ARITHMETIC SUBGROUPS OF THE SYMPLECTIC GROUP

Jasbir Singh CHAHAL

(Received September 27, 1976)

1. Let k be a field and n a positive rational integer. The symplectic group $S p(n, k)$ of order n over k is the group of $2 n \times 2 n$ matrices

$$
X=\left(\begin{array}{ll}
A & B \tag{1}\\
C & D
\end{array}\right)
$$

over k, each A, B, C, D being an $n \times n$ matrix, such that

$$
\begin{equation*}
X^{\prime} J X=J, \tag{2}
\end{equation*}
$$

where X^{\prime} denotes the transpose of the matrix X and

$$
J=\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right)
$$

E being $n \times n$ unit matrix. Let $f: k^{2 n} \times k^{2 n} \rightarrow k$ be the skew symmetric bilinear form associated with J. Then $S p(n, k)$ can be identified with the group of automorphisms σ of $2 n$-dimensional vector space $k^{2 n}$, such that σ leaves f invariant, i.e.,

$$
\begin{equation*}
f(\sigma x, \sigma y)=f(x, y) \tag{3}
\end{equation*}
$$

for all x, y in $k^{2 n}$. It is easy to check that X is in $S p(n, k)$, if and only if

$$
\left.\begin{array}{l}
A^{\prime} C-C^{\prime} A=0=B^{\prime} D-D^{\prime} B \tag{4}\\
A^{\prime} D-C^{\prime} B=E
\end{array}\right\}
$$

and for X in $S p(n, k)$,

$$
X^{-1}=\left(\begin{array}{rr}
D^{\prime} & -B^{\prime} \tag{5}\\
-C^{\prime} & A^{\prime}
\end{array}\right)
$$

The group $S_{p}(n, k)$ is generated by the matrices of the form

$$
\left(\begin{array}{ll}
E & T \tag{6}\\
0 & E
\end{array}\right),\left(\begin{array}{ll}
U & 0 \\
0 & U^{\prime-1}
\end{array}\right) \text { and }\left(\begin{array}{rr}
0 & E \\
-E & 0
\end{array}\right)
$$

where T is an $n \times n$ symmetric matrix and U is in $G L(n, k)$.
For real symplectic group $S p(n, \boldsymbol{R})$, the Siegel modular group $S p(n, \boldsymbol{Z})$ is the subgroup of $S p(n, \boldsymbol{R})$ consisting of integral matrices. $\quad S p(n, \boldsymbol{Z})$ is generated by integral matrices of the form (6).

Suppose $G \subseteq G L(n, C)$ is a matrix algebraic group defined over Q and let for a subring A of $\boldsymbol{C}, G(A)$ denote the group of A-rational points of G. For a positive rational integer m, the principal congruence subgroup $G(\boldsymbol{Z}, m)$ of level m is the kernel of the natural map

$$
\pi: G(\boldsymbol{Z}) \rightarrow G(\boldsymbol{Z} / m \boldsymbol{Z})
$$

Obviously, $G(\boldsymbol{Z}, m)$ is a normal subgroup (of finite index) in $G(\boldsymbol{Z})$.
Definition 1.1. (i) Two subgroups G_{1} and G_{2} of a group G are said to be commensurable, if $G_{1} \cap G_{2}$ is of finite index in both G_{1} and G_{2}.
(ii) A subgroup Γ of $G(\boldsymbol{R})$ is said to be arithmetic, if it is commensurable with $G(\boldsymbol{Z})$.
(iii) An arithmetic subgroup of $G(\boldsymbol{R})$ containing the principal congruence subgroup of level m is called an arithmetic subgroup of level m.

Gutnik and Pjateckii-S̆apiro determined (upto conjugacy) all the maximal arithmetic subgroups of $S L(n, \boldsymbol{R})$ of a given level. Our purpose here is to determine all the maximal arithmetic subgroups of $S p(2, \boldsymbol{R})$ of a square free level. This is done in article 5. In article 2, we have proved that the denominators of the entries of the elements of such a group are bounded, in article 3 , we prove that the prime divisors of the squares of these denominators are divisors of m. Article 4 is purely technical.

I am indebted to Professor K.G. Ramanathan for suggesting to me this problem and to Professor S. Raghavan for his valuable suggestions.

2. Arithmetic subgroups

Theorem 2.1. Suppose Γ is an arithmetic subgroup of $S p(n, \boldsymbol{R})$ of level m. Then each $X=\left(x_{t j}\right)$ in Γ can be written as

$$
X=1 /(\sqrt{\lambda}) X_{1}
$$

where X_{1} is an integral matrix and λ is a positive integer. Further, $m^{3} x_{i j}$ are algebraic integers and $m^{6} X^{2}$ is an integral matrix.

Proof. Proof is essentially due to [4]. Because Γ is arithmetic, $S p_{n}(\boldsymbol{Z}, m)$ is of finite index, say r in Γ. Let $t=r$! and $\Gamma^{(t)}$ the subgroup generated by the $t^{t h}$ powers of elements of Γ. Then $\Gamma^{(t)}$ is a normal subgroup of Γ and is contained in $S p_{n}(\boldsymbol{Z}, m)$.

Let $X=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ be in Γ. We can choose a rational integer x such that if

$$
X^{*}=\left(\begin{array}{rr}
E & x m E \\
0 & E
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
A^{*} & B^{*} \\
C^{*} & D^{*}
\end{array}\right)
$$

then $\operatorname{det}\left(A^{*}\right)=\operatorname{det}(A+x m C) \neq 0$. Because proving the first assertion for X is equivalent to proving it for X^{*}, we can assume that $\operatorname{det}(A) \neq 0$.

For an $n \times n$ symmetric matrix T in $M(n, Z),\left(\begin{array}{rr}E & t m T \\ 0 & E\end{array}\right)$ and $\left(\begin{array}{rr}E & 0 \\ t m T & E\end{array}\right)$ are in $\Gamma^{(t)}$. Therefore,

$$
\left.\begin{array}{rl}
X\left(\begin{array}{cr}
E & t m T \\
0 & E
\end{array}\right) X^{-1}-\left(\begin{array}{ll}
E & 0 \\
0 & E
\end{array}\right) & =\left(\begin{array}{cc}
t m A T C^{\prime} & t m A T A^{\prime} \\
* & *
\end{array}\right) \tag{7}\\
X^{-1}\left(\begin{array}{ll}
E & 0 \\
t m T & E
\end{array}\right) X-\left(\begin{array}{ll}
E & 0 \\
0 & E
\end{array}\right) & =\left(\begin{array}{cc}
* & * \\
t m A^{\prime} T A & *
\end{array}\right)
\end{array}\right\}
$$

are the integral matrices and hence

$$
\left.\begin{array}{ll}
\operatorname{tm} A T A^{\prime}=\left(y_{i j}\right) & \text { (i) } \tag{8}\\
\operatorname{tm} A^{\prime} T A=\left(z_{i j}\right) & \text { (ii) }
\end{array}\right\}
$$

are in $M(n, Z)$.
Because $\operatorname{det}(A) \neq 0$, for each j, there exists $i=i(j)$, such that $a_{i j} \neq 0$. We put $\lambda_{j}=\frac{1}{a_{i j}}$. Choosing $T=E_{j j}$, we see that

$$
\begin{equation*}
a_{r j} a_{s j}=\frac{y_{r s}}{t m} \tag{9}
\end{equation*}
$$

is a rational number. From (9), $a_{s_{j}}=a_{s_{j}}{ }^{(1)} . \quad \lambda_{j}$ with $\lambda_{j}^{2} \in \boldsymbol{Q}$ and $a_{s_{j}}{ }^{(1)} \in \boldsymbol{Q}$. Therefore $A=A_{1}\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{n}\end{array}\right)$, where $A_{1} \in G L(n, \boldsymbol{Q})$. Now choosing g in Z, such that $T=g A_{1}^{-1}\left(E_{i j}+E_{j i}\right) A_{1}^{\prime-1}$ with $i \neq j$, is integral, we can see from (8)-(ii) that $\lambda_{i} \cdot \lambda_{j} \in \boldsymbol{Q}$. Therefore $A=1 /(\sqrt{\lambda}) \cdot A_{1}$ with λ in \boldsymbol{Q} and A_{1} in $G L(n, \boldsymbol{Q})$. From (7) we see again that $t m A T C^{\prime}$ is in $M(n, Z)$ and hence $C=1 /(\sqrt{\lambda}) C_{1}$ with C_{1} in $M(n, \boldsymbol{Q})$.

By a similar argument

$$
X^{-1}\left(\begin{array}{cc}
E & 0 \\
t m T & E
\end{array}\right) X-\left(\begin{array}{cc}
E & 0 \\
0 & E
\end{array}\right)=\left(\begin{array}{cc}
-t m B^{\prime} T A & * \\
* & *
\end{array}\right)
$$

is integral and hence we get $B=1 /(\sqrt{\lambda}) B_{1}$ with $B_{1} \in M(n, \boldsymbol{Q})$. Using (4) we get $D=1 /(\sqrt{\lambda}) D_{1}, D_{1} \in M(n, \boldsymbol{Q})$. Putting these together we get $X=\frac{1}{\sqrt{\lambda}} \cdot X_{1}$, where

$$
X_{1}=\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right)
$$

It is obvious that we can assume that λ is a positive integer and this proves the first assertion.

Now because $S p_{n}(\boldsymbol{Z}, m)$ is of finite index in Γ, the characteristic roots of any X in Γ are algebraic integers and hence $\operatorname{tr}(X)$ is an algebraic integer. If U is in $S L_{n}(\boldsymbol{Z}, m), T \in M(n, \boldsymbol{Z})$ is symmetric, then

$$
\operatorname{tr}(m U T C)=\operatorname{tr}\left(\begin{array}{ll}
U & 0 \\
0 & U^{\prime-1}
\end{array}\right)\left(\begin{array}{cc}
E & m T \\
0 & E
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)-\operatorname{tr}\left(\begin{array}{ll}
U & 0 \\
0 & U^{\prime-1}
\end{array}\right)\left(\begin{array}{ll}
A & C \\
B & D
\end{array}\right)
$$

is an algebraic integer.
Taking $U=T=E$, it follows that $\operatorname{tr}(m C)$ is an algebraic integer. If $C=\left(c_{i j}\right)$, then for $i \neq j$, taking $U=E+m E_{i j}$ and $T=E$, we see that

$$
m^{2} c_{j_{i}}=\operatorname{tr}\left(m^{2} E_{i j} C\right)=\operatorname{tr}\left(m\left(E_{i j}+m E\right) E C\right)-\operatorname{tr}(m C)
$$

and taking $U=E, T=E_{i i}$,

$$
m c_{i i}=\operatorname{tr}\left(m E_{i i} C\right)
$$

are algebraic integers. Hence $m^{2} C$ is a matrix of algebraic integers. Considering $J^{-1} \Gamma J$ instead of Γ, it is immediate that $m^{2} B$ is a matrix of algebraic integers. Considering

$$
\left(\begin{array}{rr}
E & 0 \\
m E & E
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
* & * \\
C+m A & *
\end{array}\right)
$$

and

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
E & 0 \\
m E & E
\end{array}\right)=\left(\begin{array}{cc}
* & * \\
C+m D & *
\end{array}\right)
$$

it follows that $m^{3} A$ and $m^{3} D$ are matrices of algebraic integers. Now $m^{6} X^{2}=\frac{m^{6}}{\lambda} X_{1}^{2}$ is in $M(2 n, \boldsymbol{Q})$ and its entries are algebraic integers, hence because \boldsymbol{Z} is integrally closed, X^{2} is integral.
3. Let Γ be an arithmetic subgroup of $S p(n, \boldsymbol{R})$ of level m. Then each X in Γ can be written as

$$
X=\frac{1}{\sqrt{ } \lambda(X)} A(X)
$$

where $\lambda(X)$ is a positive integer and $A(X)$ is an integral matrix, such that the ideal generated by its entries is \boldsymbol{Z}. Then the maps

$$
\left.\begin{array}{l}
A: \Gamma \rightarrow M(2 n, \boldsymbol{Z}) \tag{10}\\
\lambda: \Gamma \rightarrow \boldsymbol{Z}
\end{array}\right\}
$$

are well defined. For a rational prime p, let $\alpha_{p}(X)=v_{p}(\lambda(X))$, i.e., the greatest integer l, such that p^{l} divides $\lambda(X)$. Let $\alpha_{p}(\Gamma)=$ l.u.b. $\left\{\alpha_{p}(X) \mid X \in \Gamma\right\}$. Since Γ is arithmetic, $\alpha_{p}(\Gamma)$ is a non-negative integer. Infact, by Th. 2.1, $\alpha_{p}(\Gamma) \leqslant$ $v_{p}\left(m^{6}\right)$. In this section we prove that if $n=2$, then any prime divisor of $\lambda(X)$ for any X in Γ is a divisor of m.

Lemma 3.1. Suppose k is an arbitrary field and $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is in $M(4, k)$ with A, B, C, D two rowed square matrices, such that $A^{\prime} C-C^{\prime} A=0=B^{\prime} D-D^{\prime} B$ and $A^{\prime} D-C^{\prime} B=\beta \cdot E$ with some $\beta \in k$. Then there exist M_{1} and M_{2} in $\operatorname{Sp}(2, k)$, such that $M_{1} M M_{2}=\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$, each block being again a 2×2 matrix.

Proof. Choose P and Q in $S L(n, k)$ such that if

$$
U=\left(\begin{array}{cc}
P & 0 \\
0 & P^{\prime-1}
\end{array}\right) \quad \text { and } \quad V=\left(\begin{array}{cc}
Q & 0 \\
0 & Q^{\prime-1}
\end{array}\right)
$$

then

$$
U M V=\left(\begin{array}{ll}
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) & * \\
\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right) *
\end{array}\right)
$$

If $a=b=0$, then we put $M_{1}=J U, M_{2}=V$. Otherwise, if necessary, replacing U and V by $R U$ and $V R$ respectively, where,

$$
R=\left(\begin{array}{cc}
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & 0 \\
0 & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{array}\right)
$$

we can assume that $a \neq 0$. Multiplying on the left by

$$
\begin{aligned}
& U_{1}=\left(\begin{array}{ccc}
E & & 0 \\
-\frac{c_{11}}{a} & -\frac{c_{21}}{a} \\
-\frac{c_{21}}{a} & 0
\end{array}\right) \quad E \\
& U_{1} U M V=\left(\begin{array}{ll}
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) & * \\
\left(\begin{array}{ll}
0 & c \\
0 & d
\end{array}\right) & *
\end{array}\right) .
\end{aligned}
$$

If $b \neq 0$, one can assume by multiplying on the left by

$$
\left(\begin{array}{ccc}
E & & 0 \\
\left(\begin{array}{cc}
0 & 0 \\
0 & -\frac{d}{b}
\end{array}\right) & E
\end{array}\right)
$$

that $d=0$. The condition $A^{\prime} C-C^{\prime} A=0$ then implies that $c=0$. If $b=0$, again the above condition implies that $c=0$. Putting $M_{1}=U_{2} U_{1} U$ and $M_{2}=V$, where

$$
U_{2}=\left(\begin{array}{ll}
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{rr}
0 & 0 \\
0 & -1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{lr}
1 & 0 \\
0 & 0
\end{array}\right)
\end{array}\right),
$$

the proof is complete.
Lemma 3.2. For a rational prime p, let $\phi_{p}: Z \rightarrow \boldsymbol{F}_{p}$ be the natural map and the map $A=\left(a_{i j}\right) \mapsto \bar{A}=\left(\phi_{p}\left(a_{i j}\right)\right)$ induced by ϕ_{p} from $M(n, \boldsymbol{Z}) \rightarrow M\left(n, \boldsymbol{F}_{p}\right)$ be again denoted by ϕ_{p}. If p does not divide m, then

$$
\begin{equation*}
\phi_{p}: S L_{n}(Z, m) \rightarrow S L\left(n, \boldsymbol{F}_{p}\right) \tag{11}
\end{equation*}
$$

is surjective. Hence if $k=\boldsymbol{F}_{p}$ in lemma 3.1, then there exist L_{i} in $S p_{2}(\boldsymbol{Z}, m)$, such that $\phi_{p}\left(L_{i}\right)=M_{i}, i=1,2$.

Proof. It is enough to remark that $S L\left(n, \boldsymbol{F}_{p}\right)$ is generated by the matrices of the form $E+x E_{i j}, i \neq j$ and $x \in \boldsymbol{F}_{p}$.

Theorem 3.3. Suppose Γ is an arithmetic subgroup of $S p(2, \boldsymbol{R})$ of level m. If for a rational prime $p, \alpha_{p}(\Gamma)>0$, then p divides m.

Proof. Suppose p does not divide m. Let $X \in \Gamma$, such that $\alpha_{p}(X)>0$. By lemma 3.2, there exist L_{1} and L_{2} in $S p_{2}(Z, m)$ such that $\phi_{p}\left(L_{1} A(X) L_{2}\right)=$ $M_{1} \overline{A(X)} M_{2}=\left(\begin{array}{cc}A & B \\ 0 & D\end{array}\right)$. Because $\overline{A(X)} \neq 0$, we can assume that $A \neq 0$. Let $P, Q \in S L_{2}(Z, m)$, such that $\bar{P} A \bar{Q}=\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right)$ with $a_{1} \neq 0$. If

$$
U=\left(\begin{array}{ll}
P & 0 \\
0 & P^{\prime-1}
\end{array}\right) \quad \text { and } \quad V=\left(\begin{array}{cc}
Q & 0 \\
0 & Q^{\prime-1}
\end{array}\right),
$$

we put $L=U L_{1} A(X) L_{2} V$. Then

$$
\bar{L}=\left(\begin{array}{cc}
\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right) & * \\
0 & *
\end{array}\right)
$$

with $a_{1} \neq 0$. If $Y=1 /(\sqrt{\lambda(X)}) L$, we can see that Y is in Γ. Hence $\alpha_{p}\left(Y^{l}\right)>$ $v_{p}\left(m^{6}\right)$, for a sufficiently large l and this is a contradiction.
4. Suppose p is a rational prime, such that $\alpha_{p}(\Gamma)>0$. We define

$$
\sum_{p}(\Gamma)=\left\{A(X) \mid X \text { in } \Gamma \text { and } \alpha_{p}(X>0\}\right.
$$

and

$$
\sum_{p}^{*}(\Gamma)=\left\{A(X) \mid X \text { in } \Gamma, \alpha_{p}(X)=\alpha_{p}(\Gamma)\right\}
$$

Obviously, $\sum_{\phi}^{*}(\Gamma) \subseteq \Sigma_{p}(\Gamma)$. We have written each X in Γ uniquely as

$$
X=\frac{1}{\sqrt{\lambda(X)}} A(X)
$$

where $\lambda(X)$ is a positive integer and the ideal generated by the coefficients of $A(X)$ over \boldsymbol{Z} is \boldsymbol{Z} itself. Let $A(X) \in \sum_{p}^{*}(\Gamma)$ and $A(Y) \in \sum_{p}(\Gamma)$. Then

$$
\begin{equation*}
X Y=\frac{1}{\sqrt{\lambda(X) \cdot \lambda(Y)}} A(X) \cdot A(Y) \in \Gamma \tag{*}
\end{equation*}
$$

Since

$$
\alpha_{p}(\Gamma)=\alpha_{p}(X)=v_{p}(\lambda(X)) \geq v_{p}(\lambda(Y))=\alpha_{p}(Y)>0
$$

we have $v_{p}(\lambda(X) \cdot \lambda(Y))>\alpha_{p}(\Gamma)$. In view of $(*), p$ has to divide the ideal generated by the coefficients of $A(X) A(Y)$, otherwise $\alpha_{p}(X Y)>\alpha_{p}(\Gamma)$. Therefore,

$$
\begin{equation*}
\phi_{p}\left(\sum_{p}^{*}(\Gamma) \sum_{p}(\Gamma)\right)=\phi_{p}\left(\sum_{p}(\Gamma) \sum_{p}^{*}(\Gamma)\right)=0 \tag{12}
\end{equation*}
$$

Consider the 4-dimensional vector space $V=\boldsymbol{F}_{p}{ }^{4}$. Let $V_{p}(\Gamma)$ be the subspace of V generated by $\phi_{p}\left(\sum_{p}^{*}(\Gamma)\right) V$ over \boldsymbol{F}_{p}. Then $\alpha_{p}(\Gamma)>0$ implies that

$$
0<\operatorname{dim} V_{p}(\Gamma)<4 .
$$

We need to get some more informations about $V_{p}(\Gamma)$. For any field k, let us denote by $S p(n, k)_{0}$ the subgroup of $S p(n, k)$ generated by the elements of the form

$$
\left(\begin{array}{ll}
E & T \\
0 & E
\end{array}\right),\left(\begin{array}{cc}
0 & E \\
-E & 0
\end{array}\right) \text { and }\left(\begin{array}{ll}
U & 0 \\
0 & U^{\prime-1}
\end{array}\right)
$$

where T is an $n \times n$ symmetric matrix over k and $U \in S L(n, k)$.
Lemma 4.1. Suppose σ is in $S p\left(2, F_{p}\right)_{0}$ and $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is in $\sigma^{-1} \Sigma_{p}(\Gamma) \sigma$. Then $\left(\begin{array}{rr}D^{\prime} & -B^{\prime} \\ -C^{\prime} & A^{\prime}\end{array}\right)$ is also in $\sigma^{-1} \Sigma_{p}(\Gamma) \sigma$.

Proof. This lemma is a trivial consequence of (5). It is easy to check that $\phi_{p}\left(S_{p}(2, \boldsymbol{Z})\right)$ contains $S_{p}\left(2, \boldsymbol{F}_{p}\right)_{0}$. If F is in $S_{p}(2, \boldsymbol{Z})$, such that $\phi_{p}(F)=\sigma$, then

$$
\left(\begin{array}{rr}
D^{\prime} & -B^{\prime} \\
-C^{\prime} & A^{\prime}
\end{array}\right)=\overline{F^{-1}} \overline{A\left(X^{-1}\right)} \bar{F}=\sigma^{-1} \overline{A\left(X^{-1}\right)} \sigma
$$

and $A\left(X^{-1}\right)$ is in $\sum_{p}(\Gamma)$.
Lemma 4.2. If $\alpha_{p}(\Gamma)=1$, then $\operatorname{dim} V_{p}(\Gamma)=2$. If $\alpha_{p}(\Gamma)>1$, then $\operatorname{dim} V_{p}(\Gamma) \leqslant 2$. If $\operatorname{dim} V_{p}(\Gamma)=2$, then $V_{p}(\Gamma)$ is not a hyperbolic space (with respect to the skew symmetric bilinear form f associated with J). Hence there exists σ in $S p\left(2, \boldsymbol{F}_{p}\right)_{0}$, such that if $\alpha_{j}=\sigma\left(e_{j}\right)$, where

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \cdots, e_{4}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

is the standard basis for V, then $V_{p}(\Gamma)=\underset{j=1}{\operatorname{dim}_{p}(\Gamma)} \boldsymbol{F}_{p} \alpha_{j}$.
Proof. We have already seen that $4>\operatorname{dim} V_{p}(\Gamma)>0$. We first rule out the case $\operatorname{dim} V_{p}(\Gamma)=3$. If $\operatorname{dim} V_{p}(\Gamma)=3$, then $V_{p}(\Gamma)$ contains a hyperbolic subspace, say $\left\langle\alpha_{1}, \alpha_{3}\right\rangle$, such that there exists another hyperbolic subspace $\left\langle\alpha_{2}, \alpha_{4}\right\rangle$ with

$$
\begin{equation*}
V=\left\langle\alpha_{1}, \alpha_{3}\right\rangle \perp\left\langle\alpha_{2}, \alpha_{4}\right\rangle \tag{13}
\end{equation*}
$$

and $V_{p}(\Gamma)=\oplus_{j=1}^{3} \boldsymbol{F}_{p} \alpha_{j}$. Now V can also be written as

$$
\begin{equation*}
V=\left\langle e_{1}, e_{3}\right\rangle \perp\left\langle e_{2}, e_{4}\right\rangle \tag{14}
\end{equation*}
$$

as an orthogonal sum of hyperbolic spaces; the linear transformation defined by

$$
\begin{equation*}
\sigma\left(e_{j}\right)=\alpha_{j} \tag{15}
\end{equation*}
$$

leaves f invariant. Any $\sigma \in S p(2, k)$ for an arbitrary field k can be written as $\sigma=\alpha_{1} \cdot \sigma_{2}$, where σ_{1} is the product of the matrices of the form $\left(\begin{array}{cc}E & T \\ 0 & E\end{array}\right)$ and $\left(\begin{array}{rr}0 & E \\ -E & 0\end{array}\right), T \in M(2, k)$ is symmetric and $\sigma_{2}=\left(\begin{array}{cc}U & 0 \\ 0 & U^{\prime-1}\end{array}\right)$, with $U \in G L(2, k)$. Hence there exists $\sigma^{*} \in S p(n, k)_{0}$ and $\beta_{i} \in k^{*}$, such that $\sigma\left(e_{i}\right)=\beta_{i} \cdot \sigma^{*}\left(e_{i}\right)$. Therefore, we can assume that σ appearing in (15) is in $S p\left(2, \boldsymbol{F}_{p}\right)_{0}$. From (12) it follows that for any $A(X)$ in $\sum_{p}(\Gamma), \sigma^{-1}(A \overline{(X)} \sigma)\left(e_{j}\right)=0$ for $j=1,2,3$. Hence

$$
\sigma^{-1} \overline{A(X)} \sigma=\left(\begin{array}{cccc}
0 & 0 & 0 & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & *
\end{array}\right)
$$

By lemma 4.1 for each $A(X)$ in $\sum_{p}(\Gamma)$,

$$
\sigma^{-1} \overline{A(X)} \sigma=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & * \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Now dimension of \boldsymbol{F}_{p}-subspace generated by $\sigma^{-1} \overline{\sum_{p}^{*}(\Gamma)} \sigma$ is equal to $\operatorname{dim} V_{p}(\Gamma)$ $=3$ which is a contradiction.

Now we suppose that $\alpha_{p}(\Gamma)=1$ and $\operatorname{dim} V_{p}(\Gamma)=1$. For a suitable α_{1} in $V_{p}(\Gamma)$, we write V as in (13) and define σ by (15). Then for each $A(X)$ in $\sum_{p}^{*}(\Gamma)$,

$$
\sigma^{-1} \overline{A(X)} \sigma=\left(0 C_{2} C_{3} C_{4}\right),
$$

where $C_{i}=\left(\begin{array}{c}c_{i 1} \\ c_{i 2} \\ c_{i 3} \\ c_{i 4}\end{array}\right)$ and $C_{i}=\gamma C_{j}$ for some γ in \boldsymbol{F}_{p}. Choosing σ_{0} suitably in $S \boldsymbol{p}\left(2, \boldsymbol{F}_{p}\right)_{0}$ and replacing σ by $\sigma \cdot \sigma_{0}$, we can assume that

$$
\sigma^{-1} \overline{A(X)} \sigma=\left(\begin{array}{cc}
0 & \left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right) \tag{16}\\
0 & 0
\end{array}\right), \quad x \neq 0
$$

If X is in Γ, such that $\alpha_{p}(X)=1$, it follows that $\operatorname{det}(X)=1$ is divisible by p, a contradiction.
Finally, we prove that if $\operatorname{dim} V_{p}(\Gamma)=2$, then it is not a hyperbolic space. Suppose it is. Then $V_{p}(\Gamma)=\left\langle\alpha_{1}, \alpha_{3}\right\rangle$ and $V=\left\langle\alpha_{1}, \alpha_{3}\right\rangle \perp\left\langle\alpha_{2}, \alpha_{4}\right\rangle$ and σ defined by $\sigma\left(e_{j}\right)=\alpha_{j}$ leaves f invariant. Thus each element of $\sigma^{-1} \sum_{p}(\Gamma) \sigma$ is of the form

$$
\binom{\left(\begin{array}{ll}
0 & 0 \\
0 & *
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & *
\end{array}\right)}{\left(\begin{array}{ll}
0 & 0 \\
0 & *
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & *
\end{array}\right)}
$$

We choose σ in such a fashion that there exists $\sigma^{-1} \overline{A(X)} \sigma$ in $\sigma^{-1} \overline{\sum_{p}^{*}(\bar{\Gamma}) \sigma}$ with 0 in the $(4,4)^{t h}$ entry. But this can be seen to contradict the fact

$$
\left.\sigma^{-1}(\overline{A(X)}) \sigma\right)^{2}=0
$$

and this proves the lemma.
Let σ be as in Lemma 4.2. Then for all $A(X)$ in $\sum_{p}(\Gamma)$,

$$
\sigma^{-1} \overline{A(X)} \sigma=\left(\begin{array}{ll}
0 & * \tag{17}\\
0 & 0
\end{array}\right)
$$

each block being 2×2 matrix.
Lemma 4.3. Suppose $\alpha_{p}(\Gamma)>2$. Then there exits an F in $S p(2, Z)$, such that if $\Gamma_{1}=F^{-1} \Gamma F$, then
(i) For each X in Γ_{1} with $\alpha_{p}(X)=\alpha_{p}(\Gamma)$,

$$
A(X)=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

with $C \equiv 0\left(\bmod p^{2}\right)$ and $A \equiv D \equiv 0(\bmod p)$.
(ii) Γ_{1} contains $S p_{2}(\boldsymbol{Z}, m)$.

Proof. Let σ be given by lemma 4.2 and $F \in S p(2, Z)$, such that $\phi_{p}(F)=\sigma$.
(i) Let $\operatorname{dim} V_{p}(\Gamma)=2$. We fix $A\left(X_{0}\right)=\left(\begin{array}{cc}p A_{0} & B_{0} \\ p C_{0} & p D_{0}\end{array}\right)$ in $\sum_{p}^{*}\left(\Gamma_{1}\right) ; A_{0}, B_{0}, C_{0}$, D_{0} being integral matrices. We can find $T \in S L(2, Z)$, such that if $\sigma_{0}=\phi_{p}(T)$, then $\sigma_{0}^{-1} \bar{B}_{0} \sigma_{0}=\left(\begin{array}{ll}b_{1} & 0 \\ b_{12} & b_{2}\end{array}\right), \quad b_{1} \neq 0$. Therefore, if necessary, replacing F by $F\left(\begin{array}{ll}T & 0 \\ 0 & T^{\prime-1}\end{array}\right),((17)$ still holds and $)$ we can assume that
with p not dividing $b_{11}^{(0)}$. Because $\alpha_{p}\left(\Gamma_{1}\right)>2$, this implies that if $A(X)$ is in $\sum_{p}^{*}\left(\Gamma_{1}\right)$ with $A(X)=\left(\begin{array}{cc}p A & B \\ p C & p D\end{array}\right)$ and $A\left(X_{0}\right) \cdot A(X)=\left(\begin{array}{cc}* & * \\ * & G\end{array}\right)$, then $G \equiv 0\left(\bmod p^{2}\right)$ and hence first row of C is $\equiv 0\left(\bmod p^{2}\right)$. Because $\operatorname{dim} V_{p}(\Gamma)=2$, we can choose $A\left(X_{1}\right)$ in $\sum_{p}^{*}\left(\Gamma_{1}\right)$, such that all entries in its 4 th column are not divisible by p. If $A\left(X_{1}\right) \cdot A(X)=\left(\begin{array}{cc}* & * \\ * & G_{1}\end{array}\right)$, then $G_{1} \equiv 0\left(\bmod p^{2}\right)$ and it follows that second row of C is also $\equiv 0\left(\bmod p^{2}\right)$.
(ii) $\operatorname{dim} V_{p}(\Gamma)=1$. We can assume that for each element $A(X)$ of $\sum_{p}^{*}\left(\Gamma_{1}\right)$, (16) is true. Because $\alpha_{p}(\Gamma)>2$, using similar arguments as earlier, one can see that for each $A(X)$ in $\sum_{p}^{*}\left(\Gamma_{1}\right), \sigma^{-1} A(X) \sigma=$

$$
\left(\begin{array}{ll}
\left(\begin{array}{ll}
p() & p() \\
p^{2}() & p()
\end{array}\right) & \left(\begin{array}{ll}
x & p() \\
p() & p()
\end{array}\right) \\
\left(\begin{array}{ll}
p^{2}() & p^{2}() \\
p^{2}() & p()
\end{array}\right)
\end{array}\right), p \times x\left(\begin{array}{ll}
p() & p^{2}() \\
p() & p()
\end{array}\right), p \nmid
$$

Since m is square-free, for a suitable r, s and t in Z and multiplying X on the right or left by matrices of the form

$$
\left.\left(\begin{array}{cc}
E & 0 \\
r m & s m \\
s m & 0
\end{array}\right) \quad E\right) \text { or }\left(\begin{array}{cc}
\left(\begin{array}{cc}
1 & 0 \\
-t m & 1
\end{array}\right) & 0 \\
0 & \left(\begin{array}{cc}
1 & t m \\
0 & 1
\end{array}\right)
\end{array}\right)
$$

one can see that there exist X_{1} and X_{2} in Γ_{1} with $\alpha_{p}\left(X_{1}\right)=\alpha_{p}\left(X_{2}\right)=\alpha_{p}\left(\Gamma_{1}\right)$, such that

$$
\begin{aligned}
& A\left(X_{1}\right)=\left(\begin{array}{ccccc}
p^{2}(~) & p^{2}() & y & p^{2}() \\
* & \cdots \cdots \cdots \cdots \cdots \cdots & * \\
\vdots & & & \\
* & \cdots & \cdots \cdots \cdots \cdots & *
\end{array}\right) \\
& A\left(X_{2}\right)=\left(\begin{array}{ccccc}
p^{2}() & p^{2}() & z & u \cdot p \\
* & \cdots \cdots \cdots \cdots \cdots \cdots & * \\
\vdots & & & & \\
* & \cdots & \cdots \cdots \cdots \cdots \cdots & * \cdots
\end{array}\right)
\end{aligned}
$$

with p not dividing y, z and u. Now $\alpha_{p}\left(\Gamma_{1}\right)>2$ implies that $p^{3} \mid A\left(X_{i}\right) A(X)$, $i=1$, 2. From $p \mid A\left(X_{1}\right) A(X)$ it follows that

$$
A(X)=\left(\begin{array}{llll}
p() & p() & x & p() \\
p^{3}() & p() & p() & p() \\
p^{3}() & p^{3}() & p() & p^{3}() \\
p^{3}() & p() & p() & p()
\end{array}\right)
$$

whereas $p^{3} \mid A\left(X_{2}\right) A(X)$ implies now that

$$
A(X)=\left(\begin{array}{cc}
p A & B \\
p^{2} C & p D
\end{array}\right)
$$

A, B, C, D being integral matrices and this proves (i). (ii) is trivial.
Now suppose Γ is maximal. From lemma 4.3, it follows that if $\alpha_{p}\left(\Gamma_{1}\right)>2$, then the group generated by Γ_{1} and the matrices of the form

$$
\left(\begin{array}{ll}
E+m V_{11} & \frac{m}{p} V_{12} \\
m p V_{21} & E+m V_{22}
\end{array}\right),
$$

where $V_{i j} \in M(2, \boldsymbol{Z})$, such that $\left(\begin{array}{cc}E+m V_{11} & m V_{12} \\ m V_{21} & E+m V_{22}\end{array}\right)$ is in $S p_{2}(\boldsymbol{Z}, m)$, is an arithmetic subgroup of $S p(2, \boldsymbol{R})$ and because Γ_{1} is maximal, must coincide with Γ_{1}. Now if $P=\left(\begin{array}{cc}p E_{2} & 0 \\ 0 & E_{2}\end{array}\right), U=F P$, where F is given by lemma 4.3 and $\Gamma_{2}=$ $U^{-1} \Gamma U$, then Γ_{2} has the following properties:
(1) $\Gamma_{2} \subseteq S p(2, \boldsymbol{R})$ and is a maximal arithmetic subgroup of level m.
(2) If $\alpha_{p}(\Gamma)>2$, then $\alpha_{p}\left(\Gamma_{2}\right) \leqslant \alpha_{p}(\Gamma)-2$
(3) $\alpha_{q}\left(\Gamma_{2}\right) \leqslant \alpha_{q}(\Gamma)$ for all primes $q \neq p$.

Hence if we repeat this process sufficiently many times for each prime, we get the following

Theorem 4.4. Suppose Γ is a maximal arithmetic subgroup of $S p(2, \boldsymbol{R})$ of level m. Then there exists an arithmetic subgroup Γ^{*} of $S p(2, \boldsymbol{R})$ of level m, such that there exists $U \in S p(2, \boldsymbol{Q})$, such that $\Gamma=U^{-1} \Gamma^{*} U$ and $0 \leqslant \alpha_{p}\left(\Gamma^{*}\right) \leqslant 2$ for all p.
5. Let $S_{1}=\left\{p_{1}, \cdots, p_{s}\right\}$ and $S_{2}=\left\{p_{s-1}, \cdots, p_{s+t}\right\}$ be disjoint sets of rational primes. For $R_{1}=\left\{q_{1}, \cdots, q_{f}\right\} \subseteq S_{1}$ and $R_{2}=\left\{q_{s+1}, \cdots, q_{s+g}\right\} \subseteq S_{2}$, we put

$$
\begin{array}{ll}
u=p_{1} \cdots p_{s}, & v=p_{s+1} \cdots p_{s+t}, \\
x=q_{1} \cdots q_{f}, & y=q_{s+1} \cdots q_{s+g} .
\end{array}
$$

Let
$\Gamma\left(S_{1}, R_{1} ; S_{2}, R_{2}\right)=\frac{1}{y \sqrt{x}}\left\{X=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \left\lvert\, A=\left(\begin{array}{ll}a_{11} x y & a_{12} x y \\ a_{21} x y & a_{22} x y\end{array}\right)\right.\right.$,
$B=\left(\begin{array}{ll}b_{11} & b_{12} v \\ b_{21} v & b_{22} v\end{array}\right), C=\left(\begin{array}{ll}c_{11} u y^{2} & c_{12} u y^{2} \\ c_{21} u y^{2} & c_{22} u y\end{array}\right), \quad D=x y\left(\begin{array}{ll}d_{11} & d_{12} \\ d_{21} & d_{22}\end{array}\right)$,
where $a_{i j}, b_{i j}, c_{i j}, d_{i j} \in \boldsymbol{Z}$ and $\left.A^{\prime} C-C^{\prime} A=0=B^{\prime} D-D^{\prime} B ; A^{\prime} D-C^{\prime} B=x y^{2} E\right\}$.
Let $\Gamma\left(S_{1}, S_{2}\right)$ be the subgroup generated by $\underset{\substack{R_{1}, R_{2} \\ R_{i} \subseteq S_{i}}}{\cup} \Gamma\left(S_{1}, R_{1} ; S_{2}, R_{2}\right)$. We put
$\Gamma_{0}\left(S_{1}, S_{2}\right)=\Gamma\left(S_{1}, \phi ; S_{2}, \phi\right)$.
Theorem 5.1. $\Gamma\left(S_{1}, S_{2}\right)$ is a subgroup of $S p(2, \boldsymbol{R})$ and $\Gamma_{0}\left(S_{1}, S_{2}\right)$ is a normal subgroup of $\Gamma\left(S_{1}, S_{2}\right)$. Further, $\left\{\Gamma\left(S_{1}, R_{1} ; S_{2}, R_{2}\right) \mid R_{i} \subseteq S_{i}, i=1,2\right\}$ are generators of $G=\Gamma\left(S_{1}, S_{2}\right) / \Gamma_{0}\left(S_{1}, S_{2}\right)$ and each element of G is of order 2 and hence G is Abelian. Order of G is 2^{k}, where $s \leqslant k \leqslant 2^{s+t}$. Therefore, $\Gamma\left(S_{1}, S_{2}\right)$ is arithmetic.

Proof. All statements are either trivial or can be easily checked.
Theorem 5.2. $\Gamma(\phi, \phi)=S p(2, Z)$ and if $S_{1} \neq S_{1}^{\prime}$ or $S_{2} \neq S_{2}^{\prime}$, then $\Gamma\left(S_{1}, S_{2}\right)$ is not conjugate to $\Gamma\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$.

Proof. If there exists $T \in G L(4, \boldsymbol{R})$, such that $T^{-1} \Gamma\left(S_{1}, S_{2}\right) T=\Gamma\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$, then we can assume that $T \in G L(4, \boldsymbol{Q})$.
(i) If p is in $S_{1}=\left\{p_{1}, \cdots, p_{s}\right\}$ but not in S_{1}^{\prime}, then it is enough to prove that $\Gamma\left(S_{1}, S_{2}\right)$ contains an element of the form $X=\frac{1}{\sqrt{p}} X_{1}, X_{1} \in M(4, Z)$, because, then $T^{-1} X T$ cannot be in $\Gamma\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$. For this let $u=p_{1} \cdots p_{s}, u_{j}=\frac{u}{p_{j}}$. Choose $a_{j}^{(1)}$ and $a_{j}^{(2)}$ in \boldsymbol{Z}, such that

$$
p_{j} a_{j}^{(1)} a_{j}^{(2)} \equiv 1\left(\bmod u_{j}^{2}\right) ; \quad j=1, \cdots, s
$$

Let

$$
b_{j}=\frac{b_{j} a_{j}^{(1)} a_{j}^{(2)}-1}{u_{j}^{2}}
$$

and

$$
X_{j}=\left(\begin{array}{ll}
p_{j} a_{j}^{(1)} E & u_{j} E \\
p_{j} u_{j} b_{j} E & p_{j} a_{j}^{(2)} E
\end{array}\right)
$$

Then for each $j, \frac{1}{\sqrt{p_{j}}} \cdot X_{j}$ is in $\Gamma\left(S_{1}, S_{2}\right)$.
(ii) If $S_{2} \neq S_{2}^{\prime}$, let us assume that $q_{1} \in\left\{q_{1}, \cdots, q_{h}\right\}-S_{2}^{\prime}$, and $S_{2}=\left\{q_{1}, \cdots, q_{h}\right\}$. Again it is enough to prove that $\Gamma\left(S_{1}, S_{2}\right)$ contains an element of the from $\frac{1}{\sqrt{p_{j}}} \cdot \frac{1}{q_{1}} \cdot Y_{1}$ with $Y_{1} \in M(4, Z)$. Let X_{1} be as in the case (i) above and we simply put

$$
Y_{1}=\left(\begin{array}{ll}
q_{1} p_{1} a_{1}^{(1)} E & u_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & q_{1}
\end{array}\right) \\
p_{1} u_{1} b_{1}\left(\begin{array}{cc}
q_{1}^{2} & 0 \\
0 & q_{1}
\end{array}\right) & q_{1} p_{1} a_{1}^{(2)} E
\end{array}\right) .
$$

Theorem 5.3. Any maximal arithmetic subgroup Γ of $S p(2, \boldsymbol{R})$ of squarefree level m is conjugate to $\Gamma\left(S_{1}, S_{2}\right)$ for some disjoint subsets S_{1} and S_{2} of prime divisors of m.

Proof. By theorem 4.4, we can find a subgroup Γ^{*} of $S p(2, \boldsymbol{R})$, such that $0 \leqslant \alpha_{p}\left(\Gamma^{*}\right) \leqslant 2$ for all p and Γ is conjugate to Γ^{*}. If $\alpha_{p}\left(\Gamma^{*}\right)=0$ for all p, then $\Gamma^{*} \subseteq S p(2, \boldsymbol{Z})=\Gamma(\phi, \phi)$ and since Γ is maximal, $\Gamma^{*}=S p(2, \boldsymbol{Z})$. Let p_{1}, \cdots, p_{s} be the primes for which $\alpha_{p}\left(\Gamma^{*}\right)=1$ and p_{s+1}, \cdots, p_{s+w}, the one for which $\alpha_{p}\left(\Gamma^{*}\right)=2$. Then by theorem 3.3, p_{j} divides m for all j.

For each j, let σ_{j} be the element of $S p\left(2, \boldsymbol{F}_{p_{j}}\right)_{0}$ given by lemma 4.2, with Γ replaced by Γ^{*}. Then for each X in Γ^{*} with $\alpha_{p}(X)=\alpha_{p}\left(\Gamma^{*}\right)$,

$$
\sigma_{j}^{-1} \phi_{p_{j}}(A(X)) \sigma_{j}=\left(\begin{array}{ll}
0 & * \\
0 & 0
\end{array}\right)
$$

and if $j \leqslant s$ or $j \geqslant s+t+1$, where t is such that $p_{s+t+1}, \cdots, p_{s+w}$ are supposed to be all the prime divisors of m for which $\alpha_{p_{j}}\left(\Gamma^{*}\right)=2$ and $\operatorname{dim} V_{p_{j}}\left(\Gamma^{*}\right)=2$, then for all $X \in \Gamma^{*}$,

$$
\sigma_{j}^{-1} \phi_{p_{j}}(A(X)) \sigma_{j}=\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) .
$$

It can be checked that for each $j, \phi_{p_{j}}\left(S p_{2}\left(\boldsymbol{Z}, \frac{p_{1} \cdots p_{s+w}}{p_{j}}\right)\right)$ contains $S p\left(2, \boldsymbol{F}_{p_{j}}\right)_{0}$ and for F_{j} in $S p_{2}\left(\boldsymbol{Z}, \frac{p_{1} \cdots p_{s+w}}{p_{j}}\right)$ and $i \neq j, \phi_{p_{j}}\left(F_{j}\right)=E . \quad$ Let $F_{j} \in S p_{2}\left(\boldsymbol{Z}, \frac{p_{1} \cdots p_{s+w}}{p_{j}}\right)$, such that $\phi_{p_{j}}\left(F_{j}\right)=\sigma_{j}$ and for $j>s+t$, let $G_{j}=F_{j}\left(\begin{array}{cc}1 / p_{j} E_{2} & 0 \\ 0 & E_{2}\end{array}\right)$. If $F=F_{1} \cdots F_{s+t} G_{s+t+1} \cdots G_{s+w}$, then it is easy to check that $F^{-1} \Gamma^{*} F \subseteq \Gamma\left(S_{1}, S_{2}\right)$, where $S_{1}=\left\{p_{1}, \cdots, p_{s}\right\}$ and $S_{2}=\left\{p_{s+1}, \cdots, p_{s+t}\right\}$. Maximality implies that $F^{-1} \Gamma F=\Gamma^{*}\left(S_{1}, S_{2}\right)$.

Corollary 5.4. Suppose Γ is an arithmetic subgroup of $S p(2, \boldsymbol{R})$ of squarefree level m. Then $[\Gamma / \Gamma \cap S p(2, Z)]=3^{1}$ for some non-negative integer l.

Proof. $\quad 3^{k}=[\Gamma / \Gamma \cap S p(2, Z)]\left[\Gamma \cap S p(2, Z) / S p_{2}(\boldsymbol{Z}, m)\right]$.
Corollary 5.5. Let $m=p_{1} \cdots p_{s}, p_{i} \neq p_{j}$, if $i \neq j$. Then the number (up to conjugacy) of maximal arithmetic subgroups of $\Gamma \subseteq S p(2, \boldsymbol{R})$ of level m is 3^{s}. If Γ is such a subgroup and $\Gamma \subseteq S p(2, \boldsymbol{Q})$, then there exists $T \in S p(2, \boldsymbol{Q})$ such that $\Gamma=$ $T^{-1} S p(2, Z) T$.

Proof. The numbers of tuples $\left(S_{1}, S_{2}\right)$, such that S_{1} and S_{2} are disjoint subsets of $\left\{p_{1}, \cdots, p_{s}\right\}$ is 3^{s}.

Johns Hopkins University

References

[1] A. Borel: Density properties for certain subgroups of semi-simple groups without compact components, Ann. of Math. 72 (1960), 179-188.
[2] A. Borel: Density and maximality of arithmetic subgroups, J. Reine Angew. Math. 224 (1966), 78-89.
[3] L.A. Gutnik and I.I. Pjateckii-Šapiro,: Maximal discrete subgroups of the unimodular group, Trans. Moscow Math. Soc. (1966), AMS translation, 316-332.
[4] K.G. Ramanathan: Discontinuous groups II, Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. 22 (1964), 145-164.

