ARITHMETIC SUBGROUPS OF THE SYMPLECTIC GROUP

JASBIR SINGH CHAHAL

(Received September 27, 1976)

1. Let k be a field and n a positive rational integer. The symplectic group Sp(n, k) of order n over k is the group of $2n \times 2n$ matrices

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \tag{1}$$

over k, each A, B, C, D being an $n \times n$ matrix, such that

$$X'JX = J, (2)$$

where X' denotes the transpose of the matrix X and

$$J = \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix},$$

E being $n \times n$ unit matrix. Let $f: k^{2n} \times k^{2n} \to k$ be the skew symmetric bilinear form associated with J. Then Sp(n, k) can be identified with the group of automorphisms σ of 2n-dimensional vector space k^{2n} , such that σ leaves f invariant, i.e.,

$$f(\sigma x, \, \sigma y) = f(x, \, y) \tag{3}$$

for all x, y in k^{2n} . It is easy to check that X is in Sp(n, k), if and only if

$$A'C-C'A = 0 = B'D-D'B$$

$$A'D-C'B = E$$
(4)

and for X in Sp(n, k),

$$X^{-1} = \begin{pmatrix} D' & -B' \\ -C' & A' \end{pmatrix} \tag{5}$$

The group Sp(n, k) is generated by the matrices of the form

$$\begin{pmatrix} E & T \\ 0 & E \end{pmatrix}, \begin{pmatrix} U & 0 \\ 0 & U'^{-1} \end{pmatrix} \text{ and } \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}$$
 (6)

J.S. Chahal

where T is an $n \times n$ symmetric matrix and U is in GL(n, k).

For real symplectic group $Sp(n, \mathbf{R})$, the Siegel modular group $Sp(n, \mathbf{Z})$ is the subgroup of $Sp(n, \mathbf{R})$ consisting of integral matrices. $Sp(n, \mathbf{Z})$ is generated by integral matrices of the form (6).

Suppose $G \subseteq GL(n, \mathbb{C})$ is a matrix algebraic group defined over Q and let for a subring A of C, G(A) denote the group of A-rational points of G. For a positive rational integer m, the principal congruence subgroup $G(\mathbb{Z}, m)$ of level m is the kernel of the natural map

$$\pi: G(\mathbf{Z}) \to G(\mathbf{Z}/m\mathbf{Z})$$
.

Obviously, G(Z, m) is a normal subgroup (of finite index) in G(Z).

DEFINITION 1.1. (i) Two subgroups G_1 and G_2 of a group G are said to be *commensurable*, if $G_1 \cap G_2$ is of finite index in both G_1 and G_2 .

- (ii) A subgroup Γ of $G(\mathbf{R})$ is said to be *arithmetic*, if it is commensurable with $G(\mathbf{Z})$.
- (iii) An arithmetic subgroup of $G(\mathbf{R})$ containing the principal congruence subgroup of level m is called an *arithmetic subgroup of level* m.

Gutnik and Pjateckii-Šapiro determined (upto conjugacy) all the maximal arithmetic subgroups of $SL(n, \mathbf{R})$ of a given level. Our purpose here is to determine all the maximal arithmetic subgroups of $Sp(2, \mathbf{R})$ of a square free level. This is done in article 5. In article 2, we have proved that the denominators of the entries of the elements of such a group are bounded, in article 3, we prove that the prime divisors of the squares of these denominators are divisors of m. Article 4 is purely technical.

I am indebted to Professor K.G. Ramanathan for suggesting to me this problem and to Professor S. Raghavan for his valuable suggestions.

2. Arithmetic subgroups

Theorem 2.1. Suppose Γ is an arithmetic subgroup of $Sp(n, \mathbf{R})$ of level m. Then each $X=(x_{i,j})$ in Γ can be written as

$$X=1/(\sqrt{\lambda})X_1$$
,

where X_1 is an integral matrix and λ is a positive integer. Further, m^3x_{ij} are algebraic integers and m^6X^2 is an integral matrix.

Proof. Proof is essentially due to [4]. Because Γ is arithmetic, $Sp_n(Z, m)$ is of finite index, say r in Γ . Let t=r! and $\Gamma^{(t)}$ the subgroup generated by the t^{th} powers of elements of Γ . Then $\Gamma^{(t)}$ is a normal subgroup of Γ and is contained in $Sp_n(Z, m)$.

Let $X = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be in Γ . We can choose a rational integer x such that if

$$X^* = \begin{pmatrix} E & xmE \\ 0 & E \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A^* & B^* \\ C^* & D^* \end{pmatrix},$$

then $\det(A^*) = \det(A + xmC) \neq 0$. Because proving the first assertion for X is equivalent to proving it for X^* , we can assume that $\det(A) \neq 0$.

For an $n \times n$ symmetric matrix T in $M(n, \mathbf{Z})$, $\begin{pmatrix} E & tmT \\ 0 & E \end{pmatrix}$ and $\begin{pmatrix} E & 0 \\ tmT & E \end{pmatrix}$ are in $\Gamma^{(t)}$. Therefore,

$$X\begin{pmatrix} E & tmT \\ 0 & E \end{pmatrix} X^{-1} - \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} = \begin{pmatrix} tmATC' & tmATA' \\ * & * \end{pmatrix},$$

$$X^{-1}\begin{pmatrix} E & 0 \\ tmT & E \end{pmatrix} X - \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} = \begin{pmatrix} * & * \\ tmA'TA & * \end{pmatrix}$$

$$(7)$$

are the integral matrices and hence

$$\begin{aligned}
tmATA' &= (y_{ij}) & \text{(i)} \\
tmA'TA &= (z_{ij}) & \text{(ii)}
\end{aligned}$$
(8)

are in $M(n, \mathbf{Z})$.

Because $\det(A) \neq 0$, for each j, there exists i=i(j), such that $a_{ij} \neq 0$. We put $\lambda_j = \frac{1}{a_{ij}}$. Choosing $T = E_{jj}$, we see that

$$a_{rj}a_{sj} = \frac{y_{rs}}{tm} \tag{9}$$

is a rational number. From (9), $a_{sj}=a_{sj}^{(1)}$. λ_j with $\lambda_j^2 \in \mathbf{Q}$ and $a_{sj}^{(1)} \in \mathbf{Q}$. Therefore $A=A_1 {\lambda_1 \choose 0}$, where $A_1 \in GL(n,\mathbf{Q})$. Now choosing g in Z, such that $T=gA_1^{-1}(E_{ij}+E_{ji})A_1'^{-1}$ with $i \neq j$, is integral, we can see from (8)–(ii) that $\lambda_i \cdot \lambda_j \in \mathbf{Q}$. Therefore $A=1/(\sqrt{\lambda}) \cdot A_1$ with λ in \mathbf{Q} and A_1 in $GL(n,\mathbf{Q})$. From (7) we see again that tmATC' is in $M(n,\mathbf{Z})$ and hence $C=1/(\sqrt{\lambda})C_1$ with C_1 in $M(n,\mathbf{Q})$.

By a similar argument

$$X^{-1} \begin{pmatrix} E & 0 \\ tmT & E \end{pmatrix} X - \begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix} = \begin{pmatrix} -tmB'TA & * \\ * & * \end{pmatrix}$$

is integral and hence we get $B=1/(\sqrt{\lambda})B_1$ with $B_1 \in M(n, \mathbf{Q})$. Using (4) we get $D=1/(\sqrt{\lambda})D_1$, $D_1 \in M(n, \mathbf{Q})$. Putting these together we get $X=\frac{1}{\sqrt{\lambda}}\cdot X_1$,

where
$$X_1 = \begin{pmatrix} A_1 & B_1 \\ C_1 & D_1 \end{pmatrix}$$

It is obvious that we can assume that λ is a positive integer and this proves the first assertion.

Now because $Sp_n(\mathbf{Z}, m)$ is of finite index in Γ , the characteristic roots of any X in Γ are algebraic integers and hence tr(X) is an algebraic integer. If U is in $SL_n(\mathbf{Z}, m)$, $T \in M(n, \mathbf{Z})$ is symmetric, then

$$tr(mUTC) = tr \begin{pmatrix} U & 0 \\ 0 & U'^{-1} \end{pmatrix} \begin{pmatrix} E & mT \\ 0 & E \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} - tr \begin{pmatrix} U & 0 \\ 0 & U'^{-1} \end{pmatrix} \begin{pmatrix} A & C \\ B & D \end{pmatrix}$$

is an algebraic integer.

Taking U=T=E, it follows that tr(mC) is an algebraic integer. If $C=(c_{ij})$, then for $i \neq j$, taking $U=E+mE_{ij}$ and T=E, we see that

$$m^2c_{ij} = tr(m^2E_{ij}C) = tr(m(E_{ij}+mE)EC) - tr(mC)$$

and taking U=E, $T=E_{ii}$,

$$mc_{ii} = tr(mE_{ii}C)$$

are algebraic integers. Hence m^2C is a matrix of algebraic integers. Considering $J^{-1}\Gamma J$ instead of Γ , it is immediate that m^2B is a matrix of algebraic integers. Considering

$$\binom{E}{mE} \binom{O}{C} \binom{A}{C} \binom{B}{C} = \binom{*}{C+mA} \binom{*}{*}$$

and

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} E & 0 \\ mE & E \end{pmatrix} = \begin{pmatrix} * & * \\ C + mD & * \end{pmatrix}$$

it follows that m^3A and m^3D are matrices of algebraic integers. Now $m^6X^2 = \frac{m^6}{\lambda}X_1^2$ is in $M(2n, \mathbf{Q})$ and its entries are algebraic integers, hence because \mathbf{Z} is integrally closed, X^2 is integral.

3. Let Γ be an arithmetic subgroup of $Sp(n, \mathbf{R})$ of level m. Then each X in Γ can be written as

$$X = \frac{1}{\sqrt{\lambda(X)}} A(X) ,$$

where $\lambda(X)$ is a positive integer and A(X) is an integral matrix, such that the ideal generated by its entries is Z. Then the maps

$$\begin{array}{c}
A: \Gamma \to M(2n, \mathbf{Z}) \\
\lambda: \Gamma \to \mathbf{Z}
\end{array} \right\} (10)$$

are well defined. For a rational prime p, let $\alpha_p(X) = v_p(\lambda(X))$, i.e., the greatest integer l, such that p^l divides $\lambda(X)$. Let $\alpha_p(\Gamma) = l.u.b.$ $\{\alpha_p(X) | X \in \Gamma\}$. Since Γ is arithmetic, $\alpha_p(\Gamma)$ is a non-negative integer. Infact, by Th. 2.1, $\alpha_p(\Gamma) \leq v_p(m^6)$. In this section we prove that if n=2, then any prime divisor of $\lambda(X)$ for any X in Γ is a divisor of m.

Lemma 3.1. Suppose k is an arbitrary field and $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is in M(4, k) with A, B, C, D two rowed square matrices, such that A'C - C'A = 0 = B'D - D'B and $A'D - C'B = \beta \cdot E$ with some $\beta \in k$. Then there exist M_1 and M_2 in Sp(2, k), such that $M_1MM_2 = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$, each block being again a 2×2 matrix.

Proof. Choose P and Q in SL(n, k) such that if

$$U = \begin{pmatrix} P & 0 \\ 0 & P'^{-1} \end{pmatrix}$$
 and $V = \begin{pmatrix} Q & 0 \\ 0 & Q'^{-1} \end{pmatrix}$

then

$$UMV = egin{pmatrix} (a & 0 \ 0 & b) & * \ (c_{11} & c_{12} \ c_{21} & c_{22}) & * \end{pmatrix}.$$

If a=b=0, then we put $M_1=JU$, $M_2=V$. Otherwise, if necessary, replacing U and V by RU and VR respectively, where,

$$R = \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}$$

we can assume that $a \neq 0$. Multiplying on the left by

$$U_1 = egin{pmatrix} E & & 0 \ -\frac{c_{11}}{a} & -\frac{c_{21}}{a} \ -\frac{c_{21}}{a} & 0 \end{pmatrix} \quad E \ \end{pmatrix}$$

$$U_1UMV = egin{pmatrix} a & 0 \ 0 & b \end{pmatrix} & * \ \begin{pmatrix} 0 & c \ 0 & d \end{pmatrix} & * \end{pmatrix}.$$

If $b \neq 0$, one can assume by multiplying on the left by

$$\begin{pmatrix}
E & 0 \\
0 & 0 \\
0 & -\frac{d}{b}
\end{pmatrix} E$$

that d=0. The condition A'C-C'A=0 then implies that c=0. If b=0, again the above condition implies that c=0. Putting $M_1=U_2U_1U$ and $M_2=V$, where

$$U_{2} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

the proof is complete.

Lemma 3.2. For a rational prime p, let $\phi_p: \mathbb{Z} \to \mathbb{F}_p$ be the natural map and the map $A = (a_{ij}) \mapsto \overline{A} = (\phi_p(a_{ij}))$ induced by ϕ_p from $M(n, \mathbb{Z}) \to M(n, \mathbb{F}_p)$ be again denoted by ϕ_p . If p does not divide m, then

$$\phi_b \colon SL_n(\mathbf{Z}, m) \to SL(n, \mathbf{F}_b) \tag{11}$$

is surjective. Hence if $k = \mathbf{F}_p$ in lemma 3.1, then there exist L_i in $Sp_2(\mathbf{Z}, m)$, such that $\phi_p(L_i) = M_i$, i = 1, 2.

Proof. It is enough to remark that $SL(n, \mathbf{F}_p)$ is generated by the matrices of the form $E+xE_{ij}$, $i \neq j$ and $x \in \mathbf{F}_p$.

Theorem 3.3. Suppose Γ is an arithmetic subgroup of $Sp(2, \mathbf{R})$ of level m. If for a rational prime p, $\alpha_p(\Gamma) > 0$, then p divides m.

Proof. Suppose p does not divide m. Let $X \in \Gamma$, such that $\alpha_p(X) > 0$. By lemma 3.2, there exist L_1 and L_2 in $Sp_2(\mathbf{Z}, m)$ such that $\phi_p(L_1A(X)L_2) = M_1\overline{A(X)}M_2 = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$. Because $\overline{A(X)} \neq 0$, we can assume that $A \neq 0$. Let

 $P, Q \in SL_2(\mathbf{Z}, m)$, such that $\bar{P}A\bar{Q} = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}$ with $a_1 \neq 0$. If

$$U = \begin{pmatrix} P & 0 \\ 0 & P'^{-1} \end{pmatrix}$$
 and $V = \begin{pmatrix} Q & 0 \\ 0 & Q'^{-1} \end{pmatrix}$,

we put $L = UL_1A(X)L_2V$. Then

$$ar{L} = egin{pmatrix} a_1 & 0 \ 0 & a_2 \end{pmatrix} & * \ 0 & * \end{pmatrix}$$

with $a_1 \neq 0$. If $Y = 1/(\sqrt{\lambda(X)})L$, we can see that Y is in Γ . Hence $\alpha_p(Y^l) > v_p(m^6)$, for a sufficiently large l and this is a contradiction.

4. Suppose p is a rational prime, such that $\alpha_{b}(\Gamma) > 0$. We define

$$\sum_{b} (\Gamma) = \{A(X) | X \text{ in } \Gamma \text{ and } \alpha_{b}(X > 0)\}$$

and

$$\sum_{b}^{*}(\Gamma) = \{A(X) | X \text{ in } \Gamma, \alpha_{b}(X) = \alpha_{b}(\Gamma) \}$$
.

Obviously, $\sum_{p}^{*}(\Gamma) \subseteq \sum_{p}(\Gamma)$. We have written each X in Γ uniquely as

$$X = \frac{1}{\sqrt{\lambda(X)}} A(X) ,$$

where $\lambda(X)$ is a positive integer and the ideal generated by the coefficients of A(X) over Z is Z itself. Let $A(X) \in \sum_{b}^{*}(\Gamma)$ and $A(Y) \in \sum_{b}(\Gamma)$. Then

$$XY = \frac{1}{\sqrt{\lambda(X) \cdot \lambda(Y)}} A(X) \cdot A(Y) \in \Gamma. \tag{*}$$

Since

$$\alpha_p(\Gamma) = \alpha_p(X) = v_p(\lambda(X)) \ge v_p(\lambda(Y)) = \alpha_p(Y) > 0$$
,

we have $v_p(\lambda(X) \cdot \lambda(Y)) > \alpha_p(\Gamma)$. In view of (*), p has to divide the ideal generated by the coefficients of A(X)A(Y), otherwise $\alpha_p(XY) > \alpha_p(\Gamma)$. Therefore,

$$\phi_{p}(\sum_{p}^{*}(\Gamma)\sum_{p}(\Gamma)) = \phi_{p}(\sum_{p}(\Gamma)\sum_{p}^{*}(\Gamma)) = 0.$$
 (12)

Consider the 4-dimensional vector space $V = \mathbf{F}_p^4$. Let $V_p(\Gamma)$ be the subspace of V generated by $\phi_p(\sum_{p}^*(\Gamma))V$ over \mathbf{F}_p . Then $\alpha_p(\Gamma) > 0$ implies that

$$0 < \dim V_p(\Gamma) < 4$$
.

We need to get some more informations about $V_p(\Gamma)$. For any field k, let us denote by $Sp(n, k)_0$ the subgroup of Sp(n, k) generated by the elements of the form

$$\begin{pmatrix} E & T \\ 0 & E \end{pmatrix}, \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix} \text{ and } \begin{pmatrix} U & 0 \\ 0 & U'^{-1} \end{pmatrix},$$

where T is an $n \times n$ symmetric matrix over k and $U \in SL(n, k)$.

Lemma 4.1. Suppose σ is in $Sp(2, \mathbf{F}_p)_0$ and $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ is in $\sigma^{-1}\sum_p (\Gamma)\sigma$.

Then $\begin{pmatrix} D' & -B' \\ -C' & A' \end{pmatrix}$ is also in $\sigma^{-1}\sum_p (\Gamma)\sigma$.

Proof. This lemma is a trivial consequence of (5). It is easy to check that $\phi_p(Sp(2, \mathbf{Z}))$ contains $Sp(2, \mathbf{F}_p)_0$. If F is in $Sp(2, \mathbf{Z})$, such that $\phi_p(F) = \sigma$, then

$$\begin{pmatrix} D' & -B' \\ -C' & A' \end{pmatrix} = \overline{F^{-1}} \overline{A(X^{-1})} \overline{F} = \sigma^{-1} \overline{A(X^{-1})} \sigma$$

and $A(X^{-1})$ is in $\sum_{p} (\Gamma)$.

Lemma 4.2. If $\alpha_p(\Gamma) = 1$, then $\dim V_p(\Gamma) = 2$. If $\alpha_p(\Gamma) > 1$, then $\dim V_p(\Gamma) \leqslant 2$. If $\dim V_p(\Gamma) = 2$, then $V_p(\Gamma)$ is not a hyperbolic space (with respect to the skew symmetric bilinear form f associated with f). Hence there exists σ in $Sp(2, \mathbf{F}_p)_0$, such that if $\alpha_j = \sigma(e_j)$, where

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \dots, e_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

is the standard basis for V, then $V_p(\Gamma) = \bigoplus_{j=1}^{\dim V_p(\Gamma)} \mathbf{F}_p \alpha_j$.

Proof. We have already seen that $4>\dim V_p(\Gamma)>0$. We first rule out the case $\dim V_p(\Gamma)=3$. If $\dim V_p(\Gamma)=3$, then $V_p(\Gamma)$ contains a hyperbolic subspace, say $\langle \alpha_1, \alpha_3 \rangle$, such that there exists another hyperbolic subspace $\langle \alpha_2, \alpha_4 \rangle$ with

$$V = \langle \alpha_1, \alpha_3 \rangle \bot \langle \alpha_2, \alpha_4 \rangle \tag{13}$$

and $V_p(\Gamma) = \bigoplus_{j=1}^{3} \mathbf{F}_p \alpha_j$. Now V can also be written as

$$V = \langle e_1, e_3 \rangle \bot \langle e_2, e_4 \rangle \tag{14}$$

as an orthogonal sum of hyperbolic spaces; the linear transformation defined by

$$\sigma(e_j) = \alpha_j \tag{15}$$

leaves f invariant. Any $\sigma \in Sp(2,k)$ for an arbitrary field k can be written as $\sigma = \alpha_1 \cdot \sigma_2$, where σ_1 is the product of the matrices of the form $\begin{pmatrix} E & T \\ 0 & E \end{pmatrix}$ and $\begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}$, $T \in M(2,k)$ is symmetric and $\sigma_2 = \begin{pmatrix} U & 0 \\ 0 & U'^{-1} \end{pmatrix}$, with $U \in GL(2,k)$. Hence there exists $\sigma^* \in Sp(n,k)_0$ and $\beta_i \in k^*$, such that $\sigma(e_i) = \beta_i \cdot \sigma^*(e_i)$. Therefore, we can assume that σ appearing in (15) is in $Sp(2, F_p)_0$. From (12) it follows that for any A(X) in $\sum_p (\Gamma)$, $\sigma^{-1}(A(X)\sigma)(e_i) = 0$ for j = 1, 2, 3. Hence

$$\sigma^{-1}\overline{A(X)}\sigma = egin{pmatrix} 0 & 0 & 0 & * \ 0 & 0 & 0 & * \ 0 & 0 & 0 & * \ 0 & 0 & 0 & * \end{pmatrix}.$$

By lemma 4.1 for each A(X) in $\sum_{b}(\Gamma)$,

Now dimension of F_p -subspace generated by $\sigma^{-1} \overline{\sum_{p}^{*}(\Gamma)} \sigma$ is equal to dim $V_p(\Gamma)$ = 3 which is a contradiction.

Now we suppose that $\alpha_{p}(\Gamma)=1$ and dim $V_{p}(\Gamma)=1$. For a suitable α_{1} in $V_{p}(\Gamma)$, we write V as in (13) and define σ by (15). Then for each A(X) in $\sum_{p=0}^{\infty} \Gamma(\Gamma)$,

$$\sigma^{-1}\overline{A(X)}\sigma = (0 C_2 C_3 C_4),$$

where $C_i = \begin{pmatrix} c_{i1} \\ c_{i2} \\ c_{i3} \\ c_{i4} \end{pmatrix}$ and $C_i = \gamma C_j$ for some γ in F_p . Choosing σ_0 suitably in

 $Sp(2, \mathbf{F}_b)_0$ and replacing σ by $\sigma \cdot \sigma_0$, we can assume that

$$\sigma^{-1}\overline{A(X)}\sigma = \begin{pmatrix} 0 & \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \\ 0 & 0 \end{pmatrix}, \qquad x \neq 0.$$
 (16)

If X is in Γ , such that $\alpha_p(X)=1$, it follows that $\det(X)=1$ is divisible by p, a contradiction.

Finally, we prove that if dim $V_p(\Gamma)=2$, then it is not a hyperbolic space. Suppose it is. Then $V_p(\Gamma)=\langle \alpha_1, \alpha_3 \rangle$ and $V=\langle \alpha_1, \alpha_3 \rangle \perp \langle \alpha_2, \alpha_4 \rangle$ and σ defined by $\sigma(e_i)=\alpha_i$ leaves f invariant. Thus each element of $\sigma^{-1}\sum_{p}(\Gamma)\sigma$ is of the form

$$\begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & * \end{pmatrix}.$$

We choose σ in such a fashion that there exists $\sigma^{-1}\overline{A(X)}\sigma$ in $\sigma^{-1}\overline{\sum_{\rho}^{*}(\Gamma)}\sigma$ with 0 in the $(4, 4)^{th}$ entry. But this can be seen to contradict the fact

$$\sigma^{-1}(\overline{A(X)}\sigma)^2 = 0$$
.

and this proves the lemma.

Let σ be as in Lemma 4.2. Then for all A(X) in $\sum_{p}(\Gamma)$,

$$\sigma^{-1}\overline{A(X)}\sigma = \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} \tag{17}$$

each block being 2×2 matrix.

Lemma 4.3. Suppose $\alpha_p(\Gamma) > 2$. Then there exits an F in $Sp(2, \mathbb{Z})$, such that if $\Gamma_1 = F^{-1}\Gamma F$, then

(i) For each X in Γ_1 with $\alpha_p(X) = \alpha_p(\Gamma)$,

$$A(X) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

with $C \equiv 0 \pmod{p^2}$ and $A \equiv D \equiv 0 \pmod{p}$.

(ii) Γ_1 contains $Sp_2(\mathbf{Z}, m)$.

Proof. Let σ be given by lemma 4.2 and $F \in Sp(2, \mathbb{Z})$, such that $\phi_p(F) = \sigma$.

(i) Let dim $V_p(\Gamma)=2$. We fix $A(X_0)=\begin{pmatrix} pA_0 & B_0 \\ pC_0 & pD_0 \end{pmatrix}$ in $\sum_{p}^*(\Gamma_1)$; A_0 , B_0 , C_0 , D_0 being integral matrices. We can find $T\in SL(2,\mathbb{Z})$, such that if $\sigma_0=\phi_p(T)$, then $\sigma_0^{-1}\bar{B}_0\sigma_0=\begin{pmatrix} b_1 & 0 \\ b_{12} & b_2 \end{pmatrix}$, $b_1 \neq 0$. Therefore, if necessary, replacing F by $F\begin{pmatrix} T & 0 \\ 0 & T'^{-1} \end{pmatrix}$, ((17) still holds and) we can assume that

$$A(X_0) = egin{pmatrix} pA_0 & egin{pmatrix} b_{11}^{(0)} & pb_{12}^{(0)} \ b_{21}^{(0)} & b_{22}^{(0)} \ pC_0 & pD_0 \end{pmatrix},$$

with p not dividing $b_{11}^{(0)}$. Because $\alpha_p(\Gamma_1) > 2$, this implies that if A(X) is in $\sum_{p}^*(\Gamma_1)$ with $A(X) = \begin{pmatrix} pA & B \\ pC & pD \end{pmatrix}$ and $A(X_0) \cdot A(X) = \begin{pmatrix} * & * \\ * & G \end{pmatrix}$, then $G \equiv 0 \pmod{p^2}$ and hence first row of C is $\equiv 0 \pmod{p^2}$. Because dim $V_p(\Gamma) = 2$, we can choose $A(X_1)$ in $\sum_{p}^*(\Gamma_1)$, such that all entries in its 4th column are not divisible by p. If $A(X_1) \cdot A(X) = \begin{pmatrix} * & * \\ * & G_1 \end{pmatrix}$, then $G_1 \equiv 0 \pmod{p^2}$ and it follows that second row of C is also $\equiv 0 \pmod{p^2}$.

(ii) dim $V_p(\Gamma)=1$. We can assume that for each element A(X) of $\sum_{p}^{*}(\Gamma_1)$, (16) is true. Because $\alpha_p(\Gamma)>2$, using similar arguments as earlier, one can see that for each A(X) in $\sum_{p}^{*}(\Gamma_1)$, $\sigma^{-1}A(X)\sigma=$

$$\begin{pmatrix} \begin{pmatrix} p(\) & p(\) \\ p^2(\) & p(\) \end{pmatrix} & \begin{pmatrix} x & p(\) \\ p(\) & p(\) \end{pmatrix} \\ \begin{pmatrix} p^2(\) & p^2(\) \\ p^2(\) & p(\) \end{pmatrix} & \begin{pmatrix} p(\) & p^2(\) \\ p(\) & p(\) \end{pmatrix}, \quad p \not\mid x.$$

Since m is square-free, for a suitable r, s and t in Z and multiplying X on the right or left by matrices of the form

$$\begin{pmatrix} E & 0 \\ rm & sm \\ sm & 0 \end{pmatrix} \quad E \qquad \text{or} \quad \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ -tm & 1 \end{pmatrix} & 0 \\ 0 & \begin{pmatrix} 1 & tm \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$

one can see that there exist X_1 and X_2 in Γ_1 with $\alpha_p(X_1) = \alpha_p(X_2) = \alpha_p(\Gamma_1)$, such that

$$A(X_1) = egin{pmatrix} p^2(\) & p^2(\) & y & p^2(\) \\ * & \dots & * \\ \vdots & & & \\ * & \dots & * \end{pmatrix}$$
 $A(X_2) = egin{pmatrix} p^2(\) & p^2(\) & z & u \cdot p \\ * & \dots & * \\ \vdots & & & \\ * & \dots & * \end{pmatrix}$

with p not dividing y, z and u. Now $\alpha_p(\Gamma_1) > 2$ implies that $p^3 | A(X_i) A(X)$, i=1, 2. From $p | A(X_1) A(X)$ it follows that

$$A(X) = \begin{pmatrix} p(\) & p(\) & x & p(\) \\ p^{3}(\) & p(\) & p(\) & p(\) & p(\) \\ p^{3}(\) & p^{3}(\) & p(\) & p(\) & p^{3}(\) \\ p^{3}(\) & p(\) & p(\) & p(\) & p(\) \end{pmatrix},$$

whereas $p^3 \mid A(X_2)A(X)$ implies now that

$$A(X) = \begin{pmatrix} pA & B \\ p^2C & pD \end{pmatrix},$$

A, B, C, D being integral matrices and this proves (i). (ii) is trivial.

Now suppose Γ is maximal. From lemma 4.3, it follows that if $\alpha_p(\Gamma_1) > 2$, then the group generated by Γ_1 and the matrices of the form

$$\begin{pmatrix} E+mV_{11} & \frac{m}{p}V_{12} \\ mpV_{21} & E+mV_{22} \end{pmatrix},$$

where $V_{ij} \in M(2, \mathbf{Z})$, such that $\begin{pmatrix} E+mV_{11} & mV_{12} \\ mV_{21} & E+mV_{22} \end{pmatrix}$ is in $Sp_2(\mathbf{Z}, m)$, is an arithmetic subgroup of $Sp(2, \mathbf{R})$ and because Γ_1 is maximal, must coincide with Γ_1 . Now if $P = \begin{pmatrix} pE_2 & 0 \\ 0 & E_2 \end{pmatrix}$, U = FP, where F is given by lemma 4.3 and $\Gamma_2 = U^{-1}\Gamma U$, then Γ_2 has the following properties:

- (1) $\Gamma_2 \subseteq Sp(2, \mathbf{R})$ and is a maximal arithmetic subgroup of level m.
- (2) If $\alpha_{\mathfrak{p}}(\Gamma) > 2$, then $\alpha_{\mathfrak{p}}(\Gamma_2) \leq \alpha_{\mathfrak{p}}(\Gamma) 2$
- (3) $\alpha_o(\Gamma_2) \leq \alpha_o(\Gamma)$ for all primes $q \neq p$.

Hence if we repeat this process sufficiently many times for each prime, we get the following

Theorem 4.4. Suppose Γ is a maximal arithmetic subgroup of $Sp(2, \mathbf{R})$ of level m. Then there exists an arithmetic subgroup Γ^* of $Sp(2, \mathbf{R})$ of level m, such that there exists $U \in Sp(2, \mathbf{Q})$, such that $\Gamma = U^{-1}\Gamma^*U$ and $0 \le \alpha_p(\Gamma^*) \le 2$ for all p.

5. Let $S_1 = \{p_1, \dots, p_s\}$ and $S_2 = \{p_{s-1}, \dots, p_{s+t}\}$ be disjoint sets of rational primes. For $R_1 = \{q_1, \dots, q_f\} \subseteq S_1$ and $R_2 = \{q_{s+1}, \dots, q_{s+g}\} \subseteq S_2$, we put

$$u = p_1 \cdots p_s$$
, $v = p_{s+1} \cdots p_{s+t}$, $x = q_1 \cdots q_f$, $y = q_{s+1} \cdots q_{s+g}$.

Let

$$\Gamma(S_1, R_1; S_2, R_2) = \frac{1}{y\sqrt{x}} \left\{ X = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \middle| A = \begin{pmatrix} a_{11}xy & a_{12}xy \\ a_{21}xy & a_{22}xy \end{pmatrix},$$

$$B = \begin{pmatrix} b_{11} & b_{12}v \ b_{21}v & b_{22}v \end{pmatrix}, \ C = \begin{pmatrix} c_{11}uy^2 & c_{12}uy^2 \ c_{21}uy^2 & c_{22}uy \end{pmatrix}, \ D = xy \begin{pmatrix} d_{11} & d_{12} \ d_{21} & d_{22} \end{pmatrix},$$

where $a_{ij}, b_{ij}, c_{ij}, d_{ij} \in \mathbb{Z}$ and A'C - C'A = 0 = B'D - D'B; $A'D - C'B = xy^2E$.

Let $\Gamma(S_1, S_2)$ be the subgroup generated by $\bigcup_{\substack{R_1, R_2 \\ R_i \subseteq S_i}} \Gamma(S_1, R_1; S_2, R_2)$. We put $\Gamma_0(S_1, S_2) = \Gamma(S_1, \phi; S_2, \phi)$.

Theorem 5.1. $\Gamma(S_1, S_2)$ is a subgroup of $Sp(2, \mathbf{R})$ and $\Gamma_0(S_1, S_2)$ is a normal subgroup of $\Gamma(S_1, S_2)$. Further, $\{\Gamma(S_1, R_1; S_2, R_2) | R_i \subseteq S_i, i=1, 2\}$ are generators of $G = \Gamma(S_1, S_2)/\Gamma_0(S_1, S_2)$ and each element of G is of order 2 and hence G is Abelian. Order of G is 2^k , where $s \le k \le 2^{s+t}$. Therefore, $\Gamma(S_1, S_2)$ is arithmetic.

Proof. All statements are either trivial or can be easily checked.

Theorem 5.2. $\Gamma(\phi, \phi) = Sp(2, \mathbf{Z})$ and if $S_1 \neq S_1'$ or $S_2 \neq S_2'$, then $\Gamma(S_1, S_2)$ is not conjugate to $\Gamma(S_1', S_2')$.

Proof. If there exists $T \in GL(4, \mathbb{R})$, such that $T^{-1}\Gamma(S_1, S_2)T = \Gamma(S_1', S_2')$, then we can assume that $T \in GL(4, \mathbb{Q})$.

(i) If p is in $S_1 = \{p_1, \dots, p_s\}$ but not in S_1' , then it is enough to prove that $\Gamma(S_1, S_2)$ contains an element of the form $X = \frac{1}{\sqrt{p}} X_1$, $X_1 \in M(4, \mathbb{Z})$, because, then $T^{-1}XT$ cannot be in $\Gamma(S_1', S_2')$. For this let $u = p_1 \cdots p_s$, $u_j = \frac{u}{p_j}$. Choose $a_j^{(1)}$ and $a_j^{(2)}$ in \mathbb{Z} , such that

$$p_j a_j^{(1)} a_j^{(2)} \equiv 1 \pmod{u_j^2}; \quad j = 1, \dots, s.$$

Let

$$b_{j} = \frac{b_{j}a_{j}^{(1)}a_{j}^{(2)} - 1}{u_{i}^{2}}$$

and

$$X_{j} = \begin{pmatrix} p_{j}a_{j}^{(1)}E & u_{j}E \\ p_{j}u_{j}b_{j}E & p_{j}a_{j}^{(2)}E \end{pmatrix}.$$

Then for each j, $\frac{1}{\sqrt{p_i}} \cdot X_j$ is in $\Gamma(S_1, S_2)$.

(ii) If $S_2 \neq S_2'$, let us assume that $q_1 \in \{q_1, \dots, q_h\} - S_2'$, and $S_2 = \{q_1, \dots, q_h\}$. Again it is enough to prove that $\Gamma(S_1, S_2)$ contains an element of the from $\frac{1}{\sqrt{p_j}} \cdot \frac{1}{q_1} \cdot Y_1$ with $Y_1 \in M(4, \mathbb{Z})$. Let X_1 be as in the case (i) above and we simply put

$$Y_1 = egin{pmatrix} q_1 p_1 a_1^{(1)} E & u_1 inom{1}{0} q_1 \ p_1 u_1 b_1 inom{q_1^2}{0} q_1 \end{pmatrix} & q_1 p_1 a_1^{(2)} E \end{pmatrix}.$$

Theorem 5.3. Any maximal arithmetic subgroup Γ of $Sp(2, \mathbf{R})$ of square-free level m is conjugate to $\Gamma(S_1, S_2)$ for some disjoint subsets S_1 and S_2 of prime divisors of m.

Proof. By theorem 4.4, we can find a subgroup Γ^* of $Sp(2, \mathbf{R})$, such that $0 \le \alpha_p(\Gamma^*) \le 2$ for all p and Γ is conjugate to Γ^* . If $\alpha_p(\Gamma^*) = 0$ for all p, then $\Gamma^* \subseteq Sp(2, \mathbf{Z}) = \Gamma(\phi, \phi)$ and since Γ is maximal, $\Gamma^* = Sp(2, \mathbf{Z})$. Let p_1, \dots, p_s be the primes for which $\alpha_p(\Gamma^*) = 1$ and p_{s+1}, \dots, p_{s+w} , the one for which $\alpha_p(\Gamma^*) = 2$. Then by theorem 3.3, p_i divides m for all j.

For each j, let σ_j be the element of $Sp(2, F_{p_j})_0$ given by lemma 4.2, with Γ replaced by Γ^* . Then for each X in Γ^* with $\alpha_p(X) = \alpha_p(\Gamma^*)$,

$$\sigma_j^{-1}\phi_{p_j}(A(X))\sigma_j = \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix}$$

and if $j \le s$ or $j \ge s+t+1$, where t is such that $p_{s+t+1}, \dots, p_{s+w}$ are supposed to be all the prime divisors of m for which $\alpha_{p_j}(\Gamma^*)=2$ and dim $V_{p_j}(\Gamma^*)=2$, then for all $X \in \Gamma^*$,

$$\sigma_j^{-1}\phi_{P_j}(A(X))\sigma_j = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}.$$

It can be checked that for each j, $\phi_{P_j}\Big(Sp_2\Big(Z,\frac{p_1\cdots p_{s+w}}{p_j}\Big)\Big)$ contains $Sp(2,F_{P_j})_0$ and for F_j in $Sp_2\Big(Z,\frac{p_1\cdots p_{s+w}}{p_j}\Big)$ and $i \neq j$, $\phi_{P_j}(F_j) = E$. Let $F_j \in Sp_2\Big(Z,\frac{p_1\cdots p_{s+w}}{p_j}\Big)$, such that $\phi_{P_j}(F_j) = \sigma_j$ and for j > s+t, let $G_j = F_j\Big(\frac{1/p_jE_2}{0} + \frac{0}{E_2}\Big)$. If $F = F_1\cdots F_{s+t}G_{s+t+1}\cdots G_{s+w}$, then it is easy to check that $F^{-1}\Gamma^*F \subseteq \Gamma(S_1,S_2)$, where $S_1 = \{p_1,\cdots,p_s\}$ and $S_2 = \{p_{s+1},\cdots,p_{s+t}\}$. Maximality implies that $F^{-1}\Gamma F = \Gamma^*(S_1,S_2)$.

Corollary 5.4. Suppose Γ is an arithmetic subgroup of $Sp\ (2, \mathbf{R})$ of square-free level m. Then $[\Gamma/\Gamma \cap Sp(2, \mathbf{Z})] = 3^1$ for some non-negative integer l.

Proof. $3^k = [\Gamma/\Gamma \cap Sp(2, \mathbf{Z})][\Gamma \cap Sp(2, \mathbf{Z})/Sp_2(\mathbf{Z}, \mathbf{m})].$

Corollary 5.5. Let $m=p_1\cdots p_s$, $p_i\neq p_j$, if $i\neq j$. Then the number (up to conjugacy) of maximal arithmetic subgroups of $\Gamma\subseteq Sp(2,\mathbf{R})$ of level m is 3^s . If Γ is such a subgroup and $\Gamma\subseteq Sp(2,\mathbf{Q})$, then there exists $T\in Sp(2,\mathbf{Q})$ such that $\Gamma=T^{-1}Sp(2,\mathbf{Z})T$.

Proof. The numbers of tuples (S_1, S_2) , such that S_1 and S_2 are disjoint subsets of $\{p_1, \dots, p_s\}$ is 3^s .

JOHNS HOPKINS UNIVERSITY

References

- [1] A. Borel: Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. 72 (1960), 179-188.
- [2] A. Borel: Density and maximality of arithmetic subgroups, J. Reine Angew. Math. 224 (1966), 78-89.
- [3] L.A. Gutnik and I.I. Pjateckii-Šapiro,: Maximal discrete subgroups of the unimodular group, Trans. Moscow Math. Soc. (1966), AMS translation, 316-332.
- [4] K.G. Ramanathan: Discontinuous groups II, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 22 (1964), 145-164.