A NECESSARY AND SUFFICIENT CONDITION
FOR THE EXISTENCE OF NON-SINGULAR
G-VECTOR FIELDS ON G-MANIFOLDS

KATSUHiro KOMIYA

(Received July 30, 1975)

1. Introduction

Throughout this paper G always denotes a compact Lie group and G-
manifolds are smooth manifolds with smooth G-actions. In this paper we
will give a necessary and sufficient condition for the existence of non-singular
G-vector fields on closed G-manifolds.

Let \(E \to X \) be a G-vector bundle. After choosing a G-invariant Riemannian
metric on \(E \), we denote by \(S(E) \to X \) the associated G-sphere bundle of \(E \).
We abbreviate continuous G-equivariant cross section of \(E \) to G-cross section
of \(E \).

Let \(M \) be a compact G-manifold, and \(s: M \to \tau(M) \) a G-cross section of the
tangent bundle \(\tau(M) \) of \(M \). \(s \) is called a non-singular G-vector field on \(M \), if \(s \) is
not zero at each point of \(M \). For a positive integer \(k \), by a G-k-field on \(M \) we
will mean \(k \) G-cross sections of \(\tau(M) \) which are linearly independent at each
point of \(M \).

For a closed subgroup \(H \) of \(G \) we set

\[M_H = \{ x \in M | G_x = H \}, \]

where \(G_x \) is the isotropy group at \(x \). Let \(N(H) \) be the normalizer of \(H \) in \(G \).
Then \(M_H \) is an \(\Lambda(G) \)-manifold and also a free \(N(H)/H \)-manifold.

For a topological space \(X \) we define \(|\chi|(X) \) to be the sum \(\Sigma_x |\chi(Y)| \), where
\(\chi(Y) \) is the Euler characteristic of \(Y \) and \(Y \) runs over the connected components
of \(X \).

In this paper we will obtain the following results:

Theorem 1.1. Let \(M \) be a compact G-manifold. Let \(s: \partial M \to S(\tau(\partial M)) \) be
a G-cross section of \(S(\tau(\partial M)) \). Then \(s \) is extendible to a G-cross section of \(S(\tau(M)) \)
if and only if

\[|\chi|(M_{G_x}N(G_x)) = 0, \quad \text{or} \quad \dim N(G_x) - \dim G_x > 0 \]

for all \(x \in M \).
From this theorem we immediately obtain the main result of this paper:

Corollary 1.2. A closed G-manifold M admits a non-singular G-vector field if and only if

$$\left|\chi\right|(M_{G_x}|N(G_x)) = 0,$$

or

$$\dim N(G_x) - \dim G_x > 0$$

for all $x \in M$.

We also obtain the following corollary:

Corollary 1.3. Let M be a compact G-manifold, F the stationary point set of M, and k a positive integer. We suppose that

$$\dim N(G_x) - \dim G_x \geq k$$

for all $x \in M - F$. Then M admits a G-k-field if and only if F admits a k-field.

Note. The existence of a non-singular continuous G-vector field on a compact G-manifold implies the existence of a non-singular smooth G-vector field. This fact is assured by the differentiable approximation theorem [3; (6.7)] and the usual process of averaging cross sections.

2. Preliminaries

(2-1) For a closed subgroup H of G let (H) be the conjugacy class of H in G. If H is an isotropy group occurring on a G-manifold M, (H) is called an isotropy type on M.

Set

$$M_H = \{x \in M | G_x = H\}$$

$$M_{(H)} = \{x \in M | (G_x) = (H)\}.$$

Then M_H and $M_{(H)}$ are submanifolds of M, but, in general, not compact. If (H) is a maximal isotropy type on a compact G-manifold M, M_H and $M_{(H)}$ are compact.

(2-2) Let $\pi: E \rightarrow X$, $\pi': E' \rightarrow X'$ be G-fibre bundles, and $f: E \rightarrow E'$ a G-bundle map covering $f: X \rightarrow X'$. Let $s': X' \rightarrow E'$ be a G-cross section of E'. s' induces a G-cross section

$$s: X \rightarrow f^*E' = \{(x, e) \in X \times E' | f(x) = \pi'(e)\}$$

of the induced G-fibre bundle f^*E' which sends $x \in X$ to $(x, s'f(x)) \in X \times E'$. E is canonically isomorphic to f^*E'. So s induces a G-cross section of E. We denote this G-cross section by f^*s', and call induced G-cross section from s' by f.

(2-3) Recall known results:
Proposition 2.1 (Segal [2; Proposition 1.3]). Let X, Y be G-spaces, and X compact. If $f_0, f_1: X \to Y$ are G-homotopic G-maps, and $E \to Y$ is a G-vector bundle, then there is a G-bundle isomorphism

$$\phi: f_0^*E \cong f_1^*E.$$

From this proposition we easily obtain the following. I denotes the interval $[0,1]$ with trivial G-action.

Proposition 2.2. If X is a compact G-space, then any G-vector bundle E over $X \times I$ is isomorphic to $(E|X \times \{0\}) \times I$ as G-vector bundles.

Proposition 2.1 may be stated in a more precise form as the following: If f_0, f_1 are G-homotopic relative to a closed G-invariant subspace A of X, and if we consider f_0^*E, f_1^*E subspaces of $X \times E$, then the G-bundle isomorphism ϕ satisfies $\phi(x, e) = (x, e)$ for all $x \in A$ and $e \in E$.

From this fact we obtain

Proposition 2.3. Let $E_i \to X_i$, $i=1,2$, be G-vector bundles with X_i compact. Let $f: X_1 \times I \to X_2$ be a G-homotopy which is constant on a closed G-invariant subspace A of X_1. Let $f_0: E_1 \to E_2$ be a G-bundle map over $f_0 = f|X_1 \times \{0\}$. Then there is a G-bundle map $f: E_1 \times I \to E_2$ over f which is a homotopy of f_0 and is constant on $E_1|A$.

Corollary 2.4. Let $E \to X$ be a G-vector bundle with X compact, A a closed G-invariant subspace of X, and $i: A \to X$ the inclusion map. Let $f: X \to A$ be a G-map such that f is G-homotopic to the identity of X relative to A. Then there is a G-bundle map $f: E \to E|A$ over f which is the identity on $E|A$.

(2-4) The following result has been obtained by U. Koschorke in his paper [1; §1].

Proposition 2.5. Let M be a compact manifold, and $s: \partial M \to S(\tau(\partial M))$ a cross section of $S(\tau(\partial M))$. Then s is extendible to a cross section of $S(\tau(M))$ if and only if $|X|(M) = 0$.

3. Proof of Theorem 1.1

The proof will proceed by an induction for the number of isotropy types on M.

(3-1) In the first place, let M be of one isotropy type, and let (H) be the isotropy type on M.

"if" part: M_H is a compact $N(H)$-manifold with boundary $M_H \cap \partial M$. Consider the sphere bundle
The G-cross section s induces a cross section

$$s_1: \partial(M_H/N(H)) \rightarrow S(\tau(M_H))/N(H) \mid \partial(M_H/N(H)).$$

This is assured by the G-equivariancy of s and the fact

$$\partial(M_H/N(H)) = \partial M_H/N(H) = M_H \cap \partial M/H(N(H)).$$

We may extend s_1 to a cross section of $S(\tau(M_H))/N(H)$ as follows. If

$$\dim N(H) - \dim H > 0,$$

then the dimension as a cell complex of $M_H/N(H) = M_H/(N(H)/H)$ is less than or equal to the dimension of fibre of $S(\tau(M_H))/N(H)$. Therefore the obstruction to extending s_1 over $M_H/N(H)$ vanishes. If

$$\dim N(H) - \dim H = 0,$$

then

$$|\chi|(M_H/N(H)) = 0$$

by the assumption, and then

$$S(\tau(M_H))/N(H) \cong S(\tau(M_H/N(H)))$$

for $N(H)/H$ is a finite group and $M_H/N(H) = M_H/(N(H)/H)$. The image of s_1 is in $S(\tau(\partial M_H))/N(H)$. Then s_1 can be extended over $M_H/N(H)$ by Proposition 2.5.

Let

$$s_2: M_H/N(H) \rightarrow S(\tau(M_H))/N(H)$$

be an extension of s_1. Let

$$\pi: S(\tau(M_H)) \rightarrow S(\tau(M_H))/N(H)$$

be the canonical projection, and let

$$\pi^*s_2: M_H \rightarrow S(\tau(M_H))$$

be the induced $N(H)$-cross section. π^*s_2 may be considered an $N(H)$-cross section of $S(\tau(M))/M_H$, since $S(\tau(M_H))$ is a subbundle of $S(\tau(M))/M_H$. Moreover π^*s_2 is an extension of $s \mid \partial M_H$. Since M is of one isotropy type, the G-action

$$G \times (S(\tau(M))/M_H) \rightarrow S(\tau(M))$$

induces a G-bundle isomorphism
Then \(\pi^*s \) induces a \(G \)-cross section
\[
s: M \to S(\tau(M))
\]
which is an extension of \(s \).

"only if" part: Let
\[
t: M \to S(\tau(M))
\]
be an extension of \(s \). By the \(G \)-equivariancy of \(t \), \(t \) is restricted to an \(N(H) \)-cross section
\[
t: M_H \to S(\tau(M_H)).
\]
\(t \) induces a cross section
\[
t: M_H/N(H) \to S(\tau(M_H))/N(H).
\]
If
\[
dim N(H) - \dim H = 0,
\]
then
\[
S(\tau(M_H))/N(H) \cong S(\tau(M_H|N(H))),
\]
and
\[
t_2(\partial(M_H|N(H))) \subseteq S(\tau(\partial(M_H|N(H)))).
\]
Therefore
\[
dim N(H) - \dim H = 0
\]
implies
\[
|X|(M_H|N(H)) = 0
\]
by Proposition 2.5.

This completes the proof for the case in which \(M \) is of one isotropy type.

(3-2) Let the theorem be true for the case in which the number of isotropy types is \(k-1 \). Let \(M \) be a compact \(G \)-manifold with \(k \) isotropy types.

"if" part: Let \((H) \) be a maximal isotropy type on \(M \). Then \(M_{(H)} \) is a compact \(G \)-submanifold of \(M \) with one isotropy type. From the preceding argument we obtain a \(G \)-cross section
\[
s: M_{(H)} \to S(\tau(M))|M_{(H)}
\]
such that the image of \(s \) is in \(S(\tau(M_{(H)})) \) and \(s|\partial M_{(H)} = s|\partial M_{(H)} \).

Let \(T(M_{(H)}) \) be a closed \(G \)-invariant tubular neighborhood of \(M_{(H)} \) in \(M \).
By Corollary 2.4 we obtain a G-bundle map
$$\pi: S(\tau(M)) \mid T(M_{CH}) \to S(\tau(M)) \mid M_{CH},$$
such that π covers the canonical projection of $T(M_{CH})$ to M_{CH} and π is the identity on $S(\tau(M)) \mid M_{CH}$. π induces a G-cross section
$$\pi^*s_i: T(M_{CH}) \to S(\tau(M)) \mid T(M_{CH})$$
from s_i such that $\pi^*s_i \mid M_{CH} = s_i$.

To obtain a G-cross section
$$L_i = \partial M \cup T(M_{CH}) \to S(\tau(M)) \mid L_i,$$
extending s, we may apply Lemma 5.1 (stated in the last section) as follows. Apply $E \to X$, A, B, D, S_A and S_B in Lemma 5.1 to $\tau(M) \to M$, $T(M_{CH})$, ∂M, ∂M_{CH}, π^*s_i and s, respectively. So, in this case,
$$C = A \cap B = T(M_{CH}) \cap \partial M = T(M_{CH}) \mid \partial M_{CH},$$
and this is compact. Moreover this is equivariantly deformable to ∂M_{CH}, and
$$\pi^*s_i \mid \partial M_{CH} = s \mid \partial M_{CH}.$$

Let K be a closed G-invariant collar of ∂M_{CH} in M_{CH}. By Proposition 2.2, $T(M_{CH}) \mid K$ has the desired property as U in Lemma 5.1. Therefore we can apply Lemma 5.1 to this case. So we obtain a G-cross section
$$s_i: L_i \to S(\tau(M)) \mid L_i,$$
extending s.

Let $T^c(M_{CH})$ be the part of $T(M_{CH})$ corresponding to the open disc bundle. Set
$$L = M - T^c(M_{CH}).$$
Then L is a compact G-manifold with corner. Smoothing the corner of L, let L' be the resulting smooth G-manifold. Note that L and L' are the same topological space. Let
$$\varphi: \partial L' \times [0, 1] \to L'$$
be a G-invariant collar of $\partial L'$ in L' such that
$$\varphi(\partial L' \times \{0\}) = \partial L'.$$
Identify $\partial L' \times [0, 1]$ with the image of φ. By Proposition 2.2 there is a G-bundle isomorphism
$$S(\tau(M)) \mid \partial L' \times [0, 1] \cong (S(\tau(M)) \mid \partial L') \times [0, 1].$$
$S(\tau(M))|\partial L'$ admits a G-cross section s_3 which is a restriction of s_2. From s_3, the above isomorphism induces a G-cross section

$$s_4: \partial L' \times [0, 1] \rightarrow S(\tau(M))|\partial L' \times [0, 1].$$

Set

$$L_2 = L' - \partial L' \times [0, 1].$$

L_2 is a compact G-manifold with $k-1$ isotropy types. $S(\tau(M))|L_2$ admits a G-cross section s_5 on $\partial L_2 = \partial L' \times \{1\}$ which is the restriction of s_4. $S(\tau(M))|L_2$ and $S(\tau(L_2))$ are identical, since the smoothing process of the corner of L does not change the differentiable structure outside the corner. By careful consideration we see that the image of s_5 is in $S(\tau(3L_2))$. So, by the hypothesis of the induction, s_5 is extendible to a G-cross section

$$s_6: L_2 \rightarrow S(\tau(L_2)) = S(\tau(M))|L_2.$$

Then s_5, s_4, and s_6 give a G-cross section of $S(\tau(M))$ extending s.

"only if" part: It suffices to show that, for each isotropy type (H) on M, if

$$\dim N(H) - \dim H = 0$$

then

$$|\chi|(M_H|N(H)) = 0.$$

Let (H) be a maximal isotropy type on M. As in the "only if" part for the case of one isotropy type, we see that

$$\dim N(H) - \dim H = 0$$

implies

$$|\chi|(M_H|N(H)) = 0.$$

Let (H') be another isotropy type on M. Consider $L'_{H'}$ where L' is the compact G-manifold in the previous "if" part. Since L' is of $k-1$ isotropy types,

$$\dim N(H') - \dim H' = 0$$

implies

$$|\chi|(L'_{H'}|N(H')) = 0$$

by the hypothesis of the induction. Furthermore $L'_{H'}$ is equivariantly homotopy equivalent to $M_{H'}$. Then

$$\dim N(H') - \dim H' = 0$$

implies

$$|\chi|(M_{H'}|N(H')) = 0.$$
Thus Theorem 1.1 is completely proved.

4. Proof of Corollary 1.3

If M admits a G-k-field, then the k-field is tangent to F by equivariancy. So the "only if" part is trivial.

Now we assume that F admits a k-field. Then there are k cross sections s_1, s_2, \ldots, s_k of $\tau(F)$ which are linearly independent at each point of F. Since $\tau(F)$ is a subvector bundle of $\tau(M)|F$, we may regard s_1, \ldots, s_k as G-cross sections of $\tau(M)|F$. As in the proof of Theorem 1.1 we may extend s_1 to a nowhere vanishing G-cross section s_1' of $\tau(M)$. Choosing a G-invariant Riemannian metric on $\tau(M)$, let E be the G-invariant subvector bundle of $\tau(M)$ which is orthogonal to the image of s_1'. The assumption

$$\dim N(G_x) - \dim G_x \geq k$$

enables us to extend s_2 to a nowhere vanishing G-cross section s_2' of E by the same method in the proof of Theorem 1.1. By repeating this process we may extend s_3, \ldots, s_k to a G-cross sections s_3', \ldots, s_k' of $\tau(M)$ such that s_1', \ldots, s_k' are linearly independent at each point of M. So we obtain a G-k-field on M.

5. Concluding lemma

We will conclude this paper by proving the following lemma which was used in the proof of Theorem 1.1. G acts trivially on intervals considered.

Lemma 5.1. Let $E \rightarrow X$ be a G-vector bundle. Let A, B be G-invariant subspaces with $C = A \cap B$ compact. We assume that there is a G-invariant subspace D of C such that C is equivariantly deformable to D, i.e., there is a G-homotopy $F: C \times [0, 1] \rightarrow C$ such that $F(x, 0) = x$ and $F(x, 1) \in D$ for all $x \in C$. We also assume that there is a G-invariant neighborhood U of C in A such that there is a G-homeomorphism $\varphi: C \times [0, 3] \approx U$ with $\varphi(x, 0) = x$ for all $x \in C$. Let

$s_A: A \rightarrow S(E)|A$

and

$s_B: B \rightarrow S(E)|B$

be G-cross sections which agree on D. Then there is a G-cross section $s: A \cup B \rightarrow S(E)|A \cup B$
which agrees with \(s_A \) on \(A - U \) and \(s_B \) on \(B \).

Proof. By Proposition 2.3 there is a \(G \)-bundle map
\[
F: (S(E) | C) \times [0, 1] \to S(E) | C
\]
which covers \(F \) and is the identity on \((S(E) | C) \times \{0\} \), and also there is a \(G \)-bundle isomorphism
\[
\varphi: (S(E) | C) \times [0, 3] \approx S(E) | U
\]
which covers \(\varphi \) and is the identity on \((S(E) | C) \times \{0\} \). We define a \(G \)-bundle map
\[
K: (S(E) | C) \times [0, 2] \to S(E) | C
\]
by
\[
K(v, t) = \begin{cases} F(v, t) & \text{if } 0 \leq t \leq 1 \\ F(v, 2 - t) & \text{if } 1 \leq t \leq 2 \end{cases}
\]
for \(v \in S(E) | C \) and \(t \in [0, 2] \). Then we may define a \(G \)-cross section
\[
s_1: C \times [0, 2] \to (S(E) | C) \times [0, 2]
\]
of the \(G \)-bundle \((S(E) | C) \times [0, 2] \) by
\[
s_1(x, t) = \begin{cases} K^* s_B(x, t) & \text{if } 0 \leq t \leq 1 \\ K^* s_A(x, t) & \text{if } 1 \leq t \leq 2 \end{cases}.
\]
This is well-defined since \(K^* s_A \) and \(K^* s_B \) agree on \(C \times \{1\} \). \(s_1 \) satisfies the following equations for all \(x \in C \)
\[
s_1(x, 0) = (s_B(x), 0)
\]
and
\[
s_1(x, 2) = (s_A(x), 2).
\]
We define a map
\[
\lambda: [2, 3] \to [0, 3]
\]
by \(\lambda(t) = 3t - 6 \) for \(t \in [2, 3] \). We denote by \(s_2 \) the \(G \)-cross section of \((S(E) | C) \times [2, 3] \) which is induced from the \(G \)-cross section \(s_A | U \) by the composition
\[
(S(E) | C) \times [2, 3] \xrightarrow{(id, \lambda)} (S(E) | C) \times [0, 3] \xrightarrow{\varphi} S(E) | U.
\]
\(s_2 \) satisfies the following equations for all \(x \in C \)
\[
s_2(x, 2) = (s_A(x), 2)
\]
and
\[s_2(x, 3) = \varphi^{-1}s_A\varphi(x, 3). \]

Since \(s_1 \) and \(s_2 \) agree on \(C \times \{2\} \), we obtain a \(G \)-cross section

\[s_2: C \times [0, 3] \to (S(E)|C) \times [0, 3] \]

from \(s_1 \) and \(s_2 \). Then the induced \(G \)-cross section

\[(\varphi^{-1})^{*}s_2: U \to S(E)|U \]

satisfies the following equations

\[(\varphi^{-1})^{*}s_2(x) = s_B(x) \quad \text{for all } x \in C \]

\[(\varphi^{-1})^{*}s_2(x) = s_A(x) \quad \text{for all } x \in \varphi^{-1}(C \times \{3\}). \]

So we obtain a \(G \)-cross section

\[s: A \cup B \to S(E)|A \cup B \]

defined by

\[s(x) = \begin{cases}
s_A(x) & \text{if } x \in A \setminus U \\
(\varphi^{-1})^{*}s_2(x) & \text{if } x \in U \\
s_B(x) & \text{if } x \in B.
\end{cases} \]

References

