1}, u_{i}\right\}$. Proceeding in this way we see that $\operatorname{dim} V \cap V_{k_{p}}=p$ and so $V=V \cap V_{k_{p}}^{0}$ and V has a basis $\left\{u_{1}, \cdots, u_{p}\right\}$, where each u_{i} is of the form $u_{i}=e_{k_{i}}+v_{i}$.

Subtracting a suitable linear combination of $e_{k_{j}}+v_{j}$ with $j<i$ from $e_{k_{j}}+v_{i}$ we may assume that v_{i} is a linear combination of e_{s} with the condition $s<k_{i}$, $s \neq k_{j}$ for every $j=1,2, \cdots, i-1$.

Let $M(A)$ be the set of all $m \times m$ complex matrices $u=\left(u_{s t}\right)(1 \leqq s, t \leqq m)$ satisfying the following conditions.

1) u is upper triangular, and unipotent, that is, $u_{s t}=0$ for $s>t$ and $u_{t t}=1$;
2) if $t \neq k_{i}$ for $i=1,2, \cdots, p$, then the entries of the t-th column vectors of u is zero except $u_{t t}=1$, that is, $u_{s t}=\delta_{s t}$.
3) $u_{\boldsymbol{k}_{j} \boldsymbol{k}_{i}}=0$ for $j<i$.

It is verified easily that $M(A)$ is a closed connected, simply connected abelian
subgroup of $G L(m, C)$. The Lie algebra $\mathfrak{m}(A)$ of $M(A)$ is the abelian subalgebra of $\mathfrak{g l}(m, C)$ spanned by $e_{s k_{i}}(i=1,2, \cdots, p)$, where s satisfies the condition $s<k_{i}$ and $s \neq k_{j}$ for $j=1,2, \cdots, i-1$. Here $e_{s k}$ denotes the matrix whose (s, k) entry is 1 and others are 0 . We see then that $\mathfrak{m}(A)$ is a complex abelian Lie algebra of dimension $|A|=\Sigma a_{i}$ and so $M(A)$ is a simply connected complex abelian Lie group of complex dimension $|A|$ and $M(A)$ is isomorphic to $\boldsymbol{C}^{|A|}$ as complex Lie group.

Lemma 2.2. The group $M(A)$ acts holomorphically and simply transitively on the Schubert cell $(A)^{*}$.

Proof. Let W be the p-dimensional subspace of \boldsymbol{C}^{m} spanned by $\left\{e_{k_{1}}, \cdots\right.$, $\left.e_{k_{p}}\right\}$. By Lemma 2.1, W belongs to $(A)^{*}$. Moreover if $u \in M(A)$, then $u \cdot W=$ $\left\{u e_{k_{1}}, \cdots, u e_{k_{p}}\right\}$ and $u \cdot e_{k_{i}}$ is the k_{i} th column vector of the matrix u. It follows from the definition of $M(A)$ that $u \cdot e_{k_{i}}$ is of the form $e_{k_{i}}+v_{i}$, where v_{i} is a linear combination of e_{s} with $s<k_{i}$ and $s \neq k_{j}, j<i$. By Lemma 2.1, $u W$ belongs to $(A)^{*}$. Conversely let $V \in(A)^{*}$. Then V has a basis of the form $\left\{e_{k_{1}}+v_{1}, \cdots, e_{k_{p}}+v_{p}\right\}$, where v_{i} is a linear combination of e_{s} with $s<k_{i}$ and $s \neq k_{j}, j=1, \cdots, i-1$. Let u be the $m \times m$ matrix whose t-th column vector is $e_{k_{i}}+v_{i}$ for $t=k_{i}(i=1,2, \cdots, p)$ and is e_{t} for $t \neq k_{i}$. Then $u \in M(A)$ and $V=u W$. Let $u^{\prime} \in M(A)$. Then $u^{\prime} V=\left(u^{\prime} u\right) \cdot W \in(A)^{*}$ and so $u^{\prime}(A)^{*}=(A)^{*}$. These show that the group $M(A)$ acts transitively on $(A)^{*}$ and it is clear that $M(A) \times(A)^{*} \rightarrow(A)^{*}$ defined by $(u, V) \rightarrow u V$ is holomorphic. To show that $M(A)$ acts simply transitively on $(A)^{*}$, it is enough to show that, if $u W=W$, then u is the unit matrix. This is easy to show and the lemma is proved.

Let now τ a permutation of $\{1,2, \cdots, m\}$. We associate to τ an $m \times m$ matrix u_{τ} by the condition

$$
u_{\tau} \cdot e_{i}=e_{\tau(i)}, i=1,2, \cdots, m
$$

Then u_{τ} is a unitary matrix and $\tau \rightarrow u_{\tau}$ is a representation of the permutation group.

We associate to each $A=\left\{a_{1}, \cdots, a_{p}\right\}$ a permutation σ_{A} of $\{1,2, \cdots, m\}$ as follows. Let $\left\{l_{1}, \cdots, l_{q}\right\}=\{1,2, \cdots, m\}-\left\{k_{1}, \cdots, k_{p}\right\}$ and let $l_{1}<l_{2}<\cdots<l_{q}$. We define σ_{A} by the condition

$$
\begin{align*}
& \sigma_{A}^{-1}(i)=k_{i}, 1 \leqq i \leqq p \\
& \sigma_{A}^{-1}(p+s)=l_{s}, 1 \leqq s \leqq q \tag{2.1}
\end{align*}
$$

We then have

$$
u_{\sigma_{\Lambda}}\left(e_{k_{i}}\right)=e_{i}
$$

and hence

$$
u_{\sigma_{\mathbf{A}}} W=V_{p}^{0}=\left\{e_{1}, \cdots, e_{p}\right\}
$$

We define a subgroup $N(A)$ of $G L(m, C)$ by

$$
N(A)=u_{\sigma_{\mathbf{A}}} M(A) u_{\sigma_{\boldsymbol{A}}}^{-1} .
$$

The Lie algebra $\mathfrak{n}(A)$ is then given also by

$$
\mathfrak{n}(A)=u_{\sigma_{\mathbb{A}}} \mathfrak{m}(A) u_{\sigma_{A}}^{-1}
$$

Since $N(A)$ and $M(A)$ are conjugate, $N(A)$ is also a complex, simply connected closed subgroup of $G L(m, C)$.

Lemma 2.3. The group $N(A)$ consists of all the complex $m \times m$ matrices $n=\left(n_{a, b}\right)$ of the form

$$
n=\left(\begin{array}{ll}
1 & 0 \\
n^{\prime} & 1
\end{array}\right)
$$

where $n^{\prime}=\left(n_{p+s, i}\right)(1 \leqq s \leqq q, 1 \leqq i \leqq p)$ is a $q \times p$ matrix satisfying $n_{p+s, i}=0$ for $s>a_{i}(i=1, \cdots, p)$.

The Lie algebra $\mathfrak{n}(A)$ is the complex abelian Lie subalgebra of $\mathfrak{g l}(m, C)$ spanned by $e_{p+s, i}(1 \leqq s \leqq q, 1 \leqq i \leqq p)$ such that $s \leqq a_{i}$.

Proof. To simplify the notation put $\sigma=\sigma_{A}$. We have

$$
u_{\sigma} e_{a b} u_{\sigma}^{-1}=e_{\sigma(a) \sigma(b)}
$$

and hence we have

$$
u_{\sigma} e_{l_{s} k_{i}} u_{\sigma}^{-1}=e_{p+s, i} .
$$

The Lie algebra $\mathfrak{m}(A)$ is spanned by $e_{a k_{i}}(i=1, \cdots, p)$ such that $a<k_{i}$ and $a \neq k_{j}$ for $j=1, \cdots, p-1$. Since $\{1,2, \cdots, m\}-\left\{k_{1}, \cdots, k_{p}\right\}=\left\{l_{1}, \cdots, l_{q}\right\}$, we have $a=l_{s}$ for some s and $l_{s}<k_{i}$. As $\mathfrak{n}(A)=u_{\sigma} \mathfrak{m}(A) u_{\sigma}^{-1}, \mathfrak{n}(A)$ is spanned by $e_{p+s, i}$ such that $\sigma^{-1}(p+s)<\sigma^{-1}(i)$. We show now that the condition $\sigma^{-1}(p+s)<\sigma^{-1}(i)$ is equivalent to the condition that $s \leqq a_{i}$.

We see that for any s and i such that $1 \leqq s \leqq q, 1 \leqq i \leqq p$, we have either

$$
\sigma^{-1}(i)<i+s \leqq \sigma^{-1}(p+s)
$$

or

$$
\sigma^{-1}(p+s)<i+s \leqq \sigma^{-1}(i) .
$$

Suppose that $\sigma^{-1}(p+s)<\sigma^{-1}(i)$. Then we have the second case and so $s \leqq \sigma^{-1}(i)$ $-i=k_{i}-i=a_{i}$. Suppose now that $s \leqq a_{i}$. Then $i+s \leqq k_{i}=\sigma^{-1}(i)$ and hence $\sigma^{-1}(p+s)<i+s \leqq \sigma^{-1}(i)$ and so $\sigma^{-1}(p+s)<\sigma^{-1}(i)$ and our assertion is proved. It follows from this that $\mathfrak{n}(A)$ is spanned by $\boldsymbol{e}_{p+s, i}$ satisfying the condition
$s \leqq a_{i}$. Then it is easy to see that if $X \in \mathfrak{n}(A)$, then $X^{2}=0$. Now $N(A)$ is a simply connected abelian Lie group and every matrix n in $N(A)$ is written uniquely in the form $n=\exp X$ with $X \in \mathfrak{n}(A)$. However $X^{2}=1$ and so \exp $X=1+X$. Thus n is the form $n=1+X, X \in \mathfrak{n}(A)$, and hence n is of the form stated in Lemma 2.3.

The gruop $M(A)$ is simply transitive on the Schubert cell $(A)^{*}$. It follows that $N(A)$ is then simply transitive on the Schubert cell $u_{\sigma_{A}}(A)^{*}=(A ; \widetilde{F})^{*}$, where \widetilde{F} is the flag $\left\{u_{\sigma_{A}} V_{1}^{0}, \cdots, u_{\sigma_{4}} V_{m}^{0}\right\}$. As we have $W=\left\{e_{k_{1}}, \cdots, e_{k_{p}}\right\} \in(A)^{*}$ and $V_{p}^{0}=u_{\sigma_{A}} W$, we have $V_{p}^{0} \in(A ; \widetilde{F})^{*}$. We have denoted earlier the point of $G r(p, m)$ represented by V_{p}^{0} by o. So we have $o \in(A ; \widetilde{F})^{*}$ and this is one of the reasons why we replace $M(A)$ by $N(A)$.

We have $(A)^{*} \approx(A ; \widetilde{F})^{*}$ and as $N(A)$ is simply transitive on $(A ; \widetilde{F})^{*}, N(A)$ and $(A ; \widetilde{F})^{*}$ are also biholomorphic. Hence we can identify $U(m) \times(A)^{*}$ and $U(m) \times N(A)$ by identifying $(g, n) \in U(m) \times N(A)$ to the point $\left(g, u_{\sigma_{A}}^{-1} \cdot n \cdot o\right)$ of $U(m) \times(A)^{*}$.

On the other hand we have defined the map $\beta: U(m) \times(A)^{*} \rightarrow G r(p, m)$ by $\beta(g, V)=g V$. Then, identifying $U(m) \times N(A)$ and $U(m)=(A)^{*}$ as above, the map β is identified with the map

$$
\beta: U(m) \times N(A) \rightarrow G r(p, m)
$$

such that

$$
\begin{equation*}
\beta(g, n)=g u_{\sigma_{A}}^{-1} n o \tag{2.2}
\end{equation*}
$$

We now define a map

$$
\tilde{\gamma}: U(m) \times N(A) \rightarrow G r(p, m)
$$

by

$$
\begin{equation*}
\tilde{\gamma} \cdot(g, n)=u_{\sigma_{\Lambda}} g u_{\sigma_{4}}^{-1} n o, g \in U(m), n \in N(A) \tag{2.3}
\end{equation*}
$$

Then $\tilde{\gamma}=t_{u} \circ \beta$, where t_{u} is the transformation of $\operatorname{Gr}(p, m)$ induced by the action of $u=u_{\sigma_{\Lambda}} \in U(m)$.

The integral (1.21) is transformed to the integral over $U(m) \times N(A)$ and the integrand is $s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \beta^{*} \xi_{B}$ and β is defined now by (2.2). We have $\tilde{\gamma}^{*} \xi_{B}=\beta^{*} t_{u}^{*} \xi_{B}$ and $t_{u}^{*} \xi_{B}=\xi_{B}$ because ξ_{B} is invariant by $U(m)$. Hence $\beta^{*} \xi_{B}=$ $\tilde{\gamma}^{*} \xi_{B}$. We now define a map

$$
\gamma: U(m) \times N(A) \rightarrow G L(m, C)
$$

by

$$
\begin{equation*}
\gamma(g, n)=u_{\sigma_{\Delta}} g u_{\sigma_{\Delta}}^{-1} n, g \in U(m), n \in N(A) \tag{2.4}
\end{equation*}
$$

and let π_{G} be the projection of $G L(m, C)$ onto $G r(p, m)$ defined by (1.8). Then
we have $\tilde{\boldsymbol{\gamma}}=\pi_{G} \circ \gamma$ and $\tilde{\boldsymbol{\gamma}}^{*} \xi_{B}=\gamma^{*} \pi_{G}^{*} \xi_{B}$. Then from Lemma 1.2 we obtain

Lemma 2.4. We have

$$
\begin{equation*}
d_{B}=\int_{\sigma(m) \times N(\Lambda)} s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \gamma^{*} \pi_{G}^{*} \xi_{B}, \tag{2.5}
\end{equation*}
$$

where $\gamma: U(m) \times N(A) \rightarrow G r(p, m)$ is defined by (2.4) and $\pi_{G}: G L(m, C) \rightarrow G r(p, m)$ is defined by (1.8).

In the next section we shall get information about ξ_{B} and $\pi_{G}^{*} \xi_{B}$.
3. Invariant differential forms on the Grassmann manifold and the de Rham dual of a Schubert variety. We write the Grassmannian $G r(p, m)$ in the form

$$
G r(p, m)=G L(m, C) / P
$$

where P is the subgroup of $G L(m, C)$ consisting of the matrices of the form

$$
\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right), a \in G L(p, C), b \in G L(q, C) .
$$

The Lie algebra \mathfrak{p} of P is the subalgebra of $\mathfrak{g l}(\boldsymbol{m}, \boldsymbol{C})$ consisting of the matrices of the form

$$
\left(\begin{array}{ll}
A & C \\
0 & B
\end{array}\right), A \in \mathfrak{g l}(p, C), B \in \mathfrak{g l}(q, C) .
$$

Let \mathfrak{n}^{+}denote the abelian subalgebra of $\mathfrak{g l}(m, \boldsymbol{C})$ consisting of all matrices of the form

$$
X=\left(\begin{array}{ll}
0 & 0 \\
D & 0
\end{array}\right)
$$

where D is a complex $q \times p$ matrix. Then we have

$$
\mathfrak{g l}(m, \boldsymbol{C})=\mathfrak{n}^{+} \oplus \mathfrak{p}
$$

Let o denote the origin of $\operatorname{Gr}(m, p)$. The point o is the point represented by the p-dimensional subspace $V^{0}=\left\{e_{1}, \cdots, e_{p}\right\}$ of C^{m} and hence it is the coset P in our coset space representation of $\operatorname{Gr}(p, m)$. Every tangent vector at o is the tangent vector at $t=0$ to an orbit: $t \rightarrow(\exp t X)(o)$ of the origin o by a 1-parameter subgroup $\exp t X(X \in \mathfrak{g l}(m, \boldsymbol{C}))$ of $G L(m, \boldsymbol{C})$ and the tangent vector to the orbit at o is the zero vector if and only if $X \in P$. Hence by mapping X $\in \mathfrak{g l}(m, C)$ to the tangent vector to the orbit (ext $t X)(o)$ at $t=0$ we get a real linear map from $\mathfrak{g l}(m, C)$ onto the (real) tangent space $T_{0}(\operatorname{Gr}(p, m))$ whose kernel is \mathfrak{p}. Thus we can identify $T_{0}(\operatorname{Gr}(p, m))$ with $\mathfrak{g l}(m, C) / \mathfrak{p}$ as real vector space.

On the other hand, $T_{0}(G r(p, m))$ has the complex structure J_{0} which comes from the complex structure of $\operatorname{Gr}(p, m)$ and $\mathfrak{g l}(m, C) / \mathfrak{p}$ is also a complex vector space and we see easily that the above identification of $T_{0}(\operatorname{Gr}(p, m))$ and $\mathfrak{g l}(m, C) / \mathfrak{p}$ is compatible with these complex structures, that is, the identification map is complex linear isomorphism of these two vector spaces regarded as complex vector spaces.

On the other hand we have $\mathfrak{g l}(\boldsymbol{m}, \boldsymbol{C})=\mathfrak{n}^{+} \oplus \mathfrak{p}$ and we can identify canonically $\mathfrak{g l}(m, C) / \mathfrak{p}$ with \mathfrak{n}^{+}. Hence we identify \mathfrak{n}^{+}with $T_{0}(\operatorname{Gr}(p, m))$.

From now on the action of an element $g \in G L(m, C)$ on $\operatorname{Gr}(p, m)$ will be denoted by t_{g}. Let $h \in P$. Then $t_{h}(o)=o$ and hence the differential t_{n}^{T} of t_{h} at o defines a non-singular linear transformation $\rho(h)$ of $T_{0}(G r(p, m))$ and $h \rightarrow \rho(h)$ is a representation of the group P wihch we call the isotropic representation of P at o. Let us denote by φ_{s} the orbit $t_{\exp s X}(o)$, where $X \in \mathfrak{n}^{+}$and denote by $\varphi_{0}{ }^{\prime}$ the tangent vector of the orbit φ_{s} at $s=0$. Then $\rho(h)\left(\varphi_{0}{ }^{\prime}\right)$ is the tangent vector to the curve $\psi_{s}=t_{h}\left(\varphi_{s}\right)$ at $s=0$. Since $h^{-1} \in P$, we have $t_{h^{-1}}(o)=o$ and hence $\psi_{s}=t_{h}\left(\varphi_{s}\right)=t_{h}\left(t_{\exp s X}(o)\right)=t_{h} \cdot t_{\exp s X} \cdot t_{h^{-1}}(o)=t_{\exp s h X h^{-1}}(o)$. Hence $\psi_{0}{ }^{\prime}$ is identified with the image of $h X h^{-1} \in \mathfrak{g l}(m, C)$ in \mathfrak{n}^{+}by the projection $\mathfrak{g l}(m, C)$ $\rightarrow \mathfrak{n}^{+}$. Let now

$$
h=\left(\begin{array}{cc}
h_{1} & h_{3} \\
0 & h_{2}
\end{array}\right) \in P, X=\left(\begin{array}{ll}
0 & 0 \\
D & 0
\end{array}\right) \in \mathfrak{n}^{+} .
$$

Then $h X h^{-1}$ is of the form

$$
h X h^{-1}=\left(\begin{array}{ll}
* & * \\
h_{2} D h_{1}^{-1} & *
\end{array}\right)
$$

and hence the image of $h X h^{-1}$ in \mathfrak{n}^{+}is of the form

$$
X^{\prime}=\left(\begin{array}{ll}
0 & 0 \\
h_{2} D h_{1}^{-1} & 0
\end{array}\right)
$$

Thus, identifying \mathfrak{n}^{+}with $T_{0}(G r(p, m))$, the isotropic representation ρ of P is given by

$$
\begin{gather*}
\rho(h) X=X^{\prime}, \quad \text { where } \\
h=\left(\begin{array}{ll}
h_{1} * \\
0 & h_{2}
\end{array}\right), X=\left(\begin{array}{ll}
0 & 0 \\
D & 0
\end{array}\right), X^{\prime}=\left(\begin{array}{ll}
0 & 0 \\
h_{2} D h_{1}^{-1} & 0
\end{array}\right) . \tag{3.1}
\end{gather*}
$$

We notice here that, as we see from (3.1), the isotropic representation ρ is essentially a representation of $G L(p, \boldsymbol{C}) \times G L(q, \boldsymbol{C})$ which is a subgroup of P. When we regard \mathfrak{n}^{+}as a vector space over \boldsymbol{R}, we denote this vector space by \mathfrak{n}_{R}^{+}. We regard also $T_{0}(G r(p, m))$ as a vector space over \boldsymbol{R} with complex
structure J_{0} defined by the complex structure of $\operatorname{Gr}(p, m)$.
Consider the set F of all \boldsymbol{R}-linear maps of \mathfrak{n}_{R}^{+}into \boldsymbol{C}. We consider \boldsymbol{F} as a vector space over C and we can identify F with $\left(\mathfrak{n}_{R}^{+}\right)^{*} \otimes_{R} C$. If $f \in F$, we denote by \bar{f} the map $X \rightarrow \overline{f(X)}$. The dual space $\left(\mathfrak{n}^{+}\right)^{*}$ of the complex vector space \mathfrak{n}^{+}is the subspace of F consisting of all $f \in F$ such that $f(i X)=i f(X)$ for all $X \in \mathfrak{n}_{R}^{+}$. We put $\left(\mathfrak{n}^{+}\right)^{*}=F^{+}$. We denote by F^{-}the complex subspace of F consisting of all $g \in F$ such that $g(i X)=-i g(X)$ for all $X \in \mathfrak{n}_{R}^{+}$. Then $F^{-}=\bar{F}^{+}=\left\{\bar{f} \mid \in F^{+}\right\}$and we have

$$
F=F^{+} \oplus F^{-}
$$

Notice that, identifying \mathfrak{n}_{R}^{+}with $T_{0}(\operatorname{Gr}(p, m)), F$ is identified with $T_{0}^{*}(\operatorname{Gr}(p, m))$ $\otimes_{R} \boldsymbol{C}$, the vector space of all complex 1-froms of $\operatorname{Gr}(p, m)$ at o, and F^{+}(resp. F^{-}) corresponds to the vector space of 1 -forms of type $(1,0)$ (resp. type $(0,1)$). Analogously $\dot{\Lambda} F$ is identified with the vector space of r-forms at o. If $h \in P$ and $\zeta \in \dot{\Lambda} F$, we define $\rho^{*}(h) \zeta \in \Lambda^{\gamma} F$ by

$$
\begin{equation*}
\left(\rho^{*}(h) \zeta\right)\left(X_{1}, \cdots, X_{r}\right)=\zeta\left(\rho\left(h^{-1}\right) X_{1}, \cdots, \rho\left(h^{-1}\right) X_{r}\right) \tag{3.2}
\end{equation*}
$$

where $X_{i} \in \mathfrak{n}_{R}^{+}$and we regard ζ as an alternating r-linear form on \mathfrak{n}_{R}^{+}. We call ρ^{*} the isotropic representation of P on ΛF.

Let ω be an r-form on $G r(p, m)$ which is invariant by the action of $U(m)$ on $\operatorname{Gr}(p, m)$, i.e. $t_{g}^{*} \omega=\omega$ for all $g \in U(m)$. In particular $t_{n}^{*} \omega=\omega$ for $h \in U(p)$ $\times U(q)=P \cap U(m)$. This implies that for any tangent vector u_{1}, \cdots, u_{r} at o, we have $\omega_{0}\left(\rho(h) u_{1}, \cdots, \rho(h) u_{r}\right)=\omega_{0}\left(u_{1}, \cdots, u_{r}\right)$ for all $h \in U(p) \times U(q)$ and this is equivalent to the condition that

$$
\begin{equation*}
\rho^{*}(h) \omega_{0}=\omega_{0}, h \in U(p) \times U(q) \tag{3.3}
\end{equation*}
$$

Conversely let ω_{0} be an r-form at o satisfying (3.3) and let $x \in \operatorname{Gr}(p, m)$. There exists then $g \in U(m)$ such that $t_{g}(x)=0$. Then $t_{g}^{*} \omega_{0}=\omega_{x}$ is an r-form at x and the condition (3.3) guarantees that ω_{x} is independent of the choice of g such that $t_{g}(x)=o$. Then we can define an r-from ω on $\operatorname{Gr}(p, m)$ by $x \rightarrow \omega_{x}$ and ω is obviously $U(m)$-invariant. This establishes an isomorphism between the vector space of $U(m)$-invariant r-forms on $\operatorname{Gr}(p, m)$ and the vector space of all elements $\zeta \in \Lambda \dot{\Lambda} F$ satisfying $\rho^{*}(h) \zeta=\zeta$ for all $h \in U(p) \times U(q)$.

We call an element ζ of ΛF an invariant element if $\rho^{*}(h) \zeta=\zeta$ for all $h \in U(p)$ $\times U(q)$.

Thus a $U(m)$-invariant form on $G r(p, m)$ is identified with an invariant element of ΛF.

Now let

$$
h_{t}=\left(\begin{array}{ll}
e^{i t} I_{p} & 0 \\
0 & e^{-i t} I_{q}
\end{array}\right), t \in \boldsymbol{R} .
$$

Then we have

$$
\rho\left(h_{t}^{-1}\right) X=e^{2 i t} X
$$

for all $X \in \mathfrak{n}_{R}^{+}$. Let $\zeta \in F^{+}=\left(\mathfrak{n}^{+}\right)^{*}$. Then ζ is a complex linear function on \mathfrak{n}^{+} and hence

$$
\left(\rho\left(h_{t}\right) \zeta\right)(X)=\zeta\left(e^{2 i t} X\right)=e^{2 i t} \zeta(X)
$$

and hence

$$
\rho^{*}\left(h_{t}\right) \zeta=e^{2 i t} \zeta, \zeta \in F^{+}
$$

Analogously we get

$$
\rho^{*}\left(h_{t}\right) \xi=e^{-2 i t} \zeta, \zeta \in F^{+}
$$

Let $\left\{\zeta_{1}, \cdots, \zeta_{N}\right\}\left(N=p q=\operatorname{dim}_{C} n^{+}\right)$be a basis of F^{+}. Then $\left\{\xi_{1}, \cdots, \zeta_{N}\right\}$ is a basis of $F^{-}=\bar{F}^{+}$and since $F=F^{+} \oplus F^{-},\left\{\zeta_{1}, \cdots, \zeta_{N}, \xi_{1}, \cdots, \xi_{N}\right\}$ is a basis of F and every element $\zeta \in{ }_{\Lambda}^{\prime} \mathcal{\Lambda} F$ is written uniquely in the form

$$
\begin{gathered}
\zeta=\sum_{u+v=r} \zeta_{u, v}, \\
\zeta_{u, v}=\sum_{I, J} a_{I, J} \zeta_{I} \wedge \xi_{J}
\end{gathered}
$$

where $I=\left\{i_{1}, \cdots, i_{u}\right\}, i<\cdots<i_{u}, J=\left\{j_{1}, \cdots, j_{v}\right\}, j_{1}<\cdots<j_{v}$ and $\zeta_{I}=\zeta_{i_{1}} \wedge \cdots \wedge \zeta_{i_{u}}$, $\xi_{I}=\xi_{j_{1}} \wedge \cdots \wedge \xi_{j_{v}}$. Now $\rho^{*}(h) \zeta=\sum_{w, v} \sum_{I, J} a_{I, J} \rho^{*}(h) \zeta_{I} \wedge \rho^{*}(h) \zeta_{J}$ and $\rho^{*}(h) \zeta_{I}=\rho^{*}(h) \zeta_{i_{1}}$ $\wedge \cdots \wedge \rho^{*}(h) \zeta_{i_{u}}, \rho^{*}(h) \zeta_{J}=\rho^{*}(h) \zeta_{j_{1}} \wedge \cdots \wedge \rho^{*}(h) \xi_{j_{r}} . \quad$ Hence we have $\rho^{*}\left(h_{t}\right) \zeta=\sum_{u+v=r}$ $e^{i(u-v) t} \zeta_{u, v}$. If ζ is an invariant element, then we have $e^{i(u-v) t}=1$ for all t and for, u, v such that $\zeta_{u, v} \neq 0$. Hence we have $\zeta_{u, v}=0$ for $u \neq v$. Hence, if ζ is an invariant, then r is even and

$$
\zeta=\zeta_{u, u}, 2 u=r
$$

Thus we have proved that, if $\zeta \in \Lambda ⿱ F$ is invariant, then $r=2 u$ and ζ is of type (u, u). It follows in particular that if ω is an invariant r-form on $\operatorname{Gr}(p, m)$, then ω is of type (u, u) with $r=2 u$.

Let us denote by $F_{u, v}$ the subspace of ΛF consisting all elements of type (u, v) and by I the subspace of all invariant elements of ΛF. Then we have

$$
I=\sum_{u} I_{u, u}, I_{u, u}=F_{u, u} \cap I
$$

To investigate the space $I_{u, u}$ we proceed as follows. We identify $\stackrel{u}{\Lambda} F^{+}$with
the subspace $F_{u, 0}$ of ΛF and hence ΛF^{+}with $\sum_{u} F_{u, 0}$. Then $\stackrel{*}{\Lambda} F^{+}$and ΛF^{+} are invariant subspaces of ΛF, i.e. $\rho^{*}(h) \cdot \stackrel{*}{\Lambda} F^{+} \subset \stackrel{*}{\Lambda} F^{+}$for all $h \in U(p) \times U(q)$. Analogously we identify $\stackrel{\ddot{\Lambda}}{\Lambda} F^{-}$with the subspace $F_{0, u}$ of ΛF and ΛF^{+}with $\Sigma F_{0, u}$. Then $\stackrel{*}{\Lambda} F^{-}$and ΛF^{-}are also invariant subspaces of ΛF. The conjugate C linear isomorphism $\zeta \rightarrow \bar{\xi}$ from F^{+}onto F^{+}is extended to a conjugate \boldsymbol{C}-linear isomorphism $\stackrel{\mu}{\Lambda} F^{+} \rightarrow \stackrel{\mu}{\Lambda} F^{-}$. Moreover, if $\eta \in \stackrel{\mu}{\Lambda} F^{+}$and $h \in U(p) \times U(q)$, then we have

$$
\overline{\rho^{*}(h) \eta}=\rho^{*}(h) \bar{\eta} .
$$

Since $U(p) \times U(q)$ is compact, there is a positive definite invariant hermitian inner product $\langle\cdot, \cdot \cdot\rangle$ on F^{+}such that

$$
\left\langle\rho^{*}(h) \zeta, \rho^{*}(h) \eta\right\rangle=\langle\zeta, \eta\rangle
$$

for all $h \in U(p) \times U(q)$. We can extend the inner product to a positive definite invariant hermitian inner product on $\stackrel{\Delta}{\Lambda} F^{+}$. We then define a non-degenerate C-bilinear function (\cdot, \cdot) on $\left(\stackrel{\mu}{\Lambda} F^{+}\right) \times\left(\stackrel{\mu}{\Lambda} F^{-}\right)$by

$$
(\zeta, \bar{\eta})=\langle\zeta, \eta\rangle .
$$

Then we have

$$
\left(\rho^{*}(h) \zeta, \rho^{*}(h) \bar{\eta}\right)=(\zeta, \bar{\eta})
$$

for all $h \in U(p) \times U(q)$.
Using this bilinear function, we define a complex linear isomorphism from $\operatorname{Hom}\left(\stackrel{\mu}{\Lambda} F^{+}, \stackrel{\mu}{\Lambda} F^{+}\right)$onto $F_{u, u}=\left(\stackrel{\mu}{\Lambda} F^{+}\right) \wedge\left(\stackrel{\mu}{\Lambda} F^{-}\right)$in the following way. Let $\left\{\zeta_{I}\right\}$ be a basis of $\stackrel{\mu}{\Lambda} F^{+}$and $S \in \operatorname{Hom}\left(\stackrel{\mu}{\Lambda} F^{+}, \stackrel{\mu}{\Lambda} F^{+}\right)$. For any $\zeta \in \stackrel{\mu}{\Lambda} F^{-}$we have $S(\zeta)=$ $\Sigma S_{I}(\zeta) \zeta_{I}$ and S_{I} is a linear function on $\stackrel{\ddot{\Lambda}}{\Lambda} F^{+}$. Then there is a unique $\bar{\eta}_{I} \in \stackrel{\mu}{\Lambda} F^{-}$ such that $S_{I}(\zeta)=\left(\zeta, \bar{\eta}_{I}\right)$ for all $\zeta \in \stackrel{u}{\Lambda} F^{+}$. We define

$$
\varphi(S)=\sum_{I} \zeta_{I} \wedge \bar{\eta}_{I}
$$

The map $\varphi: \operatorname{Hom}\left(\stackrel{\mu}{\Lambda} F^{+}, \stackrel{\mu}{\Lambda} F^{+}\right) \rightarrow F_{u, u}$ is an isomorphism of complex vestor spaces and the definition is independent of the choice of the basis $\left\{\zeta_{I}\right\}$.

Moreover we have

$$
\begin{equation*}
\varphi\left(\rho^{*}(h) \cdot S \cdot \rho^{*}\left(h^{-1}\right)\right)=\rho^{*}(h) \varphi(S) \tag{3.4}
\end{equation*}
$$

for all $h \in U(p) \times U(q)$.
It follows from (3.4) that the space $I_{u, u}$ of invariant elements in $F_{u, u}$ is the
image by φ of the subspace of $\operatorname{Hom}\left(\stackrel{\sim}{\Lambda} F^{+}, \stackrel{\mu}{\Lambda} F^{+}\right)$consisting of all S such thrt

$$
\rho^{*}(h) S=S \cdot \rho^{*}(h)
$$

for all $h \in U(p) \times U(q)$.
To study these endomorphisms S of $\stackrel{\mu}{\Lambda} F^{+}$we decompose $\stackrel{\mu}{\Lambda} F^{+}$into direct sum of irreducible invariant subspaces and use the Schur's Lemma. As we shall see later $\stackrel{\mu}{\Lambda} F^{+}$decomposes into direct sum of irreducible invariant subspaces in the following way. There is a $1-1$ correspondence between the set $\{A\}$ with the condition $|A|=u$ and the irreducible invariant subspaces $\left\{F_{A}\right\}$ of $\stackrel{\mu}{\Lambda} F^{+}$and if $A \neq A^{\prime}$, then F_{A} and $F_{A^{\prime}}$ are not isomorphic as $U(p) \times U(q)-$ module and we have

$$
\stackrel{u}{\Lambda} F^{+}=\sum_{\Lambda,|\Delta|=u} F_{A}
$$

and F_{A} and $F_{A^{\prime}}$ are orthogonal for $A \neq A^{\prime}$. The irreducible invariant subspace F_{A} is characterized as follows. The matrices $e_{p+s, 1}(1 \leqq i \leqq p, 1 \leqq s \leqq q)$ form a basis of \mathfrak{n}^{+}over \boldsymbol{C}. Let $\left\{\zeta_{p+s, i}\right\}$ be the dual basis of $F^{+}=\left(\mathfrak{n}^{+}\right)^{*}$. Let

$$
\begin{equation*}
\zeta_{A}=\Lambda_{s \leq a_{i}} \zeta_{p+s, i} \tag{3.5}
\end{equation*}
$$

where the exterior product extends over the pairs (i, s) such thrt $a_{i}>0$ and $s \leqq a_{i}$. Since $|A|=u, \zeta_{A}$ is the product of u elements $\zeta_{p+s, i}$ with $s \leqq a_{i}$ and hence $\zeta_{A} \in \stackrel{u}{\Lambda} F^{+}$and in fact ζ_{A} is an element of F_{A} which is a weight vector for the lowest weight Λ_{A} of F_{A} and F_{A} is completely determined by ζ_{A} (see Theorem 2, Appendix). Now let S be an endomorphism of $\stackrel{\sim}{\Lambda} F^{+}$such that $\rho^{*}(h) S=S \rho^{*}(h)$ for all h. Then the kernel of $S \mid F_{A}$ and the image $S\left(F_{A}\right)$ are both invariant subspaces of F_{A} and since F_{A} is irreducible, we have either $S\left(F_{A}\right)=\{0\}$ or else $S\left(F_{A}\right) \neq\{0\}$ and $S \mid F_{A}$ is an isomorphism of F_{A} onto $S\left(F_{A}\right)$ as $U(p) \times U(q)$-module. In the second case, $S\left(F_{A}\right)=F_{A^{\prime}}$ for some A^{\prime} with $\left|A^{\prime}\right|=u$ and as $F_{A} \cong F_{A^{\prime}}$ and we have $A=A^{\prime}$. Thus for each A, we have either $S\left(F_{A}\right)=\{0\}$ or $S\left(F_{A}\right)=F_{A}$ and, in the case $S\left(F_{A}\right)=F_{A}$, by Schur's Lemma, $S \mid F_{A}=c_{A} \cdot 1$, where $c_{A} \in C$ and 1_{A} is the identity map of F_{A}. Thus we have

$$
S=\sum_{A,||| |=r} c_{A} \cdot P_{A}, c_{A} \in \boldsymbol{C}
$$

where P_{A} is the projection operator of $\stackrel{\mu}{\Lambda} F^{+}$with respest to the direct sum decomposition $\stackrel{\mu}{\Lambda} F^{+}=\Sigma F_{A}$.

Let $\left\{\zeta_{i}(A) \mid 1 \leqq i \leqq m_{A}, m_{A}=\operatorname{dim}_{C} F_{A}\right\}$ be an orthonormrl basis of F_{A}. Since $F_{A} \perp F_{A^{\prime}}$ for $A \neq A^{\prime},\left\{\zeta_{i}(A)\right\}_{i, A}$ is an orthonormal basis for $\stackrel{u}{\Lambda} F^{+}=\Sigma F_{A}$ and we
have $P_{A}(\zeta)=\sum_{i}\left\langle\zeta, \zeta_{i}(A)\right\rangle \zeta_{i}(A)=\sum_{i}\left(\zeta, \overline{\left.\zeta_{i}(A)\right)} \zeta_{i}(A)\right.$. Hence we get $\varphi\left(P_{A}\right)=\sum_{i} \zeta_{i}(A)$ $\wedge \xi_{i}(A)$ and

$$
\varphi(S)=\sum_{A,|A|=r} c_{A} \sum_{i} \zeta_{i}(A) \wedge \xi_{i}(A)
$$

and we have proved the following lemma.
Lemma 3.1. The complex vector space $I_{u, u}$ of invariant elements of type (u, u) is spanned by ω_{A}^{0} with $|A|=u$, where

$$
\omega_{A}^{0}=\sum_{i=1}^{m_{A}} \zeta_{i}(A) \wedge \xi_{i}(A)
$$

and $\left\{\zeta_{1}(A), \cdots, \zeta_{m_{A}}(A)\right\}$ is an orthonormal basis of the invariant irreducible susbpace F_{A} of $\stackrel{\mu}{\Lambda} F^{+}$. The invariants ω_{A}^{0} are linearly independent.

We now discuss the decomposition of $\stackrel{u}{\Lambda} F^{+}$. The matrices $\left\{e_{p+s, i} \mid 1 \leqq i \leqq p\right.$, $1 \leqq s \leqq q\}$ form a basis of \mathfrak{n}^{+}and $\left\{\zeta_{p+s, i}\right\}$ is the dual basis of $F^{+}=\left(\mathfrak{n}^{+}\right)^{*}$. Let $\zeta \in F^{+}$and let

$$
m_{i, s}=\zeta\left(e_{p+s, i}\right)
$$

Then $\zeta=\sum_{i, s} m_{i, s} \zeta_{p+s, i}$.
Let

$$
h=\left(\begin{array}{ll}
h_{1} & \\
& h_{2}
\end{array}\right) \in U(p) \times U(q)
$$

and $h_{1}=\left(a_{i j}\right)(1 \leqq i, j \leqq p)$ and $h_{2}^{-1}=\left(b_{p+t, p+s}\right)(1 \leqq s, t \leqq q)$. Let

$$
m_{i, s}^{\prime}=\left(\rho^{*}(h) \zeta\right)\left(e_{p+s, i}\right)
$$

Then $m_{i, s}^{\prime}=\zeta\left(h^{-1} \cdot e_{p+s, i} h\right)=\sum_{t, j} a_{i j} b_{p+t, p+s} \zeta\left(e_{p+t, j}\right)$ and we have

$$
m_{i, s}^{\prime}=\sum_{j, t} a_{i j} m_{j, t} b_{p+t, p+s}
$$

Now let M be the complex vector space consisting of all $p \times q$ complex matrices. The group $U(p) \times U(q)$ operates on M by

$$
T(h) m=h_{1} m \cdot h_{2}^{-1}, m \in M
$$

and $h \rightarrow T(h)$ is a representation of $U(p) \times U(q)$. Now the map $\zeta \rightarrow m=\left(m_{i, s}\right)$ defines a vector space isomorphism of F^{+}onto M. Moreover the above computation shows that this is an isomorphism of $U(p) \times U(q)$-module. The representation of $U(p) \times U(q)$ on the exterior algebra ΛM is discussed in the Appendix and since ΛF^{+}and ΛM are isomorphic as $U(p) \times U(q)$-module, we obtain from Theorem 2 of Appendix the decomposition of $\stackrel{u}{\Lambda} F^{+}=\Sigma F_{A}$.

Finally we notice that $\zeta_{p+s, i} \in F^{+}$corresponds to the matrix $e_{i, p+s} \in M$.
Let ω be a $U(m)$-invariant form of type (u, u) on $\operatorname{Gr}(p, m)$. Identifying the vector space of (u, u)-forms at o with $F_{u, u}$, the value ω_{0} of ω at o is identified with an invariant element $\in I_{u, u}$ and the map $\omega \rightarrow \omega_{0}$ is a vector space isomorphism of the space of $U(m)$-invariant (u, u)-forms onto $I_{u, u}$.

We denote by ω_{B} the $U(m)$-invariant (u, u)-form on $\operatorname{Gr}(p, m)$ which corresponds to the basis element ω_{B}^{0} of $I_{u, u}$, where $|B|=u$. We are going to show that ω_{B} is essentially the dual of the Schubert variety (B), that is, we show that

$$
\int_{(C)} \omega_{B}=0 \quad \text { for } B \neq C
$$

Now as $G L(m, C)$ is a holomorphic prinicpal bundle over $G r(p, m)$ of projection π_{G} and group P, the pullbacks $\tilde{\omega}=\pi_{G}^{*} \omega$ of $U(m)$-invariant (u, u) forms ω on $\operatorname{Gr}(p, m)$ are characterized by the following properties:

1) $\tilde{\omega}$ is of type (u, u);
2) $i(Y) \tilde{\omega}=0$ for any left invariant vector field on $G L(m, C)$ belonging to the subalgebra \mathfrak{p} of $\mathfrak{g l}(\boldsymbol{m}, \boldsymbol{C})$;
3) $R_{h}^{*} \tilde{\omega}=\tilde{\omega} \quad$ for all $h \in P$;
4) $L_{g} \tilde{\omega}=\tilde{\omega}$ for all $g \in U(m)$.

To simplify our notation we write $\mathfrak{g l}$ instead of $\mathfrak{g l}(m, C)$ and we denote this by $\mathfrak{g l}_{\boldsymbol{R}}$ when we regard $\mathfrak{g l}$ as a vector space over \boldsymbol{R}. Then $\mathfrak{g l}_{\boldsymbol{R}}^{\boldsymbol{\sim}} \otimes_{\boldsymbol{R}} \boldsymbol{C}$ is regarded as the vector space of all \boldsymbol{C}-valued left invariant 1 -forms on $G L(m, C)$. On the other hand we have $\mathfrak{g l}=\mathfrak{n}^{+} \oplus \mathfrak{p}$ and $F=\left(\mathfrak{n}_{R}^{+}\right)^{*} \otimes_{R} C$. Hence we can identify F with the vector space of all left invariant 1-forms ζ on $G L(m, C)$ such that $i(Y) \zeta=0, Y \in \mathfrak{p}$. In particular F^{+}(resp. F^{-}) is the space of holomorphic (resp. conjugate holomorphic) left invariant 1-forms ζ on $G L(m, C)$ satisfying $i(Y) \zeta=0, Y \in \mathfrak{p}$.

We choose an orthonormal basis $\left\{\zeta_{i}(A)\right\}$ of F_{A}. Then

$$
\left\{\zeta_{i}(A) \wedge \xi_{j}\left(A^{\prime}\right)\right\}\left(1 \leqq i \leqq m_{A}, 1 \leqq j \leqq m_{A^{\prime}} ;|A|=\left|A^{\prime}\right|=u\right)
$$

form an orthonormal basis of $F_{u, u}=\left(\stackrel{\mu}{\Lambda} F^{+}\right) \wedge\left(\stackrel{u}{\Lambda} F^{-}\right)$.
We identify $F_{u, u}$ with the vector space of all left invariant (u, u)-forms η on $G L(m, C)$ satsifying $i(Y) \eta=0, Y \in \mathfrak{p}$.

If ω is a $U(m)$-invariant form of type (u, u) on $\operatorname{Gr}(p, m)$, then $\tilde{\omega}=\pi_{G}^{*} \omega$ satisfies $i(Y) \tilde{\omega}=0$ for all $Y \in \mathfrak{p}$ and we can write $\tilde{\boldsymbol{\omega}}$ uniquely in the form

$$
\begin{equation*}
\tilde{\omega}=\Sigma a\left(i, A ; j, A^{\prime}\right) \zeta_{i}(A) \wedge \xi_{j}\left(A^{\prime}\right) \tag{3.6}
\end{equation*}
$$

where $a\left(i, A ; j, A^{\prime}\right)$ are functions on $G L(m, C)$.
Since $\zeta_{i}(A) \wedge \zeta_{j}\left(A^{\prime}\right)$ are left invariant and $L_{v}^{*} \tilde{\omega}=\tilde{\omega}$ for all $y \in U(m)$, we get

$$
\begin{equation*}
a\left(i, A ; j, A^{\prime}\right)(y g)=a\left(i, A ; j, A^{\prime}\right)(g) \tag{3.7}
\end{equation*}
$$

for all $g \in G L(m, C)$ and $y \in U(m)$.
To study the effect of the left translation L_{g} by $g \in G L(m, C)$ on $\tilde{\omega}$, we need the following lemma.

Lemma 3.2. Every $g \in G L(m, C)$ is written uniquely in the form

$$
\begin{equation*}
g=u(g) \cdot b(g) \tag{3.8}
\end{equation*}
$$

where $u(g)$ is unitary and $b(g)$ is upper triangular. This decomposition is called the Iwasawa decomposition of g.

This lemma is a special case of a more general theorem of Iwasawa. However, in our special case the lemma is proved as follows. Let g_{1}, \cdots, g_{m} be column vectors of g. Then we can construct an orthonormal basis $\left\{u_{1}, \cdots, u_{m}\right\}$ of \boldsymbol{C}^{m} (by Schmidt method) such that

$$
u_{k}=a_{1 k} g_{1}+a_{2 k} g_{2}+\cdots+a_{k k} g_{k}, a_{k k} \neq 0
$$

for $k=1,2, \cdots, m$, where $a_{i j}(i \leqq j)$ are complex numbers. Let $u(g)$ the unitary matrix whose column vectors are u_{1}, \cdots, u_{m} and $b(g)^{-1}$ the upper triangular matrix whose (i, k)-entry $(i \leqq k)$ is $a_{i k}$. Then we have $u(g)=g \cdot b(g)^{-1}$ and hence $g=u(g)$. $b(g)$ and $b(g)$ is also upper triangular. The uniqueness is easy to prove.

From (3.7) and (3.8) we get

$$
\begin{equation*}
a\left(i, A ; j, A^{\prime}\right)(g)=a\left(i, A ; j, A^{\prime}\right)(b(g)) \tag{3.9}
\end{equation*}
$$

Thus these functions are completely determined by their values on B, B denoting the group of all non-singualr upper triangular matrices. Let $b \in B$. Then

$$
L_{b}^{*} \tilde{\omega}=\Sigma\left(a\left(i, A ; j, A^{\prime}\right) \circ L_{b}\right) \zeta_{i}(A) \wedge \xi_{j}\left(A^{\prime}\right)
$$

and taking the value of both sides at the unit matrix 1 , we get

$$
\begin{equation*}
\left(L_{b}^{*} \tilde{\omega}\right)_{1}=\Sigma a\left(i, A ; j, A^{\prime}\right)(b) \zeta_{i}(A)_{1} \wedge \zeta_{j}\left(A^{\prime}\right)_{1} \tag{3.10}
\end{equation*}
$$

We have $\pi_{G} \circ L_{b}=t_{b} \circ \pi_{G}$, where t_{b} denotes the action of $b \in B$ on $\operatorname{Gr}(p, m)$. Then $L_{b}^{*} \tilde{\omega}=L_{b}^{*}\left(\pi_{b}^{*} \omega\right)=\pi_{G}^{*}\left(t_{b}^{*} \omega\right)$ and $\pi_{G}(1)=o$ and hence $\left(L_{b}^{*} \tilde{\omega}\right)_{1}=\left(t_{b}^{*} \omega\right)_{0} \circ \pi_{G}^{T}$, where π_{G}^{T} denotes the surjective linear map $\Lambda T_{1}(G L(m, C)) \rightarrow \Lambda T_{0}(G r(p, m))$ induced by the differential of π_{G} at 1 . However $T_{1}(G L(m, C))$ is canonically identified with $\mathfrak{g l}_{R}$ and the kernel of $\pi_{G}^{T}: \mathfrak{g l}_{x} \rightarrow T_{0}(G r(p, m))$ is equal to \mathfrak{p} as discussed at the beginning of this sestion and π_{G}^{T} induces an isomorphism of \mathfrak{n}^{+}onto $T_{0}(\operatorname{Gr}(p, m))$. Therefore identifying $T_{0}(\operatorname{Gr}(p, m))$ with \mathfrak{n}_{R}^{+}as we did before, we have $\pi_{G}^{T} Z=X$, where $Z \in \mathfrak{g l}^{l}$ and X is the \mathfrak{n}^{+}-component of X with respect to the decomposition $\mathfrak{g l}=\mathfrak{n}^{+} \oplus \mathfrak{p}$. On the other hand, since B is a subgroup of P, we have $t_{b}(o)=0$ and hence $\left(t_{b}^{*} \omega\right)_{0}\left(X_{1}, \cdots, X_{2 u}\right)=\omega_{0}\left(\rho(b) X_{1}, \cdots, \rho(b) X_{2 u}\right)\left(X_{i} \in \mathfrak{n}^{+}\right)$, where
ρ is the isotropic representation of P. Hence $\left(t_{b}^{*} \omega\right)_{0}=\rho^{*}\left(b^{-1}\right) \omega_{0}$ by (3.2). Now let $\omega=\omega_{B},|B|=u$. Then $\omega_{0}=\omega_{B}^{0}=\sum_{u^{i}} \zeta_{i}(B) \wedge \zeta_{i}(B)$ by Lemma 3.1. Notice that we regard here $\zeta_{i}(B)$ as an element of $\stackrel{\ddot{\Lambda}}{\Lambda} F^{+}$not as a differential form on $G L(m, C)$. Then $\rho^{*}\left(b^{-1}\right) \omega_{A}^{0}=\sum_{i} \rho^{*}\left(b^{-1}\right) \zeta_{i}(B) \wedge \rho^{*}\left(b^{-1}\right) \bar{\zeta}_{i}(B)$. Thus, for any $Z_{1}, \cdots, Z_{2 u} \in \mathfrak{g l}$, we have $\left(L_{b}^{*} \omega_{B}\right)_{1}\left(Z_{1}, \cdots, Z_{2 u}\right)=\left(t_{*}^{b} \omega_{B}\right)_{0}\left(X_{1}, \cdots, X_{2 n}\right)=\sum_{i}\left(\left(\rho^{*}\left(b^{-1}\right) \zeta_{i}(B)\right) \wedge\left(\rho^{* i}\left(b^{-1}\right)\right.\right.$ $\left.\left.\xi_{i}(B)\right)\right)\left(X_{1}, \cdots, X_{2 u}\right)$, where X_{i} is the \mathfrak{n}^{+}-component of $Z_{i} \in \mathfrak{g l}$. On the other hand from (3.10) we get $\left(L_{b}^{*} \omega_{A}\right)_{1}\left(Z_{1}, \cdots, Z_{2 u}\right)=\Sigma a\left(i, A ; j, A^{\prime}\right)(b)\left(\zeta_{i}(A)_{1} \wedge \zeta_{j}\left(A^{\prime}\right)_{1}\right)$ $\left(Z_{1}, \cdots, Z_{2 u}\right)=\Sigma a\left(i, A ; j, A^{\prime}\right)(b)\left(\zeta_{i}(A) \wedge \zeta_{j}\left(A^{\prime}\right)\left(X_{1}, \cdots, X_{2 u}\right)\right.$. Hence we obtain

$$
\begin{equation*}
\Sigma a\left(i, A ; j, A^{\prime}\right)(b) \zeta_{1}(A) \wedge \xi_{j}\left(A^{\prime}\right)=\Sigma \rho^{*}\left(b^{-1}\right) \zeta_{i}(B) \wedge \rho^{*}\left(b^{-1}\right) \xi_{i}(B) \tag{3.11}
\end{equation*}
$$

Now F_{B} is also invariant by the isotropic representation ρ^{*} of P on ΛF, because F_{B} is invariant by $\rho^{*}(g)$ for all $g \in G L(p, \boldsymbol{C}) \times G L(q, \boldsymbol{C})$ and, as we see from (3.1) and (3.2), for $h \in \mathfrak{p}$, there is $g \in G L(p, C) \times G L(q, C)$ such that $\rho^{*}(h)=\rho^{*}(g)$. Therefore we can writ

$$
\begin{equation*}
\rho^{*}\left(b^{-1}\right) \zeta_{i}(B)=\sum_{k} \rho_{k i}\left(B ; b^{-1}\right) \zeta_{k}(B) \tag{3.12}
\end{equation*}
$$

and since $\left.\rho^{*}\left(b^{-1}\right) \zeta_{j}(B)\right)=\overline{\rho^{*}\left(b^{-1}\right) \zeta_{j}(B)}$, we have also

$$
\rho^{*}\left(b^{-1}\right) \xi_{i}(B)=\sum_{l} \bar{\eta}_{l i}\left(B ; b^{-1}\right) \bar{\zeta}_{l}(B)
$$

Hence

$$
\begin{aligned}
& \sum_{i} \rho^{*}\left(b^{-1}\right) \eta_{i}(B) \wedge \rho^{*}\left(b^{-1}\right) \xi_{i}(B) \\
= & \sum_{k, l}\left(\sum_{i} \rho_{k i}\left(B ; b^{-1}\right) \bar{\rho}_{l i}\left(B ; b^{-1}\right)\right) \zeta_{k}(B) \wedge \xi_{l}(B)
\end{aligned}
$$

and it follows from (3.11) that

$$
\begin{aligned}
& a\left(i, A ; j, A^{\prime}\right)(b)=0, \text { if } A \neq B \text { or } A^{\prime} \neq B \\
& a(i, B ; j, B)(b)=\sum_{k} \rho_{i k}\left(B ; b^{-1}\right) \bar{\rho}_{j k}\left(B ; b^{-1}\right) .
\end{aligned}
$$

Hence we have proved the following lemma.
Lemma 3.3. The pullback $\tilde{\omega}_{B}=\pi_{G}^{*} \omega_{B}$ is of the form

$$
\tilde{\omega}_{B}=\sum_{i, j} a_{i j} \zeta_{i}(B) \wedge \bar{\zeta}_{j}(B)
$$

where the functions $a_{i j}$ on $G L(m, C)$ is given by

$$
a_{i j}(g)=\sum_{k} \rho_{i k}\left(B ; b(g)^{-1}\right) \bar{\rho}_{j k}\left(B ; b(g)^{-1}\right)
$$

We now integrate ω_{B} over the Schubert variety (C) where $|C|=|B|=u$. This integral is equal to the integral of ω_{B} over the Schubert cell $(C)^{*}$. However as we have seen in $\S 2$ there is a biholomorphic map α from the simply connected complex abelian group $N(C)$ onto $(C)^{*}$ given by $\alpha(n)=u_{\sigma}^{-1} \cdot n \cdot o\left(\sigma=\sigma_{C}\right)$ and we
have the following commutative diagram:

where $j=L \bar{u}^{10} i_{N}, i_{N}$ being the inclusion map of $N(C)$ into $G L(m, C)$. Hence we get $\int_{(C)^{*}} \omega_{B}=\int_{(C)^{*}} i^{*} \omega_{B}=\int_{N(C)} \alpha^{*}\left(i^{*} \omega_{B}\right)=\int_{N(C)} j^{*} \tilde{\omega}_{B}=\int_{N(C)} i_{N}^{*} L_{u_{\sigma}}^{*}-1 \tilde{\omega}_{B}$. However, we have u_{σ}^{-1} $\in U(m)$ and $L_{x}^{*} \tilde{\omega}_{B}=\tilde{\omega}_{B}$ for all $x \in U(m)$ and hence $L_{u}^{*-1} \tilde{\omega}_{B}=\tilde{\omega}_{B}$ and we get

$$
\begin{equation*}
\int_{(O)^{*}} \omega_{B}=\int_{N(\sigma)} i_{N}^{*} \tilde{\omega}_{B} \tag{3.13}
\end{equation*}
$$

Now the Lie algebra $\mathfrak{n}(C)\left(C=\left\{c_{1}, \cdots, c_{p}\right\}\right)$ is spanned by $e_{p+s, i}$ with the condition $s \leqq c_{i}$ (see §2). Hence $i_{N}^{*} \zeta_{p+s, i}=0$ for $s>c_{i}$ and $\left\{i_{N}^{*} \zeta_{p+s, i}, s \leqq c_{i}, i=1,2, \cdots, p\right\}$ form a basis of left invariant holomorphic 1-forms on the complex abelian Lie group $N(C)$. Every form belonging to $\stackrel{\sim}{\Lambda} F^{+}$is a linear combination of forms of the type

$$
\begin{equation*}
\zeta_{p+s_{1}, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{u}, i_{u}} \tag{3.14}
\end{equation*}
$$

and the pullback by i_{N} of these froms are all zero except for ζ_{C}, where ζ_{C} is defined by (3.5) and ζ_{C} is a weight vector for the lowest weight Λ_{C} of F_{C}. Suppose now that $i_{N}^{*} \tilde{\omega}_{B} \neq 0$. By Lemma 3.3, we must have $i_{N}^{*} \zeta_{i}(B) \neq 0$ for
some i. Now $\zeta_{i}(B) \in F_{B}$ and F_{B} is a subspace of $\stackrel{u}{\Lambda} F^{+}$. Then $\zeta_{i}(B)$ is a linear combination of form of the type (3.14). Since $i_{N}^{*}\left(\zeta_{i}(B)\right) \neq 0$, ζ_{C} must appear in the linear expression of $\zeta_{i}(B)$. We can conclude from this that $B=C$. For, we may assume that $\zeta_{i}(B) \in F_{B}$ is a weight vector for some weight Λ_{1} of F_{B}. Then for any diagonal $m \times m$ matrix $H, \zeta_{i}(B)$ is an eigen-vector for the eigen value $\Lambda_{1}(H)$ of the linear transformation $\rho^{*}(H)$ of $\stackrel{u}{\Lambda} F^{+}$, where ρ^{*} denotes the representation of the Lie algebra $\mathfrak{g l}(p, \boldsymbol{C}) \times \mathfrak{g l}(p, \boldsymbol{C})$ induced by the representation ρ^{*} of $G L(p, \boldsymbol{C}) \times G L(q, C)$. We see easily also that each element of the form of (3.14) is also an eigen-vector of $\rho^{\prime *}(H)$. Hence, when we express $\zeta_{i}(B)$ as a linear combination of elements of the type (3.13), only elements corresponding to the eigen-value $\Lambda_{1}(H)$ appears with non-zero coefficient and ζ_{C} appears with non-zero coefficient. However ζ_{C} is a weight vector for the weight Λ_{C} and hence ζ_{C} is an eigenvector of $\rho^{\prime *}(H)$ for the eigenvalue $\Lambda_{C}(H)$. Hence we have $\Lambda_{1}(H)=\Lambda_{C}(H)$ for any diagonal matrix H and this shows that $\Lambda_{1}=\Lambda_{C}$ and thus Λ_{C} is a weight of F_{B}. However, the eigenvector space for
the weight Λ_{C} is a one-dimensional subspace of $\stackrel{\mu}{\Lambda} F^{+}$(see Appendix) and contained in F_{C}. Since $\Lambda_{1}=\Lambda_{C}$ and $\zeta_{1}(B)$ is a weight vector for Λ_{1}, we get $\zeta_{1}(B) \in F_{C}$. Thus $F_{C} \cap F_{B} \neq(0)$ and hence $F_{C}=F_{B}$. This implies $B=C$ because $C \rightarrow F_{C}$ is bijective. Thus, if $i_{N}^{*} \tilde{\omega}_{B} \neq 0$, we get $B=C$. Hence, if $C \neq B$, we have $i_{N}^{*} \tilde{\omega}_{B}=0$ and from (3.13) it follows that

$$
\int_{(C)} \omega_{B}=0, C \neq B,|B|=|C|=u .
$$

The Schubert varieties (C) with $|C|=u$ form a basis of the $2 u$-dimensional homology group and ω_{B} is not cohomologous to zero. Then the value v_{B} of the integral of ω_{B} over (B) can not be zero and $\xi_{B}=v_{B}^{-1} \omega_{B}$ is the dual of the Schubert variety (B).

Thus we have proved th following
Lemma 3.4. Let ω_{B} be the invariant ($\left.u, u\right)$-form on $\operatorname{Gr}(p, m)$ corresponding to the invariant element ω_{B}° of type (u, u) in $F_{u, u}$. Then

$$
\xi_{B}=v_{B}^{-1} \omega_{B}
$$

is the dual of the Schubert variety (B), where v_{B} is the value of the integral of ω_{B} over (B).

Remark. Lemma 3.4 is a special case of a more general result of Kostant $[3, b]$. We can express v_{B} explicitly by an integral of a certain function on $\boldsymbol{C}^{\boldsymbol{u}}$ using Lemma 3.3 and (3.13).
4. The final step of the proof of Theorem. In Lemma 2.4 we have an expression of the number d_{B} by the integral (2.5) and the integrand involves the form $\gamma^{*} \pi_{G}^{*} \xi_{B}$. By Lemma 3.4 we have $\xi_{B}=v_{B}^{-1} \omega_{B}$ and hence $\gamma^{*} \pi_{G}^{*} \xi_{B}$ $=v_{B}^{-1} \gamma^{*} \tilde{\omega}_{B}, \tilde{\omega}_{B}=\pi_{G}^{*} \omega_{B}$ and we have an information about $\tilde{\omega}_{B}$ by Lemma 3.3. We study now $\gamma^{*} \tilde{\omega}_{B}$ using Lemma 3.3; the map $\gamma: U(m) \times N(A) \rightarrow G L(m, C)$ is defined by

$$
\gamma(g, n)=u_{\sigma_{\Lambda}} g u_{\sigma_{A}}^{-1} n, g \in U(m), n \in N(A)
$$

To simplify our notation we put $\sigma=\sigma_{A}$. We define two maps $I\left(u_{\sigma}\right)$: $U(m) \times$ $N(A) \rightarrow U(m) \times N(A)$ and $\nu: U(m) \times N(A) \rightarrow G L(m, C)$ by

$$
I\left(u_{\sigma}\right)(g, n)=\left(u_{\sigma} g u_{\sigma}^{-1}, n\right)
$$

and

$$
\nu(g, n)=g n
$$

Then we have

$$
\gamma=\nu \circ I\left(u_{\sigma}\right)
$$

To study the differentials of these maps at $(1, n)$, where 1 is the unit matrix, we identify the tangent vactor space of $U(m) \times N(A)$ at $(1, n)$ with $\mathfrak{n}(m) \times \mathfrak{n}(A)$, $\mathfrak{u}(\mathfrak{m})$ and $\mathfrak{n}(A)$ denoting the Lie algebra of $U(m)$ and $N(A)$ respectively. The elements of these Lie algebras will be regarded as left invariant vector fields on $G L(m, C)$ in a canonical way. Then a tangent vector at $(1, n)$ is a pair $\left(X_{1}, Y_{n}\right)$ where $X \in \mathfrak{l}(m)$ and $Y \in \mathfrak{n}(A)$. We see easliy that

$$
I\left(u_{\sigma}\right)^{T}\left(X_{1}, Y_{n}\right)=\left(\left(\operatorname{Ad}\left(u_{\sigma}\right) X\right)_{1}, Y_{n}\right)
$$

and

$$
\nu^{T}\left(X_{1}, Y_{n}\right)=\left(A d\left(n^{-1}\right) X_{n}\right)+Y_{n}
$$

Since $\boldsymbol{\gamma}^{\boldsymbol{T}}=\boldsymbol{\nu}^{\boldsymbol{T}} \circ I\left(u_{\sigma}\right)^{\boldsymbol{I}}$, we get

$$
\begin{equation*}
\gamma^{T}\left(X_{1}, Y_{n}\right)=\left(A d\left(n^{-1}\right) A d\left(u_{\sigma}\right) X\right)_{n}+Y_{n} \tag{4.1}
\end{equation*}
$$

Let $\left\{\theta_{\omega}\right\}\left(\alpha=1,2, \cdots, m^{2}\right)$ be a basis of left invariant real 1-forms on $U(m)$. Let $\zeta_{p+s, i}$ be the left invariant 1 -form on $G L(m, C)$ defined in §3. We have seen that if $s>a_{i}, i_{N}^{*} \zeta_{p+s, i}=0$ and that $i_{N}^{*} \zeta_{p+s, i}$ and $i_{N}^{*} \zeta_{p+s, i}$ with the condition $s \leqq a_{i}$ form a basis of left invariant complex 1 -forms on $N(A)$. We denote by s_{1} and s_{2} the projections of $U(m) \times N(A)$ onto $U(m)$ and $N(A)$ respectively. Then $\left\{s_{1}^{*} \theta_{a}\right.$, $\left.s_{2}^{*}\left(i_{N}^{*} \zeta_{p+s, i}\right), s_{2}^{*}\left(i_{N}^{*} \zeta_{p+s, i}\right)\right\}\left(a=1,2, \cdots, m^{2}, s \leqq a_{i}, i=1,2, \cdots, p\right)$ form a bsis of left invariant 1 -forms on the the group $U(m) \times N(A)$.

Let now ζ be a left invariant 1 -form on $G L(m, C)$. Then we can write the pullback $\gamma^{*} \zeta$ in the form

$$
\begin{equation*}
\gamma^{*} \zeta=\sum_{\omega} f_{\infty} \cdot s_{1}^{*} \theta_{\infty}+\Sigma g_{s, i} s_{2}^{*} i_{N}^{*} \zeta_{p+s, i}+\Sigma h_{s, i} i_{2}^{*} i_{N}^{*} \xi_{p+s, i} \tag{4.2}
\end{equation*}
$$

where $f_{s}, g_{s, i}$ and $h_{s, i}$ are complex valued functions on $U(m) \times N(A)$. We shall show that $g_{s, i}$ and $h_{s, i}$ are constant and that

$$
\left\{\begin{array}{l}
f_{w}(g, n)=f_{w}(1, n), \text { for all } g \in U(m) \tag{4.3}\\
f_{w}(1, n)=\zeta_{n}\left(\operatorname{Ad}\left(n^{-1}\right) \operatorname{Ad}\left(u_{\sigma}\right) X_{\infty}\right)
\end{array}\right.
$$

where $\left\{X_{\alpha}\right\}$ is the basis of the Lie algebra $\mathfrak{n}(m)$ such that $\theta_{\alpha}\left(X_{\beta}\right)=\delta_{\alpha \beta}$ and in the above formula we regard X_{a} as a left invariant vector field on $G L(m, \boldsymbol{C})$.

To see these, we consider the left translation $L_{(g, 1)}$ of $U(m) \times N(A)$, where $g \in U(m)$. Then we have $s_{1} \circ L_{(g, 1)}=L_{g} \circ s_{1}, s_{2} \circ L_{(g, 1)}=s_{2}$ and $\gamma \circ L_{(g, 1)}=L_{g^{\prime} \circ \gamma,}$ with $g^{\prime}=u_{\sigma} g u_{\sigma}^{-1}$. Since ζ and θ_{c} are left invariant, we get $L^{*}{ }_{(g, 1)}\left(\gamma^{*} \zeta\right)=\gamma^{*} \zeta$, $L^{*}{ }_{(g, 1)}\left(s_{1}^{*} \theta_{a}\right)=s_{1}^{*} \theta_{a}$ and also $L^{*}{ }_{(g, 1)} s_{2}^{*} i_{N}^{*} \zeta_{p+s, i}=s_{2}^{*} i_{N}^{*} \zeta_{p+s, i}$. Then from (4.2) we get $f_{\infty} \circ L_{(g, 1)}=f_{\alpha}, g_{s, i} \circ L_{(g, 1)}=g_{s, i}$ and $h_{s, i} \circ L_{(g, 1)}=h_{s, i}$ and these mean that we have

$$
\begin{equation*}
f_{w}(g, n)=f_{w}(1, n), g_{s, i}(g, n)=g_{s, i}(1, n), h_{s, i}(g, n)=h_{s, i}(1, n) \tag{4.4}
\end{equation*}
$$

for any $g \in U(m)$.
We get from (4.1) that

$$
\left(\gamma^{*} \zeta\right)_{(1, n)}\left(X_{1}, Y_{n}\right)=\zeta_{n}\left(A d\left(n^{-1}\right) A d\left(u_{\sigma}\right) X\right)+\zeta(Y)
$$

and we also have $\left(s_{1}^{*} \theta_{a}\right)_{(1, n)}\left(X_{1}, Y_{n}\right)=\theta_{w}(X)$ and $s_{2}^{*} i_{N}^{*} \zeta_{p+s, i}\left(X_{1}, Y_{n}\right)=\zeta_{p+s, i}(Y)$. Then we get from (4.2) that

$$
\begin{align*}
& \sum_{\alpha} f_{\alpha}(1, n) \theta_{\alpha}(X)+\Sigma g_{s, i}(1, n) \zeta_{p+s, i}(Y)+\Sigma h_{s, i}(1, n) \xi_{p+s, i}(Y) \tag{4.5}\\
= & \zeta_{n}\left(A d\left(n^{-1}\right) \operatorname{Ad}\left(u_{\sigma}\right) X\right)+\zeta(Y) .
\end{align*}
$$

Notice that since X and Y are left invariant vector fields and $\theta_{\alpha}, \zeta_{p+s, i}$ and $\zeta_{p+s, i}$ are also left invariant 1-forms, $\theta_{\infty}(X), \zeta_{p+s, i}(Y)$ and $\zeta_{p+s, i}(Y)$ are constant.

Letting $X=0$ in (4.5) we get

$$
\begin{equation*}
\zeta(Y)=\Sigma g_{s, i}(1, n) \zeta_{p+s, i}(Y)+\Sigma h_{s, i}(1, n) \xi_{p+s, i}(Y) \tag{4.6}
\end{equation*}
$$

for all $Y \in \mathfrak{n}(A)$. Since $e_{p+s, j}$ and $i e_{p+s, j}\left(i^{2}=-1\right)$ with the condition $s \leqq a_{j}$ $(j=1,2, \cdots, p)$ form a basis over \boldsymbol{R} of $\mathfrak{n}(A)$, letting $Y=e_{p+s, i}$ and $Y=i e_{p+s, i}$ respectively in (4.6), we get $\zeta\left(e_{p+s, j}\right)=g_{s, j}(1, n)+h_{s, j}(1, n)$ and $\zeta\left(i e_{p+s, j}\right)=i g_{s, j}$ $(1, n)-i h_{s, j}(1, n)$ and hence $g_{s, j}(1, n)=\left\{\zeta\left(e_{p+s, j}\right)-i \zeta\left(i e_{p+s, j}\right)\right\} / 2$ and $h_{s, j}(1, n)$ $=\left\{\zeta\left(e_{p+s, j}\right)+i \zeta\left(i e_{p+s, j}\right)\right\} / 2$ and hence combined with (4.4), we see that $g_{s, j}$ and $h_{s, j}$ are constant. Then since (4.6) holds for any $Y \in \mathfrak{n}(A)$ we obtain also

$$
i_{N}^{*} \zeta=\Sigma g_{s, i} i_{N}^{*} \zeta_{p+s, i}+\Sigma h_{s, i} i_{N}^{*} \zeta_{p+s, i}
$$

and hence the second term on the right hand side of (4.2) is equal to $s_{2}^{*}\left(i_{N}^{*} \zeta\right)$.
Now letting $Y=0$ and $X=X_{\omega}$ in (4.5) we get $f_{\omega}(1, n)=\zeta_{n}\left(\operatorname{Ad}\left(n^{-1}\right) \operatorname{Ad}\left(u_{\sigma}\right) X_{\infty}\right)$ and this, together with (4.4) proves (4.3). Thus we have shown that, for any left invariant 1 -form ζ on $G L(m, C)$, we have

$$
\begin{equation*}
\gamma^{*} \zeta=\sum_{\alpha} f_{\omega} s_{1}^{*} \theta_{\infty}+s_{2}^{*}\left(i_{N}^{*} \zeta\right) \tag{4.7}
\end{equation*}
$$

and the function f_{∞} satisfies (4.3).
We consider now the pullback by γ of a left invariant u-form η on $G L(m, C)$ of the form

$$
\begin{equation*}
\eta=\zeta_{p+s_{1}, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{u}, i_{u}} \tag{4.8}
\end{equation*}
$$

We say that a form on $U(m) \times N(A)$ is of type (a, b) if it is a linear combination of forms of the type $s_{1}^{*}(\theta) \wedge s_{2}^{*}(\xi)$, where θ is a left invariant a-form on $U(m)$ and ξ is a left invariant b-form on $N(A)$. The exterior product of a form of type (a, b) and a form of type $\left(a^{\prime}, b^{\prime}\right)$ is a form of type $\left(a+a^{\prime}, b+b^{\prime}\right)$.

It follows from (4.7) that if $s>a_{i}$, then $\gamma^{*} \zeta_{p+s, i}$ is of type (1, 0), because
$i_{N}^{*} \zeta_{p+s, i}=0$, and that if $s \leqq a_{i}$, then $\gamma^{*} \zeta_{p+s, i}$ is a sum of a form of type $(1,0)$ and a form of type (0,1).

We denote by u_{1} (resp. u_{2}) the numbers of factors $\zeta_{p+s_{k}, i_{k}}$ in (4.8) such that $s_{k}>a_{i_{k}}$ (resp. $s_{k} \leqq a_{i_{k}}$). Then

$$
u=u_{1}+u_{2}
$$

Assume that $u \geqq|A|$ and let

$$
u=|A|+r, \quad r \geqq 0
$$

Since $|A|$ is equal to the number of 1 -forms $\zeta_{p+s, i}$ satisfying $s \leqq a_{i}$, we have $u_{2} \leqq|A|$ and since $u_{1}+u_{2}=|A|+r$, we have also

$$
u_{1} \geqq r
$$

and the equality holds if and only if $u_{2}=|A|$.
We have then

$$
\begin{equation*}
\gamma^{*} \eta=\sum_{a+b=u_{2}} \eta_{\left(a+u_{1}, b\right)} \tag{4.9}
\end{equation*}
$$

where $\eta_{\left(a+u_{1}, b\right)}$ is a form of type $\left(a+u_{1}, b\right)$.
Analogously if $\bar{\eta}^{\prime}$ is of the form

$$
\begin{equation*}
\bar{\eta}^{\prime}=\xi_{p+t_{1}, j_{1}} \wedge \cdots \wedge \xi_{p+t_{u}, j_{u}} \tag{4.10}
\end{equation*}
$$

we have

$$
\begin{equation*}
\gamma^{*} \bar{\eta}^{\prime}=\sum_{a^{\prime}+b^{\prime}=u_{2}^{\prime}} \bar{\eta}^{\prime}\left(a^{\prime}+u_{1}^{\prime}, b^{\prime}\right) \tag{4.11}
\end{equation*}
$$

where $\tilde{\eta}^{\prime}\left(a^{\prime}+u_{1}{ }^{\prime}, b^{\prime}\right)$ is of type $\left(a^{\prime}+u_{1}{ }^{\prime}, b^{\prime}\right)$ and $u_{1}{ }^{\prime}$ (resp. $\left.u_{2}{ }^{\prime}\right)$ is the number of the factors in (4.11) satisfying the condition $t_{k}>a_{j_{k}}$ (resp. $t_{k} \leqq a_{j_{k}}$). Then we have also $u=u_{1}{ }^{\prime}+u_{2}{ }^{\prime}, u_{1}{ }^{\prime} \geqq r, u_{2}{ }^{\prime} \leqq|A|$.

We now consider the pullback $\gamma^{*} \tilde{\omega}_{B}$ and the integrand $s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \gamma^{*} \pi_{G}^{*} \xi_{B}$ of the integral (2.5) which is equal to $v_{B}^{-1} s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \gamma^{*} \tilde{\omega}_{B}$. Here λ is a $U(m)$ invariant form of type $(f-r, f-r)$ on $F(A)=U(m) / H_{A}$ with $f=\operatorname{dim}_{C} F(A)$ and θ_{A} is a left invariant form on $U(m)$ defined in Lemma 1.1 and the degree of θ_{A} is equal to $\operatorname{dim} H_{A}$. Since $2 f=m^{2}-\operatorname{dim} H_{A}, \theta_{A} \wedge \pi_{F}^{*} \lambda$ is a left invariant form on $U(m)$ of degree $m^{2}-2 r$, where $m^{2}=\operatorname{dim} U(m)$. Hence $s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right)$ is a form of type $\left(m^{2}-2 r, 0\right)$ on $U(m) \times N(A)$. The form $\tilde{\omega}_{B}$ on $G L(m, C)$ is of type (u, u) and

$$
u=|B|=|A|+r .
$$

Lemma 4.1. Let η and $\bar{\eta}^{\prime}$ be left invariant forms on $G L(m, C)$ of the form (4.8) and (4.10) respectively. Suppose that $s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \gamma^{*} \eta \wedge \gamma^{*} \bar{\eta}^{\prime} \neq 0$. Then we have $u_{1}=u_{1}{ }^{\prime}=r$ and $u_{2}=u_{2}{ }^{\prime}=|A|$.

Proof. Put $\xi=s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right)$. By (4.9) and (4.11), $\xi \wedge \gamma^{*} \eta \wedge \gamma^{*} \bar{\eta}^{\prime}$ is a sum of $\xi \wedge \eta_{\left(a+u_{1}, b\right)} \wedge \bar{\eta}_{\left(a^{\prime}+u_{1}, b\right)}$ and these forms are of type (c, d), where

$$
c=m^{2}-2 r+a+a^{\prime}+u_{1}+u_{1}^{\prime}, d=b+b^{\prime}
$$

and these are non-zero only if $c=m^{2}=\operatorname{dim} U(m)$ and $d=2|A|=2 \operatorname{dim}_{C} N(A)$. Since one of these forms is non-zero, we have $-2 r+a+a^{\prime}+u_{1}+u_{1}^{\prime}=0$. However we have $u_{1} \geqq r$ and $u_{1}^{\prime} \geqq r$ and a and a^{\prime} are non-negative. Hence we get $u_{1}=u_{1}{ }^{\prime}=r$ and $a=a^{\prime}=0$. However $u=u_{1}+u_{2}=u_{1}{ }^{\prime}+u_{2}{ }^{\prime}=|A|+r$ and so we have $u_{2}=u_{2}^{\prime}=|A|$.

If η verifies the condition $u_{1}=|A|, \eta$ is of the form

$$
\begin{equation*}
\eta= \pm \zeta_{p+s_{1}, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{r}, i_{r}} \wedge \zeta_{A} \tag{4.12}
\end{equation*}
$$

with $s_{k}>a_{i_{k}}$ for $k=1, \cdots, r$, where ζ_{A} is defined by (3.5).
Analogously, if $\bar{\eta}^{\prime}$ verifies the condition $u_{1}^{\prime}=|A|, \bar{\eta}^{\prime}$ is of the form

$$
\begin{equation*}
\bar{\eta}^{\prime}= \pm \bar{\xi}_{p+t_{1}, j_{1}} \wedge \cdots \wedge \xi_{p+t_{r}, j_{r}} \wedge \zeta_{A} . \tag{4.13}
\end{equation*}
$$

with $t_{k}>j_{k}$ for $k=1, \cdots, r$. Hence we can state Lemma 4.1 in the following form.

Lemma 4.2. Let η and $\bar{\eta}^{\prime}$ be left invariant u-forms on $G L(m, C)$ defined by (4.8) and (4.10) respectively. If $s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \gamma^{*}\left(\eta \wedge \bar{\eta}^{\prime}\right)$ is non-zero, then η and $\bar{\eta}^{\prime}$ are of the form (4.12) and (4.13) respectively.

Now by Lemma 3.3, $\tilde{\omega}_{B}$ is of the form

$$
\begin{equation*}
\tilde{\omega}_{B}=\Sigma a_{i j} \zeta_{i}(B) \wedge \xi_{j}(B), \tag{4.14}
\end{equation*}
$$

where $a_{i j}$ are functions on $G L(m, C)$ defined in Lemma 3.3 and $\left\{\zeta_{i}(B)\right\}$ is an orthonormal basis of F_{B}. However we don't need to assume here that $\left\{\zeta_{i}(B)\right\}$ is orthonormal, because if we replace $\left\{\zeta_{i}(B)\right\}$ by another basis, then the matrix $\left(a_{i j}\right)$ is simply multiplied by constant matrices and this does not disturb our following study. We choose here a basis $\left\{\zeta_{i}(B)\right\}$ in the following way. Since F_{B} is an irreducible $G L(p, \boldsymbol{C}) \times G L(q, \boldsymbol{C})$-module with respect to the isotropic representation ρ^{*} of $G L(p, C) \times G L(q, C)$ and since ζ_{B} is the weight vector for the lowest weight Λ_{B} of F_{B}, F_{B} is spanned by ζ_{B} and elements of the form

$$
\begin{equation*}
\rho^{\prime *}\left(e_{a_{1}}\right) \cdots \rho^{\prime *}\left(e_{\omega_{t}}\right) \zeta_{B} \quad(l \geqq 0), \tag{4.15}
\end{equation*}
$$

where $\rho^{* *}$ is the representation of the Lie algebra $\mathfrak{g l l}^{l}(p, \boldsymbol{C}) \times \mathfrak{g}^{l}(q, \boldsymbol{C})$ defined by ρ^{*} and $\alpha_{1}, \cdots, \alpha_{l}$ are simple roots and $e_{x_{i}} \in \mathfrak{g l}(p, \boldsymbol{C}) \times \mathfrak{g l}(q, \boldsymbol{C})$ is a root vector for the simple root α_{i} (see Appendix).

Let $\zeta_{1}(B)=\zeta_{B}$ and let $\zeta_{2}(B), \cdots, \zeta_{m_{B}}(B), m_{B}=\operatorname{dim}_{C} F_{B}$ be the linearly independent elements of the form (4.15). Each $\zeta_{k}(B)$ is then a weight vector for a weight Λ_{k} of F_{B} and we number $\zeta_{2}(B), \zeta_{3}(B), \cdots$ in such a way that we
have $\Lambda_{B}=\Lambda_{1}<\Lambda_{2} \leqq \Lambda_{3} \leqq \cdots$. Since each $\zeta_{k}(B)$ is of the form (4.15) for $k \geqq 2$, $\zeta_{k}(B)$ is of the form

$$
\begin{equation*}
\zeta_{k}(B)=\rho^{\prime *}\left(e_{a}\right) \xi \tag{4.16}
\end{equation*}
$$

where $\xi=\rho^{\prime *}\left(e_{\omega_{2}}\right) \cdots \rho^{\prime *}\left(e_{\alpha_{i}}\right) \zeta_{B}$ and ξ is a weight vector for the weight $\Lambda_{k}-\alpha$, where α is a simple root (see Lemma 1 of Appendix).

From now on we assume that

$$
s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \gamma^{*} \tilde{\omega}_{B} \neq 0
$$

Then we see from (4.14) that

$$
\begin{equation*}
s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \gamma^{*}\left(\zeta_{k}(B) \wedge \xi_{l}(B)\right) \neq 0 \tag{4.17}
\end{equation*}
$$

for some k and l. Since $\zeta_{k}(B)$ and $\zeta_{l}(B)$ are elements of F_{B} and F_{B} is a subspace of $\stackrel{\mu}{\Lambda} F^{+}$with $u=|B|, \zeta_{k}(B)$ and $\zeta_{l}(B)$ are linear combinations of u-forms η and $\bar{\eta}^{\prime}$ respectively, where η and $\bar{\eta}^{\prime}$ are defined by (4.8) and (4.10). From (4.17) and Lemma 4.2 it follows that $\zeta_{k}(B)$ is of the form

$$
\begin{equation*}
\zeta_{k}(B)=c \cdot \zeta_{p+s_{1}, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{r}, i_{r}} \wedge \zeta_{A}+\cdots \tag{4.18}
\end{equation*}
$$

where $s_{k}>a_{i_{k}}$ for $k=1,2, \cdots, r$ and c is a non-zero constant.
We prove the following lemma.
Lemma 4.3. Assume that (4.17) holds for some k and l. Then there exist s indices $j_{1}, \cdots, j_{s}\left(1 \leqq j_{1}<j_{2}<\cdots<j_{s} \leqq p, s \leqq r\right)$ and s positive integers $n_{1}, n_{2}, \cdots, n_{s}$ with the condition $n_{1}+n_{2}+\cdots+n_{s}=r$ such that

$$
b_{j_{c}}=a_{j_{c}}+n_{c} \quad \text { for } c=1,2, \cdots, s
$$

and

$$
b_{j}=a_{j} \quad \text { for } j \neq j_{a}
$$

To prove Lemma 4.3, we first assume $k=1$. From our choice of the basis $\left\{\zeta_{i}(B)\right\}$ we have

$$
\zeta_{1}(B)=\zeta_{B}
$$

and ζ_{B} is the exterior product of $\zeta_{p+s, i}$ satisfying the condition $s \leqq b_{i}(i=1,2, \cdots$, $p ; B=\left\{b_{1}, \cdots, b_{p}\right\}$). By (4.18) we have $\zeta_{B}=c \cdot \zeta_{p+s_{1}, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{r}, i_{r}} \wedge \zeta_{A}+\cdots$, where $c \neq 0$. Since ζ_{B} and $\zeta_{p+s 1, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{r}, i_{r}} \wedge \zeta_{A}$ are both of the form (4.8) and distinct elements of the form (4.8) are linearly independent, we get $c= \pm 1$ and

$$
\begin{equation*}
\zeta_{B}= \pm \zeta_{p+s_{1}, i_{1}} \wedge \cdots<\zeta_{p+s_{r}, i_{r}} \wedge \zeta_{A} \tag{4.19}
\end{equation*}
$$

Let j be an index, $1 \leqq j \leqq p$, which is distinct from each of $i_{l}, l=1,2, \cdots, r$. The number of factors of the form $\zeta_{p+t, j}$ on the right hand side of (4.19) is equal to a_{j} and it is equal to b_{j} on the left hand side. Hence we get $b_{j}=a_{j}$. Let j_{1}, \cdots, j_{s} be the distinct indices among i_{1}, \cdots, i_{r} and let n_{c} be the number of the indices i_{l} which are equal to j_{c}. Then we have $n_{1}+\cdots+n_{s}=r, n_{c}>0$. Then the number of factors of the form $\zeta_{p+t, j_{c}}$ on the right hand side of (4.19) is equal to $n_{c}+a_{j_{c}}$ and on the left hand side it is equal to $b_{j_{c}}$ and hence $b_{j_{c}}=a_{j_{c}}+n_{c}$. The lemma is thus proved in the case $k=1$.

Assume now $k>1$. We may assume that k is the smallest index $k>1$ satisfying (4.17). By our choice of $\left\{\zeta_{i}(B)\right\}, \zeta_{k}(B)$ is a weight vector for a weight Λ_{k} with $\Lambda_{B}<\Lambda_{k}$ and by (4.16) $\zeta_{k}(B)=\rho^{\prime *}\left(e_{a}\right) \xi$, where α is a simple root of $\mathfrak{g l}(p, \boldsymbol{C}) \times \mathfrak{g l}(q, \boldsymbol{C})$ and ξ is a weight vector for a weight $\Lambda_{k}-\alpha$. Since $\xi \in F_{B}$ and F_{B} is a subspace of $\stackrel{n}{\Lambda} F^{+}, \xi=\Sigma c_{\eta} \eta$, where η are elements of the form (4.8) and $c_{\eta} \in \boldsymbol{C}$. We have $\rho^{\prime *}\left(e_{a}\right) \xi=\Sigma c_{\eta} \rho^{*}\left(e_{\alpha}\right) \eta$ and $\rho^{\prime *}\left(e_{\alpha}\right) \eta=\sum_{l=i}^{n} \zeta_{p+t_{1}, j_{1}}$ $\wedge \cdots \wedge \rho^{\prime *}\left(e_{a}\right) \zeta_{p+t_{l}, j_{l}} \wedge \cdots \wedge \zeta_{p+t_{u}, j_{u}}$. We notice here that simple roots are of the form $\alpha=\lambda_{i}-\lambda_{i+1}(1 \leqq i \leqq p-1)$ or $\alpha=\lambda_{p+s}-\lambda_{p+s+1}(1 \leqq s \leqq q-1)$ and hence $e_{\alpha}=e_{i, i+1}$ or $e_{\alpha}=e_{p+s, p+s+1}$. We also have

$$
\begin{aligned}
\rho^{\prime *}\left(e_{j, l}\right) \zeta_{p+s, i}= & \delta_{l i} \zeta_{p+s, j} \\
& (1 \leqq i, j, l \leqq p, 1 \leqq s \leqq q)
\end{aligned}
$$

and

$$
\begin{aligned}
& \rho^{\prime *}\left(e_{p+t, p+u}\right) \zeta_{p+s, i}=-\delta_{t, s} \zeta_{p+u, i} \\
&(1 \leqq i \leqq p, 1 \leqq s, t, u \leqq q)
\end{aligned}
$$

(see §3 and Appendix).
It follows in particular that the term $\zeta_{p+s_{1}, i_{1}} \wedge \cdots \rho^{*}\left(e_{\alpha}\right) \zeta_{p+s_{l}, i_{l}} \wedge \cdots \wedge \zeta_{p+s_{u}, i_{u}}$ is either zero or of the form (4.8). We have $\zeta_{k}(B)=\Sigma c_{\eta} \rho^{\prime *}\left(e_{a}\right) \eta$ and (4.19). We see then that $\zeta_{p+s_{1}, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{r}, i_{r}} \wedge \zeta_{A}= \pm \zeta_{p+t_{1}, j_{1}} \wedge \cdots \wedge \rho^{\prime *}\left(e_{a}\right) \zeta_{p+t_{l}, j_{l}} \wedge \cdots$ $\wedge \zeta_{p+t_{u}, j_{u}}$ for some $\eta=\zeta_{p+t_{1}, j_{1}} \wedge \cdots \wedge \zeta_{p+t_{u}, j_{u}}$ and for some l, where η appears in the expression $\xi=\Sigma c_{\eta} \eta$ with $c_{\eta} \neq 0$. Renumbering, if necessary, we may assume $l=1$ and hence we have

$$
\begin{align*}
& \zeta_{p+s_{1}, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{r}, i_{r}} \wedge \zeta_{A} \tag{4.20}\\
= & \pm\left(\rho^{\prime} *\left(e_{a}\right) \zeta_{p+t_{1}, j_{1}}\right) \wedge \zeta_{p+t_{2}, j_{2}} \wedge \cdots \wedge \zeta_{p+t_{u}, j_{u}}
\end{align*}
$$

The simple root α is either $\alpha=\lambda_{i}-\lambda_{i+1}$ and $e_{\alpha}=e_{i, i+1}$ or $\alpha=\lambda_{p+s}-\lambda_{p+s+1}$ and $e_{\infty}=e_{p+s, p+s+1}$. We first assume $\alpha=\lambda_{i}-\lambda_{i+1}$ and $e_{\alpha}=e_{i, i+1}$. Then, since $\rho^{\prime *}\left(e_{i, i+1}\right) \zeta_{p+t_{1}, j_{1}}=\delta_{i+1, j_{1}} \zeta_{p+t_{1}, i} \neq 0$ we have

$$
\begin{equation*}
i+1=j_{1} \tag{4.21}
\end{equation*}
$$

and

$$
\begin{align*}
& \zeta_{p+t_{1}, i} \wedge \zeta_{p+t_{2}, j_{2}} \wedge \cdots \wedge \zeta_{p+t_{u}, j_{u}} \tag{4.22}\\
= & \pm \zeta_{p+s_{1}, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{r}, i_{r}} \wedge \zeta_{A}
\end{align*}
$$

Suppose that $\zeta_{p+t_{1}, i}=\zeta_{p+s_{l}, i_{l}}$ for some $l, 1 \leqq l \leqq r$ i.e. $i=i_{l}$ and $t_{1}=s_{l}$. We may assume without loss of generality $l=1$, hence $i=i_{1}$ and $t_{1}=s_{1}$. Then we have $\zeta_{p+t_{2}, j_{2}} \wedge \cdots \wedge \zeta_{p+t_{u}, j_{u}}= \pm \zeta_{p+s_{2}, i_{2}} \wedge \cdots \wedge \zeta_{p+s_{r}, i_{r}} \wedge \zeta_{A}$. Then we may assume $\zeta_{p+t_{l},{ }_{l}}=\zeta_{p+s_{l}, i_{l}}$ for $l=2, \cdots, r$ and $\zeta_{p+t_{r+1}, j_{r+1}} \wedge \cdots \wedge \zeta_{p+t_{u}, j_{u}}= \pm \zeta_{A}$. Then $\eta=$ $\zeta_{p+t_{1}, j_{1}} \wedge \cdots \wedge \zeta_{p+t_{u}, j_{u}}= \pm \zeta_{p+t_{1}, j_{1}} \wedge \cdots \wedge \zeta_{p+t_{r}, j_{r}} \wedge \zeta_{A}$ and $\xi=c_{\eta} \eta+\cdots$ with $c_{\eta} \neq 0$. Since ξ is a weight vector for the weight $\Lambda_{k}-\alpha$ and $\Lambda_{k}-\alpha<\Lambda_{k}, \xi$ is a linear combination of the basis elements $\zeta_{i}(B)$ with $\Lambda_{i}=\Lambda_{k}-\alpha$. Since we have numbered $\left\{\zeta_{i}(B)\right\}$ in such a way that $\Lambda_{B}=\Lambda_{1}(B)<\Lambda_{2}(B) \leqq \cdots, \xi$ is a linear combination of $\zeta_{i}(B)$ with $i<k$. On the other hand $\xi=c_{\eta} \eta+\cdots= \pm c_{\eta}\left(\zeta_{p+t_{1}, j_{1}} \wedge \cdots \wedge \zeta_{p+t_{r}, j_{r}}\right.$ $\left.\wedge \zeta_{A}\right)+\cdots$ and $\xi=\sum_{i<k} d_{i} \zeta_{i}(B)$. It follows then that when we express $\zeta_{i}(B)$ as a linear combination of the elements of the form (4.8), at least one of $\zeta_{i}(B)$ with $d_{i} \neq 0$ must be of the form (4.18). Since $i<k$ and since k is the least index >1 such that $\zeta_{k}(B)$ has the form (4.18), we must have $i=1$. Then we have $\Lambda_{k}-\alpha$ $=\Lambda_{1}=\Lambda_{B}$ and since the space of weight vectors for the lowest weight Λ_{B} is one dimensional, we obtain $\xi=d \cdot \zeta_{B}=d \cdot \zeta_{1}(B)$. On the other hand $\xi= \pm c_{\eta}\left(\zeta_{p+t_{1}, j_{1}}\right.$ $\left.\wedge \cdots \wedge \zeta_{p+t_{r}, j_{r}} \wedge \zeta_{A}\right)+\cdots$ and hence $\zeta_{1}(B)$ is also of the form (4.18) and in this case the lemma is already proved.

We assume now $\eta_{p+t_{1}, i} \neq \zeta_{p+s_{l}, i}$ for all $l=1,2, \cdots, r$. We see then from (4.22) that $\zeta_{p+t_{1}, i}$ is a factor of ζ_{A} and hence

$$
\begin{equation*}
t_{1} \leqq a_{i} \tag{4.23}
\end{equation*}
$$

We may assume $\zeta_{p+t_{2}, j_{2}} \wedge \cdots \wedge \zeta_{p+t_{r+1}, j_{r+1}}= \pm \zeta_{p+s_{1}, i_{1}} \wedge \cdots \wedge \zeta_{p+s_{r}, i_{r}}$. Then we have

$$
\zeta_{p+t_{1}, i} \wedge \zeta_{p+t_{r+2}, j_{r+2}} \wedge \cdots \wedge \zeta_{p+t_{u}, j_{u}}= \pm \zeta_{A}
$$

and hence

$$
\eta= \pm \zeta_{p+t_{1}, j_{1}} \wedge\left(\zeta_{p+t_{2}, j_{2}} \wedge \cdots \wedge \zeta_{p+t_{r+1}, j_{r+1}}\right) \wedge\left(\zeta_{A} / \zeta_{p+t_{1}, i}\right)
$$

where $\zeta_{A} / \zeta_{p+t_{1}, i}$ means that the factor $\zeta_{p+t_{1}, i}$ is deleted from the product ζ_{A}. By (4.21) and (4.23) $a_{j_{1}}=a_{i+1} \geqq a_{i} \geqq t_{1}$ and hence $\zeta_{p+t_{1}, j_{1}}$ is a factor of $\zeta_{A} / \zeta_{p+t_{1}, i}$. Then we have $\zeta_{p+t_{1}, j_{1}} \wedge\left(\zeta_{A} / \zeta_{p+t_{1}, i}\right)=0$ and we get $\eta=0$. This is a contradiction because $\eta \neq 0$. Therefore the case $\zeta_{p+t_{1}, i} \neq \zeta_{p+s_{l}, i_{l}}(l=1, \cdots, r)$ can not occur.

The last case we have to consider is the case $\alpha=\lambda_{p+s}-\lambda_{p+s+1}, e_{a}=$ $e_{p+s, p+s+1}$. This case is treated quite analogously as in the case $\alpha=\lambda_{i}-\lambda_{i+1}$ and the proof of Lemma 4.3 is completed.

Suppose now that the integral (2.5)

$$
d_{B}=\int_{\sigma(m) \times N(\Lambda)} s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \gamma^{*} \pi_{G}^{*} \xi_{B}
$$

is non-zero. Then the integrand is certainly non-zero and as $\pi_{G}^{*} \xi_{B}=v_{B}^{-1} \tilde{\omega}_{B}$, v_{B}^{-1} being a non zero constant, $s_{1}^{*}\left(\theta_{A} \wedge \pi_{F}^{*} \lambda\right) \wedge \gamma^{*} \tilde{\omega}_{B}$ is non-zero and (4.17) holds. Then by Lemma 4.3, $B=\left\{b_{1}, \cdots, b_{p}\right\}$ verifies the conditions in Lemma 4.3. Summing up we have proved the following theroem which is stated in the introduction.

Theorem. Let λ be a form of type $(f-r, f-r)$ on the flag manifold $F(A)$ which is invariant by the action of the unitary group $U(m)$, where $f=\operatorname{dim}_{C} F(A)$ and r is a non-negative integer. Then $\pi_{*}\left(\rho^{*} \lambda\right)$ is a form of type $(p q-|A|-r$, $p q-|A|-r)$ on the $\operatorname{Grassmann}$ manifold $\operatorname{Gr}(p, m)\left(p \cdot q=\operatorname{dim}_{C} \operatorname{Gr}(p, m)\right)$ which is also invariant by the action of $U(m)$. Then $\pi_{*}\left(\sigma^{*} \lambda\right)$ is a linear combination of the Poincaré dual $C(B)$ of the Schubert varieties (B), where $B=\left\{b_{1}, b_{2}, \cdots, b_{p}\right\}$ verifies the following conditions: Let $A=\left\{a_{1}, a_{2}, \cdots, a_{p}\right\}$. There exist s indices $j_{1}, j_{2}, \cdots, j_{s}\left(1 \leqq j_{1}<j_{2}, \cdots,<j_{s} \leqq p ; s \leqq r\right)$ and s positive integers n_{1}, \cdots, n_{s} with the condition $n_{1}+n_{2}+\cdots+n_{s}=r$ such that $b_{j_{c}}=a_{j_{c}}+n_{c}$ for $c=1, \cdots, s$ and $b_{j}=a_{j}$ for $j \neq j_{c}$.

Appendix. In this appendix we discuss the representation of the direct product $G L(p, \boldsymbol{C}) \times G L(q, \boldsymbol{C})$ of complex general linear groups on the exterior algebra ΛM, where M is the complex vector space of all $p \times q$ complex matrices. The problem is to decompose ΛM into direct sum of irreducible invariant subspaces. This had been done in the last section of the paper of Kostant [3, a] as an application of his more general theory and he attributed the main result in this special case to Ehresmann. The purpose of this appendix is to formulate the main theorem of Ehresmann and Kostant in a form suitable for our purpose and to introduce a few notions in the representation theory which are needed in §3 and §4.

Let

$$
G=G L_{p} \times G L_{q}
$$

where $G L_{k}=G L(k, C)$ for any positive integer k, and we identify G with the subgroup of $G L_{m}, m=p+q$ in the usual way.

The diagonal matrices in G form an abelian subgroup H of G which we call a Cartan subgroup of G. The Lie algebra g of G consists of all $m \times m$ complex matrices X of the form

$$
X=\left(\begin{array}{cc}
X_{1} & 0 \tag{1}\\
0 & X_{2}
\end{array}\right), X_{1} \in \mathfrak{g l}_{p}, X_{2} \in \mathfrak{g l}_{q}
$$

and the subalgebra \mathfrak{G} corresponding to H consists of all diagonal matrices. \mathfrak{G}
is called a Cartan subalgebra of g . Let

$$
K=U(p) \times U(q)
$$

Then K is a maximal compact subgroup of G and the Lie algebra \mathfrak{t} of K a real Lie subalgebra of \mathfrak{g} consisting of matrices of the from (1) satisfying the condition ${ }^{t} X_{i}=-X_{i}(i=1,2)$. Every matrix $X \in \mathrm{~g}$ is written uniquely in the form $X=Y_{1}+i Y_{2}$ with $Y_{1}, Y_{2} \in \mathfrak{f}$, and we can identify g with the complexification of the real Lie algebra ℓ.

Let L be a holomorphic representation of G in a complex vector space W. L is a holomorphic homorphism of G into $G L(W)$. The representation L of G defines a representation L^{\prime} of the complex Lie algebra \mathfrak{g} in W such that

$$
\begin{equation*}
\exp t L^{\prime}(X)=L(\exp t X) \tag{2}
\end{equation*}
$$

for all $t \in \boldsymbol{R}$.
The restriction M of L to K is a representation of K in W and since K is a compact group, W decomposes into direct sum $W=W_{1}+\cdots+W_{k}$ of simple K-modules and the representation M_{j} of K on W_{j} induced by M is irreducible. Each W_{j} is a g -module and also a G-modlue, i.e. $L^{\prime}(X) W_{j} \subset W_{j}$ and $L(g) W_{j}$ $\subset W_{j}$ for $X \in \mathrm{~g}$ and $g \in G$. In fact, let M_{j}^{\prime} the representation of the Lie algebra ${ }^{\prime}$ defined by the rperesentation M_{j} of K. Then $M_{j}{ }^{\prime}(Y)=L^{\prime}(Y)$ for all $Y \in \mathfrak{q}$, bacause M is the restriction of L to K. Every $X \in \mathrm{~g}$ is written uniquely as $X=Y_{1}+i Y_{2}, Y_{1}, Y_{2} \in \mathfrak{f}$ and so $L^{\prime}(X)=M_{j}{ }^{\prime}\left(Y_{1}\right)+i M_{j}{ }^{\prime}\left(Y_{2}\right)$. Then as $M_{j}{ }^{\prime}(Y) W_{j} \subset W_{j}$ for $Y \in \mathfrak{f}$, we have also $L^{\prime}(X) W_{j} \subset W_{j}$ and W_{j} is a \mathfrak{g} module. It follows then from (2) that $L(\exp t X) W_{j} \subset W_{j}$ for all $X \in \mathrm{~g}$. Then we have $L(g) W_{j} \subset W_{j}$ for all $g \in G$, because G is generated by 1-parameter subgroups. We show that W_{j} is a simple g -module. Let W_{j}^{\prime} be a subspace of W_{j} such that $L(X) W_{j}^{\prime} \subset W_{j}^{\prime}$ for all $X \in \mathrm{~g}$. Then we have $L(g) W_{j}{ }^{\prime} \subset W_{j}^{\prime}$ for all $g \in G$ and in particular $M(g) W_{j}^{\prime} \subset W_{j}^{\prime}$ for all $g \in K$. Since W_{j} is simple as K-module, we have either $W_{j}^{\prime}=W_{j}$ or $W_{j}^{\prime}=\{0\}$ and this shows that W_{j} is simple as g -module.

Conversely let $W=V_{1}+\cdots+V_{k}$ be a decomposition of W into direct sum of simple \mathfrak{g}-modules. We can show in a similar way that each V_{j} is also a simple K-module. Thus a decomposition of W into simple K-modules and into simple g -modules is the the same thing and as W is always semi-simple (or completely reducible) as K-module, it is so as well as \mathfrak{g}-module.

A linear function Λ on the Cartan subalgebra \mathfrak{h} is called a weight of the holomorphic representation L of G in W, if there exists $w \in W, w \neq 0$, such that

$$
\begin{equation*}
L^{\prime}(X) w=\Lambda(X) w \tag{3}
\end{equation*}
$$

for all $X \in \mathfrak{h}$. A vector w satisfying (3) is called a weight vector for the weight Λ. The weight vectors for Λ form a subspace of W, the eigen space for Λ, and
the dimension of the eigen space is called the multiplicity of Λ. The Cartan subalgebra \mathfrak{h} is spanned by the matrices $e_{k k}(k=1,2, \cdots, m)$ and we have

$$
\Lambda(X)=n_{1} \lambda_{1}+\cdots+n_{m} \lambda_{m}
$$

where $X=\lambda_{1} e_{11}+\cdots+\lambda_{m} e_{m m}$ and $n_{k}=\Lambda\left(e_{k k}\right)$. It follows from (2) and (3) that $L(\exp X) w=(\exp \Lambda(X)) w$ for $X \in \mathfrak{h}$. Let $X=2 \pi i e_{k k}$. Then $\exp \Lambda X=I$ and $\Lambda(X)=2 \pi i n_{k}$ and hence $\exp 2 \pi i n_{k}=1$. This proves that n_{k} is an integer for $k=1, \cdots, m$ and a weight Λ is an integral linear form of $\lambda_{1}, \cdots, \lambda_{m}$.

Let now $X \in \mathrm{~g}$ and $x \in G$. Then the matrix $x X x^{-1}$ belongs also to g and we define the adjoint representation $A d$ of G in the vector space g by

$$
A d(x) X=x X x^{-1}
$$

The representation $A d^{\prime}$ of \mathfrak{g} is denoted by $a d$ and we have

$$
a d(Y) X=[Y, X]
$$

A weight (weight vector) of the adjoint representation is called a root (root vector). The Lie algebra g is spanned by the matrices $e_{i j}$ and $e_{p+s, p+t}$, where $1 \leqq i, j \leqq p$ and $1 \leqq s, t \leqq q, p+q=m$, and we have $\operatorname{ad}(X) e_{i j}=\left(\lambda_{i}-\lambda_{j}\right) \cdot e_{i j}$ and $a d(X) e_{p+s, p+t}=\left(\lambda_{p^{+s}}-\lambda_{p^{+t}}\right) e_{p^{+s, p+t}}$, where $X=\sum_{k=1}^{m} \lambda_{k} e_{k k} \in \mathfrak{h}$. Hence $\alpha_{i j}=\lambda_{i}-\lambda_{j}$ and $\alpha_{p+s, p^{+t}}=\lambda_{p^{+s}}-\lambda_{p^{+t}}(1 \leqq i, j \leqq p, 1 \leqq s, t \leqq q)$ are roots of g and $e_{i j}$ and $e_{p+s, p+t}$ are the corresponding root vectors. Moreover these roots exhaust the roots of g . If α is a root of g, e_{∞} denotes the matrix $e_{i j}$ or $e_{p^{+s, p+t}}$ according as $\alpha=\alpha_{i j}$ or $\alpha=\alpha_{p+s, p+t}$.

We mention here the following simple result as Lemma 1.
Lemma 1. Let Λ be a weight of a representation L of G in W and wa weight vector for Λ. If α is a root and $L^{\prime}\left(e_{\alpha}\right) w \neq 0$, then $\Lambda+\alpha$ is also a weight of L and $L^{\prime}\left(e_{\alpha}\right)$ w is a weight vector for $\Lambda+\alpha$.

In fact, let $X \in \mathfrak{h}$. Then $L^{\prime}(X) L^{\prime}\left(e_{\alpha}\right)=L^{\prime}\left(e_{\alpha}\right) L^{\prime}(X)+L^{\prime}\left(\left[X, e_{\alpha}\right]\right)$ and $\left[X, e_{\alpha}\right]$ $=a d(X) e_{\infty}=\alpha(X) e_{a}$. Hence $L^{\prime}(X) L^{\prime}\left(e_{a}\right)=L^{\prime}\left(e_{a}\right) L^{\prime}(X)+\alpha(X) L^{\prime}\left(e_{a}\right)$. Then $L^{\prime}(X)$ $\left(L^{\prime}\left(e_{\alpha}\right) w\right)=L^{\prime}\left(e_{\alpha}\right)(\Lambda(X) w)+\alpha(X) L^{\prime}\left(e_{\alpha}\right) w=(\Lambda+\alpha)(X) L^{\prime}\left(e_{a}\right) w$ and this proves that $\Lambda+\alpha$ is a weight and $L^{\prime}\left(e_{a}\right) w$ is a weight vector.

We now introduce the lexicographic order on the \boldsymbol{Z}-module of integral linear forms of the variables $\lambda_{1}, \cdots, \lambda_{m}$. Let $\Lambda=\Sigma n_{k} \lambda_{k}$ and $\Lambda^{\prime}=\Sigma n_{k}{ }^{\prime} \lambda_{k}$. Then $\Lambda>\Lambda^{\prime}$ if there exists an index $k_{0} \geqq 1$ such that $n_{k}=n_{k}{ }^{\prime}$ for $k<k_{0}$ and $n_{k_{0}}>n_{k_{0}}{ }^{\prime}$.

Since weights of a representation L are integral forms we have an order relation among weights of L. A weight Λ (root α) is positive, if $\Lambda>0(\alpha>0)$. The lowest weight (highest weight) of L is a weight Λ of L such that $\Lambda<\Lambda^{\prime}\left(\Lambda>\Lambda^{\prime}\right)$ for any weight Λ^{\prime} of L distinct from Λ.

We also have the notion of simple roots of \mathfrak{g}. A root α is said to simple,
if α is not a sum of two positive roots.
We can see easily that $\left\{\alpha_{12}, \alpha_{22}, \cdots, \alpha_{p-1, p}, \alpha_{p+1, p+2}, \cdots, \alpha_{p+q-1, p+q}\right\}$ is a maximal set of simple roots of g.

We have the following theorem which we have used in §3 and §4.
Theorem 1. Let L be an irreducible holomorphic representation of G in a complex vector space W. Then

1) The multiplicity of the lowest (or the highest weight) is one.
2) Let $w(\neq 0)$ be a weight vector for the lowest weight Λ. Then W is spanned by w and by the vectors of the form

$$
L^{\prime}\left(e_{a_{1}}\right) \cdots L^{\prime}\left(e_{a_{k}}\right) w,
$$

where $\alpha_{1}, \cdots, \alpha_{k}$ are simple roots of \mathfrak{g}.
3) The irreducible representation L is completely determened by the lowest weight Λ of L. This means that, if L_{1} is another irreducible holomorphic representation of G with the same lowest weight Λ, then L and L_{1} are equivalent.

For the proof of this theorem, see [5, Chapter VII].
Let M be the complex vector space consisting of all $p \times q$ complex matrices. We identify M with the subspace of $\mathfrak{g l}_{m}(m=p+q)$ consisting of all matrices Q of the form

$$
Q=\left(\begin{array}{rr}
0 & D \tag{4}\\
0 & 0
\end{array}\right), D: p \times q \text {-matrix }
$$

We define a holomorphic representation T of G in M by

$$
T(g) Q=g Q g^{-1}
$$

If

$$
g=\left(\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right)
$$

and Q is of the form (4), then

$$
T(g) Q=\left(\begin{array}{cc}
0 & g_{1} D g_{2}^{-1} \\
0 & 0
\end{array}\right)
$$

We have

$$
T^{\prime}(X) \cdot Q=[X, Q], X \in \boldsymbol{g}
$$

and if X is of the form (1), then

$$
T^{\prime}(X) Q=\left(\begin{array}{cc}
0 & X_{1} D-D X_{2} \tag{5}\\
0 & 0
\end{array}\right)
$$

The vector space M is spanned by the matrices $e_{i, p+s}(1 \leqq i \leqq p, 1 \leqq s \leqq q)$ and

$$
\begin{equation*}
T^{\prime}(X) e_{i, p+s}=\left(\lambda_{i}-\lambda_{p+s}\right) e_{i, p+s} \tag{6}
\end{equation*}
$$

for all $X=\sum_{i=1}^{p} \lambda_{i} e_{i i}+\sum_{s=1}^{q} \lambda_{p+s} e_{p+s, p+s}$ in \mathfrak{h}. Hence $\lambda_{i}-\lambda_{p^{+}+s}$ is a weight and $e_{i, p+s}$ is a weight vector.

We extend T to a representation of G in the exterior algebra ΛM by defining

$$
T(g)\left(Q_{1} \wedge \cdots \wedge Q_{r}\right)=T(g) Q_{1} \wedge \cdots \wedge T(g) Q_{r}
$$

Then

$$
\begin{equation*}
T^{\prime}(X)\left(Q_{1} \wedge \cdots \wedge Q_{r}\right)=\sum_{t=1}^{r} Q_{1} \wedge \cdots \wedge T^{\prime}(X) Q_{t} \wedge \cdots \wedge Q_{r} \tag{7}
\end{equation*}
$$

The elements of the form

$$
\begin{equation*}
E=e_{i_{1}, p+s_{1}} \wedge \cdots \wedge e_{i_{r}, p+s_{r}} \tag{8}
\end{equation*}
$$

with $\left(i_{1}, s_{1}\right)<\cdots<\left(i_{r}, s_{r}\right)$ form a basis of ΛM, where $<$ means the lexicographic order for the double indices (i, s) with $1 \leqq i \leqq p, 1 \leqq s \leqq q$. It follows from (6) and (7) that E is a weight vector for the weight

$$
\begin{equation*}
\Lambda_{E}=\sum_{t=1}^{r} \lambda_{i_{t}}-\sum_{t=1}^{r} \lambda_{p+s_{t}} \tag{9}
\end{equation*}
$$

It can be proved easily that a weight Λ of T is always of the form Λ_{E} for some E and that the multiplicity of Λ is equal to the number of the basis elements E such that $\Lambda=\Lambda_{E}$. Clearly $\dot{\Lambda} M$ is a G-module and $\Lambda M=\Sigma \Lambda \dot{\Lambda} M$ is a direct sum of G-modules.

Let $A=\left\{a_{1}, a_{2}, \cdots, a_{p}\right\}$ be a p-tuple of integers such that $0 \leqq a_{1} \leqq a_{2} \leqq \cdots$ $\leqq a_{p} \leqq q$ (see $\S 1$). We define E_{A} by

$$
\begin{equation*}
E_{A}=\Lambda_{s \leq a_{i}} e_{i, p+s} \tag{10}
\end{equation*}
$$

where the exterior product extends over all $e_{i, p+s}$ such that $s \leqq a_{i}, i=1,2, \cdots, p$ and the order of the product is the lexicographic order as in (8). Then E_{A} is one of the basis element (8) and as there are $|A|\left(=\Sigma a_{i}\right)$ elements in the product (10). E_{A} belongs to $\Lambda_{\Lambda \mid}^{|A|} M$. We dentoe $\Lambda_{E_{A}}$ by Λ_{A}. Then

$$
\begin{aligned}
\Lambda_{A} & =\sum_{i} \sum_{s, s \leq a_{i}}\left(\lambda_{i}-\lambda_{p+s}\right) \\
& =a_{1} \lambda_{1}+\cdots+a_{p} \lambda_{p}-b_{1} \lambda_{p+1}-\cdots-b_{q} \lambda_{p+q}
\end{aligned}
$$

where b_{s} is the number of the a_{i} satisfying $a_{i} \geqq s$. Hence we have

$$
0 \leqq a_{1} \leqq \cdots \leqq a_{p} \leqq q, \quad 0 \leqq b_{q} \leqq b_{q-1} \leqq \cdots \leqq b_{1} \leqq p
$$

It follows then that, if $A \neq A^{\prime}$, then

$$
\Lambda_{A} \neq \Lambda_{A^{\prime}}
$$

We formulate the main theorem of Ehresmann and Kostant (see [3, a, §8]) in the following form.

Theorem 2.

1) The multiplicity of the weight Λ_{A} in ΛM is one.
2) The subspace M_{A} of ΛM spanned by E_{A} and by elements of the form $T^{\prime}\left(e_{a_{1}}\right) \cdots T^{\prime}\left(e_{\omega_{k}}\right) E_{A}$, where $\alpha_{1}, \cdots, \alpha_{k}$ are simple roots of g , is a simple g -module and Λ_{A} is the lowest weight of the representation of G in M_{A} induced from T.
3) Two simple g -modules M_{A} and $M_{A^{\prime}}$ are isomorphic only if $A=A^{\prime}$.
4) ΛM is the direct sum of simple g-modules M_{A}; in particular $\Lambda \Lambda^{\prime} M=\sum_{A,|\Delta|=r} M_{A}$, where the summation extends over all A satisfying the condition $|A|=r$.

Remark. If N is a simple \mathfrak{g}-submodule of ΛM, then $N=M_{A}$ for a unique A. For N is isomorphic to one of M_{A} by 4) and by 3), A is unique. Then the lowest weight of N is Λ_{A}. Since the multiplicity of Λ_{A} is one by 1), E_{A} is then contained in N together with $T^{\prime}\left(e_{\alpha_{1}}\right) \cdots T^{\prime}\left(e_{\omega_{k}}\right) E_{A}$. Then M_{A} is contained in N by 2) and as N is simple, we get $N=M_{A}$.

University of Notre Dame

References

[1] S. S. Chern: Complex manifolds without potential theory, Van Nostrand Math. Studies, 15 (1967).
[2] M.J. Cowen: Hermitian vector bundles and value distribution for Schubert cycles, Trans. Amer. Math. Soc. 180 (1973), 189-288.
[3] B. Kostant: a) Lie algebra cohmology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387; b) Lie algebra cohomology and generalized Schubert cells, Ann. of Math. 77 (1963), 72-144.
[4] Y. Matsushima: Differentiable manifolds, Marcel Dekker Inc. N.Y. 1972.
[5] J.P. Serre: Algèbre de Lie semi-simples complexes, W.A. Benjamin Inc., N.Y., 1966.
[6] W. Stoll: Value distribution of Schubert zeros, to appear.

