ON APPROXIMATE SUFFICIENCY

TOKITAKE KUSAMA

(Received October 10, 1975) (Revised March 10, 1976)

H. Kudō defined the notion of approximate sufficiency in his paper ([4], [6]) and proved some interesting results. In this paper we obtain some characterizations for it.

1. Notations and definitions

Let (X,\mathcal{A}) be a sample space consisting of a set X and a σ -algebra \mathcal{A} of subsets of X. The reader should understand by the word " σ -algebra" and "algebra" a sub- σ -algebra and subalgebra of \mathcal{A} , respectively. Given a σ -algebra \mathcal{B} and a finite measure λ on \mathcal{A} , $E_{\lambda}(f|\mathcal{B})$ denotes the conditional expectation of a λ -integrable function f over X given \mathcal{B} with respect to λ : i.e., $E_{\lambda}(f|\mathcal{B})$ is a \mathcal{B} -measurable function such that $\int_{\mathcal{B}} f d\lambda = \int_{\mathcal{B}} E_{\lambda}(f|\mathcal{B}) d\lambda$ for every $B \in \mathcal{B}$. When a probability measure P on \mathcal{A} is absolutely continuous with respect to λ (we write $P \ll \lambda$), $\frac{dP}{d\lambda}$ denotes the Radon-Nikodym derivative. It is clear that $E_{\lambda}(\frac{dP}{d\lambda}|\mathcal{B})$ coincides with the Radon-Nikodym derivative $\frac{dP}{d\lambda}|_{\mathcal{B}}$ of P/\mathcal{B} with respect to λ/\mathcal{B} , where P/\mathcal{B} and λ/\mathcal{B} are the contractions of P and λ to \mathcal{B} respectively.

For a finite signed measure m, $||m||_{\mathcal{B}}$ denotes the value $\sup_{B\in\mathcal{B}}|m(B)|$. When $m \ll \lambda$ and m(X) = 0, it is well known that $||m||_{\mathcal{B}} = \frac{1}{2} \int_X \left| \frac{dm}{d\lambda} \right|_{\mathcal{B}} |d\lambda|$. Here and hereafter the integration without any assignment of its domain should be understood as that extended over the whole space X.

Let $\{\mathcal{A}_n\}$ be an increasing sequence of σ -algebras and $\{\mathcal{B}_n\}$ a sequence of σ -algebras satisfying $\mathcal{B}_n \subset \mathcal{A}_n$. According to Kudō ([4], [6]), $\{\mathcal{B}_n\}$ is said to be approximately sufficient for a pair $\{P, Q\}$ of probability measures on \mathcal{A} , if for each n there is a pair of probability measures $\{P_n, Q_n\}$ on \mathcal{A}_n such that

 $\lim_{n\to\infty} ||P_n-P||_{\mathcal{A}_n} = \lim_{n\to\infty} ||Q_n-Q||_{\mathcal{A}_n}$ and that \mathcal{B}_n is sufficient for $\{P_n, Q_n\}$ on \mathcal{A}_n for every n. We shall consider this notion in the case of an arbitrary family of probability measures.

REMARK. A slight errata in Kudō's definition of approximate sufficiency in [4] is corrected in [6].

Let $\mathcal{P}=\{P_{\theta}|\theta\in\Omega\}$ be a family of probability measures defined on \mathcal{A} , where Ω is a parameter space. A sequence $\{\mathcal{B}_n\}$ of σ -algebras is said to be approximately sufficient for \mathcal{P} if for each n there is a family of probability measures $\mathcal{P}_n=\{P_{\theta,n}|\theta\in\Omega\}$ on \mathcal{A}_n such that $\lim_{n\to\infty}||P_{\theta,n}-P_{\theta}||_{\mathcal{A}_n}=0$ for all $\theta\in\Omega$ and that \mathcal{B}_n is sufficient for \mathcal{P}_n on \mathcal{A}_n for every n. Throughout this paper we assume

(A1)
$$\bigvee_{n=1}^{\infty} \mathcal{A}_n = \mathcal{A}$$
, where $\bigvee_{n=1}^{\infty} \mathcal{A}_n$ denotes the σ -algebra generated by $\{\mathcal{A}_n\}$, and assume that

- (A2) \mathcal{P} is dominated by a finite measure λ on \mathcal{A} .
- (A3) \mathcal{A} is countably generated.

Let $L^1(X, \mathcal{A}, \lambda)$ be the space of all λ -integrable, real valued, \mathcal{A} -measurable functions defined on X with the metric $\rho_{\lambda}(f, g) = \int |f - g| d\lambda$. The distance between $f \in L^1(X, \mathcal{A}, \lambda)$ and $A \in L^1(X, \mathcal{A}, \lambda)$ is defined by $\tilde{\rho}_{\lambda}(f, A) = \inf_{g \in \mathcal{A}} \rho_{\lambda}(f, g)$. Let $L_{\lambda}(\mathcal{B})$ denote the set of all \mathcal{B} -measurable elements, which is a subspace of $L^1(X, \mathcal{A}, \lambda)$.

Let $\{\mathcal{B}_n\}$ be a sequence of σ -algebras. The subfamily of \mathcal{A} consisting of $B \ (\in \mathcal{A})$ for which there are $B_n \in \mathcal{B}_n$ such that $\lambda(B \triangle B_n) \to 0 \ (n \to \infty)$ is called the lower limit of $\{\mathcal{B}_n\}$ and denoted as λ -liminf \mathcal{B}_n . Here $B \triangle B_n$ means symmetric difference of B and B_n . λ -liminf \mathcal{B}_n is a σ -algebra ([5] Theorem 3.2).

Since \mathcal{P} is dominated and \mathcal{A} is countably generated, there exists $\Omega^* = \{\theta_1, \theta_2, \cdots\}$ of Ω such that $\mathcal{P}^* = \{P_\theta | \theta \in \Omega^*\}$ is dense in \mathcal{P} ([1]). Let $\lambda_0 = \sum_{i=1}^{\infty} \beta_i P_{\theta_i} (\beta_i > 0, \sum_{i=1}^{\infty} \beta_i < \infty)$. Then it is easy to see that λ_0 is equivalent to \mathcal{P} (we write $\lambda_0 \approx \mathcal{P}$). We write $f_\theta = \frac{dP_\theta}{d\lambda_0}$.

2. Some characterizations for approximate sufficiency

Theorem 1. Under Assumptions (A1) \sim (A3) in §1, the following four assertions are all equivalent.

- (a) $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} .
- (b) $\tilde{\rho}_{\lambda_0}(f_{\theta}, L_{\lambda_0}(\mathcal{B}_n)) \to 0 \ (n \to \infty) \ for \ every \ \theta \in \Omega.$

- (c) $\rho_{\lambda_0}(f_\theta, E_{\lambda_0}(f_\theta | \mathcal{B}_n)) \to 0 \ (n \to \infty) \ for \ every \ \theta \in \Omega.$
- (d) $\mathcal{B}_0 = \lambda_0$ -liminf \mathcal{B}_n is sufficient for \mathcal{P} .

Proof. (a) \Rightarrow (b). Since $\bigvee_{n=1}^{\infty} \mathcal{A}_n = \mathcal{A}$ by assumption in §1 we have

$$(1) \quad \rho_{\lambda_0}(E_{\lambda_0}(f_\theta | \mathcal{A}_n), f_\theta) = \rho_{\lambda_0}(E_{\lambda_0}(f_\theta | \mathcal{A}_n), E_{\lambda_0}(f_\theta | \mathcal{A})) \to 0 \ (n \to \infty)$$

for every $\theta \in \Omega$ ([7]).

Since $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} , there exist $\mathcal{P}_n = \{P_{\theta,n} | \theta \in \Omega\}$ $(n=1, 2, \cdots)$ on \mathcal{A}_n such that $\lim_{n \to \infty} ||P_{\theta,n} - P_{\theta}||_{\mathcal{A}_n} = 0$ for every $\theta \in \Omega$ and that \mathcal{B}_n is sufficient for \mathcal{P}_n . Define $\lambda_n = \sum_{i=1}^{\infty} \beta_i P_{\theta_i,n}$ on \mathcal{A}_n with $\theta_i \in \Omega^*$. Hence we have

Putting $f_{\theta_i,n} = \frac{dP_{\theta_i,n}}{d\lambda_n}$ for every *i*, we have

$$(3) ||f_{\theta_{i},n}d\lambda_{0}-P_{\theta_{i}}||_{\mathcal{A}_{n}} \leq ||f_{\theta_{i},n}d\lambda_{0}-f_{\theta_{i},n}d\lambda_{n}||_{\mathcal{A}_{n}} + ||f_{\theta_{i},n}d\lambda_{n}-P_{\theta_{i}}||_{\mathcal{A}_{n}} = ||f_{\theta_{i},n}d\lambda_{0}-f_{\theta_{i},n}d\lambda_{n}||_{\mathcal{A}_{n}} + ||P_{\theta_{i},n}-P_{\theta_{i}}||_{\mathcal{A}_{n}}.$$

The first term of the right hand side of (3) tends to 0 as $n \to \infty$ from $f_{\theta_i,n}(x) \le \beta_i^{-1}$ for all x and (2) and by assumption the second term tends also to 0 as $n \to \infty$. So we have

$$(4) ||f_{\theta_i,n}d\lambda_0 - P_{\theta_i}||_{\mathcal{A}_n} \to 0 (n \to \infty)$$

for every i. It follows from (1), (4) and the \mathcal{A}_n -maesurability of $f_{\theta_i,n}$ that

$$(5) \qquad \rho_{\lambda_{0}}(f_{\theta_{i},n}, f_{\theta_{i}}) \leq \rho_{\lambda_{0}}(f_{\theta_{i},n}, E_{\lambda_{0}}(f_{\theta_{i}} | \mathcal{A}_{n})) + \rho_{\lambda_{0}}(E_{\lambda_{0}}(f_{\theta_{i}} | \mathcal{A}_{n}), f_{\theta_{i}})$$

$$= \int |f_{\theta_{i},n} - \frac{dP_{\theta_{i}}}{d\lambda_{0}}|_{\mathcal{A}_{n}} |d\lambda_{0} + \rho_{\lambda_{0}}(E_{\lambda_{0}}(f_{\theta_{i}} | \mathcal{A}_{n}), f_{\theta_{i}})$$

$$\leq 2||f_{\theta_{i},n} d\lambda_{0} - P_{\theta_{i}}||_{\mathcal{A}_{n}} + \rho_{\lambda_{0}}(E_{\lambda_{0}}(f_{\theta_{i}} | \mathcal{A}_{n}), f_{\theta_{i}})$$

$$\to 0 \qquad (n \to \infty)$$

for every *i*. $f_{\theta_i,n}$ is not only \mathcal{A}_n -measurable but also \mathcal{B}_n -measurable since \mathcal{B}_n is sufficient for \mathcal{P}_n ([3] Theorem 1). The \mathcal{B}_n -measurability of $f_{\theta_i,n}$ and (5) imply

(6)
$$\tilde{\rho}_{\lambda_0}(f_{\theta_i}, L_{\lambda_0}(\mathcal{B}_n)) \to 0 \qquad (n \to \infty).$$

As \mathcal{Q}^* is dense in \mathcal{Q} , it follows from (6) that $\tilde{\rho}_{\lambda_0}(f_{\theta}, L_{\lambda_0}(\mathcal{B})) \to 0 \ (n \to \infty)$ for every $\theta \in \Omega$.

(b) \Rightarrow (c). Since $\tilde{\rho}_{\lambda_0}(f_{\theta}, L_{\lambda_0}(\mathcal{B}_n)) \rightarrow 0 \ (n \rightarrow \infty)$ by assumption, there exist \mathcal{B}_n -measurable $g_{\theta,n} \geq 0 \ (n=1, 2, \dots; \theta \in \Omega)$ such that

(7)
$$\rho_{\lambda_0}(f_{\theta}, g_{\theta,n}) \to 0 \qquad (n \to \infty)$$

for every $\theta \in \Omega$. Since $g_{\theta,n}$ and $E_{\lambda_0}(f_{\theta} | \mathcal{B}_n)$ are \mathcal{B}_n -measurable, we have by (7)

$$(8) \qquad \rho_{\lambda_0}(g_{\theta,n}, E_{\lambda_0}(f_{\theta}|\mathcal{B}_n)) \leq 2||g_{\theta,n}d\lambda_0 - E_{\lambda_0}(f_{\theta}|\mathcal{B}_n)d\lambda_0||_{\mathcal{B}_n}$$

$$= 2||g_{\theta,n}d\lambda_0 - f_{\theta}d\lambda_0||_{\mathcal{B}_n}$$

$$\leq 2||g_{\theta,n}d\lambda_0 - f_{\theta}d\lambda_0||_{\mathcal{A}}$$

$$\leq 2\rho_{\lambda_0}(g_{\theta,n}, f_{\theta}) \to 0 \qquad (n \to \infty)$$

for every $\theta \in \Omega$. It follows from (7), (8) that

$$\rho_{\lambda_0}(f_{\theta}, E_{\lambda_0}(f_{\theta} | \mathcal{B}_n)) \leq \rho_{\lambda_0}(f_{\theta}, g_{\theta, n}) + \rho_{\lambda_0}(g_{\theta, n}, E_{\lambda_0}(f_{\theta} | \mathcal{B}_n)) \to 0 \qquad (n \to \infty)$$

for every $\theta \in \Omega$. This establishes (c).

(c) \Rightarrow (d). It suffices to prove the \mathcal{B}_0 -measurability of f_{θ} ([13] Theorem 1). For this purpose it is sufficient to prove $\{f_{\theta} \geq a\} \in \mathcal{B}_0$ for a real number a in a dense set A of the real line. Since $A_{\theta} = \{a \mid \lambda_0(\{f_{\theta} = a\}) = 0\}$ is dense, we shall prove $\{f_{\theta} \geq a\} \in \mathcal{B}_0$ for $a \in A_{\theta}$. Writing $g_{\theta,n} = E_{\lambda_0}(f_{\theta} \mid \mathcal{B}_n)$, we have $\rho_{\lambda_0}(f_{\theta}, g_{\theta,n}) \to 0$ $(n \to \infty)$ by assumption. We prove $\lambda_0(\{f_{\theta} \geq a\} \triangle \{g_{\theta,n} \geq a\}) \to 0$ $(n \to \infty)$ for $a \in A_{\theta}$. Let ε be a given positive number. Then

$$\begin{split} \lambda_0(\{f_\theta \geq a\} \triangle \{g_{\theta,n} \geq a\}) &= \lambda_0(\{f_\theta \geq a, g_{\theta,n} < a\}) + \lambda_0(\{f_\theta < a, g_{\theta,n} \geq a\}) \\ &\leq \lambda_0(\{f_\theta \geq a + \varepsilon, g_{\theta,n} < a\}) + \lambda_0(\{a \leq f_\theta < a + \varepsilon\}) \\ &\quad + \lambda_0(\{f_\theta < a - \varepsilon, g_{\theta,n} \geq a\}) + \lambda_0(\{a - \varepsilon \leq f_\theta < a\}) \\ &\leq \lambda_0(\{|g_{\theta,n} - f_\theta| > \varepsilon\}) + \lambda_0(\{|f_\theta - a| \leq \varepsilon\}) \\ &\quad \to \lambda_0(\{|f_\theta - a| \leq \varepsilon\}) \quad \text{as} \quad n \to \infty . \end{split}$$

Since ε is arbitrary and $\lambda_0(\{f_\theta=a\})=0$ by assumption, we have $\lim_{n\to\infty}\lambda_0(\{f_\theta\geq a\}\triangle\{g_{\theta,n}\geq a\})=0$. From $\{g_{\theta,n}\geq a\}\in\mathcal{B}_n$ and the definition of \mathcal{B}_0 , it follows that $\{f_\theta\geq a\}\in\mathcal{B}_0$.

(d) \Rightarrow (a). At first we shall prove that for a given $\varepsilon > 0$, there exist n_0 and non-negative \mathcal{B}_n -measurable $g_{\theta,n}$ for $n \ge n_0$ such that $\rho_{\lambda_0}(f_\theta, g_{\theta,n}) < \varepsilon$ and $E_{\lambda_0}(g_{\theta,n}) > 0$. Perhaps n_0 may depend on θ . Since \mathcal{B}_0 is sufficient by assumption, f_θ is \mathcal{B}_0 -measurable. Hence there exists a non-negative \mathcal{B}_0 -measurable function $h_\theta = \sum_{i=1}^{k_\theta} \alpha_{\theta,i} I_{A_{\theta,i}}$ with \mathcal{B}_0 -measurable sets $A_{\theta,i}$ such that $\rho_{\lambda_0}(f_\theta, h_\theta) < \frac{\varepsilon}{2}$, where I_A is the defining function of A. Consequently there exists an n_0 such that for each $n \ge n_0$ we can choose $C_{n,1}$, $C_{n,2}$, \cdots , C_{n,k_θ} from \mathcal{B}_n satisfying $\lambda_0(A_{\theta,i} \triangle C_{n,i}) < \frac{\varepsilon}{2k_\theta \max(\alpha_{\theta,1}, \cdots, \alpha_{\theta,k_\theta})}$. We note that n_0 , $C_{n,i}$ may depend on θ .

 $g_{\theta,n} = \sum_{i=1}^{k_{\theta}} \alpha_{\theta,i} I_{C_{n,i}}$ is \mathcal{B}_n -measurable and we have for $n \ge n_0$

$$(9) \qquad \rho_{\lambda_0}(h_{\theta}, g_{\theta,n}) \leq \sum_{i=1}^{k_{\theta}} \alpha_{\theta,i} \int |I_{A_{\theta,i}} - I_{C_{n,i}}| d\lambda_0$$

$$= \sum_{i=1}^{k_{\theta}} \alpha_{\theta,i} \lambda_0 (A_{\theta,i} \triangle C_{n,i})$$

$$< \frac{\varepsilon}{2}.$$

 $\rho_{\lambda_0}(f_{\theta}, h_{\theta}) < \frac{\varepsilon}{2}$ and (9) yield $\rho_{\lambda_0}(f_{\theta}, g_{\theta,n}) < \varepsilon$ for $n \ge n_0$. Thus we have proved that, for a given $\varepsilon > 0$, there exist n_0 and \mathcal{B}_n -measurable $g_{\theta,n}$ for $n \ge n_0$ such that $g_{\theta,n} \ge 0$, $E_{\lambda_0}(g_{\theta,n}) > 0$ and $\rho_{\lambda_0}(f_{\theta}, g_{\theta,n}) < \varepsilon$.

Let a \mathcal{B}_n -measurable $h_{\theta,n}$ be such that $h_{\theta,n} \ge 0$, $E_{\lambda_0}(h_{\theta,n}) > 0$ and $\rho_{\lambda_0}(f_{\theta}, h_{\theta,n}) \to 0$ $(n \to \infty)$. From what we have just proved, it is easy to see that such $h_{\theta,n}$ exist. Define $h_{\theta,n}^* = E_{\lambda_0}(h_{\theta,n})^{-1}h_{\theta,n}$, $dQ_{\theta,n} = h_{\theta,n}^* d\lambda_0$ and $P_{\theta,n} = Q_{\theta,n}/\mathcal{A}_n$ is clearly a probability measure on \mathcal{A}_n . Noting $E_{\lambda_0}(h_{\theta,n}) \to E_{\lambda_0}(f_{\theta}) = 1$ $(n \to \infty)$, we obtain

(10)
$$||P_{\theta}-P_{\theta,n}||_{\mathcal{A}_{n}} \leq ||P_{\theta}-Q_{\theta,n}||_{\mathcal{A}} \leq \rho_{\lambda_{0}}(f_{\theta}, h_{\theta,n}^{*})$$

$$\leq \rho_{\lambda_{0}}(f_{\theta}, h_{\theta,n}) + \rho_{\lambda_{0}}(h_{\theta,n}, E_{\lambda_{0}}(h_{\theta,n})^{-1}h_{\theta,n})$$

$$= \rho_{\lambda_{0}}(f_{\theta}, h_{\theta,n}) + |1-E_{\lambda_{0}}(h_{\theta,n})^{-1}|E_{\lambda_{0}}(h_{\theta,n})$$

$$\to 0 \qquad (n \to \infty)$$

for every $\theta \in \Omega$.

The \mathcal{B}_n -measurability of $h_{\theta,n}^*$ implies sufficiency of \mathcal{B}_n for $\{P_{\theta,n} | \theta \in \Omega\}$. This, together with (10), implies that $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{L} .

Corollary 1. Suppose that $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} . If $\rho_{\lambda_0}(f_\theta | \mathcal{B}_n)$, $E_{\lambda_0}(f_\theta | \mathcal{B}) \to 0$ $(n \to \infty)$ for every $\theta \in \Omega$, \mathcal{B} is sufficient for \mathcal{P} .

Proof. By Theorem 1, we have $\rho_{\lambda_0}(E_{\lambda_0}(f_\theta | \mathcal{B}_n), f_\theta) \to 0 \ (n \to \infty)$ and therefore $f_\theta = E_{\lambda_0}(f_\theta | \mathcal{B})[\lambda_0]$. This shows that \mathcal{B} is sufficient for \mathcal{D} .

Corollary 2. Suppose that $\{\mathcal{B}_n\}$ is approximately sufficient. Then there exist probability measures $P_{\theta,n}$ on \mathcal{A} $(\theta \in \Omega, n=1, 2, \cdots)$ having the following properties.

- (i) \mathcal{B}_n is sufficient for $\{P_{\theta,n} | \theta \in \Omega\}$.
- (ii) $||P_{\theta}-P_{\theta,n}||_{\mathcal{A}} \to 0 \quad (n\to\infty)$
- (iii) $||P_{\theta}-P_{\theta,n}||_{\mathcal{B}_n}=0$ $(n=1, 2, \cdots).$

Proof. Define $dP_{\theta,n}=E_{\lambda_0}(f_{\theta}|\mathcal{B}_n)d\lambda_0$. Since $\rho_{\lambda_0}(f_{\theta},E_{\lambda_0}(f_{\theta}|\mathcal{B}_n))\to 0$ $(n\to\infty)$ by Theorem 1, we have $||P_{\theta}-P_{\theta,n}||_{\mathcal{A}}\to 0$ $(n\to\infty)$. (i) and (iii) are clear from the definition of $P_{\theta,n}$.

Corollary 3. Suppose that $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} . If λ_0 -liminf $\mathcal{B}_n \subset \lambda_0$ -liminf C_n , $\{C_n\}$ is also approximately sufficient for \mathcal{P} .

Proof. This corollary is clear from (a) \Leftrightarrow (d) in Theorem 1 and we omit the proof.

REMARK 1. In [5] λ_0 -liminf \mathcal{B}_n is characterized as the σ -algebra \mathcal{B}_0 having the following properties.

(i) \mathcal{B}_0 satisfies

(A)
$$\liminf_{n\to\infty} \int |E_{\lambda_0}(f|\mathcal{B}_n)| d\lambda_0 \ge \int |E_{\lambda_0}(f|\mathcal{B}_0)| \lambda_0 d\lambda_0$$

for every bounded \mathcal{A} -measurable f, and

- (ii) any σ -algebra \mathcal{B} satisfying (A) is contained in \mathcal{B}_0 . λ_0 -limsup \mathcal{B}_n is also defined there. A σ -algebra $\tilde{\mathcal{B}}$ is denoted by λ_0 -limsup \mathcal{B}_n if
 - (i)' $\tilde{\mathcal{B}}$ satisfies

(B)
$$\limsup_{n\to\infty} \int |E_{\lambda_0}(f|\mathcal{B}_n)| d\lambda_0 \leq \int |E_{\lambda_0}(f|\tilde{\mathcal{B}})| d\lambda_0$$

for every bounded \mathcal{A} -measurable f, and

(ii)' any σ -algebra \mathcal{B} satisfying (B) contains $\tilde{\mathcal{B}}$.

It is proved that, if $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} , λ_0 -limsup \mathcal{B}_n is sufficient for \mathcal{P} ([4] Theorem 1). Since λ_0 -liminf $\mathcal{B}_n \subset \lambda_0$ -limsup \mathcal{B}_n ([5] Theorem 3.4), our result (a) \Leftrightarrow (d) in Theorem 1 is an improvement though the assumption (A3) is necessary.

REMARK 2. From Theorem 1 the following question will naturally arise. If there exists $\{P_{\theta,n}|\theta\in\Omega\}$ on \mathcal{A}_n $(n=1,2,\cdots)$ such that $||P_{\theta}-P_{\theta,n}||_{\mathcal{A}_n}\to 0$ $(n\to\infty)$ for every θ and that \mathcal{B}_n is minimal sufficient for $\{P_{\theta,n}|\theta\in\Omega\}$, is λ_0 -liminf \mathcal{B}_n minimal sufficient? The answer to this question is negative as shown by a very simple counterexample: X=[0,1], \mathcal{A} : Borel field on [0,1], ν : Lebesgue measure on \mathcal{A} , $\mathcal{B}_n=\mathcal{A}_n=\mathcal{A}$ $(n=1,2,\cdots)$, $P_1=P_2=\nu$. We define $f_{1,n}(x)=\frac{1}{n}x+1-\frac{1}{2n}$, $f_{2,n}(x)=-\frac{1}{n}x+1+\frac{1}{2n}$. Clearly we have $||f_{1,n}d\nu-P_1||_{\mathcal{A}_n}\to 0$, $||f_{2,n}d\nu-P_2||_{\mathcal{A}_n}\to 0$ and $\nu=\frac{1}{2}f_{1,n}d\nu+\frac{1}{2}f_{2,n}d\nu$. It is easy to see that the smallest σ -algebra with respect to which $f_{1,n}$, $f_{2,n}$ are measurable is \mathcal{A} itself. Hence \mathcal{B}_n $(=\mathcal{A})$ is minimal sufficient for $\{f_{1,n}d\nu, f_{2,n}d\nu\}$. But $\hat{\mathcal{B}}=\{X,\phi\}$ is sufficient for $\{P_1,P_2\}$. So ν -liminf $\mathcal{B}_n=\mathcal{A}$ is not minimal sufficient.

3. Pairwise approximate sufficiency

In this section we shall give an alternative characterization of approximate sufficiency by pairwise approximate sufficiency.

Theorem 2. Under the same condition as in Theorem 1, if $\{\mathcal{B}_n\}$ is approxi-

mately sufficient for any pair of two P_1 , P_2 in \mathcal{P} , then $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} .

Proof. We divide the proof into the several steps.

The first step. We shall show that it suffices to prove approximate sufficiency of $\{\mathcal{B}_n\}$ for \mathcal{P}^* , the dense subset of \mathcal{P} . If $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P}^* , we have $\tilde{\rho}_{\lambda_0}\left(\frac{dP}{d\lambda_0},L_{\lambda_0}(\mathcal{B}_n)\right)\to 0$ $(n\to\infty)$ for every $P\in\mathcal{P}^*$. As we have stated in the proof of $(a)\Rightarrow(b)$ in Theorem 1, we have $\tilde{\rho}_{\lambda_0}\left(\frac{dP}{d\lambda_0},L_{\lambda_0}(\mathcal{B}_n)\right)\to 0$ $(n\to\infty)$ for every $P\in\mathcal{P}$. Hence, by $(b)\Rightarrow(a)$ in Theorem 1, $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{P} .

The second step. We shall prove that $\{\mathcal{B}_n\}$ is approximately sufficient for any finite subset $\{P_1, P_2, \cdots, P_m\}$ of \mathcal{P}^* . For this purpose we use the mathematical induction with respect to m. Under the assumption that, for $l \leq k$, $\{\mathcal{B}_n\}$ is approximately sufficient for any $\{P_1, P_2, \cdots, P_l\}$ in \mathcal{P}^* , we prove that $\{\mathcal{B}_n\}$ is approximately sufficient for any $\{P_1, P_2, \cdots, P_{k+1}\}$ in \mathcal{P}^* . Let $\mu = \sum_{i=1}^{k+1} P_i$. By $(a) \Leftrightarrow (b)$ in Theorem 1, it suffices to show $\tilde{\rho}_{\mu} \left(\frac{dP_i}{d\mu}, L_{\mu}(\mathcal{B}_n) \right) \to 0$ $(n \to \infty)$ for every $i=1, 2, \cdots, k+1$, and in particular to show $\tilde{\rho}_{\mu} \left(\frac{dP_1}{d\mu}, L_{\mu}(\mathcal{B}_n) \right) \to 0$ $(n \to \infty)$ since the proof of the case $i \neq 1$ is quite analogous. Put $\mu_1 = \sum_{i=1}^{k} P_i$, $\mu_2 = P_1 + P_{k+1}$ and $f_1 = \frac{dP_1}{d\mu_1}$, $f_2 = \frac{dP_1}{d\mu_2}$. By assumption we have $\tilde{\rho}_{\mu_1}(f_1, L_{\mu_1}(\mathcal{B}_n)) \to 0$ $(n \to \infty)$ and $\tilde{\rho}_{\mu_2}(f_2, L_{\mu_2}(\mathcal{B}_n)) \to 0$ $(n \to \infty)$. So there exist $\{g_n\}$ and $\{h_n\}$ such that $g_n \in L_{\mu_1}(\mathcal{B}_n)$, $h_n \in L_{\mu_2}(\mathcal{B}_n)$ and $\rho_{\mu_1}(f_1, g_n) \to 0$, $\rho_{\mu_2}(f_2, h_n) \to 0$. Since $0 \leq f_1, f_2 \leq 1$, we can take g_n, h_n such that $0 \leq g_n, h_n \leq 1$. Define $\bar{g}_n = \max \left\{g_n, \frac{1}{n}\right\}$, $\bar{h}_n = \max \left\{h_n, \frac{1}{n}\right\}$. It is clear that $\rho_{\mu_1}(f_1, \bar{g}_n) \to 0$ and $\rho_{\mu_2}(f_2, \bar{h}_n) \to 0$. Hence there exists a monotone increasing sequence $\{n_i\}$ of positive integers such that $\bar{g}_{n_i} \to f_1$ $(a.e. \ \mu_1)$ and $\bar{h}_{n_i} \to f_2$ $(a.e. \ \mu_2)$.

We have

$$\frac{dP_1}{d\mu} = \frac{f_1 f_2}{f_1 + f_2 - f_1 f_2} \quad \text{if } f_1 f_2 > 0$$

$$= 0 \quad \text{if } f_1 = 0 \text{ and } f_2 = 0$$

([12] p. 136). Without loss of generality we determine f_1 , f_2 such that $\{f_1>0$, $f_2=0\}=\{f_1=0,\,f_2>0\}=\phi$. Put $\psi_n=\frac{\overline{g}_n\overline{h}_n}{\overline{g}_n+\overline{h}_n-\overline{g}_n\overline{h}_n}$. ψ_n is well-defined because $0<\overline{g}_n,\,\overline{h}_n\leq 1$. Noting $\mu\approx\mu_1,\,\mu\approx\mu_2$ on $\{f_1f_2>0\}$, we have

(11)
$$\psi_{n_i} \to \frac{dP_1}{d\mu} \quad a.e. \ \mu \quad \text{on} \quad \{f_1 f_2 > 0\} \ .$$

For $x \in \{\bar{g}_{n_i}\bar{h}_{n_i} \to 0\}$, it is easy to see $\psi_{n_i}(x) \to 0 \ (n \to \infty)$. We have therefore

(12)
$$\psi_{n_i}(x) \to \frac{dP_1}{d\mu}(x)$$

for all $x \in \{\bar{g}_{n_i}\bar{h}_{n_i} \to 0\} \cap \{f_1 = 0 \text{ and } f_2 = 0\}.$ Since $\mu_i[\{\bar{g}_{n_i}\bar{h}_{n_i} \to 0\} \cap \{f_1 = 0 \text{ and } f_2 = 0\}] = 0 \ (i = 1, 2),$

(13)
$$\mu[\{\bar{\mathbf{g}}_{n_i}\bar{\mathbf{h}}_{n_i} + 0\} \cap \{f_1 = 0 \text{ and } f_2 = 0\}] = 0.$$

It follows from (11)~(13) that $\psi_{n_i} \to \frac{dP_1}{d\mu}$ (a.e. μ). Since $|\psi_{n_i} - \frac{dP_1}{d\mu}| \leq 1$, by Lebesgue's bounded convergence theorem we have $\rho_{\mu}\left(\frac{dP_1}{d\mu}, \psi_{n_i}\right) \to 0$ $(i \to \infty)$. Since ψ_{n_i} is \mathcal{B}_{n_i} -measurable and bounded, we have $\psi_{n_i} \in L_{\mu}(\mathcal{B}_{n_i})$. So $\tilde{\rho}_{\mu}\left(\frac{dP_1}{d\mu}, L_{\mu}(\mathcal{B}_{n_i})\right) \to 0$. By quite a similar to given above, we can prove that, for any subsequence $\{m_n\}$ of $\{n\}$, there exists $\{l_i\} \subset \{m_i\}$ such that $\tilde{\rho}_{\mu}\left(\frac{dP_1}{d\mu}, L_{\mu}(\mathcal{B}_{l_i})\right) \to 0$ $(i \to \infty)$. This shows $\tilde{\rho}_{\mu}\left(\frac{dP_1}{d\mu}, L_{\mu}(\mathcal{B}_n)\right) \to 0$ $(n \to \infty)$. Thus $\{\mathcal{B}_n\}$ has been shown to be approximately sufficient for any finite subset of \mathcal{P}^* . The third step. As the final step we shall prove that $\{\mathcal{B}_n\}$ is approximately sufficient for $\mathcal{P}^* = \{P_1, P_2, \cdots\}$. Put $\lambda_m = \sum_{i=1}^m \beta_i P_i$, $\lambda_0 = \sum_{i=1}^\infty \beta_i P_i (\beta_i > 0, \sum_{i=1}^\infty \beta_i < \infty)$. $||\lambda_m - \lambda_0||_{\tilde{\mathcal{A}}} \to 0$ (as $m \to \infty$) is clear. $\frac{dP_i}{d\lambda_n}$ exists for $n \ge i$ and $\frac{dP_i}{d\lambda_n} \to \frac{dP_i}{d\lambda_n}$ $(n \to \infty)$ $(a.e. \lambda_0)$ for every fixed i ([2] p. 136). From this and $\frac{dP_i}{d\lambda_n} \le \beta_i^{-1}$

(14)
$$\rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_n}, \frac{dP_i}{d\lambda_n}\right) \to 0 \qquad (n \to \infty)$$

 $(n=0, i, i+1, \cdots)$, we get

for every i. Since $\{\mathcal{B}_n\}$ is approximately sufficient for $\{P_1, \dots, P_n\}$ we have $\tilde{\rho}_{\lambda_n}\left(\frac{dP_i}{d\lambda_n}, L_{\lambda_n}(\mathcal{B}_k)\right) \to 0 \ (k \to \infty)$ for every i, n with $n \ge i$. Hence there exists $\{h_{k,n,i}\}$ such that

(15)
$$h_{k,n,i} \in L_{\lambda_n}(\mathcal{B}_k), \ \rho_{\lambda_n}\left(\frac{dP_i}{d\lambda_n}, \ h_{k,n,i}\right) \to 0 \qquad (k \to \infty).$$

Since $\frac{dP_i}{d\lambda_n} \leq \beta_i^{-1}$, we can assume $0 \leq h_{k,n,i} \leq \beta_i^{-1}$ and hence $h_{k,n,i} \in L_{\lambda_0}(\mathcal{B}_k)$. Let ε be a positive number. We choose n_0 such that $||\lambda_{n_0} - \lambda_0||_{\mathcal{J}} < \varepsilon$ and $\rho_{\lambda_0} \left(\frac{dP_i}{d\lambda_0}, \frac{dP_i}{d\lambda_{n_0}} \right) < \varepsilon$. It follows from (15) that there exists k_0 such that

$$\rho_{\lambda_{n_0}}\left(\frac{dP_i}{d\lambda_{n_0}}, h_{k,n_0,i}\right) < \varepsilon \text{ for } k \ge k_0.$$

$$\left|\rho_{\lambda_{n_0}}\left(\frac{dP_i}{d\lambda_{n_0}}, h_{k,n_0,i}\right) - \rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_{n_0}}, h_{k,n_0,i}\right)\right|$$

$$= \left|\int \left|\frac{dP_i}{d\lambda_{n_0}} - h_{k,n_0,i}\right| d\lambda_{n_0} - \int \left|\frac{dP_i}{d\lambda_{n_0}} - h_{k,n_0,i}\right| d\lambda_0\right|$$

$$\le 2\beta_i^{-1} ||\lambda_{n_0} - \lambda_0||_{-\pi} < 2\beta_i^{-1} \varepsilon.$$

Hence we have for $k \ge k_0$

$$\begin{split} \rho_{\lambda_0}\!\!\left(\!\frac{dP_i}{d\lambda_0},\,h_{k,{}^{n}_{0},i}\right) &\!\!\leq\! \rho_{\lambda_0}\!\left(\!\frac{dP_i}{d\lambda_0},\,\frac{dP_i}{d\lambda_{n_0}}\!\right) \!\!+\! \rho_{\lambda_0}\!\left(\!\frac{dP_i}{d\lambda_{n_0}},\,h_{k,n_0,i}\right) \\ &\!\!<\! \rho_{\lambda_0}\!\left(\!\frac{dP_i}{d\lambda_0},\,\frac{dP_i}{d\lambda_{n_0}}\!\right) \!\!+\! \rho_{\lambda_{n_0}}\!\!\left(\!\frac{dP_i}{d\lambda_{n_0}},\,h_{k,n_0,i}\right) \!\!+\! 2\beta_{i}^{-1}\varepsilon \\ &\!\!<\! \varepsilon \!\!+\! \varepsilon \!\!+\! 2\beta_{i}^{-1}\varepsilon \,. \end{split}$$

Consequently we have $\rho_{\lambda_0}\left(\frac{dP_i}{d\lambda_0},h_{k,n_0,i}\right)\to 0 \ (k\to\infty)$ for every fixed i, which shows $\tilde{\rho}_{\lambda_0}\left(\frac{dP_i}{d\lambda_0},L_{\lambda_0}(\mathcal{B}_k)\right)\to 0 \ (k\to\infty)$ for every i. By $(a) \Leftrightarrow (d)$ in Theorem 1 we see that $\{\mathcal{B}_n\}$ is approximately sufficient for \mathcal{Q}^* . Thus the proof has been completed.

Waseda University

References

- [1] A. Berger: Remark on separable space of probability measures, Ann. Math. Statist. 22 (1951), 119-120.
- [2] P.R. Halmos: Measure Theory, D. van Nostrand Co., New York, 1950.
- [3] P.R. Halmos and J.L. Savage: Application of the Radon-Nikodym theorem to the theory of sufficient statistics, Ann. Math. Statist. 20 (1949), 225-241.
- [4] H. Kudō: On an approximation to a sufficient statistic including a concept of asymptotic sufficiency, J. Fac. Sci. Univ. Tokyo, Sec. IA 17 (1970), 273-290.
- [5] H. Kudō: A note on the strong convergence of σ-algebras, Ann. Probability 2 (1974), 76–83.
- [6] H. Kudō: Correction to "On an approximation to a sufficient statistic including a concept of asymptotic sufficiency", J. Fac. Sci. Univ. Tokyo, Sec. IA 22 (1975), 449
- [7] J. Neveu: Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.