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0. Introduction

The object of this paper is to solve a problem of optimal control for a stochas-
tic linear dynamic system which consists of an unknown process and an observable
process. It is shown by Joseph-Tou [5] and Wonham [7] that the control
problem of this type can be solved through a reduction to a filtering problem and a
stochastic control problem of Markov type. But in their papers it is an essential
assumption that the initial distribution of the unknown process is a normal one.
Our main aim of this paper is to show the fact that if the cost functional is quadra-
tic, then the control problem can be solved without the normality condition for the
initial distribution. The last section is devoted to show the fact that, in the class
of initial distributions with given second moment, the maximum of the risk
corresponding to the optimal control is attained by a normal distribution.

1. Statement of the problem and the main theorem

Let E (respectively Z) be the space of continuous functions on [0, T] taking
values in R™ (resp. in R", n=m, and taking value O at time 0). £, (resp.§,)
denotes the projection B X Z 3 (£, {)W £(2) (resp. W E(2)). Let Ff, F% and
F, be the o-fields on E X Z generated by {£;; s<t}, {¢,; s<¢} and {(&,,§,); s=1}
respectively. We shall say that an R’-valued process u=wu,({) is an admissible
control and write u€ 9 if it is non-anticipating with respect to the o-fields (F%)
and if

(1.1) 8}1?|u:(§)|2/(1+ll§|!?)<°° ,

where ||]|,=sup|&(s)|. Let p(df) be a probability measure on R™ such that
s<t

J101?p(df)<oo. Give some continuous functions taking matrices-values

a) F(t): mXx [— matrix,

b) G(): mXxm— matrix, positive definite,

c) H(t): nXm— matrix, continuously differentiable and H*H(?) is positive
definite (H* denotes the transposed matrix of H),
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d) L(t): mXm— matrix, non-negative definite.

Lemma 1. For each usU, there is a unique probability P on the space
(EXZ, F;) such that

(1.2) Plg,edf] = p(dd),
(1.3) E, = £+ S:F(s)usds+ S:\/ G()ds,,
6= [Hozas+w,

where {(8,,W,), P} is an n-+-m-dimensional Brownian motion independent of {&,, P}.

This lemma is proved in section 2. For a moment, let P, denote the
probability in the lemma corresponding to u9J. The control problem is to
find ¥ which minimizes the risk

(14) R = {{ (1w l+8- L aelap,

In order to state the main theorem, we shall introduce some functions. Let
C(¢) and S(¢) be functions of m X m-matrices satisfying the following ordinary
differential equation

(1.5) deo_suH, %s—ca,
dt dt

with the initial condition C(0)=1/ (unit matrix) and S(0)=0 (null matrix). Itis
known (see Buchy-Joseph [1]) that the matrix C(¢) is invertible, the matrix D(?)
=C"18(¢) is positive definite for any #>>0 and it satisfies the Riccati equation

(1.6) %D = G—D(H*H)D, D(0)=0.

Let A(2) be the solution of another Riccati equation

(1.7) —-‘%A — L—A(FF¥)4, A(T)=0.

Put
B — S'(Hc-l)*(Hc-l) ()do
and let A(z, x) and Q(s, ¢, x) denote the functions

(1.8) A(t, x) = [p(d0) e**0-0-Bho/2 ,
Q(s, £, %) = [(2z)"det B{] 2= 3H "1

We have the following result.
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Theorem 1.  If there is a constant €>0 such that
(1.9) Jer 2 p(df) < oo,
then there exists an optimal control 4= U and
(1.10) R(#) = S:trace [LD+ADH*HD]dt
+ S:dt [p(a8) (c6)-(L+24DH*H) (C~0)
_ S:dt g |F*AC™1A, |2A™ S P(d6)Q0,t, x— Bif))dx ,
where A,=(0A[0%;)< ;<

2. Filtering and reduced control problem

In this section, &, denotes the o-field on = generated by the mappings £/
EEEME(s), s<t. And the symbol E3[-] denotes the expectation with respect
to the probability P.

Proof of Lemma 1. Without loss of generality, we can suppose that the
initial distribution p is the unit measure at 6 R". Let {Q/, &, P’; 3/} be an
m-dimensional Brownian motion and put

X0 = 0+$;F(s)us(§)ds+ S;V@)dﬁs' .

Let Qf denote the probability on the space (E, &;) indiced by the process
{Q, &, P’; X%¢} and @ the Wiener measure on the space (Ex Z, F%). Define
a probability O on the space (E X Z, &) as follows:

Q°((AxZ)NB) = [, QYA)dQ  for each A€ G, and BEFF .
Then the following property is satisfied.
t t I
2.1) £ = 0+SOF(s)usds+So\/ CH)dB,,
{(B,, £,); O°% : m+n-dimensional Brownian motion.

Let us introduce a positive process

(22) b= o[ [ HOE -at.~ L 1HO)E 146

On the basis of Girzanov’s theorem [4], if Eg[¢;]=1, then the probability P?
defined by dP?/dQ°=¢, has property (1.3) (where P? plays the role of P). Let
T,=inf{t;|&,| >v} and dP®*[dQ°=¢,,. Since Ego[¢r,]=1, from the Girzanov
theorem, the probability P°" has property (1.3) on the time interval [0, 7] for
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each v. The fact
sup Bpe-[max |£(s) ] < oo

follows immediately from (1.1). On the other hand, we have

g¢rv>eN¢TdeO = P%[log b1, > N]

éP"'”BOT” | H(s)£,|?ds<N, | S:“H(s)gs-dcs 1> %]

+p| [ HEE 1> NV |

4 1 Ty 2 . ..
§~+NEPa.v s | H(s)E|%ds | (cf. Lipcer-Shirjaev [6]).
0 .

Therefore (¢, ), is uniformly integrable. Since ¢, —>¢, a.e. as v— oo, we know
that Ege[¢p,]=1.

We shall show the uniqueness of the probability P? having property (1.3)
and P°[£,=60]=1. The fact that E¢[¢7']=1 can be proved by a similar method
to the preceeding one. On the basis of the Girzanov theorem, the probability
Q° associated with P® by dQ°/dP°=¢7* has property (2.1). Since the probability
0° having property (2.1) is uniquely determined, so is the probability P®.

Q.E.D.

Since probabilities P? and Q° are mutually absolutely continuous, so are the
restriction P°=P?| g4 of the probability P? on the field F% and the Wiener
measure Q=0°| 4. Put

(2.3) m} = Eplt,|F1],

(24) #0) = expl | HGymt-at—~ L' Eigyma s |.
Since the process
(2.5) 20— g,—S'H(s)mgds

is a Brownian motion with respect to (%, P?), by Girzanov’s theorem, the rela-
tion dP?=¢,(0)dQ must hold. Noting that dP°=¢,d0Q° we obtain

(2.6) Ep[f1F5] = $d0) " Ee[f | FS]
for each & ,-measurable function f =0.

Lemma 2. The conditional distribution of the random variable (&, P°)
given the o-field F§ is the Gaussian distribution. Its variance matrix D(t) is a
solution of equation (1.6) and its mean m? satisfies the following equation.
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@2.7) mt = 6+S:F(s)usds+S:D(s)H*(s) (dt,— Hi(sym*ds) .

Proof. It seems possible to prove this by a similar way to Wonham [7], but
it is essentially assumed in [7] that the control u is Lipshitz continuous. There-
fore we must prove this by another way. Let a(t), b(¢, §) and ¢(¢, £) be solutions
of the equations

44— H*H—aGa, a(0)=0,
dt

gt_ b= —aGb-+aFu,—aG¢, 50,8)=0,
gt—c = trace(aG)—2({,+b) - Fu,+(£,4+b)-G(,+b), ¢(0,8)=0,

where §,=S’H *(s)dt,. Then we have
0

@8) ¢ = Wexp| — L EalE-Etbl D) 1ot 1))
where wf = expl [ (@0, —~E—b0s, )V GG)ag,
— VGG et ~bts, Dy1as ).

We see that the process v is a martingale on the space (E, G, (4), 0F).
Therefore the probability 152 on the space (E, &;) given by dﬁg:ﬁdgg has the
property

(2.9) &, = 0+ | FOu,+G(0) @), ~E—b(s, D} ds
+ (| vewuss,
15, 4, (9), 152; B$} : m-dimensional Brownian motion.

This implies that the process {E,,lsg} is a Gaussian Markov process. Let J;(t,x)
denote the density (with respect to dx) of the distribution of the random valiable
{&, 152} From (2.6) and (2.8), we have

Eplf(£)IF5) = $0)" | et w)f (),

for each function f(x) =0, where
Jett, ) = Jot, yexp| = L-au-ta-Etoe, )+ et 1) |-

This implies that the conditional distribution of the random variable (£, P?)
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given the o-field F¢ is Gaussian. Equation (1.6) and (2.7) follow immediately
from the filtering equation (see Fujisaki-Kallianpur-Kunita [2]).  Q.E.D.

From (2.7) and the equality (d/dt)C '=—DH*HC ™, we have
(2.10) mé = C(2)"0-+-m .
Since Epo[dP*|dP°| F§] = $,(0)/+(0) and since
$i8) _ Vo o 1, o
ik [0 SO(HC (vt~ .0 Boa],
RG) = | p(@0)B| [ (1112 trace (LD() +-mt - Litym)dt |

- EP-OI:S:dt { 2d0) 11|+ trace(LD(E)

+ IV L(t) (C(t)0+m?)|% e"-Xra-Bém] ,
where
2.11) X, = S:(HC‘l(s))*du‘;’ .
Put Y,=m}— S*(#)X,. Then we have
(2.12) Y, = S;(F(s)us(t)—GC*(s)Xs)ds.

Let A,(t, x) and A,,(t, x) be the vector (0A/dx;); and the matrix (0°A/0x,0x;); ;
respectively. The risk R(u) is expressed as follows:

2.13)  R)— E;oB: {14,12A(t, X,)+trace(LD)A(t, X,)
T IVI(YAS*X) [2A(t, X)+2Y,+S*X,)-LCTIA(t, X))
+trace(C*LC™A,(t, X))} dt] .

Therefore the original problem of control by incomplete data is reduced to
problem (2.11), (2.12) and (2.13) of control by complete data.

3. Proof of the main theorem

The Bellmann equation corresponding to our problem (2.11), (2.12) and
(2.13) is given as follows:

(3.1) min{%?-l—% trace (B®, )+ (Fu— GC*x)-® 4 |u|?A

+trace(LD) A+ |V L(y+ S*x)|2A+2(y+S*x)- LC'A,
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+trace(c*-lLC~lA,,)} —0, T, x =0,
where B(t)=(HC )*HC™)(¢) and &, ,=(0*®/0x,0x;), D,=(0P[0x;), P,=
(0®/0y;). Obviously the minimum in (3.1) is attained by

1 1
2 A, x)

Equation (3.1) is non-linear and degenerate, but it can be solved in the
concrete. Putting

(3.3) D(t, x, y) =y U(t, x)y+2y-V(t, x)+ W(t, x),
U(t, x): symmetric matrix,

(3.2) u=T(t, %, y)=— FX(1)® (2, %, ) .

equation (3.1) is reduced to the following three equations.

(3.4) %U—}—%trace(BU,x)—%UFF* U+AL =0, U(T, x)=0.
G5 2yiliacer.)—Lurry
at 2 xx A
_UGC*x-+ ALS*x--LC7A, = 0, W(T, x)=0.
(3.6) a%W—i—%trace(BW“)—Zx-CGV—%V-FF* V+trace(LD)A

+x-SLS*xA+2x-SLC A, +trace(C*'LC'A, ) = 0,
W(T, x) = 0.

Since 9A/[0t+1/2 trace(BA,,)=0, the solution of equation (3.4) is given as
follows:

U(t, x) = A(t, x)A(2),

where A(t) is the solution of (1.7), and the solution of equation (3.5) is given as
follows:

V(t, x) = A(t, x)A(2)S*(t)x+A@)C(£) AL, x) .
It is easy to show that equation (3.6) turns into the equation

(3.7) %W+%trace(BW,,)—Zx-[—‘%(SA)]C‘IA,—f—trace(C*‘lLC“A,,)
N

——x-[% (SAS*)]xA—i—trace(LD)A— |F*AC™A,|2A™ =0,
S
W(T, x) = 0.

Lemma 3. Condition (1.9) implies that, for 1 <i, j <m,

|(8/0x,) A, x)| | (02/0x,0x,) A2, x)|
3. —~ " 7 oo, 8u J o ,
(3-8) P A 1DaG 0 = P T 2 AG, 1)
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Proof. Put
9(d6) = exp( £ 10 |2—ie-Bsa) 2(d6).
2 2

Then ¢,(df) is a finite measure. It is obvious that there is a constant d>0
such that

1
=
S |o|sdq‘(d0) =73 S‘b(do) for all 2.
For a certain constant ¢>0,

[ pa)1g1exe-esin (g ap)|g et

At %) [aagyerria

9l dn+&7'x) | 7| e~

Sq,(dn—*—é"x)e_!'"'z/z

éf‘llxl-l—s

fatany  sup{imletmmnl> o1+ 121}
X .
| _atan  inffetm | <dte x|}

<const.(1+ |x|)+

Since there exists a constant ¢ such that

sup [n|etMzget@+e a2 for all «,
Mm>ea+1#))
the former of (3.8) follows immediately. The latter of (3.8) can be proved
similarly. Q.E.D.

Put

3.9 Wi(s, x) = —S:dt Sﬂ(s, t, y—x)

A, y)dy

LA
F*AC 12y,
A( y)

= __ sjdt jp(de) {ex.o—o-Bao/z

d|

From Lemma 3, we see that there is a continuous function p,(t)=0 such that
p(T)=0 and |[W(s, x)| <p,(s)A(s, x) (1+|x|?). It is a routine work to show
that the function W(s, x) is continuously differentiable in s, continuously
differentiable up to second order in x,(1=<7=<m) and it is a solution of the equa-
tion

2Q(s, t, y—x—BﬁG)dy} .

A
F*4C-12(¢,
A( y)

@+%trace(BW“)— ' F*AC“% A =0, W(T,x)=0.

os
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Using these properties, it is easy to show that the solution of equation (3.7) is
given as follows:

(3.10) W(s, x) = W(s, x)+x-SAS*xA(s, x)+2x-SAC A (s, x)
—l—gjtrace (LD+ ADH*HD)dt - A(s, x)
+trace [(EC*"(L—}—ZADH *H)C ’ldt)A,,(s, x):|
and that there exists a continuous function p,(t)=0 such that
(3.11) | W(s, 2)| =pos)A(s, ®) (1+121%), pT)=0.
Lemma 4. For each ucU, R(u)=P(0, 0, 0).

Proof. Let Ty=inf{t;|X,|*+|Y,|?> N}, where (X,, Y,) is the solution
of (2.11) and (2.12). By Ito’s formula for stochastic integrals (see Gikhman-
Skorokhod [3]),

Ep[®(Ty, Xr,, V7)1~ (0, 0, 0)
_ E,;o[S:N{%trace(B(t)cb,,(t, X, Y,))+aitq>(t, X, Y)
HEEE) ~COCHNY) -t X, ¥)) dt |
=—R(u).

It follows from (3.11) that there is a continuous function p(#)=0 such that
p(T)=0and |D(¢, x, y)| =p(t) (1+ |%|*+ | y|)A(2, x). Therefore

Er{|®(Tw, Xryy Vo) SEP(T ATy, Xr,) (1] Xy |41 Y1y 19)]
= [pao)Erlp(T ) (141 X0y 1741 Y, 19)
= EAp(Ty) (14| X, 54 | Vo 9]
Since dv}=dvi+ HC'0dt,
Epo[sup| X, 7] <2Eps [sgp ] s;(HC‘l)*du;’

*+sup | Bsf I’]
<const.(1+161]?).
Therefore Ep[Sl}lp | X,|*]<ceo. And since EP[st [E(®) 1] < oo,
Ep[sup|Y,|"]=const. Ep[sup|u(f)|*+sup| X,|] <oo.
This implies that P[Ty <T]—0. Thus

Ep[p(Ty) A4+ X712+ 1Y7,19)] >0 as N — oo,
Q.E.D.
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We shall show that there is a control #€U such that R(4)=ad(0, 0, 0).
Since the function

(3.12) T(t, % 3) = —F*A(y+S*+C71 21)
is locally Lipshitz continuous in (¥, y) and since
(¢, %, y)
3.13 sup ——2 2] oo,
G4 pey 14 x|+ y

the equation

(3.14) dX, = (HCY)*dt,—H(Y +S*X))dt) ,
dY,= (FT(t, X,, Y,)—GC*X))dt, (X,, Y;) = (0, 0)

(see (2.5),(2.11), (2.12) and (3.2)) has a unique solution (in the path-wise sense).
Let (X,(¢), ¥,(£)) denote the solution and put

(3.15) 4,(5) = T(t, X(&), T(¥)).
Lemma 5. The process #4,%) is an admissible control and R(#)=®(0,0,0).

Proof. Obviously #,(¢) is non-anticipating with respect to the o-fields (F9).
From (3.13) we see that
A It
(A+1%1+1 70 s(1+ | [@Eeya,

K[+ 14190

for some constant K. It follows immediately that
s |
A+ 1% +1 Th=sup (14 | [ (HC ¥z, e,
st 0
Since (HC™?)(t) is continuously differentiable,
Lt t '
[ ey, = 1@y~ LEHC ) o
0 oLdo
=< const. sup|&(s)| .
s<t
Therefore
|248)| <const. (14| X, |+ ¥;|) Sconst. (1-+sup |¢(s) ) -

this means that 4,&<U. The proof of the fact R(#)=®(0, 0, 0) is similar to the
proof of Lemma 4. Q.E.D.

Lemma 4 and 5 mean that the control #=#,({) is optimal. Since ®(0, 0, 0)
=W(0, 0), equality (1.10) follows immediately. Thus Theorem 1 is completely
proved. Now, we shall give a remark. It is obvious from the proof of Lemma
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4 that if R(u)=2®(0, 0, 0), then
T _
[, PPl +=denar = 0.
This implies that
T T _
SOP[u,:hﬁ,]dt - S »(d6) SOP"[u,:t:ﬁ,]dt —0

because P° and P’ are mutually absolutely continuous. Therefore the optimal
control is uniquely determined up to measure zero with rspect to d¢ X dP.

4. Maximum of the risk corresponding to the optimal control

Let P[M] be the class of probabilities p(df) on R™ such that
a) there is a constant £>0 such that [e"19%2p(dg) < oo,
b) [6.0,p(d0)=M,;, where M=(M,;) is a given positive matrix.

The purpose of this section is to show the following fact.

Theorem 2. i) The maximum of the risk R(2) under the condition that the
initial distribution p(d0) belongs to the class P[M] is attained by the normal distri-
bution with parameter (0, M):

4.1) p(d0) = [(27)" det M] 2 exp [— % 0 -M“a] do .

i) If there is a time t, such that L(t))>0 and FF*(t,)>0, then the maximum is
attained only by distribution (4.1).

Proof. Put, for £>0,

(4.2) At %) = | p(0)0(0, 1, —Bio).

Then we have

(4.3) SA(t, x)dx = 1, Sx,-xjA(t, x)dx = (Bi-+ BLMBY),,,
(4.4) At DA, ¥) = A(t, x)/A(t, %)-+(BL) I,

where A,=(0A[0x;). Using (4.3) and (4.4), we obtain that
R(%) = ST{trace [(L+ADH*H)D+(L+2ADH*H)C*MC*!
0
_FR(BY) '+ M)+ 2FF*(BY) —S |F*A, |2A"dx} dt

where F=C*"'4F. Then assertion i) follows immediately from the following
lemma.
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Lemma 6. If p P[M), then
(4.5) 5 | F*A, | 2A 1dx = trace (FF*(Bi -+ BLMBL)™Y) .

And the equality holds if A(t, x)dx is the mormal distribution with parameter
(0, Bi+B(MBg). Further, if FF* is invertible, then the equality holds only for the
same normal distribution.

Proof of Lemma 6. Put N(¢#)=Bj+BiMB;. Without loss of generality,
we can suppose that trace(FF*N)>0. Using the fact [(8A/0x,)x,dx=3,;, we
have

SF'*A,-F*N“x dx = —trace(FF*N ™).
On the other hand, by the Schwarz inequality,

(SF*A,-F*N-lx dx ) = (S(F*%) .(F*N-*x)Adx)z

(s

- (g |F*A, |2A“1dx) trace (FF*N ).

2Adx) <$ | F*N 1| 2Aa'x)

And the equality holds only if vector valued functions F*A,/A and F*N lx are
linearly dependent. In the case when FF* is invertible, the equality holds if
and only if A,/A=kN~'x for a certain constant £ which may depend on z. Since
S Adx=1 and [x;x;Adx=N;, the equality A ,/A=kN ~'x implies that

(4.6) A(t, x) = [(2z)" det N(2)] "2 exp [— % x-N(t)"x} . QE.D.

We shall prove ii) of Theorem 2. If there is a time #, such that LFF*() >0,
there is an open interval J such that LFF*(¢)>0 for each t&Y. It is obvious
from equation (1.7) that A(£)>0 for each t&9. Therefore the matrix FF*(z) is
invertible for all z& 9. Thus, if the maximum of R(#) is attained by p& P[M]
and if A(¢, x) is given by (4.2), equality (4.6) must hold for each t€J. By the
Fourier transformation, we have

(Se”"’é"p(a'@))e' n-Bin/2 ,
— Sein.xA(t’ x)dx — e~ (Bim)-q+MB{"/2 ,
for each t€Y. Since € R" is arbitrary, we have

Seimep(dg) = M2
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which implies (4.1). Q.E.D.
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