ON GROUPS WITH A STANDARD COMPONENT OF KNOWN TYPE

Michael ASCHBACHER* and Gray M. SEITZ**

(Received June 2, 1975)

1. Introduction and notation

Let G be a finite group containing a standard subgroup of known isomorphism type, centralized by a 4 -group. Then it is shown that G is a known group or G is of Conway Type. The proof requires information about the classes of involutions and centralizers in the automorphism groups of the known sporadic groups, and that information is summarized below in tabular form, as it is of independent interest.

The main theorem is a step toward the classification of finite groups of component type. To put the result in the proper setting we include the following definitions and background material.

A group A is quasisimple if A is its own commutator group and, modulo its center, A is simple. A component of a group is a subnormal quasisimple subgroup. The core of a group is its largest normal subgroup of odd order. $A 2$-component of a group is a subnormal subgroup A such that A is its own commutator group and A is quasisimple modulo its core. G is of component type if the centralizer in G of some involution contains a 2 -component. This is equivalent to requiring that the centralizer is not 2 -constrained.

The following important conjecture of J. G. Thompson seems close to being established:

B-conjecture: Let G be a finite core free group. Then 2-components of centralizers of involutions are quasisimple.

A subgroup K of G is tightly embedded in G if K has even order while K intersects its distinct conjugates in subgroups of odd order. A standard subgroup of G is a quasisimple subgroup A of G such that $K=C_{G}(A)$ is tightly embedded in $G, N_{G}(A)=N_{G}(K)$, and A commutes with none of its conjugates. It is shown in [1] and [14] that:

Component Theorem. Let G be a finite group of component type satisfying the B-conjecture and contained in the automorphism group of a

[^0]simple group. Then, with known exceptions, G contains a standard subgroup.
Let \mathcal{K} consist of the simple Chevalley groups, of both ordinary and twisted type, the alternating groups, and the 25 known sporadic groups listed below in Table 1. \mathcal{K} contains all the finite simple groups known at the moment. Indeed existence proofs for two of the groups, and uniquencess theorems for still others, do not now exist, and in those cases we include in \mathcal{K} all simple groups satisfying the defining properties of the (potential) group.

Theorem. Let G be a finite group with $O(G)=1, A$ a standard subgroup of G, and $X=\left\langle A^{G}\right\rangle$. Assume $Z(A) \in \mathcal{K}$ and the 2-rank of the centralizer in G of A is at least 2. Then the pair A, X is one of the following:
(1) $A=X$.
(2) A is an alternating group A_{n} and X is A_{n+4}.
(3) A is $L_{2}(4)$ and X is the Mathieu group M_{12}.
(4) A is $L_{2}(4)$ and X is the Hall-Janko group HJ.
(5) A is $L_{3}(4)$ and X is the sporadic Suzuki group $S z$.
(6) A is a covering of $L_{3}(4)$ and X is Held's group He.
(7) A is $S z(8)$ and X is Rudavalis' group $R u$.
(8) A is $G_{2}(4)$ and X is of Conway Type.

A group X is of Conway Type if X is simple, X possesses a standard subgroup $A \cong G_{2}(4)$, and there is a subgroup B of order 3 in A such that $E\left(C_{A}(B)\right)=L \cong S L_{3}(4)$ and $\left\langle L^{C(B)}\right\rangle \mid B$ is isomorphic to $S z$. Presumably a group of Conway Type is isomorphic to Conway's largest group $C o_{1}$.

The case $A / Z(A) \cong L_{3}(4)$ was done by Cheng Kai Nah [5] and the case $A / Z(A)$ a Bender group was done by Griess, Mason, and Seitz [19]. We appeal to their work rather than duplicating the proof.

Certain information about the involutions in the automorphism group of A is necessary to the proof. If A is a Chevalley group of odd characteristic this information is minimal. The appropriate facts are established in Section 4. If A is a Chevalley group of even characteristic, detailed information is required. This information is contained in [4], which is crucial to the proof. Less detailed information is required if A is a sporadic group. We do however determine the conjugacy classes of involutions in the automorphism group of A and the general nature of the isomorphism type of the centralizer of a representative in each class. These facts are summarized in Table 1. Column 1 gives the simple group G. Column 2 gives the order of the outer automorphism group of G. Columns 3 and 4 give the number of classes of involutions contained in G and in Aut $(G)-G$, respectively. Column 5 gives the general isomorphism type of the centralizers. By convention the centralizers of the classes in G are listed first. $G_{n} / G_{n-1} / \cdots$ denotes a group with normal series $1=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n}=G$ with $H_{m} / H_{m-1} \simeq G_{m} . \quad Q^{n} D^{m}$ denotes the central pro-

Table 1

G	'Out(G)\|	classes in G	$\begin{aligned} & \text { classes not } \\ & \text { in } G \end{aligned}$	centralizers
M_{11}	1	1	0	$G L_{2}(3)$
M_{12}	2	2	1	$S_{3} / Q^{2} \quad Z_{2} \times S_{5} \quad Z_{2} \times A_{5}$
M_{22}	2	1	2	$S_{4} / E_{16} \quad L_{3}(2) / E_{8} \quad F_{20} / E_{16}$
M_{23}	1	1	0	$L_{3}(2) / E_{16}$
M_{24}	1	2	0	$L_{3}(2) / D^{3} \quad S_{5} / E_{64}$
J_{1}	1	1	0	$Z_{2} \times A_{5}$
HJ	2	2	1	$A_{5} / Q D \quad E_{4} \times A_{5} \quad P G L_{2}(7)$
J_{3}	2	1	1	$A_{5} / Q D \quad L_{2}(17)$
Mc	2	1	1	$A_{8} / Z_{2} \quad M_{11}$
Ly	1	1	0	A_{11} / Z_{2}
HS	2	2	2	$S_{5} / Q^{2 *} Z_{4} \quad Z_{2} \times \operatorname{Aut}\left(A_{6}\right) \quad S_{5} / E_{16} \quad S_{8}$
He	2	2	1	$L_{3}(2) / D^{3} \quad Z_{2} / L_{3}(4) / E_{4} \quad S_{7} / Z_{3}$
Sz	2	2	2	$\Omega_{6}^{-}(2) / Q^{3} \quad Z_{2} / L_{3}(4) \times E_{4} \quad$ Aut $(H J) \quad A u t\left(M_{12}\right)$
$R u$	1	2	0	$S_{5} / 2^{11} \quad S z(8) \times E_{4}$
ON	2	1	1	$Z_{2} / L_{3}(4) / Z_{4} \quad J_{1}$
Co_{3}	1	2	0	$S_{p_{6}(2) / Z_{2}} \quad Z_{2} \times M_{12}$
Co_{2}	1	3	0	$S p_{6}(2) / Q^{4} \quad A_{8} / E_{16} \times D^{3} \quad \operatorname{Aut}\left(A_{6}\right) / E_{2} 10$
Co ${ }_{1}$	1	3	0	$\Omega_{8}^{+}(2) / Q^{4} \quad \operatorname{Aut}\left(M_{12}\right) / E_{2}{ }^{11} \quad Z_{2} / G_{2}(4) \times E_{4}$
$M(22)$	2	3	3	$\begin{aligned} & U_{6}(2) / Z_{2} \quad Z_{2} / U_{4}(2) / Z_{2} \times Q^{4} \quad \text { 2-constrained } 2^{16} \cdot 3^{3} \\ & A u t\left(\Omega_{8}^{+}(2)\right) \quad Z_{2} \times S p_{6}(2) \quad O_{8}^{-}(2) / E_{64} \end{aligned}$
$M(23)$	1	3	0	$M(22) / Z_{2} \quad Z_{2} / U_{6}(2) / E_{4} \quad S_{3} / U_{4}(2) / E_{4} \times Q^{4}$
$M(24)^{\prime}$	2	2	2	$Z_{2} / M(22) / Z_{2} \quad S_{3} / \Omega_{6}^{-}(3) / Z_{3} / Q^{6} \quad M(23) \quad S_{3} / U_{6}(2) / E_{4}$
F_{5}	2	2	1	$Z_{2} / H S / Z_{2} \quad A_{5}$ wreath $Z_{2} / Q^{4} \quad S_{10}$
F_{3}	1	1	0	A_{9} / Q^{4}
F_{2}	1	4	0	$Z_{2} /{ }^{2} E_{6}(2) / Z_{2} \quad Z_{2} / F_{4}(2) \times E_{4} C o_{2} / D^{11} \quad O_{6}^{+}(2) / E_{2} 16 / E_{2} 9$
F_{1}	1	2	0	$F_{2} / Z_{2} \quad C o_{1} / Q^{12}$

duct of n copies of the quaternion group of order 8 and m copies of the dihedral group of order 8, with identified centers. E_{n} is an elementary abelian group of order n.

Most of the information listed in Table 1 is already known and much appears in the literature. Some is collected in an unpublished table of N . Burgoyne. Proofs and references to proofs of the facts in Table 1 appear within. In many cases more detailed information is included.

In addition to the notation and terminology defined above we also use Bender's notation $F^{*}(G)$ for the Generalized Fitting subgroup of $G . \quad F^{*}(G)=$ $E(G) F(G)$, where $E(G)$ is the join of the components of G and $F(G)$ is the Fitting subgroup of $G . \quad L(G)$ is the join of all 2-components of $G . \quad G \mathcal{A}$ denotes the smallest normal subgroup H of G such that G / H is solvable with abelian Sylow 2-groups. Given a permutation representation of G on a set
Ω, G^{a} denotes the image of G under this representation.
A quasisimple group A satisfies hypothesis II if whenever a noncyclic elementary abelian 2-group T acts faithfully on A, with T Sylow in a 2-nilpotent tightly embedded subgroup of $T A$, then $T \leq A C(A)$.
$\Omega_{n}^{\mathrm{g}}\left(2^{m}\right)$ is the commutator group of the n-dimensional orthogonal group over $G F\left(2^{m}\right)$ defined by a quadradic form of $\operatorname{sign} \varepsilon$.
$I(x)$ is the set of fixed points of a permutation x.
The concept of "admissibility" is defined in Section 2.

2. Preliminary results

In this section we collect a number of lemmas which will be used in the proof of the main theorem.
(2.1) Let K be tightly embedded in $G, R \in S y l_{2}(K)$ and $\Phi(R)=1$. Assume $F^{*}(G)$ is simple and $K \sharp G$. Then $0(K) R$ is tightly embedded in G. Further $C_{K}(r)$ is solvable for each $r \in R^{\sharp}$.

Proof. As $F^{*}(G)$ is simple and K is not normal in G, Theorem 4 of [1] implies either K is 2 -constrained or $O^{2^{\prime}}(K) / O(K) \cong L_{2}\left(2^{n}\right)$. In the former case $O_{2^{\prime}, 2}(K)=O(K) R$ is tightly embedded in G. In the latter case $R O(K)$ is $C(r)-$ invariant for each $r \in R^{\ddagger}$ and $N(R O(K))$ is transitive on R^{*}, so $R O(K)$ is tightly embedded in G.

The following will be used as an induction tool in the proof of the main theorem:
(2.2) Let K be a solvable tightly embedded subgroup of G and $R \in S y l_{2}(K)$. Assume L is a quasisimple subgroup of G normal in $N(K)$ and $R \in S y l_{2}(C(L))$. Then either
(1) L is standard in G, or
(2) $\left\langle L^{G}\right\rangle=L \times L^{g}, R \leq L^{g}$, and L is a Bender group.

Proof. Let $H=C(L) . \quad L \unlhd N(K)$ so $N(K) \leq N(L) . \quad$ As $R \in S y l_{2}(H)$ and K is tightly embedded in G, it follows that H is tightly embedded in G. Also $N(H)=H(N(H) \cap N(R)) \leq H N(K) \leq N(L)$, so $N(H)=N(L)$. Therefore, L is either standard or there exists a conjugate $A=L^{g}$ of L in H, and we may assume the latter.

Let $T \in S y l_{2}(L)$. Then $T \leq L \leq C(A)$, so $H \leq C(T) \leq N(C(A)) \leq N(A)$. Hence $A \unlhd H$. Now as R is Sylow in H either $A \leq \Gamma_{1, R}(A) \leq N(K)$, or $R \in S y l_{2}(A)$ and $N_{A}(K)$ is strongly embedded in A. In the former case $A=$ $[A, A \cap R] \leq K$, impossible as K is solvable. Hence $R \in S y l_{2}(A)$, so that $A=O^{2^{\prime}}(H)$, and A is a Bender group. Moreover $D=L \times A$ satisfies the hypothesis of Theorem 5 in [1], so that theorem implies that $D \unlhd G$.
(2.3) Let K be a solvable tightly embedded subgroup of G. Then $L(N(K))=$ $L(C(t))$ for each involution $t \in K$.

Proof. 2.1 and 2.7 of [1].
Let T be a noncyclic elementary abelian 2-group. A quasisimple group A is T-admissible if T acts faithfully on A, T is Sylow in a 2-nilpotent tightly embedded subgroup of $T A$, and
(2.4) Either $|T|=4$ or $N_{T}\left(T^{a}\right) \leq C\left(T^{a}\right)$ for each $a \in A$.
(2.5) $\quad O^{2}\left(C_{A}(t)\right) A \leq C(T)$, each $t \in T^{*}$.

Recall $X \mathcal{A}$ is the smallest normal subgroup Y of X such that X / Y is solvable with abelian Sylow 2-groups. A is said to be admisible if A is T-admissible for some noncyclic elementary 2 -group T.
(2.6) Assume A is T-admissible, $Z(A) \leq C(T)$, and for each $t \in T^{*}, F^{*}\left(C_{A}(t)\right) /$ $Z(A)$ is a 2-group. Then T is a $T I$-set in $A T$.

Proof. $T \in S y l_{2}(X), X$ a 2-nilpotent tightly embedded subgroup of $A T$. Let $Y=O(X)$. It suffices to show $[T, Y]=1$. Let $W=C_{Y}(t)$. Then $W \leq$ $C_{A}\left(O_{2}\left(C_{A}(t)\right)\right.$, so as $F^{*}\left(C_{A}(t)\right) / Z(A)$ is a 2-group, $W \leq Z(A)$. Therefore $Y=$ $\left\langle C_{Y}(t): t \in T^{*}\right\rangle \leq Z(A) \leq C(T)$.
(2.7) Assume the hypothesis of 2.6 with $A \cap T=1$. Then $\left[C_{A}(t), T\right]=1$ for each $t \in T^{*}$.

Proof. $\quad\left[C_{A}(t), T\right] \leq A \cap T=1$ by 2.6.

3. Standard subgroups

Recall that a quasisimple group A is standard in G if $K=C_{G}(A)$ is tightly embedded in $G, N_{G}(A)=N_{G}(K)$, and A commutes with none of its conjugates. In this section we operate under the following hypothesis:

Hypothesis 3.1. A is standard in G and A satisfies hypothesis II. $O(G)=$ 1 and $m\left(C_{G}(A)\right)>1$. A is not normal in G.

Set $\left.K=C_{G}(A), \overline{N(A}\right)=N_{G}(A) / K$, and let $R \in S y l_{2}(K)$. By Theorem 3 in [2]:
(3.2) $\quad \Phi(R)=1$.
(3.3) Let $g \in G-N(A)$ and $T \in S y l_{2}\left(K^{g} \cap N(A)\right)$. Assume $T \neq 1$ and R is T invariant. Then
(1) Either R has order 4 or $T \in S y l_{2}\left(K^{g}\right)$ and $[T, R]=1$.
(2) If $T \in S y l_{2}\left(K^{g}\right)$ then $T \leq A K$
(3) There exists $g \in G-N(A)$ with $T \in S y l_{2}\left(K^{g}\right)$.
(4) $\quad C_{R}(T) \cong T$.

Proof. [2].
Given 3.3 we may choose $g \in G-N(A)$ such that a Sylow 2-group T of $K^{g} \cap N(A)$ is Sylow in K^{g}, and T centralizes R. Define V to be the weak closure of R in the centralizer of $R^{G} \cap C_{G}(R T)$. This notation is maintained thorughout this section.

$$
\begin{equation*}
\left\langle A^{G}\right\rangle=F^{*}(G) \text { is simple. } \tag{3.4}
\end{equation*}
$$

Proof in [3].
(3.5) (1) V is an elementary abelian 2-group .
(2) $V=R(V \cap A)=T\left(V \cap A^{g}\right)$.

Proof. (1) is immediate from 3.2 and the definition of V. (2) follows from 3.3.3.
(3.6) Assume
(*) For each $R^{x} \leq V, N_{A^{x}}(V) / C_{A^{x}}(V)$ has a characteristic cyclic subgroup regular on $\left(V \cap A^{x}\right)^{\ddagger}$.
Then either
(1) $\left[N_{A}(V), V\right]=T,\left[N_{A^{g}}(V), V\right]=R$, and $R^{G} \cap V=\{R, T\}$.
(2) $\left[N_{A}(V), V\right]=\left[N_{A^{g}}(V), V\right]=V_{0}$,
$V-V_{0}=\bigcup_{Q \in R^{G} \cap V} Q^{*}$
and $N(V)^{\left(R^{G} \cap V\right)}$ is 2-transitive.
Proof. Let $X=\left\langle O^{2}\left(N_{A}(V), O^{2}\left(N_{A^{g}}(V)\right\rangle\right.\right.$. Then X in tis action on V satisfies the hypothesis of lemma 3.1 in [1], so that lemma implies $V_{0}=\left[N_{A}(V), V\right]$ is X-invariant, and either X acts on R or $V-V_{0}$ is the disjoint union of $q=\left|V_{0}\right|$ conjugates of R^{*} under X, with $N_{A}(V)$ transitive on $R^{X}-\{R\}$. Notice that in this second case V_{0} is the only nontrivial X-invariant subspace of V.

Suppose R is X-invariant. Then R and V_{0} are X-invariant subspaces of V, so applying the remarks above to T, T must also be X-invariant. As V_{0} is the unique $N_{A}(V)$-invariant subspace disjoint from $R, T=V_{0}$. Similarly $R=$ [$\left.V, A^{g} \cap N(V)\right]$. Moreover in this case R and T uniquely determine each other in V.

Suppose R is not X-invariant and $R^{y}=Q \in\left(R^{G} \cap V\right)-R^{X}$. As $V-V_{0}$ is the disjoint union of conjugates of R^{\sharp} under $X, Q \leq V_{0}$. Hence applying the argument above to the pair R, Q in place of the pair R, T, we conclude $Q=V_{0}$ and $R=\left[V, A^{x} \cap N(V)\right]$. Similarly $T=\left[V, A^{x} \cap N(V)\right]$, a contradiction.

It follows that either (1) or (2) holds, and the proof is complete.
(3.7) Assume $W \leq A$ such that
(a) $L=E\left(C_{A}(W)\right)$ is quasisimple.
(b) $R \in S y l_{2}(C(W L) \cap N(R))$.

Then either
(1) L is standard in $C(W)$, or
(2) $\left\langle L^{C(W)}\right\rangle=L \times L^{c}, R \leq L^{c}$, and $L \cong L_{2}(|R|)$.

Proof. By 2.1, 3.2, and 3.4, $O(K) R$ is tightly embedded in $C(W)$. (b) implies R is Sylow in the centralizer of $W L$. Hence 2.2 yields the desired result.
(3.8) Assume the hypothesis of 3.7 with $T \leq R L, T \cap L=1, R$ not normal in $C(W T)$, and if $L \cong L_{2}(|R|)$ assume $R^{G} \cap L$ is empty. Then L is standard and nonnormal in $C(W)$.

Proof. Assume L is not standard in $C(W)$. Then by $3.7, L \cong L_{2}(|R|)$ and R is contained in a conjugate L^{c} of L. But then $R^{c-1} \in R^{G} \cap L$, contrary to hypothesis.

So L is standard. Assume $L \leq C(W)$. Then $H=C(L W) \unlhd C(W) . \quad T \leq R L$ and $T \cap L=1$, so $R L=T L$ with $R=O_{2}(T L \cap H) \unlhd C(T W)$, contrary to hypothesis.

Recall that for a group X, X^{a} is the smallest normal subgroup Y of X such that X / Y is solvable with abelian Sylow 2-groups.
(3.9) Let $t \in T^{\#}$. Assume the commutator group of $\operatorname{Out}(A)$ is of odd order. Then
(1) $\quad\left(O^{2}\left(C_{A}(t)\right) C_{A}(t)^{\prime}\right)^{a} \leq A^{g} \leq C(T)$.
(2) $O^{2}\left(C_{\bar{A}}(\bar{t})\right)^{a} \leq C(\bar{T})$.
(3) A is T-admissible.

Proof. As the kernel of the homomorphism of A to \bar{A} is the center of $A T$, $O^{2}\left(C_{\bar{A}}(\bar{t})\right)=O^{2}\left(C_{A}(t)\right) / Z(A)$. Hence (1) implies (2). Also (1) and 3.2 and 3.3 imply (3). As the commutator group of Out (A) is of odd order, $O^{2}\left(C_{A}(t)\right) C_{A}(t)^{\prime}$ $\leq O^{2}\left(N\left(A^{g}\right)\right)=D$ and D / A^{g} has abelian Sylow 2-subgroups. By $2.1, K^{g} \cap C(t)$ is solvable, so (1) follows.
(3.10) Assume $A \cong L_{2}(4)$ with $R^{G} \cap A$ empty. Then either
(1) $\left\langle A^{G}\right\rangle \cong H J$, or
(2) $\left\langle A^{G}\right\rangle \cong M_{1_{2}}$ and there exists an involution t fused into R inducing an outer automorphism on A and acting nontrivially on R.

Proof. [3].
(3.11) Assume \bar{A} is a Bender group. Then one of the following holds:
(1) $A \unlhd G$.
(2) $A \cong L_{2}(4)$ and $\left\langle A^{G}\right\rangle \cong M_{1_{2}}, H J$ or A_{9}.
(3) $A \cong S z(8)$ and $\left\langle A^{G}\right\rangle \cong R u$.

Proof. [19].

4. Chevalley groups of odd characteristic

Hypothesis 4.1. $\quad G=G(q)$ is a Chevalley group with $q=p^{e}$ odd and $G \neq L_{2}(q)$ or ${ }^{2} G_{2}(q)$. Let Δ be a root system, $U \in S y l_{p}(G), H$ a p-complement in $N_{G}(U)$, and for $s \in \Delta$ let U_{s} be the corresponding root subgroup of G and $V_{s}=\Omega_{1}\left(U_{s}\right)$. Let r be the root of highest height in $\Delta, V=V_{r}, J=\left\langle V, V_{-r}\right\rangle$, and $\langle t\rangle=Z(J)$.
(4.2) Assume 4.1. Then
(1) $J \cong S L_{2}(q)$ and $t \in H$.
(2) $N_{G}(J)=X J H$ where $[X, J]=1$ and X is the Levi factor of the parabolic subgroup $P=N_{G}(V)$.
(3) If G is not isomorphic to $\Omega_{n}^{\varepsilon}(q)$ then $N_{G}(J)=C_{G}(t)$, so that J is tightly embedded in G.
(4) If $G \cong \Omega_{n}^{\varepsilon}(q) \neq \Omega_{8}^{+}(q)$ then $X=X_{1} J^{w}$, for some $w \in W$, and $C_{G}(t)=$ $X_{1} J J^{w} H\langle w\rangle$.
(5) If $G \cong \Omega_{8}^{+}(q)$ there exists a 4-group W_{1} in W such that $X J$ is the central product of four conjugates of J under W_{1} and $C_{G}(t)=X J H W_{1}$.
(6) The isomorphism class of X and the weak closure of V in the centralizer of t are given in Table 4.2.

Proof. Let G have rank l. Statement (1) is well known. Write

$$
G=\bigcup_{w} U H w U_{w}^{-}
$$

Table 4.2

$G(q)$	X	$\left\langle V^{G} \cap C(t)\right\rangle$
$L_{n}(q)$	$S L_{n-2}(q)$	$X J$
$P S P_{n}(q)$	$S P_{n-2}(q)$	$X J$
$U_{n}(q)$	$S U_{n-2}(q)$	$X J$
$\Omega_{n}^{2}(q)$	$S L_{2}(q) S O_{n-4}^{z}(q)$	$X J$,
		unless $n=7$ or $n=8, \varepsilon=-1$, where $J J^{w}$.
$G_{2}(q)$	$S L_{2}(q)$	J
${ }^{3} D_{4}(q)$	$S L_{2}\left(q^{3}\right)$	J
$F_{4}(q)$	$S P_{6}(q)$	$X J$
${ }^{2} E_{6}(q)$	$S U_{6}(q)$	$X J$
$E_{6}(q)$	$S L_{6}(q) / Z_{(q-1,3)}$	$X J$
$E_{7}(q)$	$S O_{2}^{+}(q)$	$X J$
$E_{8}(q)$	$E_{7}(q)$	$X J$

the Bruhat decomposition of G. The representation of elements is unique and $N_{G}(J) \leq C_{G}(t)=C_{U}(t) N_{N}(t) C_{U}(t)=\left\langle C_{U}(t), C_{N}(t)\right\rangle$.

The structure of P is known (eg. [7], [13]). $P=Q X H$, where $Q=O_{p}(P)$ and X is the Levi factor of P. In fact

$$
P=\left\langle B, s_{1}, \cdots, s_{i-1}, s_{i+1}, \cdots, s_{l}\right\rangle
$$

for some i, except for $G=A_{l}(q)$, where

$$
P=\left\langle B, s_{2}, \cdots, s_{l-1}\right\rangle
$$

Then $X=\left\langle\cup_{ \pm d_{j}}: j \neq i\right\rangle$ or $\left\langle U_{ \pm a_{j}}: j \neq 1, l-1\right\rangle$ if $G=A_{l}(q)$. If w_{0} is the word of greatest length in the generators s_{1}, \cdots, s_{l} of W, then $J^{w_{0}}=J,\left(\Delta^{+}\right)^{w_{0}}=\Delta^{-}$, and $P^{w_{0}}=Q^{w_{0}} X H$.

Now Q is special with $Q^{\prime}=V$ and hence $\left(Q^{w_{0}}\right)^{\prime}=V^{w_{0}}=V_{-r}$. Also $O^{p^{\prime}}(C(V))$ $=Q X$, so $X \leq C(J) \leq C(t)$.

Next, t inverts Q / V. This can be checked directly using the structure of P. An easy proof is obtained in most cases using the results of sections 3 and 4 of [7] and sections 9 through 11 of [13] to note that X acts irreducibly on Q / V.

It follows that $C_{U}(t)=(U \cap X) V, C(t) \cap U^{w_{0}}=\left(U^{w_{0}} \cap X\right) V_{-r}$ and $\left\langle C_{U}(t)\right.$, $\left.C_{U^{w_{0}}}(t)\right\rangle=\left\langle C_{U_{s}}(t): s \in \Delta\right\rangle=X J$. Also $C_{N}(t)$ normalizes $\left\langle C_{U_{s}}(t): s \in \Delta\right\rangle=X J$.

If X contains no component in J^{W} then $C_{N}(t) \leq C(t) \cap N(J) \leq J(N(V) \cap$ $C(t))=J X H$. So in this case $C_{G}(t)=\left\langle C_{U}(t), C_{N}(t)\right\rangle=J X H=N(J)$. Moreover this occurs unless $G \cong \Omega_{n}^{\varepsilon}(q)$. Here we use the fact that $P S p_{4}(q), U_{4}(q)$, and $L_{4}(q)$ are isomorphic to $\Omega_{5}(q), \Omega_{\overline{6}}^{-}(q)$ and $\Omega_{6}^{+}(q)$, respectively.

In the remaining cases X has the form $X=X_{1} J^{w}$, where $X_{1} \cong \Omega_{n-4}^{\mathfrak{\imath}}(q)$. Checking the root system we find w may be chosen to interchange J and J^{w} and to normalize X_{1}. Morever with the exception of $\Omega_{8}^{+}(q), X_{1}$ contains no component in J^{w}. Hence (4) holds. For $G=\Omega_{8}^{+}(q), X_{1}=J^{w{ }_{1}} J^{w w_{1}}$, and we set $W_{1}=$ $\left\langle w, w_{1}\right\rangle$ to obtain (5). (6) is easy to check.
(4.3) Assume 4.1 and let \tilde{G} be the Universal Chevalley group of type $G(q)$, and $\tilde{J}=\left\langle\tilde{V}_{r}, \tilde{V}_{-r}\right\rangle$ be defined in \tilde{G} in the same way J and V are defined in G. Then \tilde{J} is isomorphic to $S L_{2}(q)$ and is tightly embedded in \tilde{G}.

Proof. Let K be the preimage in \tilde{G} of J under the homomorphism of \tilde{G} onto G. Then $K=O^{p^{\prime}}(K) \times Z(\widetilde{G})$ and $\tilde{J}=O^{p^{\prime}}(K) \cong J \cong S L_{2}(q)$. Let $\langle z\rangle=Z(\tilde{J})$. It remains to show $N_{\tilde{G}}(J)=C_{\tilde{G}}(z)$. It suffices to establish this fact in some nontrivial homomorphic image \bar{G} of \tilde{G}. For $G \not \equiv \Omega_{n}^{2}(q)$, set $\bar{G}=G$ and use 4.2.3. For $G \cong \Omega_{n}^{\ell}(q)$ set $\bar{G}=\operatorname{Spin}^{\imath}(n, q)$, and check the Clifford algebra (eg. [24], 23.4) to obtain the result.
(4.4) Assume 4.1. Let $S \in S y l_{2}(G)$ and $\Sigma=\left\{J^{g}: J^{g} \cap S \in S y l_{2}\left(J^{g}\right)\right\}$. Then $\langle\Sigma\rangle$ is the central product of the members of Σ.

Proof. It suffices to prove the corresponding result in the Universal Chevalley group \vec{G} of type $G(q)$. By 4.3, \tilde{J} is tightly embedded in \tilde{G} and has quaternion Sylow 2-groups. Let $\Delta=\{K \cap S: K \in \Sigma\}$. Then the members of Δ are tightly embedded in S, so by 2.5 in [2], distinct members of Δ commute. Thus for distinct members \tilde{J} and \tilde{J}^{g} in Σ, the involution z^{g} in $Z\left(\tilde{J}^{g}\right)$ centralizes a Sylow 2-group of \tilde{J}. Hence $\tilde{J} \leq C\left(z^{g}\right) \leq N\left(\tilde{J}^{g}\right)$. By symmetry \tilde{J}^{g} acts on \tilde{J}, so $\left[\mathfrak{J}, \tilde{J}^{g}\right] \leq \tilde{J} \cap J^{g}=1$.
(4.5) Assume 4.1. Then $G=\left\langle O_{p}\left(N_{G}(V), J\right\rangle\right.$.

Proof. Let $Q=O_{P}(N(V))$ and $M=\langle Q, J\rangle$. As $N(Q)=N(V)=Q \times H$ with $X H \leq N(J)$ we have $N(Q) \leq N(M)$. Thus $N(M \geq\langle N(Q), J\rangle=G$, so $G=M$.

Hypothesis 4.6. T is a noncyclic elementary abelian 2-group acting on a group G and Sylow in a 2 -nilpotent tightly embedded subgroup K of G.
(4.7) Assume 4.6 with $S L_{2}(q) \cong J \unlhd G, q$ odd, and $C_{T}(J) \neq 1$. Then [J,T] $=1$.

Proof. As $J \unlhd G$ and $C_{T}(J) \neq 1, J \unlhd N(K)$. Suppose $t \in T-C(J)$. Then $[J, t] \leq K \cap J$, so $[J, t]$ is a 2-nilpotent normal subgroup of J. Hence either $[J, t] \leq Z(J)$ or $q=3$ and $[J, t]=O_{2}(J)$. In the first case $J=O^{2}(J) \leq C(t)$. The second case is impossible rs $\mathrm{O}_{2}(J)$ is quaternion while K has abelian Sylow 2-groups.
(4.8) Let U be a 4-group acting on a central product L of groups $L_{i} \cong S L_{2}(q)$, q odd, which are permuted by U. Assume U moves L_{1}. Then $L_{1} \leq \Gamma_{1, U}(L)$.

Proof. If $q>3$ this is a corollary to 2.8 in [1]. Morever the same proof works if $q=3$.

Theorem 4.9. Assume G is quasisimple with $Z(G)$ a 2-group and $\bar{G}=$ $G / Z(G) \cong G(q)$, or $G \cong L_{2}(3)$ or $S L_{2}(3)$. Assume T is a 2-group acting faithfully on G and $G T$ satisfies hypothesis 4.6 Then
(1) $G \cong L_{2}(q), 3 \leq q \leq 9$
(2) $T \leq G C(G)$
(3) If $q>5$ then $T \leq G$.

Let G be a minimal counter example to Theorem 4.9. We first show (4.10) $\bar{G} \nsubseteq L_{2}(q)$ or ${ }^{2} G_{2}(q)$.

Proof. If $\bar{G} \cong{ }^{2} G_{2}(q)$ then $|\operatorname{Out}(\bar{G}): \bar{G}|$ is odd and $C_{\bar{G}}(\bar{x})$ is maximal in \bar{G} with $\langle x\rangle=Z(C(x))$ for each involution \bar{x} in \bar{G}. Further $Z(G)=1$. So $G=$ $\Gamma_{1, T}(G) \leq N(K)$, a contradiction.

So assume $\bar{G} \cong L_{2}(q) . \quad$ By 3.5 and 3.6 in [1], $T \leq G C(G), T$ is a 4-group,
and $q \leq 9$. Moreover if $G \cong L_{2}(q), q>5$, then $\left[C_{G}(t), T\right] \neq 1$, so $T \leq G$. Hence we may take $G \cong S L_{2}(q), q \leq 9$. Now $T^{\sharp}=\left\{t_{i}: 1 \leq i \leq 3\right\}$ and $t_{i}=g_{i} c_{i}, g_{i}$ and c_{i} elements of order 4 in G and $C(G)$ respectively with $g_{i}^{2}=c_{i}^{2}=z$ generating $Z(G)$. Then $g_{3} c_{3}=t_{3}=t_{1} t_{2}=\left(g_{1} g_{2}\right)\left(c_{1} c_{2}\right)$, so $g_{1} g_{2}=g_{3}^{ \pm 1}$. Hence $Q=\left\langle g_{1}, g_{2}\right\rangle$ is quaternion. Now $z=\left[t_{1}, g_{2}\right] \in\left[K, C\left(t_{2}\right)\right] \leq K$, impossible as T acts faithfully on G.

$$
\begin{equation*}
\bar{G} \cong L_{2}(q) \text { or }{ }^{2} G_{2}(q) . \tag{4.11}
\end{equation*}
$$

Proof. Assume $\bar{G} \not \equiv L_{2}(q)$ or ${ }^{2} G_{2}(q)$. Then \bar{G} satisfies 4.1. Take $S \in \operatorname{Syl}_{2}(G)$ to be T-invariant with $\bar{J} \cap \bar{S} \in \operatorname{Syl}_{2}(\bar{J})$. Let J_{1} be the preimage in G of \bar{J} and set $J=O^{2}\left(J_{1}\right)$. Then $J_{1}=Z(G) J$. We show $[T, J]=1$. Then \bar{T} centralizes \bar{V}, so $\bar{Q}=O_{p}\left(N(\bar{V})=\Gamma_{1, \bar{T}}(\bar{Q})=\Gamma_{1, T}(Q) C(G) / C(G) \leq N(K) C(G) / C(G)\right.$, as \bar{Q} is of odd order. Hence by $4.5, G \leq N(K) C(G)$, so as G is quasisimple and $K C(G)$ is solvable, $[G, T] \leq[K C(G), G]=1$, a contradiction.

So it remains to show $[T, J]=1$. If T acts on J this follows from 4.7 and 4.10. So assume T does not act on J. We show $\left\langle J^{T}\right\rangle$ is the central product of the groups in J^{T} and hence by $4.8, J \leq \Gamma_{1, T}(G) \leq N(K)$. Thus $[J, T] \leq K$. But as $T \nleftarrow N(J),[J, T]$ is not 2-nilpotent, a contradiction.

Suppose $\bar{G} \not \equiv G_{2}(q)$. Then T acts on \bar{J}^{G} and we appeal to 4.4. So assume $\bar{G} \cong G_{2}(q)$. Then \bar{G} has one class of involutions, so we may assume T centralizes the involution z in J. Now $O^{2}\left(C_{\bar{G}}(z)\right)$ is the central product of \bar{J} and $L \cong S L_{2}(q)$, so again the result follows. This completes the proof of 4.11, and hence also of Theorem 4.9.

Theorem 4.12. Assume A is standard and non-normal in G with $O(G)=1$, $m(C(A))>1$, and $A \mid Z(A) \cong G(q), q$ odd. Then either
(1) $A \cong L_{2}(5)$ and $\left\langle A^{G}\right\rangle \cong H J, M_{12}$ or A_{9}, or
(2) $A \cong L_{2}(9)$ and $\left\langle A^{G}\right\rangle \cong A_{10}$.

Proof. If $A / Z(A)$ is isomorphic to $L_{2}(5) \cong A_{5}$ or to $L_{2}(9) \cong A_{6}$, Then we appeal to the main theorem of [3] to obtain (1) and (2). So assume otherwise.

By 4.9, A satisfies hypothesis II. Hence we may adopt the notation of section 3. A second application of 4.9 implies $Z(A)$ is of odd order, $A / Z(A) \cong$ $L_{2}(7)$, and $T \leq A$. Now there euists an involution $a \in N_{A}(T)-C(T)$. As $[a, T]$ $\neq 1$, a induces an outer automorphism on A^{g}. However $[a, R]=1$, and by 4.9, $R \leq A^{g}$, whereas an outer automorphism of $L_{2}(7)$ centralizes no 4-group in $L_{2}(7)$. The proof is complete.

5. A fusion lemma

In this section we assume the following hypothesis:
Hypothesis 5.1. $V=R \oplus U \oplus W$ is a finite dimensional vector space over
$G F(2)$ with $m=|R|>2$ and $q=|U|=|W| . \quad X$ is a group of automorphisms of V and $A \times B \unlhd N_{X}(R)$ with A and B cyclic groups such that $[A, U]=0=[B, W]$, A is regular on W^{*}, and B is regular on U^{*}, and $[A B, R]=0$. Define

$$
\Sigma=\underset{R^{*}}{\cup} r^{X}, \quad \Omega=R^{X}, \quad \Gamma=U+W-(U \cup W)
$$

Assume:
(1) For $T \in \Omega-\{R\}, R \cap T=0$ and the projection $P(T)$ of T on $U+W$ is contained in $U^{\#}, W^{\#}$, or Γ.
(2) If $T \leq R+U$ then either $T=U$ and $(R+T) \cap \Omega=\{R, T\}$ or $T \cap U=0$. The same holds with U replaced by W.
(3) There exists $T \in \Omega-\{R\}$ with $P(T)^{\sharp} \subseteq \Gamma$.

(5.2) Either

(1) $\quad \sum=V-(U+W)$ and $|\Omega|=q^{2}$, or
(2) $q=m=4$ and U and W are in Ω.

The proof involves a series of reductions. Assume 5.2 to be false.
(5.3) If $g \in(A B)^{\sharp}, T \in \Omega$ with $P(T)^{\sharp} \subseteq \Gamma$ and t and t^{g} are in T^{*}, then $T^{\sharp} \subseteq \Gamma$.

Proof. $t^{g} \in T \cap T^{g}$ so by 5.1.1, $T=T^{g} . \quad$ Then $T=C_{T}(g)+[T, g] . \quad C_{T}(g)$ is contained in $R+U$ or $R+W$, say the former, so if $C_{T}(g) \neq 0$ then $P(T)^{\sharp} \subseteq \Gamma$. Thus $T=[T, g] \leq[V, A B]=U+W$. So $T^{*}=P(T)^{*} \subseteq \Gamma$.
(5.4) If $T \cap(U+W) \neq 0$ then $T \leq U+W$.

Proof. By (2) we may take $P(T)^{\sharp} \subseteq \Gamma$. Let $t \in T^{\sharp} \cap(U+W)$. Then $t \in \Gamma$. Assume $s \in T^{\#}-\Gamma$. Then $s=r+c, r \in R^{*}, c \in \Gamma$. $r+c+t=s+t \in T^{\#}$ and hence $c+t \in \Gamma$ by 5.1.1. $\quad(A B)^{\Gamma}$ is transitive so there exists $g \in(A B)^{*}$ with $c+t=c^{g}$. Then $s^{g}=s+t$, so by $5.3, T \leq U+W$.
(5.5) Let $T \in \Omega-\{R\}$ and $k=\left|T^{A B}\right|$.

Then one of the following holds:
(1) $T=U$ or $T=W$ and $k=1$.
(2) $T^{*} \subseteq(R+U)-U$ or $T^{*} \subseteq(R+W)-W$ and $k=q-1$.
(3) $T^{*} \subseteq \Gamma$ and $k=(q-1)^{2} /(m-1)$.
(4) $P(T)^{\ddagger} \subseteq \Gamma, T \cap(U+W)=0$, and $k=(q-1)^{2}$.

Proof. This follows easily from 5.1.1, 5.1.2, and 5.3.
Let α and β be the number of $A B$ orbits of type 5.5 .1 and 5.5 .2 , respectively. By 5.1.2, $\alpha+\beta \leq 2$.

There exists $T \in \Omega-\{R\}$ with $T \nleftarrow U+W$.
Proof. If $\Omega-\{R\} \subseteq U+V$ then $|\Sigma \cap(R+T)|=2(m-1)<|\Sigma \cap(T+S)|$ for all distinct T and S in $\Omega-\{R\}$, a contradiction.
(5.7) If $\alpha \neq 0$ then $\alpha=\beta=1$.

Proof. Assume $U \in \Omega$ but $\beta=0$. Then by 5.4 and 5.6 there exists $T \in \Omega$ with $T \cap(U+W)=0$ and $P(T)^{\sharp} \subseteq \Gamma$. Hence U, and possibly W, are the only members S of Ω such that $|\Sigma \cap(S+R)|=2(q-1)$. Also $R+U=C_{V}(A)$ and $W=$ [V, A], so W is the unique $C(R) \cap C(U)$-invariant complement to $R+U$ and hence R and W play the same role with respect to U as U and W play to R. Thus $\{R, U\}$ or $\{R, U, W\}$ is a set of imprimitivity for the action of X on Ω. Let Δ be the set of imprimitivity containing T, and S a second member of Δ. $\Sigma \cap(T+S)=T^{*} \cup S^{*}$ so $T+S=(T+S \cap(U+W)) \cup((T+S) \cap R+U) \cup(T+S)$ $\cap(R+W) \cup T \cup S$. Hence $m=q=4$. $|\Delta|$ divides $|A B|=9$, so $|\Delta|=3$ and U and W are in Ω. As this is the second case of 5.2 , we have a contradiction.

$$
\begin{equation*}
\beta>0 \tag{5.8}
\end{equation*}
$$

Proof. Assume $\beta=0$. By 5.7, $\alpha=0$. By 5.6, there exists $T \in \Omega$ with $T \cap(U+W)=0$ and $P(T)^{\sharp} \subseteq \Gamma$.

Suppose $\Gamma \subseteq \Sigma$. Then $(R+S)^{*} \subseteq \Sigma$ for all $S \in \Omega-\{R\}$, whereas there exists P and Q in $\Omega \cap(U+W)$ with $(P+Q)^{\sharp} \mp \sum$. So by $5.5, \Omega=\{R\} \cup T^{A B}$. In particular X is 2 -transtitve on Ω and by a result of Hering, Kantor, and Seitz, $q-1=r$ is a prime and X^{Ω} is contained in the automorphism group of $L_{2}\left(r^{2}\right)$. Further $\{A, B\}$ is invariant under $N_{X}(R)$, so $(r+1) / 2 \leq 2$ and hence $r=3$ and $q=4$. Let x be an element of order 4 in $N_{X}(R)^{2}$. Then $x^{2}=y$ centralizes the 4-group R and fixes exactly two points of Ω. Also y centralizes vectors $u \in U^{*}$ and $w \in W^{*}$, and then the coset $R+u+w$. But $R+u+w$ intersects three members of Ω, which must be fixed by y, a contradiction.

$$
\begin{equation*}
\beta=2, \Sigma=V-(U+W), \text { and }|\Omega|=q^{2} . \tag{5.9}
\end{equation*}
$$

Proof. By 5.8, $\beta>0$, so we may assume $\Delta=(R+U) \cap \Omega$ is of order q. Let $R \neq R^{g} \in \Delta$. Now if Z is an A-invariant subspace of V then either $W \leq Z$ or $Z \leq C_{V}(A)$. Further A centralizes R^{g} so A acts nontrivially on U^{g} or W^{g}. Hence $W=U^{g}$ or $W=W^{g}$. Now $R+U=(R+W)^{g}$ or $(R+U)^{g}$, respectively, and as $U=(R+U)-\Sigma, U=W^{g}$ or $U=U^{g}$. Thus $\{U, W\}=\left\{U^{g}, W^{g}\right\}$.

Suppose $W=U^{g} . \quad Y=\left\langle N_{X}(R), g\right\rangle$ acts on $\{U, W\}$. Further for $R^{g} \neq T \in$ $\left(R^{g}+W\right) \cap \Omega, P(T)^{*} \subseteq \Gamma$ and $T \in R^{Y}$. Finally $R \cap(U+W)=0$, so $R^{y} \cap(U+W)$ $=0$ for all $y \in Y$. Therefore $\left.R^{Y}=\{R\} \cup((R+W)) \cap \Omega\right) \cup \Delta \cup T^{A B}$ is of order q^{2} by 5.5. Next $\Omega=R^{Y}$ or $R^{Y} \cup S^{A B}, S \in \Omega \cap(U+W)$. In the first case 5.2.1
holds. In the second by 5.5, $|\Omega|=q^{2}+(q-1) /(m-1)$, so $\left|R^{Y}\right|>\left|\Omega-R^{Y}\right|$. But as $N(R) \leq Y, R^{Y}$ is a set of imprimitivity for X on Ω, a contradiction.

Hence $U=U^{g}$, so Δ^{X} is a system of imprimitivity for the action of X on Ω. In particular q divides the order n of Ω.

By $5.5, n=1+\alpha+\beta(q-1)+\gamma(q-1)^{2}$ where γ is $1,(m-1)^{-1}$, or $(m-1)^{-1} m$, and $\alpha+\beta \leq 2 . \quad n \equiv 0 \bmod q$ and $m>2$, so either $\beta=2, n=q^{2}$, and $\Sigma=V-$ $(U+W)$, or $\alpha=0, \beta=1, n=q^{2}$, and $\sum=\left(V-(R+W) \cup R^{*}\right.$, or $\alpha=\beta=1, n=2 q$, $m=q$, and $\sum=((R+U)-U) \cup((U+W)-U)$.

In the last case $N(R+U)=N(U+W)$, whereas $N(U+W)$ moves W, while we showed above that $N(R+U)$ acts on W. In the second case $R+W=\langle V-\Sigma\rangle$ and then $R=R+W \cap \Omega$ is X-invariant, a contradiction.

This completes the proof of 5.2.

6. $L_{3}\left(2^{n}\right)$

Theorem 6.1. Let A be standard and nonnormal in G with $O(G)=1$, $A \mid Z(A) \cong L_{3}(q), q$ even, and $m\left(C_{G}(A)\right)>1$. Then either
(1) $Z(A)=1$ and $G \cong S z$.
(2) $Z(A)$ is a 4-group and $G \cong H e$.

Proof. We prove $q=4$ and appeal to the theorem of Cheng Kai Nah [5]. By 20.1 in [4], A satisfies hypothesis II. Thus we may choose notation as in section 3. Set $Z=V \cap A$.

Assume $q=2$. By $4.9, A \cong L_{3}(2)$ and $T=Z$ is a 4-group. Notice $N_{A}(T)$ $\cong S_{4}$. Let a be an involution in $N_{A}(T)$ with $[T, a] \neq 1$. Then a induces an outer automorphism on A^{g}, so $\langle a\rangle A^{g} \cong P G L_{2}(7)$. But this is impossible as a centralizes the 4 -group $R \leq A^{g}$.

Therefore we may take $q>4$. Hence $Z(A)$ has odd order. (eg. [9]). Let $t \in T^{*}$ and $Z_{0}=O_{2}\left(Z\left(C_{A}(t)\right)\right)$. There exists a nontrivial cyclic subgroup W of order $(q-1) /(q-1,3)$ in $C_{A}(t)$. Let $P \in S y l_{2}\left(C_{A}(t)\right)$. Then $[P, W]=P$. As the outer automorphism group of A is abelian, $P=[P, W] \leq(A K)^{g}$ and then $Z_{0}=\Phi(P) \leq A^{g}$. As $Z(A)$ has odd order, $T \cap A=1$. Hence 2.7 implies $C_{A}(t)=$ $C_{A}(T)$, so $Z=Z_{0}$. That is Z is a root subgroup of A.

Now $T P \in S y l_{2}\left((A K)^{g}\right.$ and W centralizes the root group Z of A^{g}, so W induces a group of inner automorphisms on A^{g} with $E\left(C_{A^{g}}(W)\right) \cong E\left(C_{A}(W)\right)=L$ $\cong L_{2}(q)$. In particular R is not normal in $C(W T)$. Also $W L$ is not centralized by any involutory automorphism of A, so by $3.8, L$ is a nonnormal standard subgroup of $C(W)$. As $q>4,3.11$ yields a contradiction.

7. Classical groups of even characteristic

In this section A is quasisimple with $A / Z(A)$ isomorphic to $L_{n}(q), U_{n}(q)$,
$S p_{n}(q)$, or $\Omega_{n}^{2}(q), n \geq 4$, and q even. Exclude $L_{4}(2) \cong A_{8}$ and $S p_{4}(2) \cong S_{6}$. If $A / Z(A)$ is orthogonal take $n \geq 8$.

Theorem 7.1. Assume A is standard in G with $m(C(A))>1$. Then $A \unlhd G$.
The proof involves a series of reductions. Let G be a counter example. By 20.1 in [4], A satisfies hypothesis II. Thus we may choose notation so that hypothesis 3.1 is satisfied. By 3.3 we may choose $g \in G-N(A)$ so that $T \in \operatorname{Syl} l_{2}\left(K^{g}\right)$. That is the notation of section 3 holds. The results in [4] show $F *\left(C_{A}(a)\right)$ is a 2-group for each 2-element $a \in A-Z(A)$, so by $2.8, T$ is a $T I$-set in $A T$. By 3.9, A is T-admissible. In particular hypothesis 22.1 of [4] is satisfied and we may appeal to 22.2 of [4].

Let $P=R T \cap A, t \in T^{\#}$, and $\{p\}=P \cap t R . \quad p$ is one of a canonical set of representatives for the classes of involutions in A denoted by j_{l}, a_{l}, b_{l}, or c_{l}, where l is a parameter associated with p called its rank. Applying 22.2 in [4] we find:
(7.2) $Z(A)$ is of odd order, $P^{\#}$ is fused in A and either
(I) $P \leq J=O_{2}\left(C_{A}(p) \cap C\left(p^{A} \cap C(p)\right)\right),|T| \leq q$ and one of the following holds:
(1) $J=\alpha(p)$ and $\operatorname{Aut}_{A}(J)$ is cyclic of order $q-1$ and regular on J^{*}.
(2) $A=S p_{n}(q), b=b_{l}, l>1, J=\alpha(a) \alpha(b)$ where a and b are of type a_{l-1} and b_{1} respectively, and $\operatorname{Aut}_{A}(J) \cong Z_{q-1} \times Z_{q-1}$ is regular on $J-(\alpha(a) \cup \alpha(b))$.
(3) $A=S p_{n}(q), p=c_{l}, J=\alpha(a) \alpha(b)$ where a and b are type a_{l} and b_{1}, respectively, and $\operatorname{Aut}_{A}(J)$ is as in (2).
(4) $A=\Omega_{n}^{\ell}(q), p=c_{l}, J=\beta(p)$ and $\operatorname{Aut}_{A}(J)$ is cyclic of order $q-1$ and regular on J^{*}.
or,
(II) $T=P$ has order 4 and either
(5) $A / Z(A)=L_{n}(2), t=j_{2}$, and $T \leq \Phi(S)$ where $S \in S y l_{2}\left(C_{A}(t)\right)$.
(6) $A \cong S p_{n}(2)$ and $t=c_{2}$.
$\alpha(p)$ and $\beta(b)$ are certain normal subgroups of $C_{A}(p)$ isomorphic to the additive group of $G F(q)$. They are discussed in Section 11 of [4].

$q>2$.

Proof. Assume $q=2$. Then 7.2 .5 or 7.2 .6 holds. In particular T is a 4group contained in A and there is a conjugate a of t under A with $[a, T]=\langle t\rangle$.

As $[a, T] \neq 1$, a induces an outer automorphism on A^{g}. But if $A \cong S p_{n}(2)$ then as $n>4$, the outer automorphism group of A is of odd order. Hence $A / Z(A) \cong L_{n}(2)$ and the outer automorphism group of A has order 2 . Therefore $C_{A}(T) \leq(K A)^{g}$, and then by $7.2 .5, T \leq \Phi\left(C_{A}(T)\right) \leq A^{g}$, a contradiction.

The primary involutions of A are the transvections (type j_{1}) of $L_{n}(q)$ or $U_{n}(q)$, the transvections (type b_{1}) of $S p_{n}(q)$, or the involutions of type a_{2} in $\Omega_{n}(q)$.
(7.4) $T \cap A=1$. Further we may choose T so that p is a primary involution of A.

Proof. If 7.2.1 or 7.2.4 holds then by 3.6 either $T \cap A=1$ or $T=P=J$. Suppose 7.2.2 or 7.2.3 holds. Recall V is the weak closure of R in the centralizer of $R^{G} \cap R T$. Then $V=R J$. Moreover 7.2 and 3.6 imply that hypothesis 5.1 is satisfied and hence 5.2 implies either $T \cap A=1$ and there is a conjugate T_{1} of T under $N(V)$ such that $T_{1} \cap A=1$ and $P_{1}=R T_{1} \cap A \leq \alpha\left(p_{1}\right)$, for some primary invoolution p_{1} in J, or $\alpha\left(p_{1}\right) \in R^{G}$ for some primary involution p_{1} in J.

Among all G-conjugates T of R in $C(R)$ choose T so that $T=P$ if possible and, subject to this restriction, so that the rank l of p is minimal, and if A is orthogonal, choose p to be primary if possible.

Suppose p is not primary. Then by remarks in the first paragraph, 7.2.2 and 7.2.3 do not hold. Next by 11.3 and 11.6 in [4] there is a conjugate P^{a} of P such that $\left|J J^{a} \cap J^{A}\right|=q-1$ and $J J^{a}=\alpha_{1} \alpha_{2}$ where the groups α_{i} are α or β groups of involutions of smaller rank, or if A is orthogonal and p is of type c_{2}, the α_{i} are primary.

Assume $T=J$. Then $\left|T T^{a} \cap G^{A}\right|=q-1 \geq 3$, so by $3.6,\left|T T^{a} \cap T^{G}\right|=q$. Hence an involution of samller rank, or a primary involution of A, is contained in a conjugate of T, contradicting the choice of T. Thus by choice of $T, R^{x} \cap A=1$ for all $x \in G$. Hence by $3.6, T T^{a}$ contains $|T|(|T|-1)$ involutions in the set \sum of elements fused into $T^{\#}$ under G.

Now the elements in P are of the form $\alpha(b)=\alpha_{1}\left(b u_{1}\right) \alpha_{2}\left(b u_{2}\right)$, for fixed $u_{i} \in F^{\sharp}=G F(q)^{\ddagger}$, with b ranging over some additive subgroup B of F. Further we may pick a so that $\alpha(b)^{a}=\alpha_{1}\left(b u_{1}\right) \alpha_{2}\left(b c u_{2}\right)$, for some fixed $c \in F$, with $\alpha(d)$ and $\alpha(d c)$ distinct elements of $P^{\#}$ for some $d \in \theta$. That is a acts on α_{2} and centralizes α_{1}. Thus $P P^{a}$ contains the $|T|-1$ elements $\alpha_{2}\left(b(c+1) u_{2}\right), b \in \theta^{*}$, and the element $\alpha_{1}\left(d(c+1) u_{1}\right)$. So as $\left|T T^{a} \cap \sum\right|=|T|(|T|-1)$, some element of \sum projects on one of these elements, again contradicting the choice of T.

Therefore p is primary. Hence if $T=J$, then 11.7 in [4] implies that $T \leq C_{A}(T)^{\infty} \leq A^{g}$, a contraciction. This completes the proof of 7.4.

From now on choose T so that p is a primary involution. By 11.8 and 11.9 in [4] we may choose $W \leq C_{A}(T)$ with $W \cong L_{2}(q()$ and a Sylow 2-group of W conjugate under A to J.

Now $A \mid Z(A) \cong X_{n}(q), X=L, U, S p$, or Ω. If $X=L, U$ or $S p$ then by 11.8 in [4], $L=E\left(C_{A}(W)\right)$ is isomorphic, modulo its center, to $X_{n-2}(q)$. If $A \neq L_{4}(q)$ or $U_{4}(q)$ set $Y=W$. If $A \cong L_{4}(q)$ or $U_{4}(q)$ let $Y_{1}=O\left(C_{A}(W)\right)$. Then Y_{1} is cyclic of order $q-1$ or $q+1$, respectively. In this case set $Y=Y_{1} W$. Then $L=$ $E\left(C_{A}(Y)\right)$ and by $11.8, Y L$ is not centralized by an involutory automorphism of A.

Next suppose $A \cong \Omega_{n}^{2}(q), n \geq 8$. Then $E\left(C_{A}(W)\right)=W_{2} \times W_{0}$, where $W_{2} \cong$ $L_{2}(q)$ and $W_{0} \cong \Omega_{n-4}^{\ell}(q)$, by 11.9 in [4]. In this case set $Y=W W_{2}$ and $L=W_{0}$, unless $n=8$. If $n=8$ let $Y=W W_{0}$ and $L=W_{2}$. By 11.9 in [4], A admits no involutory automorphism centralizing $Y L$.

In any case it is possible to choose Y so that $J \leq L$. In particular T centralizes Y.

L is standard but not normal in $C_{G}(Y)$.

Proof. As A admits no involutory automorphism centralizing $Y L, R \in$ $S y l_{2}(C(Y L) \cap N(R))$. Next $X=C_{A}(T)^{\infty}$, so $X \leq C_{A^{g}}(R)^{\infty}$. By symmetry, $X=$ $C_{A^{g}}(R)^{\infty}$. Hence the isomorphism class of $C_{A^{g}}(p)^{\infty}$ is determined and by 11.10 and 11.11 in [4] this implies there is an automorphism γ of A^{g} such that $X^{g \gamma}=X$.

Let w be an involution in W. Notice $W \leq X$. Then w is a primary involution of A in X, so by 11.14 and $11.15, w^{g_{\gamma}}$ is a primary involution of A^{g}, and $\alpha\left(w^{g \gamma}\right)=\alpha(w)^{g \gamma}$. Now by 11.8 and 11.9 in [4], $C_{A^{g}}(W) \cong C_{A}(W)$. In particular R is not normalized by $A^{g} \cap C(W)$. Hence if $Y=W$ then 3.8 completes the proof.

So assume $Y \neq W$. If $A \cong L_{4}(q)$ or $U_{4}(q)$ then Y_{1} centralizes W and $\alpha(p)$, so Y_{1} induces a group of automorphisms on A^{g} centralizing $A^{g} \cap C(W)$. Thus again R is not normalized by $A^{g} \cap C(Y)$. So assume $A \cong \Omega_{n}^{3}(q)$. If $n>8$ then we have symmetry between W and W_{2}, so the embedding of W_{2} in $A^{g} \cap C(W)$ is determined up to an automorphism and again we find R is not normalized by the centralizer of $Y=W W_{2}$ in A^{g}. Finally if $n=8$ one can again check that the embedding of $C_{Y}(W)$ in $A^{g} \cap C(W)$ is determined up to an automorphism so that R is not normal in $A^{g} \cap C(Y)$. The proof is complete,
(7.6) Let $B=\left\langle R^{C(Y)}\right\rangle$. Then $q=4, A \cong L_{4}(4), U_{4}(4), S p_{4}(4)$, or $\Omega_{8}^{8}(4)$, and $B \cong H J$.

Proof. By 7.5, L is standard in B and $L \neq B$. Therefore by 3.10, 3.11, 6.1, and induction on the order of $G, L \cong L_{2}(4)$ and $B \cong H J$ or $\operatorname{Aut}\left(M_{12}\right)$, or $L \cong$ $L_{3}(4)$ and $B / Z(B) \cong S z$.

Suppose $L \cong L_{2}(4)$. Then $A \cong L_{4}(4), U_{4}(4), S p_{4}(4)$, or $\Omega_{8}^{8}(4)$, so we may assume $B \cong \operatorname{Aut}\left(M_{12}\right)$. Now by 3.10 there is a conjugate b of t under B inducing an outer automorphism on L with $[R, b] \neq 1$. As $[R, b] \neq 1, b$ induces an outer automor automorphism on A. Then $[Y, b]=1$ and $L\langle b\rangle \cong S_{5}$. But A does not admit such an automorphism.

So assume $L \cong L_{3}(4)$. Then $A \cong L_{5}(4)$. So $C_{A}(Y) \cong G L_{3}(4)$. This is impossible since $S \approx$ does not admit an automorphism of order 3 inducing an outer automorphism on L.

If $A \cong L_{4}(4)$ or $U_{4}(4)$, let $D=Y_{1}$. If $A \cong \Omega_{8}^{\imath}(4)$, let $D=W_{0}$. Then $B \leq C(Y)$
$\leq C(D)$. Moreover by symmetry between $D L$ and $D W=Y, H J \cong\left\langle R^{C(D L)}\right\rangle=$ $\left\langle W^{C(D L)}\right\rangle \leq C(D)$. Therefore
(7.7) B is contained in but not normal in $C(D)$.
(7.8) $A \cong S p_{4}(4)$.

Proof. Assume A is not $S p_{4}(4)$. Let $S \in S y l_{2}(W)$ and $X=C(D)$. Claim $B \unlhd C_{X}(U)=C$, for all $1 \neq U \leq S$. Set $\bar{C}=C_{X}(U) / U$. Assume first that $U=S$. As $B \cong H J, R=O_{2}(K)$ so $O_{2}(K) S=R S=R^{h} S=O_{2}\left(K^{h}\right) S$ for $R^{h} \leq R S$. Therefore \bar{R} is tightly embedded in \bar{C}, so \bar{L} is standard in \bar{C}. As $\bar{B} \leq \bar{C}, 3.10$ implies $\bar{B}=$ $\left\langle\bar{L}^{\bar{c}}\right\rangle$, so that $B=\left\langle L^{c}\right\rangle \unlhd C$. Next assume U has order 2. Suppose $c \in C, r \in R^{*}$ and $r^{c} \in R U-R$. As $N_{B}(R) \leq C(U)$ is transitive on R^{*} we may take $r^{c} \in r U$, so that $c^{2} \in C(r) \cap C\left(r^{c}\right) \leq N(R) \cap N\left(R^{c}\right)$. Therefore c acts on $R R^{c}=R S$ and then $S=[R, c] . \quad$ So $c \in N(r U) \cap N(S) \leq N(r U) \cap N(B)$ and hence as $r U \cap B=\{r\}$ we have a contradiction. It follows that \bar{R} is tightly embedded in \bar{C}, and as above, $B \unlhd C$.

Now $E\left(C_{C}(B)\right)=E\left(C_{C}(R L)\right)=1$, so $B=E(C)$. As this holds for each $1 \neq U$ $\leq S, B$ is standard in C. Now 7.7 and 17.1 (which will be proved independently) yield the result.

$A \neq S p_{4}(q)$.

Proof. Assume $A \cong S p_{4}(q)$. By symmetry between L and $W,\left\langle R^{c(L)}\right\rangle=$ $E \cong H J$. Let X be a subgroup of order 5 in L. Then $C_{B}(X)=X \times H$ where $R \leq H \cong L_{2}(4)$ (eg. p. 429 in [20]). Also $C_{B}(X) \cap E \leq C_{B}(X) \cap C(L)=C_{B}(L) \cong A_{4}$, so $C_{B}(X) \cap E$ is not normal in $C_{B}(X)$ and hence E is not normal in $C_{G}(X)$. But $C(X W) \cap N(R)=K X$. so by $3.7 W$ is standard in $C(X)$. Therefore as $W \leq E \leq$ $C(X), 3.10$ implies $E=\left\langle W^{C(X)}\right\rangle \unlhd C(X)$, a contradiction.

This completes the proof of Theorem 7.1.

8. Exceptional groups of characteristic 2

In this section we assume that A is a quasisimple group with $A / Z(A)$ an exceptional Chevalley group of characteristic 2 , or the Tits group ${ }^{2} F_{4}(2)^{\prime}$. We exclude $G_{2}(2)$, as its commutator group $U_{3}(3)$ was handled in section 4. We prove

Theorem 8.1. Assume A is standard in G with $O(G)=1$ and $m(C(A))>1$. Then either
(1) $A \unlhd G$, or
(2) $\left\langle A^{G}\right\rangle$ is of Conway type.

By [4], A satisfies hypothesis II, so we may choose notation as in section
3. Let $t \in T^{*}$. We begin a series of reductions.

Recall the definition of $X \mathcal{A}$ given in section 1.

$$
\begin{equation*}
\left(C_{A}(t)^{\prime} O^{2}\left(C_{A}(t)\right)\right)^{\mathcal{A}} \leq A^{g} \leq C(T) \tag{8.2}
\end{equation*}
$$

Proof. $\operatorname{Out}(\bar{A})^{\prime}$ has odd order so we may appeal to 3.9.
(8.3) $Z(A)$ has odd order.

Proof. Assume not. By [9], $\bar{A} \cong G_{2}(4), F_{4}(2)$, or ${ }^{2} E_{6}(2)$.
Assume $\bar{A} \cong G_{2}(4)$. Then A is the covering group of $G_{2}(4)$ and $\langle z\rangle=Z(A)$ is of order 2. By section 18 of [4], \bar{A} has 2 classes of involutions represented by root involutions \bar{a} and \bar{b} of long and short roots, respectively. By [16], a is an involution while b is of order 4 . Hence by $3.5, \bar{t} \neq \bar{b}$, so we may tkae $\bar{t}=\bar{a}$. By 18.4 in [4], $C_{\bar{A}}(\bar{a})=\bar{L} \bar{U}=C_{\bar{A}}(\bar{a})^{\infty}$ where $\bar{U}=O_{2}\left(C_{\bar{A}}(\bar{a})\right)$ and $\bar{L} \cong L_{2}(4)$ contains a conjugate of \bar{b}. As b has order $4, L \cong S L_{2}(5)$, so $z \in L$. By $8.2, C_{A}(a)=$ $C_{A}(a)^{\infty} \leq A^{g}$. Then $z \in A^{g}$ and $C_{A}(a)=A^{g} \cap C(z)$. But one checks that \bar{a} has 240 square roots in \bar{U}, while there are more than 240 conjugates of b in U squaring to z, a contradiction.

So $\bar{A} \cong F_{4}(2)$ or ${ }^{2} E_{6}(2)$. We take \bar{t} to be one of the involutions in 13.1 or 14.1 of [4]. Now $Z(A)$ is the kernel of the homomorphism of A on to \bar{A}, so $O^{2}\left(C_{\bar{A}}(\bar{t})\right)=O^{2}\left(C_{A}(t)\right) Z(A) / Z(A)$. Thus by $8.2 O^{2}\left(C_{\bar{A}}(\bar{t})\right)^{a}$ centralizes \bar{T}. However if $\bar{t} \neq U_{a}(1) U_{\beta}(1)$ or $U_{r}(1) U_{s}(1)$ in [4], then $\langle\bar{t}\rangle=C_{\bar{A}}\left(O^{2}\left(C_{\bar{A}}(\bar{t})\right)^{a}\right)$. Further if $\bar{t}=U_{r}(1) U_{s}(1)$ then $C_{\bar{A}}\left(O^{2}\left(C_{\bar{A}}(\bar{t})\right)^{a}\right)=\langle\bar{t}, \bar{u}\rangle$ where \bar{u} is a root involution. We conclude $\bar{t}=U_{\omega}(1) U_{\beta}(1)$ and \bar{T}^{*} is fused under \bar{A}.

Then $O^{2}\left(C_{\bar{A}}(\bar{t})\right)=O_{2,3}\left(C_{\bar{A}}(\bar{t})\right)$ and $Z\left(C_{\bar{A}}(\bar{t})\right)=Z\left(O^{2}\left(C_{\bar{A}}(\bar{t})\right)=\langle\bar{t}, \bar{u}\rangle\right.$. Hence $\bar{T} \cap Z\left(C_{\bar{A}}(\bar{t})\right)=\langle\bar{t}\rangle$, so by $3.9, T \cap A \neq 1$, and we may choose $t \in T \cap A$. By 2.8 , T is a $T I$-set in $A T$, so $T \cap A$ is a $T I$-set in A. Let $s \in T-\langle t\rangle$ and set $X=$ $O_{2,3}\left(C_{A}(s)\right)$. We have shown $\bar{t} \notin Z(\bar{X})$, so as $t^{X} \subseteq T \cap A, T \cap A$ has order at least 4. If $T \cap A$ has order 4 then as $C_{A}(t)$ acts on $T \cap A, O^{2}\left(C_{A}(t)\right) \leq C_{A}(T \cap A)$, so that $\bar{T} \cap \bar{A} \leq Z\left(C_{\bar{A}}(\bar{t})\right)=\langle\bar{t}\rangle$. Consequently $|T \cap A|>4$.

By $[16],|Z(A)| \leq 4$, so it suffices to show $T \cap A \leq Z\left(A^{g}\right)$, that is $T \cap A \leq A^{g}$. Since t is chosen arbitrarily from $(T \cap A)^{\#}$, it suffices to show $t \in A^{g}$. From the presentation of the covering group of \bar{A} in [16] we see that $Z(A) \leq O_{2}\left(C_{A}(t)\right)^{\prime}$. Thus as $O_{2}\left(C_{\bar{A}}(\bar{t})\right) \leq O^{2}\left(C_{\bar{A}}(\bar{t})\right), t \in O^{2}\left(C_{A}(t)\right)$. However $|N(A): A K| \leq 6, K^{g}$ has an abelian Sylow 2-group T, 'and $C_{A}(t) \leq N(T)$, so if $t \notin A^{g}$, then $t A^{g} \notin$ $O^{2}\left(C_{A}(t)\right) A^{g} / A^{g}$, a contradiction. Hence the proof of 8.3 is complete.

Throughout the remainder of this section let p be the projection of t on A and P the projection of T on A. We take p to be in the set Δ of canonical involutions of A defined in the section of [4] corresponding to A. There Δ is linearly ordered. Define the $\operatorname{rank} r(p)$ of p to be its place in that order. In particular the root involutions have smallest rank. p is said to be degenerate if $\bar{A} \cong F_{4}(q)$ or ${ }^{2} E_{6}(q)$ and $r(p)=3$ or $\bar{A} \cong F_{4}(q)$ and $r(p)=4$. Let Z be a Sylow 2-group of $Z\left(C_{A}(t)\right)$. Inspecting the centralizers given in [4] we find:
(8.4) (1) If p is nondegenerate then $A u t_{A}(Z) \cong Z_{q^{-1}}$ and is regular on Z^{*}.
(2) If p is degenerate then $Z=Z_{1} \times Z_{2}$ where Z_{i} is the root group of a root involution, $Z-\left(Z_{1} \cup Z_{2}\right) \subseteq p^{A}$, and $A u t_{A}(Z) \cong Z_{q-1} \times Z_{q-1}$.
(8.5) Assume $\bar{A} \cong G_{2}(q)$ and $r(p)=2$ or $\bar{A} \cong E_{7}(q)$ and $r(p)=4$ or 5. Then $\bar{T} \leq \bar{Z}$.

Proof. $C_{A}(p)=Z C_{A}(p)^{\infty}$. By $8.2, C_{A}(p)^{\infty} \leq C(T)$ and as Z is in the center of $C_{A}(p), Z \leq C(T)$.
(1) $\bar{T} \leq \bar{Z}$.
(2) Either $T \cap A=1$ or $\bar{A} \cong E_{7}(q)$ and $r(p)=4$ or 5 . or $\bar{A} \cong G_{2}(q)$ and $r(p)=2$.

Proof. If $T \cap A=1$ then (1) holds by 2.9 , so we may take $p=t$. Moreover by 8.5 we may assume t is not one of the involutions described in 8.6.2. But now inspecting the centralizers in [4] we find $t \in\left(C_{A}(t)^{\prime}\right)^{\mathcal{A}}$, so by $8.2, t \in A^{g}$, against 8.3.

$$
\begin{equation*}
q>2 \tag{8.7}
\end{equation*}
$$

Proof. Assume $q=2$. Then by 8.6.1 and $8.4, p$ is degenerate for each $t \in T^{*}$. By $8.4, Z$ is a 4 -group, so by $8.6, \bar{T}=\bar{Z}$. But then by $8.4, p$ is a root involution, and hence nondegenerate, for some $t \in T^{*}$.

Let V be the weak closure of R in $C\left(R^{G} \cap C(R T)\right)$. Let $\Sigma=\left\{r^{g}: r \in R^{\sharp}\right\}$

$$
\begin{equation*}
\text { (1) } \quad V=R Z \text {. } \tag{8.8}
\end{equation*}
$$

(2) If p is nondegenerate then either
(i) $T=Z$ and $\sum \cap V=R^{\sharp} \cup T^{\#}$ or
(ii) $T \cap A=1$ and $V-Z$ is the disjoint union of q conjugates of $R . \quad \sum \cap Z$ is empty.
(3) If p is degenerate then there exist G-conjugates T_{i} of R in V such that either
(i) $\bar{T}_{i} \leq \bar{Z}_{i}, A \cap T=1$, and $\Sigma \subseteq V-Z$, or
(ii) $T_{i}=Z_{i}$.

Proof. (1) follows from 8.4. Moreover V satisfies the hypothesis of 3.6 or 5.1 with $\left\langle O^{2}\left(N_{A}(V), O^{2}\left(N_{A^{g}}(V)\right\rangle\right.\right.$ in the role of X, given 8.4. Hence 3.6 and 5.2 imply (2) and (3).
(8.9) Assume $\bar{A} \cong G_{2}(q)$. Then
(1) If $r(p)=2$ then $Z=T$.
(2) We may choose T so that $r(p)=1$.

Proof. Let $r(p)=2$. Assume first $T \cap A=1$. Let $B=O_{2}\left(C_{A}(p)\right)$. Then
B contains $q^{2} A$-conjugates of Z, so by 8.8 , the set Γ of conjugates of R in $R B$ is of order $q^{2}(q-1)+1$. Moreover $N_{A}(\Gamma)^{\Gamma} \cong E_{q^{2}} G L_{2}(q)$ is transitive on $\Gamma-\{R\}$ with $O_{2}\left(N_{A}(\Gamma)^{\Gamma}\right)$ semiregular on $\Gamma-\{R\}$. Moreover the same holds in A^{g}, so $N(\Gamma)^{\Gamma}$ is 2-transitive. But now a result of Shult [29] yields a contradiction.

So by $8.8, T=Z$. By section 18 in [4], there is a conjugate T^{a} of T such that $T T^{a}$ contains $q A$-conjugates of T and one 2 -central root group U. By 8.8 applied to $T T^{a}, U=A^{g} \cap T T^{a}$ and $U \cap \sum$ is empty. Therefore U is a 2central root group of A^{g}, so by symmetry between A and A^{g}, (2) holds.

Assume $\bar{A} \nsubseteq G_{2}(q)$. Then

(1) $T \cap A=1$ and
(2) We may choose T so that p is in a root subgroup.

Proof. Pick p so that $Z=T$ if possible and, subject to this condition, so that $r(1)$ is minimal.

Assume p is not a root involution. Then by $8.8 .3, p$ is never degenerate. Next by sections 13 through 18 of [4] there is a conjugate Z^{a} of Z such that $Z Z^{a}$ contains $(q-1)^{2}$ conjugates of p and $2(q-1)$ involutions of smaller rank. Hence if $T=Z$ then $\left|T T^{a} \cap \Sigma\right| \geq(q-1)^{2}$, so by 8.8.2, $\left|T T^{a} \cap \Sigma\right|=q(q-1)$. Thus there is a conjugate s of t under G in $T T^{a}$ with $r(s)<r(t)$, contradicting the choice of p. Therefore by choice of $T, R^{x} \cap A=1$ for all $R^{x} \leq N(A)$. So by $8.8,\left|T T^{a} \cap \sum\right|=|T|(|T|-1)$.

Elements of P have the form $p(b)=U_{\gamma_{1}}\left(b u_{1}\right) \cdots U_{\gamma_{k}}\left(b u_{k}\right)$, where $U_{\gamma_{i}}$ is a root group, the u_{i} are fixed elements of $F=G F(q)$, and b varies over some additive subgroup θ of F. We may choose notation so that $Z Z^{a}=U X$ where $U=U_{\gamma_{k}}$ and X consists of the elements $X(d)=U_{\gamma_{1}}\left(u_{1}, d\right) \cdots U_{\gamma_{k-1}}\left(u_{k-1} d\right), d \in F$. Moreover we may take $p(b)^{a}=X(b) U(c b)$ where $p(d)$ and $p(d c)$ are distinct elements of P^{*}. Thus $P P^{a}$ contains the $|T|-1$ elements $U((c+1) b), b \in \theta^{\sharp}$, and the element $X((c+1) d)$. So as $\left|T T^{a} \cap \Sigma\right|=|T|(|T|-1)$, some element of \sum projects on one of these elements, again contradicting the choice of p.

So p is a root involution. But now by $8.6, T \cap A=1$. The proof is complete.
(8.11) Assume $\bar{A} \cong^{2} F_{4}(q)$. Then we may pick T so that $r(p)=2$.

Proof. Assume not. Then $r(p)=1$. By section 18 in [4] there is a conjugate Z^{a} of Z such that $\left|p^{A} \cap Z Z^{a}\right|=2(q-1)$. By 8.10 and $8.8,\left|T T^{a} \cap \Sigma\right|=$ $|T|(|T|-1)$. Therefore there exists a conjugate s of t in $T T^{a}$ with $p(s) \in$ $Z Z^{a}-p^{A}$. Hence $r(p(s))=2$.

If $\bar{A} \cong G_{2}(q)$ pick T so that $r(p)=1$ and if $\bar{A} \cong{ }^{2} F_{4}(q)$ pick T so that $r(p)=2$. In the remaining cases choose T so that p is a root involution. Let $r \in R^{\sharp}$.

$$
\begin{equation*}
C_{A}(T)^{\infty}=C_{A^{g}}(R)^{\infty} \text { and } r\left(\bar{r}^{\gamma}\right)=r(p) \text { for some } \gamma \in A u t\left(\bar{A}^{g}\right) \tag{8.12}
\end{equation*}
$$

Proof. By 8.2, $C_{A}(T)^{\infty} \leq C_{A^{g}}(R)^{\infty}$. By symmetry between R and T we have equality. Now inspecting the centralizers in [4] we find $C_{A}(T)^{\infty}$ determining p up to conjugacy in $\operatorname{Aut}(\bar{A})$.

We now define a subgroup Q or $C_{A}(T)^{\infty}$. If $\bar{A} \cong G_{2}(q)$ or ${ }^{2} F_{4}(q)$, or if $\bar{A} \cong{ }^{3} D_{4}(q)$ and $r(p)=2$, let Q be a Hall subgroup of order $q-1$ in $C_{A}(T)^{\infty}$. If $\bar{A} \cong^{3} D_{4}(q)$ and $r(p)=1$, let Q be a Hall subgroup of order $q^{2}+q+1$ in $C_{A}(T)^{\infty}$. In all other cases let Z_{3} and Z_{4} be A-conjugates of Z centralizing T such that $D=\left\langle Z_{3}, Z_{4}\right\rangle \cong L_{2}(q)$, and let Q be a Hall subgroup of order $q-1$ in D. Set $L=E\left(C_{A}(Q)\right) . \quad$ By [4], L is described in Table 8.13:

Table 8.13

\bar{A}	$G_{2}(q), q \neq 4$	$G_{2}(4)$	${ }^{3} D_{4}(q)$	${ }^{3} D_{4}(q)$	${ }^{2} F_{4}(q)$	$F_{4}(q)$	${ }^{2} E_{6}(q)$	${ }^{2} E_{6}(q)$	$E_{6}(q)$	$E_{7}(q)$	$E_{8}(q)$
\bar{L}	$L_{2}(q)$	$S L_{3}(4)$	$L_{3}(q)$	$L_{2}\left(q^{3}\right)$	$L_{2}(q)$	$S p_{6}(q)$	$U_{6}(q)$	$\Omega_{8}^{-}(q)$	$L_{6}(q)$	$\Omega_{12}^{+}(q)$	$E_{7}(p)$
$r(p)$	1	1	1	2	2	1 or 2	1	2	1	1	1

L is standard but not normal in $C(W)$
Proof. By 3.8, 8.9, and 8.10 it suffices to show R is Sylow in $N(R) \cap$ $C(L Q)$, and R is not normalized by $C_{A^{g}}(Q)$.

Suppose x is a 2 -element in $(N(R) \cap C(L Q))-R$. We may assume $x^{2} \in R$ so \bar{x} induces an involutory automorphism on \bar{A}. By [4], $L=O^{2}\left(C_{\bar{A}}(\bar{Q})\right)$, so \bar{x} induces an outer automorphism on \bar{A}. Out $\left({ }^{2} F_{4}(q)\right)$ is of odd order. If $\bar{A} \cong G_{2}(q)$ or ${ }^{3} D_{4}(q)$ then by $19.2 \bar{x}$ is a field automorphism and $C_{L}(x) \cong X\left(q_{0}\right)$ where $L \cong X(q)$. Finally if \bar{A} has rank greater than 2 then x acts on $E\left(C_{A}(L)\right)=D$ and as $[x, Q]=1, x$ centralizes D. But inspecting the possibilities for x given in section 19 of [4], $E\left(C_{A}(D\langle x\rangle)\right)<L$.

It remains to show R is not normalized by $A^{g} \cap C(Q)$. By $8.12, Q \leq Y=$ $C_{A^{s}}(R)^{\infty}$ and $r\left(\bar{r}^{\gamma}\right)=r(p)$ for some $\gamma \in A u t\left(\bar{A}^{g}\right)$. Then Q is contained in a Levi factor X of Y. $r\left(\vec{r}^{r}\right)=r(p)$, so X centralizes a subgroup $D_{0}=\left\langle Z, Z_{0}\right\rangle \cong L_{2}(q)$. Thus $D_{0} \leq A^{g} \cap C(Q)$ and D_{0} does not normalize $R \leq T Z$. The proof is complete.

$$
\begin{equation*}
\bar{A} \cong G_{2}(4) \text { and }\left\langle L^{c(W)}\right\rangle=B \text { is isomorphic to } S z, \text { modulo its core. } \tag{8.15}
\end{equation*}
$$

Proof. Let $B=\left\langle L^{C(W)}\right\rangle$. By $8.14,8.12,6.1$, and induction on the order of $G, L \cong S L_{3}(4)$ and $B / Z(B) \cong S z$. Hence $\bar{A} \cong G_{2}(4)$ or ${ }^{3} D_{4}(4)$. In the latter case let Y be a Sylow 3-group of $C_{A}(T)$ centralizing W. Then $Y / Y \cap W$ induces a diagonal automorphism on L. However $B / Z(B) \cong S z$ does not admit an automorphism of order 3 centralizing R and inducing a diagonal automorhpism on L.
G is of Conway type.
Proof. 8.15 and 8.9.
This completes the proof of Theorem 8.1.

9. The Mathieu groups M_{n}

In this section G is the Mathieu group M_{24} acting 5 -transtitively on a set $\Omega=\{1,2, \cdots, 24\}$. The following facts can be found in section 4 of [32]:
(9.1) G has one class z^{G} of involutions fixing 8 points and one class t^{G} of fixed point free involutions. z is 2 -central.
(9.2) Elements of order 3 centralized by t are fixed point free.
G_{123} is isomorphic to $L_{3}(4)$ and acts on $\Omega_{3}=\Omega-\{1,2,3\}$ as on the points of the projective plane $P G(2,4)$ over $G F(4)$. Choose $z \in G_{123}$ and let $\Delta=I(z) \cap \Omega_{3}$. Then Δ is the axis of z in $\operatorname{PG}(2,4)$. Let E be the subgroup of G_{123} generated by all elations with axis Δ. Then $E \cong E_{16}$ is the pointwise stabilizer in G_{123}, and hence also in G, of $I(z)$. So $E \unlhd C_{G}(z)$. Next G_{123} has one class of involutions and hence is transitine on $z^{G} \cap G_{123}$. So $C(z)^{I(z)}$ is 3-transitive on its 8 points and hence isomorphic to the holomorph of E_{8}. The stabilizer of a cycle of z is a compliment for E in $C(z)$. Moreover $E=C(e)_{I(e)}$ for each $e \in E^{\#}$, so $N(E)$ is transitive on E^{*} and by an order argument $N(E) / E \cong G L_{4}(2)$. Summarizing:
(9.3) $\quad G_{I(z)}=E \cong E_{16}$ and $N(E) / E \cong G L_{4}(2) . \quad C_{G}(z)$ is the split extension of E by the holomorph of E_{8}.

The following facts can be found in lemmas 2.17, 5.4, and 5.5 of [22]:
(9.4) $C(t)=R X$ where $E_{64} \cong R \unlhd C(t), X \cong S_{5}$, and $R=[R, X]$. There is a 4-group $U \unlhd C(t)$. $\langle t\rangle=Z(C(t))$.

Now the set Γ of orbits of U on Ω is of order 6 . If x is an element of order 5 then $I(x)$ is of order 4 , so $I(x)$ is one of these orbits and X is transitive on Γ. Thus
(9.5) $U X$ is transitive on the 12 cycles of t.
(9.6) $\quad G_{1} \cong M_{23}$ has one class $z^{G_{1}}$ of involutions. $G_{1} \cap C(z)$ is the split extension of $E \cong E_{16}$ by $L_{3}(2)$.

As G has one class z^{G} of point fixing involutions and $C_{G}(z)^{I(z)}$ is transitive the first remark follows. As $C(z)_{1}{ }^{I(z)}$ is a complement for $O_{2}\left(C(z)^{I(z)}\right)$ in $C(z)^{I(z)}$ the second remark follows.

Next let $G_{12}=L \cong M_{22}$ and set $A=G(\{1,2\}) . \quad$ By [9],

$$
\begin{equation*}
A=A u t\left(M_{22}\right) . \tag{9.7}
\end{equation*}
$$

As $G^{\mathbf{Q}}$ is 5-transitive we may choose $t \in A$ and $u \in z^{G} \cap(A-L)$. As E is regular on $\Omega-F(z), C_{G}(z)$ is transitive on the cycles of z. By $9.5, C_{G}(t)$ is transitive on the cycles of t. Therefore:
(9.8) t^{A} and u^{A} are the classes of involutions in $A-L$ under $L . z^{L}$ is the unique class of involutions in L.

The stabilizer of 1 and 2 in $C_{G}(z)^{I(z)}$ is the stabilizer in $L_{3}(2)$ of 2 and is isomophic to S_{4}. Hence
(9.9) $C_{L}(z)$ is the spit extension of $E \cong E_{16}$ by S_{4} and hence is isomorphic to Z_{2} wreath S_{4}.

As the stabilizer of a cycle of z is a complement for E in $C_{G}(z)$ we get: (9.10) $C_{L}(u)$ is the holomorph of E_{8}.

Recall $C_{G}(t)$ acts as $P G L_{2}(5)$ on the 6 orbits $I(x)^{C(t)}$ of U, where x is an element of order 5. Then R is in the kernel of this action and the pointwise stabilizer of a cycle c of t in $I(x)$ is $[x, R] X$ where X is of index 2 in $C(\langle x, t\rangle)$. Thus
(9.11) $C_{L}(t)$ is the split externsion of $V \cong E_{16}$ by the holomorph of a cyclic subgroup $\langle x\rangle$ of order 5 with $V=[V, x]$.

As a final remark notice that by 9.3

$$
\begin{equation*}
N_{A}(E) / E \simeq S_{5} . \tag{9.12}
\end{equation*}
$$

Witt shows in Satz 9 of [33] that there is a subgroup K of G isomorphic to M_{12} acting on Ω with two nonequivalent orbits Γ and Γ^{\prime} interchanged by an involution b of G acting on K. By [9] $\left|\operatorname{Aut}\left(M_{12}\right): M_{12}\right|=2$. Therefore

$$
\begin{equation*}
\operatorname{Aut}\left(M_{12}\right)=K\langle b\rangle=B . \tag{9.13}
\end{equation*}
$$

Choose $1 \in \Gamma$ and $2=1^{b}$. Then as Witt remarks, K_{2} acts 3 -transitively on Γ with $K_{12} \cong L_{2}(11)$. Then $\langle b\rangle K_{1_{2}} \cong \operatorname{Aut}\left(L_{2}(11)=P G L_{2}(11)\right.$. As K_{2} is transitive on Γ and there is one class of involutions in $P G L_{2}(11)-L_{2}(11)$ it follows that
(9.14) There is one class b^{K} of involutions in $B-K$.

By Wong [34].
(9.15) K has one class z^{K} of involutions fixing 4 points and one class t^{K} of fixed point free involutions. $C_{K}(z)$ is the split extention of $Q_{8 *} Q_{8}$ by S_{3}. $C_{K}(t) \cong Z_{2} \times S_{5}$.

As $K_{12}\langle b\rangle \cong P G L_{2}(11) b$ centralizes an element x of order 5 . By 9.15 we may take $[x, t]=1$, and $x t$ is self centralizing in K. Hence $\langle t\rangle$ is Sylow in $C_{K}(x)$ and and we may take $[b, t]=1$. Then as $[b, x]=1, b$ centralizes $E\left(C_{K}(t)\right)=J$, and by L-balance, $J \leq L(C(b))$. But b interchanges Γ and Γ^{\prime} so b is fixed point free on Ω. Therefore by 9.4, $J=E\left(C_{K}(b)\right)=E(X)$ and $U=\langle t, b\rangle . \quad$ As $\langle t\rangle=$
$Z(C(t)),[X, U] \neq 1$, so
(9.16) We may choose b so that $C_{K}(b)=\langle t\rangle \times E\left(C_{K}(t)\right)$.
(9.17) Let H be quasisimple with $\bar{H}=H / Z(H)$ a Mathieu group. Then
(1) If $H \cong M_{12}$ then H satisfies hypothesis II.
(2) If $H / Z(H) \cong M_{12}, T$ is a 2-group acting faithfully on H with $m(T)>1$ and $T \in S y l_{2}(Q)$, where Q is tightly embedded in $H T$, then $H \cong M_{1_{2}}$ and $T=\langle t, b\rangle$ $=C_{H T}\left(E\left(C_{H}(T)\right) \cong E_{4}\right.$, for some non 2-central involution t of H.

Proof. Assume the hypothesis of (2). By Theorem 4 in [1] we may assume Q is 2-constrained. So if \bar{b} or \bar{t} is in \bar{T}, then as $\langle\bar{b}, \bar{t}\rangle=O_{2^{\prime}, 2}(C(\bar{s}))$ for each \bar{s} in $\langle b, t\rangle^{\#}, \bar{Q}=\langle\bar{b}, \bar{t}\rangle$. Suppose $Z(H) \neq 1$. Then $Z(H)=\langle\pi\rangle$ is of order $2, t^{2}=\pi$ and $[b, t]=\pi$. Let $s \in T$ with $\bar{s}=\bar{t}$. Then $t \in C(s) \leq N(T)$, so $\pi=[t, b]$ $\in T$, impossible as T acts faithfully on H. Hence $Z(H)=1$. Now there exists $h \in C(t) \leq N(T)$ with $[h, B]=t$, so $t \in T$.

So we may assume $\bar{T}^{\#} \subseteq z^{H}$. But $\bar{H}=\left\langle O^{2}\left(C_{\bar{H}}(z), O^{2}\left(C_{\bar{H}}\left(z^{g}\right)\right)\right\rangle\right.$ for any conjugate z^{g} of z with $z^{-g} \in O_{2}(C(z))-\langle z\rangle$. Hence $H \leq \Gamma_{1, T}(H) \leq N(Q)$, and then $\left[H, O_{2^{\prime}, 2}(Q)\right]=1$, a contradiction.

So we may assume $\bar{H} \nsubseteq M_{12}$, and it remains to show H satisfies hypothesis II. By [9], M_{11}, M_{23}, and M_{24} have trivial outer automorphism groups, so we may take $\bar{H} \cong M_{22}$. Assume T is a noncyclic elementary abelian 2-group acting faithfully on H and Sylow in a 2-nilpotent tightly embedded subgroup Q of $H T$, with $T \not \ddagger H C(H)$. As $|A u t(H): H|=2, T=T_{0}\langle b\rangle$ where $T_{0}=T \cap H C(H)$. By a Frattini argument $C_{H}(s)=O\left(C_{H}(s)\left(C_{H}(s) \cap N(T)\right)\right.$, each $s \in T^{\sharp}$. As $O\left(C_{H}(s)\right)$ $=1, \quad C_{H}(s) \leq N(T)$.

By 9.8, 9.10, and 9.11, $\bar{T}=\langle\bar{b}\rangle O_{2}\left(C_{\bar{H}}(\bar{b})\right) \cong E_{16}$ or E_{32}, for \bar{b} fused to u or t, respectively. Without loss we take $\bar{z} \in \bar{T}_{0} . E$ is the unique abelian subgroup of rank 4 in $O_{2}\left(C_{\bar{H}}(\Sigma)\right)$ and by $9.12, E$ is self centralizing in $\operatorname{Aut}\left(M_{22}\right)$. So we may take $\bar{b}=\bar{u}$. Now $C_{\bar{H}}(\bar{u})$ is transitive on $\bar{u}(\bar{T} \cap \bar{H})^{\sharp}$, so $N_{\bar{H}}(\bar{T})$ is 2-transitive on $\bar{u}(\bar{T} \cap \bar{H})$. So $|\bar{H}|_{2} \geq|\bar{T} \cap \bar{H}| \cdot\left|C_{\bar{H}}(\bar{u})\right|_{2}=2^{9}>2^{7}=|\bar{H}|_{2}$, a contradiction.
(9.18) Let H be quasisimple with $H / Z(H) \cong M_{11}, M_{22}, M_{23}$, or M_{24}, and assume H is T-admissible. Then $H \cong M_{24}, T$ is a 4-group, and $T \leq C_{H}(T)^{\infty}$.

Proof. Set $\bar{H}=H T / C_{H T}(H)$. \bar{T} centralizes $O^{2}\left(C_{\bar{H}}(\bar{t})\right)$ for each $t \in \bar{T}^{\#}$. It follows that $\bar{H}=M_{11}, M_{22}$, or $\bar{H}=M_{24}$ and \bar{T} is the group U defined in 9.4 Assume the latter. M_{24} has a trivial multiplier (eg [9]) so $Z(H)=1$ and $C_{\bar{H}}(\bar{t})=$ $\overline{C_{H}}(t)$. Now $\bar{U}=\bar{T}=\neq Z\left(C_{\bar{H}}(\bar{t})\right)$, so by $2.9, H \cap T \neq 1$. Hence as \bar{T}^{*} is fused, $T \leq H$. Then $T=U \leq C_{H}(T)^{\infty}$ by 9.4.

So take $\bar{H}=M_{11}$ or M_{22}. By 2.8, $\bar{T} \leq O_{2}\left(\overline{C_{H}}(t)\right)$. Further $O^{2}\left(C_{\bar{H}}(\bar{t})\right) \leq \overline{C_{H}}(t)$. But if $\bar{H}=M_{11}$ then $O_{2}\left(C_{\bar{H}}(\bar{t})\right)=O_{2}\left(O^{2}\left(C_{\bar{H}}(\bar{t})\right)\right.$ is of 2-rank 1, a contradiction.

So $\bar{H} \cong M_{22}$. Let $\bar{X}=\left\langle\bar{t}^{H} \cap O^{2}\left(C_{\bar{H}}(\bar{t})\right\rangle\right.$. Then $\langle\bar{t}\rangle=C_{\bar{H}}(\bar{X})$, so as X is T-admissible, T is a 4-group. However $O^{2}\left(C_{\bar{H}}(\bar{t})\right)$ normalizes no 4-group.

10. The Hall-Janko group $\boldsymbol{H J}$

Let $G=H J$ and $A=A u t(G)$.
(10.1) (1) G has one class z^{G} of 2-central involutions and one class r^{G} of non-2-central involutions.
(2) $C_{G}(z)$ is the split extension of $Q=O_{2}\left(C_{G}(z)\right) \cong Q_{8} * D_{8}$ by $A_{5} . \quad Q=\left\langle z^{G} \cap C(z)\right\rangle$
(3) $C_{G}(r)=R \times L$ where $R \cong E_{4}, L \cong A_{5}$, and $r^{G} \cap L$ is empty.
(4) Let $S \in S y l_{2}(G)$ and P the weak closure of R in S. Then P is isomorphic to a Sylow 2-group of $L_{3}(4)$ and $S=P\langle b\rangle$ where b is a conjugate of z inducing the graph-field automorphism on Q.
(5) $|A: G|=2$ and there is one class a^{G} of involutions in $A-G . \quad C_{G}(a) \cong$ $P G L_{2}(7)$.

Proof. (1) and (2) are well known. See [3] for (3) and (4), where it is also shown that $|A: G|=2$ and there is an involution $a \in C_{A}(r)-B$ with $\langle a\rangle L \cong S_{5}$ and $[R, a] \neq 1$. We may assume a acts on S. Then a induces the field automorphism on P and we may take $[a, b]=1$. All involutions in $a S$ are fused under S to a or $a b$. Further $Z(P)\langle b\rangle=C_{S}(a b) \cong D_{8}$ and $C_{S}(a)=\langle b, r\rangle \cong D_{16}$, so $C_{S}(a)$ is Sylow in $C_{G}(a)$, and $C(a)$ is transitive on $z^{G} \cap C(a)$. Hence by the classification of groups with dihedral Sylow 2-groups, $C_{G}(a) \cong P G L_{2}(q)$, some odd q. As $C(a) \cap C(r) \cong D_{12}$, we conclude $q=7$. Moreover letting $\langle z\rangle=Z\left(C_{S}(a)\right), a b$ is fused to $a z$ in $C_{G}(a)$, so as all involutions in $a S$ are fused under S to $a b$ or $a z$, there is one class of involutions in $A-G$.
(10.2) Assume H is quasisimple with $\bar{H}=H / Z(H) \cong H J$. Then H satisfies hypothesis II and if H is T-admissible then T projects on a conjugate of the group R in 10.1.3.

Proof. By 2.3, and $10.1, H$ satisfies hypothesis II. Further $\langle z\rangle=C_{G}\left(C_{G}(z)\right)$ $=C_{G}\left(C_{G}(z)^{\infty}\right)$, so each involution in T projects into a conjugate of R. Now by 2.3, T projects onto a conjugate of R.

11. The Janko group J_{3}

In this section $G \cong J_{3} . \quad$ By [25]:
(11.1) G has one class z^{G} of involutions. $C_{G}(z)$ is the extension of $Q=O_{2}(C(z))$ $\cong Q_{8} * D_{8}$ by $A_{5} \quad C(z)=C(z)^{\infty}$.
(11.2) Let $G \unlhd B \leq A u t(G)$ with $|B: G|=p$ prime. Then either
(1) $p=2$ and $C_{B}(z) / Q \cong S_{5}$, or

$$
\begin{equation*}
C_{B}(z)=Z\left(C_{B}(z)\right) C_{G}(z) \tag{2}
\end{equation*}
$$

Proof. By 11.1 and a Frattini argument $B=G C_{B}(z)$. As $A u t(Q)$ is the extension of E_{16} by S_{5}, either (1) holds or $C_{B}(z)=C_{B}(Q) C_{G}(z)$. In the latter case as $\left|C_{B}(Q):\langle z\rangle\right|=p$ and $C(z)=C(z)^{\infty}$, (2) holds.
(11.3) A Sylow 17 -group X of G is of order 17. $N_{G}(X) / X \cong Z_{8}$ and $X=C_{G}(X)$.

Proof. Lemma 5.6 in [25].
(11.4) Let $A=A u t(G)$. Then $|A: G|=2$ and $C_{A}(z) / Q \cong S_{5}$.

Proof. By [23], $|A: G| \geq 2$. We show $|A: G| \leq 2$ and $\langle z\rangle=Z\left(C_{A}(z)\right)$, and then apply 11.2. First if $|A: G|>2$ then by 11.2 we may choose $B \leq A$ with $|B: G|=p$ prime and $C_{B}(z)=Z\left(C_{B}(z)\right) C_{G}(z)$. Hence it suffices to assume B exists and then exhibit a contradiction.

Let $X \in S y l_{17}(G)$ and Y a complement for X in $N_{G}(X)$. We may take $z \in Y$. $\operatorname{Aut}(X) \cong Z_{16}$, so by a Frattini argument Y is contained in an abelian complement W to X in $N_{B}(X)$. As $Y=C_{G}(Y), W=C_{B}(Y)=Y C_{B}(z)$ and hence $C_{B}(z)=\langle z\rangle \times\langle b\rangle$ where $\langle b\rangle=Z\left(N_{B}(X)\right)$. But now $G=\left\langle C_{G}(z), X\right\rangle \leq C(b)$, a contradiction.
(11.5) There is one class of involutions in $A-G$ with representative a. $C_{G}(a) \cong L_{2}(17)$.

Proof. Let $X \in S y l_{17}(G), \quad Y \in S y l_{2}\left(N_{G}(X)\right)$, and $Y \leq Y_{1} \in S y l_{2}\left(N_{A}(X)\right)$. We may assume $z \in Y$. Suppose Y_{1} is cyclic. The image of Y_{1} in $C_{A}(z) / Q \cong$ $O_{4}^{-}(2)$ is cyclic of order 4 and hence acts without fixed points on the nonsingular vectors of $Q /\langle z\rangle$. On the other hand Y_{1} centralizes $\Phi(Y) \leq Q$, and $\Phi(Y)$ is of order 4, so that $\Phi(Y) /\langle z\rangle$ is a nonsingular point of $Q /\langle z\rangle$. Hence $Y_{1}=Y \times\langle a\rangle$, where a is an involution centralizing X.

Now by 11.4, a induces a transvection in $O_{4}^{-}(2)$ on $Q /\langle z\rangle=O_{2}\left(C_{G}(z)\right) /\langle z\rangle$, and all involutions in $C_{A}(z)-G$ are fused under $C(z)$ into $a Q$. There is an element x of order 3 in $C(z)$ with $[x, a] \leq Q$. Let $\langle c\rangle \mid\langle z\rangle=[a, Q \mid\langle z\rangle]$ and $P \mid\langle z\rangle=C_{Q /<z\rangle}(a) . \quad P=\langle c\rangle *[P, x]$ with $[P, x]$ quaternion. We show $C_{Q}(a) \cong$ D_{8}, so $[P, x, a] \neq 1$ and hence $[x, a] \neq 1$. This implies $C(a) \cap C(z)$ is a 2-group.

Let $S \in S y l_{2}\left(C_{G}(z)\right)$ with $C_{S}(a) \in S y l_{2}\left(C_{G}(a)\right)$. Then S is isomorphic to a Sylow 2-group of $L_{3}(4)$ extended by a graph-field automorphism and a induces an outer automorphism on S, so $S\langle a\rangle$ is isomorphic to a Sylow 2-group of $A u t\left(L_{3}(4)\right)$ (eg. 3.3 in [25]). Hence as $Y \leq C_{S}(a), C_{S}(a) \cong D_{16}$ and then $C_{Q}(a) \cong D_{8}$.

Therefore $C_{S}(a)=C(a) \cap C(z) \cong D_{16}$. Moreover $\langle Q, x\rangle$ is transitive on the involutions in $a Q$, so $C(z)$ is transitive on the involutions in $C_{A}(z)-G$, and
hence there is one class of involutions in $A-G$. Further $C(a)$ is transitive on $z^{G} \cap C(a)$, so appealing to the classification of groups with dihedral Sylow 2-groups, $C_{G}(a) \cong L_{2}(17)$.
(11.6) Let X be quasisimple with $X / Z(X) \cong J_{3}$. Then
(1) X satisfies hypothesis II.
(2) X is not admissible.

Proof. (1) follows from 2.3, 11.1, and $11.5\langle z\rangle=C_{G}\left(C_{G}(z)\right)=C_{G}\left(C_{G}(z)^{\infty}\right)$, so X is not admissible.

12. The Higman-Sims group $\boldsymbol{H S}$

Let $G=H S$ and $A=A u t(G)$. A is the automorphism group of a strongly regular graph $\&$ on a set Ω of 100 vertices. Let ∞ be a distinguished vertex of $\Omega, \Delta=\Delta(\infty)$ the set of 22 vertices joind to ∞ in $\&$, and $\Gamma=\Gamma(\infty)$ the set of 77 remaining vertices. A_{∞} is the automorphism group of M_{22} and G_{∞} is M_{22}. A_{∞} acts 3-transitively on Δ and the vertices in Γ can be regarded as the fixed point sets of involutions in G_{∞} on Δ. The members of Δ are called points and the members of Γ blocks. For $\alpha \in \Delta, \Delta(\alpha)$ is the set of blocks containing α. (Recall a block is a set of fixed points of an involution). Two blocks are adjacent in s if they are disjoint.

By 9.8, S_{∞} has one class $z^{G_{\infty}}$ of involutions. Let $B=I(z) \in \Gamma$ and $\alpha \in B$. Let $H=A_{\infty}$. By [26]
(12.1) $\quad C_{G}(z)$ is the extension of $T=O_{2}(C(z)) \cong Q_{8}^{*} Q_{8}^{*} Z_{5}$ by S_{5} with $C(z) / T$ acting as the stabilizer of a nonsingular point on the orthogonal space $T /\langle z\rangle$.

Again by $9.8, H-G_{\infty}$ has two classes u^{H} and t^{H} of involutions with u fixing 8 points of Δ and t acting without fixed points on $\Delta . \quad C=G_{\infty} \cap C(t)$ is the split extension of E_{16} by the holomorph of Z_{5}. Choose $S \in S y l_{2}(C(t))$ with $z \in$ $Z(S)$. Then as $[t, z]=1, t$ acts on $I(z)=B$. Let K be the stabilizer in H of B. By $9.12, K^{B} \cong S_{6} . \quad K-G$ has 3 classes of involutions t^{K}, s^{K} and r^{K} where t and r act fixed point freely on B and s fixes 4 points of $B . \quad r$ centralizes an element of order 3 in K, while as remarked above, $C_{H}(t)$ has order prime to 3 . Hence

$$
\begin{equation*}
t^{K}=t^{H} \cap K, s^{K} \cup r^{K}=u^{H} \cap K \tag{12.2}
\end{equation*}
$$

Let N be the number of fixed blocks of t. Counting the set of pairs $\left(D, t^{h}\right)$, where D is a block fixed by t^{h}, we have $N\left|t^{H}\right|=77\left|t^{K}\right|$. We conclude $N=5$.

Now $C=G_{\infty} \cap C(t)=X Y$ where $Y=O_{2}(C)$ and $X=N_{C}\left(X_{5}\right)$ where X_{5} is a Sylow 5-group of C. As $t^{K}=t^{H} \cap K, C$ is transitive on $\Gamma \cap I(t)$ and then X_{5} is regular on these blocks. Thus $Y=C_{A}(t)_{I(t)}$. $I(u)$ has order at least 9 so
$u^{G} \neq t^{G}$ and hence $t^{G} \cap H=t^{G}$. So $C_{G}(t)$ is transitive on $I(z)$ and hence $C_{G}(t)^{I(t)}$ $\cong P G L_{2}(5)$.
Summarizing:
(12.3) $C_{G}(t)$ is the extension of $Y=O_{2}\left(C_{G}(t)\right) \cong E_{16}$ by $P G L_{2}(5)$ and $t^{G} \cap H=t^{H}$. $C_{G}(t)$ acts irreducibly on Y.

By [15].
(12.4) G has two classes z^{G} and v^{G} of involutions. There are two classes t^{G} and u^{G} of involutions in $A-G . \quad\left|C_{G}(u)\right|=8!$.

As $u^{G} \cap H=u^{H}, u$ fixes $\left|C_{A}(u): C_{H}(u)\right|=8!/ 2^{6} \cdot 3 \cdot 7=30$ vertices. Hence u fixes 21 blocks. By $12.2 C_{H}(u)$ has 2 orbits Γ_{1} and Γ_{2} on these fixed blocks, where Γ_{1} consists of those blocks in which u fixes 4 points and Γ_{2} the blocks upon which u acts without fixed points. As 3 points determine a block and u fixeds 8 points of Δ, Γ_{1} has order $8 \cdot 7 \cdot 6 / 4 \cdot 3 \cdot 2=14$. Hence Γ_{2} has order 7 . Each cycle of u on Δ is contained in 2 blocks of Γ_{1} and 3 blocks of Γ_{2}. Hence easy counting arguments show the graph $\&$ induced by $\&$ on $I(u)$ is bipartite so that $C_{G}(u)$ is 2-transtitve on one of the sets I_{1} in the partition. Hence $\&$ is the incidence graph of the projective geometry $\operatorname{PG}(3,2)$, and $C_{G}(u)$ is the automorphism group of that geometry together with a polarity. Hence

$$
\begin{equation*}
C_{G}(u) \cong S_{8} \tag{12.5}
\end{equation*}
$$

Let $w \in C_{G}(u)$ correspond to a transvection. Then $C_{G}(w) \cap C(u) \cong Z_{2} \times S_{6}$, and $W=E\left(C_{G}(u) \cap C(u)\right) \leq L(C(w))$. It follows from 12.1 and 12.4 that we may take $v=w$. By [26],

$$
\begin{equation*}
C_{G}(v) \cong Z_{2} \times \operatorname{Aut}\left(A_{6}\right) . \tag{12.6}
\end{equation*}
$$

Thus $W=L(C(v))$ and

$$
\begin{equation*}
C_{A}(v)=Z_{2} /\left(E_{4} \times S_{6}\right) \tag{12.7}
\end{equation*}
$$

(12.8) Let X be quasisimple with $X / Z(X) \cong H S$. Then
(1) X satisfies hypothesis II.
(2) X is not admissible.

Proof. Let T be an elementary 2-group acting faithfully on X and Sylow in a 2-nilpotent tightly embedded subgroup of $X T$. Assume first $a \in T-X C(X)$. By 2.3, a does not induce u on X, so a induces t. As $\operatorname{Out}(X)$ has order 2, some $b \in T^{\#}$ induces an inner automorphism on X. By $2.3, b$ induces an automorphism in z^{G}. As $O^{2}\left(C_{G}(t)\right)$ acts irreducibly on $O_{2}\left(C_{G}(t)\right), T \cap X C(X)=T_{0}$ projects on $O_{2}\left(C_{G}(t)\right)$. Now $C_{G}(b)$ acts on T_{0} and since we may choose b to project on $z, O^{2}\left(C_{G}(z)\right)$ normalizes the projection of T_{0}. But $T_{0} \cong O_{2}\left(C_{G}(t)\right) \cong E_{16}$ while
$m\left(O_{2}\left(O^{2}\left(C_{G}(z)\right)\right)=3\right.$, a contradiction.
So $T \leq X C(X)$ and (1) is established. Also as $\langle x\rangle=C_{G}\left(C_{G}(x)^{\infty}\right)$ for each involution $x \in G, X$ is not admissible, establishing (2).

13. The Fischer groups

Let $G=M(24)$, the largest of Fischer's three groups generated by 3-transpositions. The following facts are in [11]:
(1) $\quad G$ is generated by a class $d^{G}=D$ of 3-transpositions.
(2) $|G: E(G)|=2, E(G)$ is simple, and $G=\operatorname{Aut}(E(G))$.
(3) $C_{E(G)}(d)=H \cong M(23)$ is simple and $H=A u t(H)$.
(4) Let $d \in S \in \operatorname{Syl}_{2}(G)$ and $L=\langle S \cap D\rangle$.

Then L is abelian of order 2^{12} and $N_{G}(L)$ is the non-split extension of M_{24} acting 5-transtitively on $S \cap D$.
(5) Let a, b, c, and d be distinct members of $S \cap D$. The all involutions in L are ufsed under $N(L)$ to $d, t=d a, d a b$, or $d a b c$.
(6) Let $K=C_{H}(t)$. Then K is quasisimple and $K \mid\langle t\rangle \cong M(22)$ is simple. $A u t_{G}(K)=A u t(K)$ and $|A u t(M(22)): M(22)|=2$.
(7) $C_{K}(b t)$ is isomorphic to the covering group of $U_{6}(2)$.
(8) $M(2 n)$ contains a unique class of 3-transpositions for each $n=2,3,4$.

We record four elementary facts about groups generated by 3-transpositions:
(13.2) Let a, b, and c be distinct commuting members of a set E of 3-transpositions. Then
(1) $C_{E}(a b)=C_{E}(a) \cap C_{E}(b)$.
(2) $C_{E}(a b c)=C_{E}(a) \cap C_{E}(b) \cap C_{E}(c)$.
(3) If $\langle E\rangle$ is transitive on E then $C_{E}(a)=C_{E}(b)$ exactly when $a \in b^{O_{2}(\langle E\rangle)}$.
(4) If x is an involutory automorphism of $\langle E\rangle$ and $\left[a, a^{x}\right] \neq 1$, then x centralizes a member of E.

Proof. (1), (2), and (4) are easy. See [11], 2.1.3, for (3).
(13.3) Let E be the set of 3-transpositions in $M \cong M(22)$. Then every involutory automorphism of M centralizes a member of E.

Proof. Let x be an involutory automorphism of M and assume $C_{E}(x)$ is empty. By 13.2.4, $\left[u, u^{x}\right]=1$ for each $u \in E$, so x centralizes the involution $s=u u^{x}$. By 13.1.7, $C_{M}(u)$ is a covering of $U_{6}(2)$ over u. Moreover u^{x} is a transvection in $C_{M}(u) \mid\langle u\rangle$, so $J=\left\langle C_{E}(u) \cap C_{E}\left(u^{x}\right)\right\rangle=A B$ where $A=\langle A \cap E\rangle \cong U_{4}(2)$ and $B=O_{2}(J)$. Further by [11], 16.1.10, A^{J} is the unique class of E-subgroups complementing B in J.
x centralizes s, so by 13.2.1, x acts on J. If x acts nontrivially on J / B then by 12.2 and the proof of 19.8 in [4], $\left[v, v^{x}\right] \notin B$ for some $v \in J \cap E$, against 13.2.4. So x centralizes J / B. Now by uniqueness of A^{J} and a Frattini agrument, $x=y b$ for some $b \in B$ and $y \in N(A)$. Then y centralizes A. Moreover A acts irreducibly on $B / Z(J)$, so y centralizes $B / Z / J)$ and then B. So $[y, J]=1$. Now A acts in its natural representation on $B / Z(J)$, so every member of $B / Z(J)$ is centralized by some $v \in A \cap E$. Further by $13.2 .1, Z(J) v \cap E=\{v\}$, so every member of B is centralized by some member of $A \cap E$. In particular $x=y b$ centralizes a member of $A \cap E$.
(13.4) (1) Every involution in G centralizes a member of D.
(2) Every involution in H fixes a 3-transposition of H.

Proof. $t=d a$ is a 3-transposition of H in the center of a Sylow 2-group of H, so (2) is immediate. Let x be an involution in G and suppose $C_{D}(x)$ is empty. By 13.2.4 we may assume $d^{x}=a$, so that x centralizes t. By 13.2.1, $K\langle d\rangle=C_{D}(t)$ is x-invariant, so x acts on $K=E(K\langle d\rangle)$. By 13.3 we may assume x acts on $\langle b d, t\rangle$. Now x acts on $\langle b, d, t\rangle \cap D=\{a, b, d\}$ by 13.1.4. So x centralizes b.
(13.5) (1) d, t, $d a b$, and $d a b c$ are representatives for the conjugacy classes of involutions in G.
(2) Let u, v, and w be distinct commuting 3-transpositions in $M \cong M(23)$ or $M(22)$. Then $u, u v$, and $u v w$ are representatives for the conjugacy classes of involutions in M.

Proof. L is weakly closed in S and L is abelian, so $N(L)$ controls fusion in L. By 13.1.5, any involution in L is fused to $d, d a, d a b$, or $d a b c$, while by 13.1.4 none of these involutions is fused in $N(L)$. So to prove (1) it suffices to show each involution in G is the product of commuting 3-transpositions. By 13.4, each involution in G is conjugate to an involution in $C_{G}(d)=\langle d\rangle H$. So as t^{H} is the set of 3 -transpositions in H, (1) is reduced to (2).

Next if $M \cong M(23)$ or $M(22), E$ is the set of 3 -transpositions of M, and $T \in S y l_{2}(M)$, then $N(T \cap E)^{T \cap E}$ is M_{23} or M_{22} and all involutions in $\langle T \cap E\rangle$ are fused to exactly one of u, $u v$, or $u v w$ in $N(T)$, where u, v, and w are distinct members of $T \cap E$. Hence we may repeat the argument above, and reduce (2) to showing that any involution in $C_{M}(v)$ is the product of commuting 3-transpositions, where $M \cong M(22)$ and v is a 3-transposition of M. However by 13.1.7, $C_{M}(v) /\langle v\rangle \cong U_{6}(2)$, so as every involution in $U_{6}(2)$ is the product of 1,2 , or 3 transvections, the proof is complete.

$$
\begin{equation*}
C_{G}(d)=\langle d\rangle \times H \cong Z_{2} \times M(23) . \tag{13.6}
\end{equation*}
$$

(2) Let $e \in D-C(\langle a, d\rangle)$ and $S=\langle d, a, e\rangle$. Then $S \cong S_{4}$ and $C_{G}(t)=$ $\langle s\rangle(\langle d\rangle \times K)$ where $s \in t^{s}$ induces an outer automorphism on K and $K \mid\langle t\rangle \cong$ $M(22)$.
(3) $\quad C_{G}(d a b)=\langle d a b\rangle \times J$ where $E(J)$ is the covering group of $U_{6}(2)$ and $J / Z(J)$ $\cong A u t\left(U_{6}(2)\right)$.
(4) Let $z=d a b c$ and $X=\left\langle C_{D}(z)\right\rangle$. Then $O_{2}(X) \cong Q^{6}, X / O_{2}(X)$ is the perfect central extension of Z_{3} by $O_{\overline{6}}^{-}(3), C_{G}(z) / X \simeq S_{3}$, and $C_{G}(X)=\langle z\rangle$.

$$
\begin{equation*}
C_{G}(S)=\left\langle C_{D}(S)\right\rangle \cong \operatorname{Aut}\left(\Omega_{8}^{+}(2)\right) \tag{5}
\end{equation*}
$$

Proof. (1) follows from 13.1.3. Pick e and S as in (2). As $(a d)^{2}=(a e)^{3}$ $=(d e)^{3}=1, S \cong S_{4}$, so there is a conjugate s of t under S with $[d, s]=t$. Now (2) follows from 13.1.6 and 13.2.1. (5) follows from 18.3.12 and 18.3.14 in [11].

By 13.1.7. and 13.2.2, $B=\left\langle C_{D}(d a b)\right\rangle=\langle d a b\rangle \times E(B)$ where $E(B)$ is the covering group of $U_{6}(2)$. By 13.1.4, $C_{G}(d a b)$ induces S_{3} on $\{d, a, b\}$ and hence (3) follows.

Finally let $z=d a b c, \quad X=\left\langle C_{D}(z)\right\rangle$ and $Y=\left\langle C_{D}(z) \cap C(d)\right\rangle$. Then $Y=$ $\langle d\rangle \times O^{2}(Y)$ where $\Phi\left(O_{2}(Y)\right)=\langle z\rangle, Z\left(O^{2}(Y)\right)=\langle d a, d b, d c$.$\rangle , and O_{2}(Y) \cong E_{8} \times Q^{4}$, with $Y / O_{2}(Y) \cong U_{4}(2)$. Also $\{d, a, b, c\}=Z(Y) \cap D$. Moreover by 13.5.2, d, a, $d a, a b, d a b, a b c$, and $d a b c$ are representatives for the $C(d)$ classes of involutions in $C(d)$. So by 13.5.1, $z^{G} \cap C(d)=z^{C(d)}$. Hence X is transitive on $X \cap D$. Now by 13.2.3, $\{d, a, b, c\}=d^{O_{2}(X)}$. So $\langle d a, d b, d c\rangle \leq O_{2}(X)$. As $O_{2}\left(O^{2}(Y)\right)$ is generated by conjugates of $\langle d a, d b, d c\rangle, O_{2}\left(O^{2}(Y)\right) \leq O_{2}(X) . \quad O_{2}(Y)=O_{2}(C(d) \cap$ $C(z))$ and $\left|O_{2}(X): O_{2}(X) \cap C(d)\right|=\left|d^{O_{2}(X)}\right|=4$. As $O_{2}\left(O^{2}(Y)\right) \cong E_{4} \times Q^{4}$ we conclude $O_{2}(X) \cong Q^{6}$.

Now $Y O_{2}(X) / O_{2}(X) \cong Z_{2} \times U_{4}(2)$. Also $\left\langle C_{D}(e) \cap C_{D}(d)\right\rangle=W \cong 30_{8}^{+}(3)$. So if v is a conjugate of z in $W,\langle C(v) \cap D \cap W\rangle$ is solvable. Hence by the main theorem of [11], $X / O_{2}(X)$ is isomorphic to $O_{6}^{-}(3)$ modulo its center. By [35], $O_{6}^{-}(3) \nleftarrow O_{12}^{+}(2)$, so $Z\left(X / O_{2}(X)\right) \cong Z_{3}$. By a Frattini argument $C(z)=X(C(z) \cap$ $C(d))$, so as $C(z) \cap C(d)$ induces S_{3} on $\{a, b, c\}$, the proof of (4) is complete.
(13.7) Let E be the class of 3-transpositions in $H \cong M(23)$ and u, v, and w distinct commuting members of E. Then
(1) $C_{H}(u)$ is quasisimple with $C_{H}(u) \mid\langle u\rangle \cong M(22)$.
(2) $C_{H}(u v)=\langle s\rangle J$ where J is the covering group of $U_{6}(2)$ and s is a conjugate of $u v$ inducing an outer automorphism on J.
(3) $C_{H}(u v w)$ is 2-constrained with $C_{H}(u v w) /\left(C_{H}(u) \cap C_{H}(v) \cap C_{H}(w)\right) \cong S_{3}$.

Proof. This follows from 13.1 and 13.2.
(13.8) Let $M=M(22), A=A u t(M), E$ the class of 3-transpositions in M, and u, v, and w distinct commuting members of E. Then
(1) $C_{M}(u)$ is quasisimple with $C_{M}(u) \mid\langle u\rangle \cong U_{6}(2) . \quad C_{A}(u)=\langle s\rangle C_{M}(u)$ where s is an involution inducing an outer automorphism on $C_{M}(u)$.
(2) $C_{A}(u v)$ and $C_{A}(u v w)$ is 2-constrained with $C_{A}(u v) /\left(C_{A}(u) \cap C_{A}(v)\right) \cong Z_{2}$ and $\left|C_{A}(u v w)\right|=2^{16} \cdot 3^{3}$.
(3) There are 3 classes of involutions in $A-M$ with representatives $s, s u$, and suv.
(4) $C_{M}(s) \cong A u t\left(\Omega_{8}^{+}(2)\right)$.
(5) $\quad C_{M}(s u)=C_{M}(s) \cap C_{M}(u) \cong Z_{2} \times S p_{6}(2)$.
(6) $C_{M}(s u v)$ is the extension of E_{64} by $O_{6}^{-}(2)$ acting in its natural representation with $u v$ corresponding to a nonsingular point.

Proof. By 13.1.6 $N_{G}(K) / C_{G}(K)$ is isomorphic to A and $|A: M|=2$. Let $e \in D-C_{G}(\langle a, d\rangle)$ and s_{1} a conjugate of $a d$ under $\langle a, d, e\rangle$ with $\left[d, s_{1}\right]=a d$. Let s be the image of s_{1} in A. By 13.6.2, $A=M\langle s\rangle$.

By 13.6.5 and 13.2.1 we have $\left\langle C_{D}\left(\left\langle a, d, s_{1}\right\rangle\right)\right\rangle=\left\langle C_{D}(\langle a, d, e\rangle)=C_{G}(\langle a, d, e\rangle)\right\rangle$ $\simeq A u t\left(\Omega_{\mathrm{B}}^{+}(2)\right)$. This yields (4), and shows we may choose b and c to be contained in and fused under $C_{G}\left(\left\langle a, d, s_{1}\right\rangle\right)$. Now E is the image of $C_{D}(a d)$ in M, so we may take u and v to be the image of b and c, respectively. Then (1) follows from 13.6.3 and (2) follows from (1), 13.2, and an easy calculation.

Next as s induces an outer automorphism of $C_{M}(u), 19.8$ in [4] implies $s, s u, s v$, and $s v u$ are representatives for the $C_{A}(u)$ classes of involutions in $C_{A}(u)-M$. Notice that s_{1} and $s_{1} b c$ are involutions while $s_{1} d b$ and $s_{1} d c$ are elements of order 4, so s and suv are not fused in A to $s u$ or $s v$. In addition $C_{M}(u) \cap C(s) \cong Z_{2} \times S p_{6}(2)$ and $C_{M}(u) \cap C(s v)=C_{M}(u) \cap C(s) \cap C(v) . \quad$ By 13.3 every involution in $A-M$ is fused to one of $s, s u, s v$, or $s u v$.

Recall that $s_{1} b$ is fused to $s_{1} c$ in $C\left(\left\langle a, d, s_{1}\right\rangle\right)$, so $s u$ is fused to $s v$ in A. By (4), $C_{M}(s)$ is transitive on $C_{E}(s)$, so $C_{M}(v)$ is transitive on $s^{M} \cap C(v)$. Thus s is not fused to $s u v$ in A. Hence (3) is established.
$s u$ is the image of $e f b$ where $s_{1}=e f, e, f \in D$. By 13.6.3, $C_{G}(e f b)$ acts on $\{e, f, b\}$, so $C_{G}(e f b) \cap C(a d)$ acts on $\{e, f, b\} \cap C(a d)=\{b\}$. Therefore $C_{M}(s u)=$ $C_{M}(s) \cap C_{M}(u) \cong Z_{2} \times S p_{6}(2)$, proving (5).

Next $C(u)$ is transitive on $(s u v)^{M} \cap C(u)$ and hence $C(s u v)$ is transitive on $C_{E}(s u v)$. Let $Y=\langle E \cap C(s u v) \cap C(u)\rangle$ and $X=\left\langle C_{E}(s u v)\right\rangle . \quad Y=\langle u\rangle \times Y_{1}$ where Y_{1} is the centralizer of a transvection in $S p_{6}(2)$. Also $\{u, v\}=Z(Y) \cap E$ so by 13.2.4, $u v \in O_{2}(X) \cong E_{64} . \quad Y O_{2}(X) / O_{2}(X) \cong Z_{2} \times S p_{4}(2)$, so by the main theorem of [11], $X / O_{2}(X) \cong O_{6}^{8}(2)$ acts in its natural representation on $O_{2}(X)$ with $\langle u v\rangle=C_{X}(Y)$ a nonsingular point. By a Frattini argument, $C_{M}(s u v)=X(C(u) \cap$ $C(s u v))=X$.
X is the image of $\langle C(a d) \cap C(e f b c) \cap D\rangle$ so $a d$ induces an automorphism of $W=\left\langle C_{D}(e f b c)\right\rangle$ such that $\left\langle C(a d) \cap D O_{2}(W) / O_{2}(W)\right\rangle$ has an $O_{6}^{2}(2)$ composition factor. But by 13.6.4, $W / O_{2}(W) \cong O_{6}^{-}(3)$, so $O_{6}^{\varepsilon}(2)$ is of characteristic 3. Hence $X / O_{2}(X) \cong O_{6}^{-}(2) \cong O_{5}^{-}(3)$. This completes (6).
(13.9) Let X be quasisimple with $X / Z(X)$ isomorphic to $M(22), M(23)$, or $M(24)^{\prime}$. Then
(1) X satisfies hypothesis II.
(2) X is not admissible.

Proof. By 13.1.3, $M(23)$ has a trivial outer automorphism group. By 13.1.2, $G=\operatorname{Aut}\left(M(24)^{\prime}\right)$, and then 13.5.1, 13.6, and 2.3 imply $M(24)^{\prime}$ satisfy hypothesis II. Suppose $X / Z(X) \cong M(22)$ and T is an elementary abelian 2group acting on X and Sylow in a tightly embedded 2-nilpotent subgroup of $T X$ with $T \nleftarrow X C(X)$. By 13.8 and 2.3 , some $t \in T^{\#}$ induces suv on $X / Z(X)$. By 2.8, $C_{X}(t)$ acts on T so as $C_{X / Z(X)}(t)=O^{2}\left(C_{X / Z(X)}(t)\right)$ acts irreducibly on $O_{2}\left(C_{X / Z(X)}(t)\right)$, some $r \in T^{*}$ projects on $u v$. But now $t r$ induces s on $X \mid Z(X)$, against 2.3. The proof of (1) is complete.

By 13.6, $C_{E(G)}\left(C_{G}(x)^{a}\right)=\langle x\rangle$ for each involution x in $E(G)$, so $M(24)^{\prime}$ is not admissible.

Suppose $\bar{X} \cong X \mid Z(X) \cong M(23)$. We adopt the notation of 13.7, setting $\bar{X}=H$. By 2.3 and $13.7, \bar{T} \cap \bar{E}$ is empty. Next $C_{H}(J)=\langle u, v\rangle$, so as $\bar{T} \cap E$ is empty, 2.3 implies $\bar{T} \cap(u v)^{H}$ is empty. Hence by $13.5, \bar{T}^{*} \subseteq(u v w)^{H}$. Finally by 13.7, $C_{H}\left(C_{H}(u v w) \mathcal{H}\right) \equiv\langle u, v, w\rangle$, so as $(u v w)^{H} \cap\langle u, v, w\rangle=\{u v w\}$, we have a contradiction.

Finally assume $\bar{X} \cong M(22)$. Let \bar{u}, \bar{v}, and \bar{w} be commuting 3-transpositions in \bar{X}. By 13.5 each involution in \bar{X} is fused to $\bar{u}, \bar{u} \bar{v}$, or $\bar{u} \bar{v} \bar{w}$, By 13.8 and 2.3, $\bar{u} \notin \bar{T} .\langle\bar{u}, \bar{v}\rangle=C_{\bar{x}}\left(C_{\bar{x}}(\bar{u} \bar{v}) \mathcal{H}\right)$, so as $\bar{u} \notin \bar{T}, \bar{u} \bar{v} \notin \bar{T}$. Thus each involution in \bar{T} is fused to $\bar{u} \bar{v} \bar{w}$, and we may take $\bar{t}=\bar{u} \bar{v} \bar{w}, t \in T^{\#}$. Let $\bar{J}=C_{\bar{x}}(\bar{u})$. Then $\bar{J} /\langle\bar{u}\rangle$ $\cong U_{6}(2)$ and by 13.6.3, J is quasisimple. By 21.7 and 10.6 in [4], $C_{J}\left(t^{J} \cap C(t)\right)$ $=\langle u v w, Z(J)\rangle$. By symmetry among u, v, and $w, C_{X}\left(t^{X} \cap C(t)\right) \leq\langle u v w, Z(X)\rangle$, so by $2.4, T \cong E_{4}$. By $2.6, C_{X}(t) \leq N(T)$, while by 21.7 and 10.6 in [4], $\langle u, u, Z(J)\rangle(J) / Z(J)$ is the only 4-group in $J / Z(J)$ normalized by $C_{J}(t) / Z(J)$. Hence $\bar{T} \leq\langle\bar{u}, \bar{v}, \bar{w}\rangle$. But $\bar{t}^{\bar{x}} \cap\langle\bar{u}, \bar{v}, \bar{w}\rangle=\{\bar{t}\}$, a contradiction.

14. Conway's second group Co_{2}

Let $G=\mathrm{Co}_{2}$. We record some facts about G found in [30]:
(14.1) (1) G has 3 classes of involutions with representatives z, a, and $z \pi$.
(2) $C_{G}(z)$ is the split extension of $E=O_{2}(C(z)) \cong Q^{4}$ by $S \cong S p_{6}(2)$ with $E=[E, S]$.
(3) Set $I=C_{G}(a)$. Then $O_{2}(I)=W_{0} \times D_{0}$ where $W_{0} \cong E_{16}$ and $D_{0} \cong D^{3}$ are I-invariant, and $I / O_{2}(I) \cong A_{8}$ acts as $L_{4}(2)$ on W_{0} and as $\Omega_{6}^{+}(2)$ on $D_{0}\langle\langle a\rangle$.
(4) Set $M=C_{G}(z \pi), X=C_{M}(z)$, and $J=O_{2}(M)$. Then $|M: X|=2, J=D \times D^{u}$ where $D \cong E_{32}$ and $u \in M-X, X / J \cong S_{6}, M / J \cong A u t\left(A_{6}\right)$, and X / J acts in its natural representation on the permutation modules D and D^{u}.
(5) Let γ and β be G-conjugates of z such that γ is a transvection in S and $\alpha=\gamma \beta$ is of order 3. Then $N_{G}(\langle\alpha\rangle)=\langle\alpha, \gamma\rangle \times C$ where $C \cong A u t\left(U_{4}(2)\right)$.
(6) $G_{1}=\left\langle E, N_{G}(\langle\alpha\rangle)\right\rangle=\langle\gamma\rangle G_{0}$ where $G_{0} \cong U_{6}(2)$ and γ induces a graph automorphism on G_{0}.
(7) G acts as a rank 3 group on the set Ω of cosets of G_{1} in $G . \quad G$ is a normal subgroup of index 1 or 3 in the automorphism group of the rank 3 graph $\&$ of this representation.

Proof. Specific references in [30] are as follows: (1), 2.8; (2), 1.1, 2.1, and 2.11; (3), 2.12; (4), 2.13 and the discussion on pages 101 and 102; (5), 4.1; (6), 4.3; (7), section 5.
(14.2) $\quad \operatorname{Aut}(G)=\operatorname{Aut}(\S)=G$.

Proof. Let $A=\operatorname{Aut}(G)$. By 14.1.7 it suffices to show $A=G N_{A}\left(G_{1}\right)$, and $N_{A}\left(G_{1}\right)=G_{1}$. By a Frattini argument $A=G C_{A}(z)$. A second Frattini argument implies $C_{A}(z)=C_{G}(z) C_{A}(\langle z, \alpha\rangle)$. By 14.1.5, $N_{A}(\langle\alpha\rangle)=B \times N_{G}(\langle\alpha\rangle)$ where $B=$ $C_{A}\left(N_{G}(\langle\alpha\rangle)\right.$. In particular $B \leq C(z) \leq N(E)$, so by 14.1.6, B acts on G_{1}. Then by 14.1.7, $A=\operatorname{Aut}(\&)$ and B has order 1 or 3 .

Assume B has order 3. We show B centralizes $C_{G}(z)$. Then B centralizes $G_{1}=\left\langle E, N_{G}(\langle\alpha\rangle)\right\rangle$. By 14.1.7, G_{1} is maximal in G, so B centralizes $G=$ $\left\langle G_{1}, C_{G}(z)\right\rangle$, a contradiction. B acts on $C_{G}(z)=E S$ centralizing $\langle\alpha, \gamma\rangle \times C_{S}(\alpha) \cong$ $S_{3}=S p_{4}(2)$, so $[B, S] \leq E$. Assume B does not centralize $C_{G}(z)$. As S acts irreducibly on $E /\langle z\rangle, C_{E}(B)=\langle z\rangle . \quad \overline{B C_{G}(z)}=B C_{G}(z) / E$ acts on $E /\langle z\rangle=V$, preserving a quadratic form of sign + , so $\overline{B C(z)} \cong Z_{3} \times S p_{6}(2) \leq O_{8}^{+}(2)$. Let $g \in \bar{S}$ have order 7. [$V, g]$ is of dimension 3 or 6 and as \bar{B} acts without fixed points on $[V, g]$, it must be the latter. Then $C_{V}(g)$ is nondegenerate of dimension 2, and as \bar{B} acts without fixed points on $C_{V}(g), C_{V}(g)$ is of sign-. Hence [V, g] is of sign -. But the order of $O_{\overline{6}}^{-}(2)$ is not divisible by 7. The proof is complete.
(14.3) Let A be quasisimple with $A / Z(A) \cong C o_{2}$. Then
(1) A satisfies hypothesis II.
(2) A is not admissible.

Proof. (1) follows from 14.2. By 14.1, $\langle x\rangle=C_{G}\left(C_{G}(x) \mathcal{A}\right)$ if $x=z$ or a, and $\langle z, \pi\rangle=C_{G}\left(C_{G}(\pi z) \mathcal{A}\right)$. This yields (2).

15. Subgroups of Fischer's Monster

We adopt the notation of R. Griess in discussion subgroups of Fischer's Monster. That is F_{n} denotes the simple composition factor of the centra-
lizer of a certain element of order n in the Monster. The orders are as follows:
$F_{5} \quad 2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$
$F_{3} \quad 2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 19 \cdot 31$
$F_{2} \quad 2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$
$F_{1} \quad 2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$
(15.1) Let $G=F_{5}$ and $A=A u t(G)$. Then
(1) $|A: G|=2$.
(2) G has 2 classes of involutions with representatives z and t.
(3) $E\left(C_{G}(t)\right.$ is quasisimple with $E\left(C_{G}(t)\right) \mid\langle t\rangle \cong H S$ and $C_{G}(t) \mid\langle t\rangle \cong A u t(H S)$.
(4) $C_{G}(z)$ is the extension of Q^{4} by A_{5} wreath Z_{2}.
(5) There is one class of involutions in $A-\mathrm{G}$ with representative a.
(6) $\quad C_{G}(a) \cong S_{10}$.

Proof. [21].
(15.2) Let $G=F_{3}$. Then
(1) $G=A u t(G)$.
(2) G has one class of involutions with representative z.
(3) $C_{G}(z)$ is the extension of an extraspecial group of order 2^{9} by A_{9}.

Proof. [31].
(15.3) Let $G=F_{2}$. Then
(1) G is generated by a class $D=d^{G}$ of 3,4-transpositions.
(2) $\quad C_{G}(d)=\langle e\rangle H$ where $H=E(C(d)), H /\langle d\rangle \cong^{2} E_{6}(2)$, and e induces a graph automorphism of H.
(3) $D=d \cup b^{H} \cup e^{H} \cup a^{H} \cup v^{H}$ where $a d$ and $v d$ have order 3 and 4, respectively, and $\langle b, d\rangle \mid\langle d\rangle$ is a root involution of $H \mid\langle d\rangle$.
(4) G has 4 classes of involutions with representatives $d, z=d b, f=d e$, and $\theta=d b b^{\prime}$, where $b^{\prime} \in b^{H}$.
(5) $C_{G}(z)$ is the extension of D^{11} by $C o_{2}$.
(6) $C_{G}(f)=\langle s\rangle\left(\langle f, d\rangle \times E\left(C_{H}(e)\right)\right)$ where $F=E\left(C_{H}(e)\right) \cong F_{4}(2),[s, d]=f$, and s induces an outer automorphism on F.
(7) $C_{G}(\theta)$ is the extension of $O_{2}\left(C_{G}(\theta)\right)$ by $O_{8}^{+}(2)$ and $\langle\theta\rangle=C_{G}\left(O^{2}\left(C_{G}(\theta)\right)\right)$.

Proof. [12].
(15.4) Let $G=F_{2}$. Then $G=\left\langle H, E\left(C_{G}(b)\right)\right\rangle$.

Proof. There exist conjugates b_{1} and b_{2} of b under H such that $b b_{1}$ and $b b_{2}$ have order 3 and 4 respectively. Moreover as D is a set of 3,4-transpositions,
e does not centralize $H=\left\langle b^{H}\right\rangle$, and e is not conjugate to b in H, there exists $b_{3} \in b^{H}$ such that $e b_{3}$ is of order 4. It follows with 15.3.3, that $D \subseteq\left\langle H, E\left(C_{G}(b)\right)\right\rangle$, completing the proof.
(15.5) $\quad F_{2}$ is its own automorphism group.

Proof. Let $G=F_{2}$ and $A=A u t(G)$. By a Frattini argument, $A=G C_{A}(d)$. Moreover $C_{G}(d) /\langle d\rangle$ is its own automorphism group, so $C_{A}(d)=X C_{A}(d)$, where $X=C_{A}(H)$. Let $Y=O^{2}\left(C_{G}(d) \cap C_{G}(b)\right)$. Then $C_{A}(Y)=X\langle b\rangle=C_{A}\left(E\left(C_{G}(b)\right)\langle d\rangle\right.$, so $\left|X: C_{X}\left(E\left(C_{G}(b)\right)\right)\right|=2$. Finally by $15.4, C_{X}\left(E\left(C_{G}(b)\right)\right)=1$, so $X=\langle d\rangle$. The proof is complete.
(15.6) Let $G=F_{1}$. Then
(1) G has two classes of involutions with representatives t and z.
(2) $C_{G}(t)=H$ is quasisimple with $H \mid\langle t\rangle \cong F_{2}$.
(3) $C_{G}(z)$ is the extension of Q^{12} by $C o_{1}$.
(4) If X is a group with involutions t and z with centralizer as in (2) and (3), then $|X|=|G|$.

Proof. [18].
(15.7) Let $G=F_{1}$ and $s\langle t\rangle \mid\langle t\rangle$ a 3, 4-transposition in $H \mid\langle t\rangle$. Set $K=$ $E_{H}(N(\langle s, t\rangle))$. Then K is the covering group of ${ }^{2} E_{6}(2)$ and $\langle s, t\rangle^{\#}$ is fused in $N(K)$.

Proof. $K / Z(K) \simeq{ }^{2} E_{6}(2)$ and, replacing s by $s t$ if necessary, $Z(K)=\langle s\rangle$ or $\langle s, t\rangle$. As ${ }^{2} E_{6}(2)$ has E_{4} as a multiplier, s is an involution. By L-balance $K \leq L(C(s))$, so by $15.6 s$ is fused to t. Now by symmetry between s and t, $Z(K)=\langle s, t\rangle$. Next by 15.3 there exists $h \in H$ inducing an outer automorphism on K, so $[s, h]=t$. By symmetry between s and $t, N(K)$ induces S_{3} on $\langle t, s\rangle^{\#}$.
(15.8) Let $G=F_{1}$ and r a conjugate of s under H contained in $C_{K}(\langle t, s\rangle)-\langle t, s\rangle$. Set $T=\langle t, r, s\rangle$. Then T contains a unique conjugate of z, which we take to be z, and $N_{G}(T)$ is transitive on $T-\langle z\rangle$.

Proof. $\langle r s, t\rangle \mid\langle t\rangle$ is the center of Sylow 2-group of H, so as $\langle z\rangle$ is the center of a Sylow 2-group of G, $r s$ or $r s t$ is fused to z. By 15.7, st is fused to t, so we may take $z=r s$. Now $N_{G}(K)=K(N(K) \cap N(T))$ by a Frattini argument, and by 15.7, $N(K) \cap N(T)$ has orbits of length 1,3 , and 3 on T^{*}. The orbits of length 3 are fused in $N_{H}(T)$, completing the proof.
(15.9) Let $G=F_{1}$. Then $C_{G}(z)=\left\langle C_{G}(\langle z, t\rangle), C_{G}(\langle z, s\rangle)\right\rangle$.

Proof. Let $Q=O_{2}(C(z))$ and $X=C(\langle z, t\rangle)$. By 15.3, $X \mid\langle t\rangle$ is the extension of an extraspecial group of order 2^{23} by Co_{2}. So by $15.6, t \in Q$ and $X Q / Q$
is maximal in $C_{G}(z) / Q$. By 15.8, $s \in t^{C(z)}-\langle t, z\rangle$, so $Q=\left\langle C_{Q}(t), C_{Q}(s)\right\rangle$ and as $X Q / Q$ is maximal in $C(z) / Q$, the result follows.
(15.10) Let $G=F_{1}$. Then $G=\left\langle C_{G}(z), C_{G}(t)\right\rangle$.

Proof. 15.6.4.
(15.11) F_{1} is its own automorphism group.

Proof. Let $G=F_{1}$ and $A=A u t(G)$. By a Frattini argmuent $A=G C_{A}(t)$. By $15.5 C_{A}(t)=C_{G}(t) X$, where $X=C_{A}\left(C_{G}(t)\right) . \quad X$ centralizes $C(t) \cap C(s)$, so $\left|X: C_{X}\left(C_{G}(s)\right)\right|=2$. By 15.9, $Y=C_{X}\left(C_{G}(s)\right)$ centralizes $C_{G}(z)$, and then by 15.10, $Y=1$. The proof is complete.
(15.12) Let A be quasisimple with $A / Z(A) \cong F_{n}, n=1,2,3$, or 5 . Then
(1) A satisfies hypothesis II.
(2) A is not admissible.

Proof. If $n \neq 5$ then the outer automorphism group of A is trivial by 15.2, 15.5, and 15.11. If $n=5,15.1$ and 2.3 imply (1). The results in this section show $m\left(C\left(C_{A}(u) \mathcal{A}\right)\right)<m\left(C\left(C_{A}(v) \mathcal{A}\right)\right)$ for each pair of involutions u and v in $A / Z(A)$ with $u \in C\left(C_{A}(v) \mathcal{H}\right)-\langle v\rangle$. Thus (2) holds.

16. The remaining sporadic groups

(16.1) Let G be the small Janko group J_{1}. Then
(1) $G=A u t(G)$.
(2) G has one class of involutions with representative z.
(3) $\quad C_{G}(z) \cong Z_{2} \times A_{5}$.
(16.2) Let G be Conway's small group $C o_{3}$, let M be McLaughlin's group $M c$, and let $A=A u t(M c)$. Then
(1) $G=A u t(G)$.
(2) $|A: M|=2$.
(3) G has two classes of involutions with representatives z and t.
(4) $C_{G}(z)$ is the covering group of $S p_{6}(2)$.
(5) $\quad C_{G}(t) \cong Z_{2} \times M_{12}$.
(6) M has one class of involutions with representative z.
(7) $C_{M}(z)$ is quasisimple with $C_{M}(z) \mid\langle z\rangle \cong A_{8}$.
(8) There is one class of involutions in $A-M$ with representative t.
(9) $\quad C_{M}(t) \cong M_{11}$.

Proof. See [9] for (1) and (2) By [10], $A \leq G$ and G acts 2-transitively on
the set Ω of cosets of A in G. Moreover (3) holds where we may choose $z \in M$ and $t \in A-M$, with the fixed point sets $I(z)$ and $I(t)$ of z and t on Ω of order 36 and 12, respectively.

Let ∞ be the point of Ω fixed by A and 0 a second point. Set $H=G_{\infty_{0}}$. By [10], p. 64, H is transitive on conjugates of z and t in H, so $C(u)^{I(u)}$ is 2 -transitive, $u=z$ or t. This yields (6) and (8).
(4) and (5) follow from [9]. In particular $C(z)^{I(z)}=S p_{6}(2)$ and $C(t)^{I(t)}=$ M_{12}. Hence as A is the stabilizer of $\infty, C_{A}(z)$ acts as $O_{6}^{+}(2) \cong S_{8}$ on $I(z)-\{\infty\}$ and $C_{A}(t)$ acts as M_{11} on $I(t)-\{\infty\}$. The proof is complete.
(16.3) Let G be Lyon's group $L y$. Then
(1) $G=\operatorname{Aut}(G)$.
(2) G has one class of involutions with representative z.
(3) $C_{G}(z)$ is the covering group of A_{11}.
(16.4) Let G be Held's group He and $A=A u t(G)$. Then
(1) G has two classes of involutions with representatives z and r.
(2) $C_{G}(z)$ is the centralizer of a 2-central involution in the holomorph of E_{16}.
(3) There is a standard subgroup L of G with $r \in R=Z(L) \cong E_{4}$ and $L / R \cong L_{3}(4)$. $N_{G}(L)=L\langle d, f\rangle$ where d and f induce diagonal and field automorphisms on L / R, respectively.
(4) $|A: G|=2$.
(5) There is one class of involutions in $A-G$ with representative a.
(6) $\quad Z\left(E\left(C_{G}(a)\right)\right) \cong Z_{3}$ and $C_{G}(a) / Z\left(E\left(C_{G}(a)\right)\right) \cong S_{7}$.

Proof. (1)-(3) are well known and are contained in, or can easily be derived from [22].

Let $T=R^{g}$ be a distinct conjugate of R contained in L, and set $S=C_{L}(R T)$. Then S is a Sylow 2-group of L and of L^{g}. Now $\left|A u t(L): A u t_{G}(L)\right| \leq 2$ with S / R self centralizing in $\operatorname{Aut}(L)$. So $C_{A}(S)=T C_{A}(L)$. Let $X=C_{A}(L)$. Then X acts on L^{g} and centralizes S, so $X=R C_{X}\left(L^{g}\right)$. By [5], He is the unique group generated by a nonnormal standard subgroup isomorphic to L, so $G=\left\langle L, L^{g}\right\rangle$. Hence $X=R$. As $\left|\operatorname{Aut}(L): \operatorname{Aut}_{G}(L)\right| \leq 2$, a Frattini argument shows $|A: G| \leq 2$. The existence of an outer automorphism is known and establishes (4). Moreover we have shown $R T=C_{A}(S)$, and there exists $\sigma \in A-L$ inducing a graph automorphism on L.

Let P be a Sylow 3-group of $N(S) \cap N_{A}(L)$. Then $N_{A}(P) \cap N(L)=P D$, where $D \cong E_{4}$. So we may take $D=\langle f, \sigma\rangle$. In particular σ and $a=\sigma f$ are involutions.

We may assume $z \in C(a)$. Then a induces an outer automorphism on $C_{G}(z) / O_{2}\left(C_{G}(z)\right)=C \cong L_{2}(7)$, so all involutions in $a C$ are fused to $a O_{2}(C(z)) . a$
inverts an element c of order 7 in C and c acts without fixed points on $O_{2}(C(z)) /\langle z\rangle$ so by 2.1 in [4], each involution in $C_{A}(z)-G$ is conjugate to a or $a z$ in $C(z)$. Finally we may choose $z \in R t$, where $\langle t\rangle=[T, a]$. This proves (5).
$N(L) \cap C(\sigma)=\langle r\rangle \times Y$ where $\langle r\rangle=[R, \sigma]$ and $Y=\left\langle T^{c^{(\sigma)} \cap L}\right\rangle \cong S_{5} . \quad$ By (5), $\sigma^{g}=a$, some $g \in G$, so $Y^{g} \leq X=\left\langle R^{C(a)}\right\rangle$.

Let $Q=\langle f, s\rangle$ be a-invariant. $\quad C_{Q}(a)=\langle R, t, f\rangle \cong Z_{2} \times D_{8}$, where $\langle t\rangle=$ [T,a]. In particular R is weakly closed in $C_{Q}(a)$. As $C_{X}\left(r^{g}\right) \cong S_{5}$ and R is weakly closed in a Sylow 2-group $C_{Q}(a)$ of $C_{G}(a) \cap N(R)$, Theorem 3 in [2] implies $\left\langle r^{g}, X\right\rangle \mid Z(X) \cong S_{7}$. As $C(R\langle a\rangle)=O^{2^{\prime}}(C(R\langle a\rangle)), C_{Q}(a) \leq\left\langle r^{g}, X\right\rangle$, and a Sylow 3-group of $C(R\langle a\rangle)$ is of order 27, (6) follows.
(16.5) Let G be the sporadic Suzuki group $S z$ and let $A=A u t(G)$. Then
(1) G has two classes of involutions with representatives z and r.
(2) $C_{G}(z)$ is the extension of Q^{3} by $\Omega_{\overline{6}}^{-}(2)$.
(3) There is a standard subgroup L of G with $r \in R=O_{2}\left(C_{G}(L)\right) \cong E_{4}$ and $L \cong L_{3}(4) . \quad N_{G}(L)=R L\langle y, e\rangle$ where $\langle R, y\rangle=C_{G}(L) \cong A_{4},[R, e] \neq 1$, and e induces a graph-field automorphism on L.
(4) $|A: G|=2$.
(5) There are two classes of involutions in $A-G$ with representatives σ and σr.
(6) $\quad C_{G}(\sigma) \cong A u t(H J)$.
(7) $\quad C_{G}(\sigma r) \cong A u t\left(M_{12}\right)$.

Proof. (1)-(3) are well known (eg. [28]).
Let $T=R^{g}$ be a distinct conjugate of R contained in $C_{G}(R)=R L$ and set $S=C_{G}(R T)$. Then $S \in S y l_{2}(R L)$ and by symmetry $S \in S y l_{2}\left(T L^{g}\right)$. Moreover $Z(S \cap L)$ is the centralizer in $\operatorname{Aut}(L)$ of $S \cap L . \quad$ So $C_{A}(S)=T X$, where $X=$ $C_{A}(L R)$. Then X acts on L^{g} and centralizes S, so $X=R C_{X}\left(T L^{g}\right)$. By [5], $S z$ is the unique group generated by a nonnormal standard subgroup $L \cong L_{3}(4)$ with $m(C(L))>1$, so $G=\left\langle R L, T L^{g}\right\rangle$. Hence $X=R$

Without loss choose $z \in Z(S)$ and set $H=C_{G}(z)$. Then $C_{A}(H) \leq C_{A}(S)=$ $T R$, so $C_{A}(H)=\langle z\rangle$. Hence as $\operatorname{Aut}(H) \cong O_{6}^{-}(2) / E_{64}$, by a Frattini argument, $|A: G| \leq 2$, with $C_{A}(z) \cong O_{6}^{-}(2) / Q_{3}$ in case of equality. An outer automorphism of G is realized in $C o_{1}$, so (4) holds.

Next $\Delta=R^{G} \cap R T$ is of order 4 with $N_{G}(\Delta) \cong S_{4}$. In particular if x induces an involutory automorphism on $R T$ centralizing R then as x centralizes a member of $R T \cap L, x$ centralizes a hyperplane of $R T$ and then fixes each member of Δ. Thus $[x, R T]=1$. Similarly $[x, R T]=1$ if $[x, T]=1$, so if $[x, L]=1$ then $x \in C_{A}(S)=R T$. Thus $C_{G}(L)=C_{A}(L)$, so there exists $\sigma \in A$ inducing a graph automorphism on $L . \quad \sigma$ centralizes T, so $[\sigma, R T]=1$. Thus $N(L) \cap C(\sigma) \cong$ $N\left(L^{g}\right) \cap C(\sigma) \cong A_{4} \times A_{5}$. Now $N_{L}(\sigma)$ is standard and nonnormal in $C_{G}(\sigma)$, so by 3.10, $K=\left\langle R^{C(\sigma)}\right\rangle \cong H J . \quad e$ induces an outer automorphism on K, so $C_{G}(\sigma) \cong$
$\operatorname{Aut}(H J)$. Similarly $N(L) \cap C(\sigma r) \cong Z_{2}\left(E_{4} \times A_{5}\right)$, so by $3.10, C_{G}(\sigma r) \cong A u t\left(M_{12}\right)$.
Let $J=C_{A}(z)$ and $Q=O_{2}(H) . \quad J / Q \cong \Omega_{\overline{6}}^{-}(2) . \quad$ Define the rank of an involution in J / Q to be the dimension of its commutator space on $Q /\langle z\rangle$. There are two classes of involutions in $J / Q-H / Q$ with rank 1 and 3 respectively. As $C(\sigma) \cap C(z) \cong S_{5} / Q_{8} * D_{8}$, has σ rank 1. Moreover σ is fused to σz in $C(\sigma r)$, so all involutions in $\sigma C_{Q}(\sigma)$ are fused. Hence all involutions in J of rank 1 are fused to σ. Hence σr has rank 3. Thus all involutions in $\sigma r Q \mid\langle z\rangle$ are fused to $\langle\sigma r, z\rangle \mid\langle z\rangle$, and hence all involutions of rank 3 are fused to σr. This completes the proof of (5), and then of lemma 16.5.
(16.6) Let G be the R udvalis group $R u$. Then
(1) $G=\operatorname{Aut}(G)$.
(2) G has two classes of involutions with representatives z and r.
(3) $C_{G}(z)$ is the extension of a group of order 2^{11} and class 3 by $S_{5} .\langle z\rangle=$ $C_{G}\left(C_{G}(z)^{\infty}\right)$.
(4) $\quad C_{G}(r) \cong E_{4} \times S_{g}(8)$.

Proof. See [6], page 547 for (1). (2)-(4) are well known; see for example [8], page 53.
(16.7) Let G be a group of O'Nan Type, and set $A=A u t(G)$. Then
(1) $|A: G| \leq 2$.
(2) G has one class of involutions with representative z.
(3) $Z\left(E\left(C_{G}(z)\right)\right) \cong Z_{4}, \quad E\left(C_{G}(z)\right) / Z\left(E\left(C_{G}(z)\right)\right) \cong L_{3}(4)$, and $C_{G}(z)=E\left(C_{G}(z)\right)\langle t\rangle$, where t is an involution inducing an outer automorphism on $E(C(z))$.
(4) If $A \neq G$ there is a unique class of involutions $a^{G} \subseteq A-G$. Further $C_{G}(a)$ $\simeq J_{1}$.

Proof. [27].
(16.8) Let G be Conway's large group $C o_{1}$. Then
(1) $G=\operatorname{Aut}(G)$.
(2) G has 3 classes of involutions with representatives z, t, and r.
(3) $C_{G}(z)$ is the extension of Q^{4} by $\Omega_{8}^{+}(2)$.
(4) $C_{G}(t)$ is the extension of $E_{2^{11}}$ by $\operatorname{Aut}\left(M_{12}\right)$.
(5) $C_{G}(r)=\langle s\rangle(R \times L)$ where $R \times L \cong E_{4} \times G_{2}(4)$, and s is a conjugate of r with $[R, s] \neq 1$ and inducing an outer automorphism on L.

Proof. [28].
(16.9) Let A be quasisimple with $A / Z(A)$ isomorphic to $J_{1}, M c, C o_{3}, L y, H e$, $S z, R u, C o_{1}$, or of O'Nan Type. Then
(1) A satisfies hypothesis II.
(2) Assume A is T admissible. Then $A C_{A T}(A) / C_{A T}(A)=\bar{A} \cong H e, S z, R u$, or $C o_{1}$, and $\bar{T}=O_{2}\left(C_{\bar{A}}(\bar{L})\right)$ where L is standard in \bar{A}.

Proof. We have shown $\operatorname{Out}(A)=1$ unless $\bar{A}=A / Z(A)$ is $M c, H e, S z$, or $O N$, in which case $\langle\bar{a}\rangle$ is Sylow in $C_{A u t(\bar{A})}(E(C(\bar{a})))$. So 2.3 implies (1).

Assume A is T-admissible. Then \bar{T} centralizes $O^{2}\left(C_{A}(\bar{t})\right)^{\mathcal{A}}$ for each $t \in T^{\#}$. Inspecting the possible centralizers we get (2).

17. Proof of the Main Theorem

Theroem 17.1. Assume A is standard in G with $A / Z(A)$ a sporadic group in K, and $m\left(C_{G}(A)\right)>1$. Then $A \unlhd G$.

The proof involves several reductions.
(17.2) $\quad A / Z(A) \nsubseteq M_{12}$.

Proof. Assume $A / Z(A) \cong M_{12}$. By Theorem 3 in [2] there is a conjugate $K^{g} \neq K=C_{G}(A)$ such that a Sylow 2-group T of $K^{g} \cap N(A)$ is of 2-rank at least 2. By 9.17.2, $Z(A)=1$ and $T=\langle t, b\rangle$ where $t \in A$ and b induces an outerautomorphism on $A . K \leq C(t)$, so $T \in S y l_{2}\left(K^{g}\right)$ and T centralizes a Sylow 2-group R of, K, by Theorem 2 in [1]. As the outer automorphism group is of order 2 we conclude $R \leq Z\left(O^{2}(N(R))\right)$. But $T \in R^{G}$ and there exists an involution $a \in A$ with $[a, T] \neq 1$.
(17.3) A satisfies hypothesis II.

Proof. 9.17, 10.2, 11.6, 12.8, 13.9, 14.3, 15.12, and 16.9.
With 17.3 we may adopt the notation of section 3. In particular $K=$ $C_{G}(A), R \in S y l_{2}(K)$, and $T \in S y l_{2}\left(K^{g}\right)$ with $R T$-invariant. By 3.9, A is T-admissible. Hence by $9.18,11.6,12.8,13.9,14.3,15.12$, and 16.9:
(17.4) $A / Z(A) \cong M_{24}, H J, H e, S z, R u$, or $C o_{1}$, and T is a 4-group with its projection on $A / Z(A)$ uniquely determined up to conjugacy.
$Z(A)$ is of odd order.
Proof. The multiplier of M_{24} and $H e$ is trivial; the 2 part of the multiplier of $R u H J, S z$, and $C o_{1}$ is of order 2. (eg. [9], [17]). In the latter 4 cases the involutions in $A / Z(A)$, upon which the elements in T^{\ddagger} project, lift to elements of order 4 in a cover of $A / Z(A)$ over Z_{2}. This contradicts 3.5. For $C o_{1}$ this fact appears in [28], p. 15. The coverings of $S z$ and $H J$ are contained in the covering $\cdot \mathrm{O}$ of Co_{1} with the appropriate 4-groups identified, so the remark follows for $S z$ and $H J$. For $R u$ we rely on a personal communication from D. Wales.

$$
\begin{equation*}
\text { If } A / Z(A) \cong M_{24}, H e, S z, \text { or } C o_{1}, \text { then } T \leq A \tag{17.6}
\end{equation*}
$$

Proof. If $A \mid Z(A) \cong M_{24}, H e, S z$, or $C o_{1}$, then for $t \in T^{\#}, C_{A}(t) \nleftarrow C_{A}(T)$, so by $2.9, A \cap T \neq 1$. Now by 3.6, $T \leq A$.

$$
\begin{equation*}
A \mid Z(A) \cong M_{24} \text { or } H e \tag{17.7}
\end{equation*}
$$

Proof. Assume $A / Z(A) \cong M_{24}$ or He. By 17.6, $T \leq A . \quad$ By 9.18 and 16.4, $T \leq C_{A}(T)^{\infty}$. But $N_{G}(T) / A^{g}$ is solvable, so $T \leq C\left(A^{g}\right) \cap A^{g} \leq Z\left(A^{g}\right)$, against 17.5. (17.8) $\quad T \cap A=1$.

Proof. By 17.4 and $17.7, A \mid Z(A) \cong H J, S z, R u$, or $C o_{1}$. By 3.6, either $T \leq A$ or $T \cap A=1$. Assume $T \leq A$. There exists $a \in A$ such that $\left|T^{A} \cap T T^{a}\right|$ $=4$. Hence by $3.6, T^{a} \cap A^{g}=1$. But then $T^{a g-1} \cap A=1$., impossible by 3.6 , since $T^{a^{-1}}$ projects on an A-conjugate of T.

We now derive a contradiction, completing the proof of Theorem 17.1. By $17.4,17.6$, and $17.8, A \mid Z(A) \cong H J$ or $R u$ and $T \cap A=1$. The group V generated by a maximal set Δ of commuting conjugate of R containing R and T is of order 64 or 128 respectively. As $T \cap A=1, \Delta$ is of order 13 or 25 , respectively and $Q^{\Delta}=O_{2}\left(N_{A}(V)\right)^{\Delta}$ is elementary of order 4 or 8 , respectively, and acts semiregularly on Δ. Moreover $X^{\Delta}=\left\langle N_{A}(V), N_{A^{g}}(V)\right\rangle^{\Delta}$ is 2-transitive on Δ, so by a result of Shult [29], $|\Delta|-1$ is a power of 2 , a contradiction.

We have established the Main Theorem except in the case where $A / Z(A)$ is an alternating group. Here we appeal to the main theorem of [3]. Thus the proof of the Main Theorem is complete.

California Institute of Technology
 University of Oregon

References

[1] M. Aschbacher: On finite groups of component type, Illinois J. Math. 19 (1975), 87-115.
[2] —: Tightly embedded subgroups of finite groups, J. Algebra 42 (1976), 85101.
[3] : Standard components of alternating type centralized by a 4-group, (unpublished).
[4] M. Aschbacher and G. Seitz: Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1-92.
[5] K.N. Cheng: (unpublished).
[6] J. Conway and D. Wales: Construction of the Rudvalis group of order 145, 926, 144, 000, J. Algebra 27 (1973), 538-548.
[7] C. Curtis, W. Kantor, and G. Seitz: The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59.
[8] U. Dempwolff: A characterization of the Rudvalis simple group of order $2^{14} \cdot 3^{3}$. 53.7.13.29 by the centralizers of noncentral involutions, J. Algebra 32 (1974), 53-88.
[9] W. Feit: The current situation in the theory of finite simple groups, Actes Congres. Intern. Math. 1 (1970), 55-93.
[10] L. Finkelstein: The maximal subgroups of Conway's group C_{3} and McLaughlin's group, J. Algebra 25 (1973), 58-89.
[11] B. Fisher: Finite groups generated by 3-transpositions, University of Bielefeld, preprint.
[12] -: (unpublished).
[13] P. Fong and G. Seitz: Groups with a (B, N)-pair of rank 2, I, II, Invent. Math. 21 (1973), 1-57, 24 (1974), 191-239.
[14] R. Foote: Finite groups with components of 2-rank 1, J. Algebra 41 (1976), 16-57.
[15] J. Frame: Computation of characters of the Higman-Sims group and its automorphism group, J. Algebra 20 (1972), 320-349.
[16] R. Griess: Schur multipliers of finite simple groups of Lie type, Trans. Amer. Math. Soc. 183 (1973), 355-421.
[17] ——: Schur multipliers of some sporadic simple groups, J. Algebra 32 (1974), 445-466.
[18] -: (unpublished).
[19] R. Griess, D. Mason, G. Seitz: (unpublished).
[20] M. Hall and D. Wales: The simple group of odrer 604, 800, J. Algebra 9 (1968), 417-450.
[21] K. Harada: (unpublished).
[22] D. Held: The simple groups related to M_{24}, J. Algebra 13 (1969), 253-296.
[23] G. Higman and J. McKay: On Janko's simple group of order 50, 232, 960, Bull. London. Math. Soc. 1 (1969), 89-94.
[24] B. Huppert: Lecture notes on classical groups: University of Illinois at Chicago Circle, 1969.
[25] Z. Janko: Some new simple groups of finite order I, Ist. Naz. Alta. Math. Symposia Math. 1 (1968), 25-64.
[26] Z. Janko and S.K. Wong: A characterization of the Higman-Sims simple group, J. Algebra 13 (1969), 517-534.
[27] M. O'Nan: Some evidence for the existence of a new simple group, (unpublished).
[28] N. Patterson: On Conway's group. 0 and some subgroups, University of Cambridge.
[29] E. Shult: On a class of doubly transitive groups, Illinois J. Math. 16 (1972), 434455.
[30] F. Smith: A characterization of the $\cdot 2$ Conway simple group, J. Algebra 31 (1974), 91-116.
[31] J. Thompson: (unpublished).
[32] J. Todd: A representation of the Mathieu group M_{24} as a collineation group, Ann. Math. Pura Appl. 71 (1966), 199-238.
[33] E. Witt: Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1938), 256-264.
[34] W. Wong: A characterization of the Mathieu group M_{12}, Math. Z. 99 (1967), 235-246.
[35] V. Landazuri and G. Seitz: On the minimal degrees of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418-443.

[^0]: * Partial support supplied by the Alfred P. Sloan Foundation and by NSF GP-35678
 ** Partial support supplied by the National Science Foundation.

