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0. Introduction

The object of this paper is to solve a problem of optimal control for a stochas-
tic linear dynamic system which consists of an unknown process and an observable
process. It is shown by Joseph-Tou [5] and Wonham [7] that the control
problem of this type can be solved through a reduction to a filtering problem and a
stochastic control problem of Markov type. But in their papers it is an essential
assumption that the initial distribution of the unknown process is a normal one.
Our main aim of this paper is to show the fact that if the cost functional is quadra-
tic, then the control problem can be solved without the normality condition for the
initial distribution. The last section is devoted to show the fact that, in the class
of initial distributions with given second moment, the maximum of the risk
corresponding to the optimal control is attained by a normal distribution.

1. Statement of the problem and the main theorem

Let Ξ (respectively Z) be the space of continuous functions on [0, Γ] taking
values in Rm (resp. in Rn, n^>my and taking value 0 at time 0). ξt (resp. ζt)
denotes the projection ExZ3(f, ?)ΛΛM?(f) (resp. ΛΛΛ-> ?(*))• Let £Ff, £Ff and
3t be the σ-fields on BxZ generated by {£,; s^t}9 {?,; s^t} and {(£, ξ,)',s^,t}
respectively. We shall say that an i?7-valued process u=ut(ζ) is an admissible
control and write u&;cU if it is non-anticipating with respect to the σ-fields
and if

where ||?||f=sup|?(j)|. Let p(dθ) be a probability measure on Rm such that

f \ θ \ 2p(dθ) < oo . Give some continuous functions taking matrices-values
a) F(t): mx I — matrix,
b) G(f) : m x m — matrix, positive definite,
c) H(t) : n X m — matrix, continuously differentiable and H*H(i) is positive

definite (H* denotes the transposed matrix of //),
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d) L(t): mXm — matrix, non-negative definite.

Lemma 1. For each we^U, there is a unique probability P on the space
(ΞxZ, ^Fτ)such that

(1-2)

(1-3) f f = ?0+ J VWMH- \*VO(s)d/3s ,
Jo Jo

where {(βt, Wt), P} is an n+m-dimensional Brownian motion independent of {ξ0, P} .

This lemma is proved in section 2. For a moment, let Pu denote the
probability in the lemma corresponding to t/e'U. The control problem is to
find u e <U which minimizes the risk

(1.4) R(u) =

In order to state the main theorem, we shall introduce some functions. Let
C(t) and S(i) be functions of m X w-matrices satisfying the following ordinary
differential equation

(1.5) —C=SH*H, A s ^ C G ,
dt at

with the initial condition C(0)=/ (unit matrix) and S(0)^0 (null matrix). It is
known (see Buchy- Joseph [1]) that the matrix C(t) is invertible, the matrix D(t)
— C~1S(t) is positive definite for any £>0 and it satisfies the Riccati equation

(1.6) d-D=G-D(H*H)D, D(0) = 0 .
dt

Let A(t) be the solution of another Riccati equation

(1.7) -— A = L-A(FF*)Ay A(T) = Q.
dt

Put

' - 1 ) (σ)dσ ,

and let Δ(ί, x) and Ω(ί, /, x) denote the functions

(1.8) Δ(ί, x) = Sp(dθ) e

χ *-*'B&2 ,

Ω(ί, ί, x) = [(2τr)mdet JBί]-1^-"^)"1^ .

We have the following result.
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Theorem 1. If there is a constant £>0 such that

(1.9) fe*w

then there exists an optimal control ώe^U and

(1.10) R(ύ) = Γtrace [LD+ADH*HD]dt
Jo

-lθ) (L+2ADH*H) (C~l

- JΓΛ J

wfer* Δ A a * . ! -

2. Filtering and reduced control problem

In this section, βt denotes the σ-field on E generated by the mappings £/:
S e f W-> £($), j <^ £ . And the symbol E?[ ] denotes the expectation with respect
to the probability P.

Proof of Lemma 1. Without loss of generality, we can suppose that the
initial distribution p is the unit measure at θ<=Rm. Let {Ω', ίF7, Px; βt'} be an
m-dimensional Brownian motion and put

X S = θ+\tF(s)us(ξ)ds+\'VG(s)dβs'.
Jo Jo

Let Ql denote the probability on the space (Ξ, Sτ) indiced by the process
{Ωx, £FX, P'\ Xθ

t'
ζ} and 0 the Wiener measure on the space (HxZ, ffί ). Define

a probability Qθ on the space (ΞxZ, £FΓ) as follows:

Q\(A x Z) Π B) = SB Ql(A)dQ for each A e ̂ τ and

Then the following property is satisfied.

(2.1) ξt = θ+ [F(s)usds+ \ '
Jo Jo

{(fit* £f); Qθ} : w+w-dimensional Brownian motion.

Let us introduce a positive process

(2.2) φ, =

On the basis of Girzanov's theorem [4], if EQθ[φτ]=l, then the probability Pβ

defined by dPθ/dQθ=φτ has property (1.3) (where Pθ plays the role of P). Let
Γv=inf {t;\ξt\>v} and dPθ^dQθ= φΓv. Since EQθ[φτ^]=l , from the Girzanov
theorem, the probability Pθ>v has property (1.3) on the time interval [0, 7\] for
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each v. The fact

sup £Pθ,v[max | ξ (s) | 2] < °°
V 5^Γv

follows immediately from (1.1). On the other hand, we have

[6])

Therefore (φΓv)v is uniformly integrable. Since φTv~~>Φτ a e as *>->00> we know
thatjBββ[φΓ]=l.

We shall show the uniqueness of the probability Pθ having property (1.3)

and Pθ[ξ0=θ]=l. The fact that EPθ[φfl]=l can be proved by a similar method

to the preceeding one. On the basis of the Girzanov theorem, the probability

Qθ associated with Pθ by dQθ/dPθ=φτ1 has property (2.1). Since the probability
Oθ having property (2.1) is uniquely determined, so is the probability Pθ.

Q.E.D.

Since probabilities Pθ and Qθ are mutually absolutely continuous, so are the
restriction P9=PΘ \ grc of the probability Pθ on the field 2$ and the Wiener

measure Q = Qθ \ &%,. Put

(2.3) m't =

(2.4) φt(θ) = exp[ ̂ H(ήaf. dζ-± j ' | H(*)nf.

Since the process

(2.5) »? = rί

is a Brownian motion with respect to (ΞFf, P°), by Girzanov' s theorem, the rela-

tion dPθ=φτ(θ)dQ must hold. Noting that dPθ=φτdQθ, we obtain

(2.6) £P*[/ 1 fffl = φt(ΘΓEQe[fφt

for each ^-measurable function /^O.

Lemma 2. Γfe conditional distribution of the random variable (ξtί Pθ)

given the σ- field £?£ is the Gaussian distribution. Its variance matrix D(ΐ) is a
solution of equation (1.6) and its mean mθ

t satisfies the following equation.
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(2.7) m? = θ+ \'F(s)Usds+ \*D(t)H*(s) (dζ-H(s)m»sdS) .
Jo Jo

Proof. It seems possible to prove this by a similar way to Wonham [7], but
it is essentially assumed in [7] that the control u is Lipshitz continuous. There-
fore we must prove this by another way. Let a(t)y b(t, ζ) and c(t, ζ) be solutions
of the equations

— a = H*H-aGa, a(0) = 0 ,
dt

-d-b = -aGb+aFut-aGζt, 4(0, ζ) = 0 ,
at

4-c= trace(αG)-2(?(+i). Fut+(ζt+b) G(ξt+b), c(Q, 0 = 0,
at

where ζt= [Ή*(s)dξβ. Then we have
Jo

(2.8) φ, =

where ψf = exp(β(ί)£.-?.-δ(ί, f)) VG(s)dβ.

We see that the process ψf is a martingale on the space (B, Qτ> (£t),
Therefore the probability P*ζ on the space (B, <3T) given by dPθ

ζ=Λ]sζ

tdQθ

ζ has the
property

(2.9) ξt = θ+\'{F(s)us+G(ή(a(s)ξ-ξ-b(s, ζ))}ds
Jo

-5;o
{B, <?Γ, (̂ ), P^; yβf} : m-dimensional Brownian motion.

This implies that the process {ξt9P%} is a Gaussian Markov process. L,etjζ(t,x)
denote the density (with respect to dx) of the distribution of the random valiable
{ξt, Pi} . From (2.6) and (2.8), we have

for each function /(Λ )^O, where

Jζ(*> *)=Jζ(* Λ)

This implies that the conditional distribution of the random variable (ξt, Pθ)
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given the σ-field £Ff is Gaussian. Equation (1.6) and (2.7) follow immediately
from the filtering equation (see Fujisaki-Kallianpur-Kunita [2]). Q.E.D.

From (2.7) and the equality (d/dt)C-1=-DH^HC~1

J we have

(2.10) mθ

t = C(tyιθ+nΐl.

Since E^\dP^\άP \ £Ff] = φt(θ)/φt(0) and since

Φ,(0) o 2

R(u) = p (dθ)EpJff( I u, 1 2+trace(LD(<))+»ι!

p(dθ) {\ut\
 2+trace (LD(ί))

where

(2.11) Xt=(\HC-l(t))*dv0

t.
Jo

Put Fί=w?-5*(ί)^(. Then we have

(2.12) 7, = \'(F(s)us(ξ)-GC*(s)Xs)ds .
Jo

Let ΔΛ(ί, x) and ΔΛΛ(ί, Λ;) be the vector (8Δ/8*, ), and the matrix
respectively. The risk R(u) is expressed as follows:

(2.13) R(u) = Ep{\ut\
2Δ(t, Xt)+tι*cε(LD)Δ(t9 Xt)

+ \VL(Yt+S*Xt)\*A(t, Xt)+2(Yt+S*Xt).LC->Δx(ty Xt)

+trace(C*-1LC-1Δ,;c(^ Xt))}dt] .

Therefore the original problem of control by incomplete data is reduced to

problem (2.11), (2.12) and (2.13) of control by complete data.

3. Proof of the main theorem

The Bellmann equation corresponding to our problem (2.11), (2.12) and

(2.13) is given as follows:

(3.1)
O It Zrf

+trace(LO) Δ+ | \/L(y+S*x) \ 2Δ+2(y+S*x)
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:CΛ) = 0, Φ(Γ, *, y) = 0 ,

where B(t)=(HC'l)*(HC'-1)(t) and φxx=(Q2ΦldχβXj\ φχ=(dΦ/dxj), Φy=
(3Φ/3jy;). Obviously the minimum in (3.1) is attained by

(3.2) u = T(t, x, y)= — - _-_F*(OΦΛ*, *, y) .

Equation (3.1) is non-linear and degenerate, but it can be solved in the
concrete. Putting

(3.3) Φ(t, x, y) =y U(t, x)y+2y. V(t, x)+ W(t, x) ,

U(t, x) : symmetric matrix,

equation (3.1) is reduced to the following three equations.

(3.4) 3- U+ί-tiace(BUtf)-—UFF*U+ΔL = 0, U(T, *) = 0 .

(3.5) - , x

- UGC*x+ALS*x+LC~1AI = 0, V(T, x) = 0 .

(3.6)

+ίc 5L5*Λ;Δ+2Λ; 5LC-1Δ;t+trace(C*-1LC-1ΔI;t) = 0 ,

W(T, x) = 0 .

Since 9Δ/9ί+ 1/2 trace (5ΔI;r)=0, the solution of equation (3.4) is given as
follows :

U(t, x) = Δ(ί, x)A(t) ,

where A(t) is the solution of (1.7), and the solution of equation (3.5) is given as
follows :

V(t, x) = Δ(ί, x)A(t)S*(t)x+A(t)C(tγlΔJ(tt x) .

It is easy to show that equation (3.6) turns into the equation

(3.7)
xxσs 2 L ds

Δt\
2Δ-1 = 0 ,

os
W(T, x) = 0 .

Lemma 3. Condition (1.9) implies that, for l^i,j^m,

(3.8) sup . <oo, sup <oo .
^ ) '/ (l+\x\2)A(t,x)
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qt(dθ) = exp (|- 1 θ \ *-± Θ.Biθ)p(dθ) .

Proof. Put

Then qt(dθ) is a finite measure. It is obvious that there is a constant d>Q
such that

for all t.

For a certain constant c>0,

p(dθ) \ θ \ e* «-» B&2 ( qt(dθ) I θ \

Δ(ί, x)

X
qt(d η)

d

Since there exists a constant c such that

sup l^ for

the former of (3.8) follows immediately. The latter of (3.8) can be proved
similarly. Q.E.D.

Put

(3.9) s, x) = -(Tdt (n(*, ΐ,y-x)
js j

Δ(t,y)dy

X j F*AC-l^(t, y)

From Lemma 3, we see that there is a continuous function /o^^O such that

p1(T)=0 and \ffi(s, x)\ ̂ pj(ί)Δ(ί, Λ;)(!+ |#|2). It ^s a routine work to show
that the function W(s, x) is continuously diίferentiable in ί, continuously
differentiable up to second order in #,-(! <^i^m) and it is a solution of the equa-
tion

, x) = 0 .Δ = 0,
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Using these properties, it is easy to show that the solution of equation (3.7) is

given as follows:

(3.10) W(s, x) = W(sy x)+x SAS*xΔ(s, x)+2x^SAC-1Ax(s, x)

+ {Ttr*ce(LD+ADH*HD)dt Δ(s, x)
J s

+trace [((TC*-1(L+2ADH*H)C-1dΛΔ,1!(s, *)~|

and that there exists a continuous function p2(ί)^0 such that

(3.11) \W(s,x)\^p2(S)Δ(s,x)(l+\X\*), ft(Γ) = 0.

Lemma 4. For each M<=<U, Λ(w)^Φ(0, 0, 0).

Proof. Let 7\=inf {t \ Xt \ 2+ | Y, \ 2> N} , where (Xt, Yt) is the solution
of (2.11) and (2.12). By Ito's formula for stochastic integrals (see Gikhman-
Skorokhod [3]),

EF°[Φ(TN, XTft Yτ J]-Φ(0, 0, 0)

«(ί, Xt, Yt)) + --Φ(t, Xt, Y,)

It follows from (3.11) that there is a continuous function p(ί)2;0 such that

p(Γ)=0 and I Φ(t, x,y)\£ P(t) (1 + | x \ 2+ | y\ 2)Δ(ί, *). Therefore

EF°(\Φ(TN, XTjf, YTf)\] ^EroWTMTn, XTJ(l+\XTjr\>+ \

= \p(dθ)E?»[P(TN) (1+ I XTN I *+ I YTjf I )̂]

= EP[p(TN)(l+\XTjf\*+\YTjf\*)].

Since dv^dvΐ

Therefore £ p[sup | Xt \ 2] < oo . And since £ p[sup | ζ(t) \ 2] < oo ,

EP[sup \ Y t \
2 ] ^const. .Bpfsup | ut(ζ) \ 2+sup | Xt \ 2] <

This implies that P[TN < Γ]->0. Thus

Q.E.D.
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We shall show that there is a control άe'U such that R(ύ)=Φ(Q, 0, 0).
Since the function

(3.12) Γ(i, x, y) = -F*A(y+S*x+C~l )̂

is locally Lipshitz continuous in (x, y) and since

(3.13) sup Γ(*>*»y) <oo,
v ' <.*:>l+\χ\ + \y\

the equation

(3.14) dXt = (HC-*)*(dζt-H( Yt+S*Xt)dt) ,

dYt = (FΓ(t, Xt, Yt)-GC*Xt)dt, (X0, Y0) = (0, 0)

(see (2.5), (2.11), (2.12) and (3.2)) has a unique solution (in the path-wise sense).
Let (Xt(ζ), Ϋt(ζ)) denote the solution and put

(3.15) ύt(ξ) = Γ(ί, Xt(ζ), £(

Lemma 5. The process ut(ζ) is an admissible control and /?($)= Φ(0, 0,0).

Proof. Obviously ύt(ζ) is non-anticipating with respect to the σ-fields (£F£).
From (3.13) we see that

for some constant K. It follows immediately that

(1+ \ X t \ + I

Since (HC~l)(t) is continuously differentiable,

Therefore

^ const, sup I ζ(s) I .

ύt(ζ) I fSconst. (1+ I Xt I + I 11 )^const. (1+sup | ζ(s) \).

this means that ύ^^. The proof of the fact R(u)=Φ(Q, 0, 0) is similar to the
proof of Lemma 4. Q.E.D.

Lemma 4 and 5 mean that the control ύ=ut(ζ) is optimal. Since Φ(0, 0, 0)
— W(Q, 0), equality (1.10) follows immediately. Thus Theorem 1 is completely
proved. Now, we shall give a remark. It is obvious from the proof of Lemma
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4 that if R(u)=Φ(Q, 0, 0), then

This implies that

T T t = 0
Jo J Jo

because P° and P9 are mutually absolutely continuous. Therefore the optimal

control is uniquely determined up to measure zero with rspect to dtxdP.

4. Maximum of the risk corresponding to the optimal control

Let £P[M] be the class of probabilities p(dθ) on Rm such that

a) there is a constant 6> 0 such that fe*lθl2/2p(dθ) < oo ,

b) fθiθjp(dθ)=Mijί where M=(Mί;) is a given positive matrix.

The purpose of this section is to show the following fact.

Theorem 2. i) The maximum of the risk R(ά) under the condition that the

initial distribution p(dθ) belongs to the class £P[M] is attained by the normal distri-

bution with parameter (0, M) :

(4.1) ρ(dθ) = [(2^)>wdetM]-1/2expΓ- — θ M~lθ\dθ .

ii) If there is a time tQ such that L(t0)>0 and FF*(tQ)>0, then the maximum is

attained only by distribution (4.1).

Proof. Put, forί>0,

(4.2) Λ(ί, x) = J/>(ί/0)Ω(0, ί, x-Blθ) .

Then we have

(4.3) JA(ί, x)dx - 1, J^yΛ(ί, x)dx =

(4.4) Δ,(ί, *)/Δ(ί, Λ) - Λ,(/, Λ)/Λ(ί,

where Λx=(3Λ/3Λy). Using (4.3) and (4.4), we obtain that

= (Γ {trace [(L+ADH*H)D+(L+2ADH*H)C~1MC*-1

Jo

where F—C*~1AF. Then assertion i) follows immediately from the following
lemma.
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Lemma 6. Ifρe&[M], then

(4.5) J I F*Λ, I ̂ ^dx^t

And the equality holds if Λ(£, x)dx is the normal distribution with parameter

(0, BΌ+B'oMBΌ). Further, if FF* is invertible, then the equality holds only for the

same normal distribution.

Proof of Lemma 6. Put N(t)=Bl

Q-{-BiMBl Without loss of generality,

we can suppose that trace(FF!iW~1)>0. Using the fact f(dΛ/dxj)xidx=δij, we

have

jF*Λjί F*ΛΓ1* dx = -

On the other hand, by the Schwarz inequality,

dx\ (\\F*N-lx\2Adx\

= ( j I F*Λ, 1 2A-^) trace (FF'W'1) .

And the equality holds only if vector valued functions F*ΛΛ/Λ and F*N~lx are

linearly dependent. In the case when FF* is invertible, the equality holds if

and only if ΛxIΛ—kN~lx for a certain constant k which may depend on t. Since

— 1 and fXjXjΛdx^Njj, the equality Λx/Λ=kN~1x implies that

(4.6) Λ(ί, *) - [(2τr)"det7V(*)]-1/2exp ---^.^)"^ . Q.E.D.

We shall prove ii) of Theorem 2. If there is a time t0 such that LFF*(ί0)>0,

there is an open interval <3 such that LFF*(t)>0 for each ίe cί. It is obvious
from equation (1.7) that A(t)>0 for each t^J. Therefore the matrix FF*(t) is

invertible for all t&<3. Thus, if the maximum of R(u) is attained by />e£P[M]

and if Λ(ί, x) is given by (4.2), equality (4.6) must hold for each t^<3. By the

Fourier transformation, we have

t, x)dx =

for each t^J. Since η^Rm is arbitrary, we have



PROBLEM OF OPTIMAL CONTROL 137

which implies (4.1). Q.E.D.
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