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1. Let & be a field and # a positive rational integer. 'The symplectic group
Sp(n, k) of order n over k is the group of 2n X 2n matrices

X:(‘é g) (1)

over k, each 4, B, C, D being an n X n matrix, such that
XJjX =], (2)

where X’ denotes the transpose of the matrix X and

1=( 5 o),

E being nxn unit matrix. Let f: k< k* —k be the skew symmetric bilinear
form associated with /. Then Sp(n, k) can be identified with the group of auto-
morphisms ¢ of 2rn-dimensional vector space k%, such that o leaves f invariant,
ie.,

flox, ay) = f(x, y) (3)
for all x, y in k. It is easy to check that X is in Sp(n, k), if and only if
AC—-C'A=0=BD-DB ) (4)
AD—C'B=E J

D —B
X—l-__(“_(w A,) (5)

and for X in Sp(n, k),

The group Sp(n, k) is generated by the matrices of the form

(ﬁ 2) (g Ou) and (..2 Ié) (6)
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where T is an n X 7 symmetric matrix and U is in GL(n, k).

For real symplectic group Sp(n, R), the Siegel modular group Sp(n, Z) is
the subgroup of Sp(n, R) consisting of integral matrices. Sp(n; Z) is generated
by integral matrices of the form (6).

Suppose GSGL(n, C) is a matrix algebraic group defined over Q and let
for a subring 4 of C, G(A) denote the group of A-rational points of G. For a
positive rational integer m, the principal congruence subgroup G(Z,m) of level m
is the kernel of the natural map

w: G(Z)— G(Z|mZ) .
Obviously, G(Z, m) is a normal subgroup (of finite index) in G(Z).

DeriniTION 1.1, (1) Two subgroups G, and G, of a group G are said to
be commensurable, if G,N G, is of finite index in both G, and G,.

(i1) A subgroup T of G(R) is said to be arithmetic, if it is commensurable
with G(Z).

(iii) An arithmetic subgroup of G(R) containing the principal congruence
subgroup of level m is called an arithmetic subgroup of level m.

Gutnik and Pjateckii-éapiro determined (upto conjugacy) all the maximal
arithmetic subgroups of SL(n, R) of a given level. Our purpose here is to deter-
mine all the maximal arithmetic subgroups of Sp(2, R) of a square free level.
This is done in article 5. In article 2, we have proved that the denominators of
the entries of the elements of such a group are bounded, in article 3, we prove that
the prime divisors of the squares of these denominators are divisors of m. Article
4 is purely technical.

I am indebted to Professor K.G. Ramanathan for suggesting to me this
problem and to Professor S. Raghavan for his valuable suggestions.

2. Arithmetic subgroups

Theorem 2.1. Suppose T is an arithmetic subgroup of Sp(n, R) of level m.
Then each X==(x,;) in T' can be written as

X =1/(N)X,,

where X, is an integral matrix and \ is a positive integer. Further, m’x;; are
algebraic integers and mSX? is an integral matrix.

Proof. Proof is essentially due to [4]. Because T is arithmetic, Sp(Z, m)
is of finite index, say » in T. Let ¢z=7! and T"” the subgroup generated by the
t"" powers of elements of T. Then T'® is a normal subgroup of I" and is con-
tained in Sp,(Z, m).

Let X:(‘é g) bein . We can choose a rational integer x such that if
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X% — (E xmkE (A B\ (A* B*
—\o E) c D) \c* D%,
then det(A*)=det(A+xmC)=0. Because proving the first assertion for X is

equivalent to proving it for X*, we can assume that det(4)==0.

For an nxXn symmetric matrix T in M(n, Z), (E zmT) and ( E O)

0 E tmT E
arc in T'®@, Therefore,
(E tmT) (E 0) tmATC" tmATA’
X Xt =
E 0 E 0 * * (7)
e B2
tmT E 0 FE tmA'TA *
are the integral matrices and hence
mATA' = () () } 8
tmA'TA = (2;) (ii) (8)

are in M(n, Z).
Because det(4)=0, for each j, there exists i=i(j), such that 4;;%0. We put

A :l Choosing T=E , we see that

“r;'“s;':f;'; (9)

is a rational number. From (9), asj:asj“). N with A€ @ and as].(”EQ.

Therefore A :Al<gl 7?), where 4,€GL(n, Q). Now choosing g in Z, such

that T=gArT'(E;;+E;;)A{~" with %, is integral, we can see from (8)-(ii) that
Nieh;EQ. Therefore A=1/(\/\)-4, with A in @ and 4, in GL(n, Q). From
(7) we see again that tmATC’ is in M(n, Z) and hence C=1/(/ ) C, with C,
in M(n, Q).

By a similar argument

X“( E O)X (E 0)_ —tmB'TA
tmT E 0 EJ * *)

is integral and hence we get B=1/(x/\) B, with BieM(n, Q). Using (4) we
get D=1/(x/N)D,, D,€M(n, Q). Putting these together we get X :VIT.X“

4, B
where X, =
¢, D/
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It is obvious that we can assume that \ is a positive integer and this proves the
first assertion.

Now because Sp,(Z, m) is of finite index in T, the characteristic roots of
any X in I are algebraic integers and hence #/(X) is an algebraic integer. If U
is in SL(Z, m), T € M(n, Z) is symmetric, then

U 0 E mT\(A B U 0 4 C
tr(mUTC) = tr( )( )( )—tr( )( )
.0 U"Y\0O E/\C D 0 U"YJ\B D

is an algebraic integer.
Taking U=T=E, it follows that t7(mC) is an algebraic integer. If C=/(c;;),
then for 7, taking U=E+mE;; and T=E, we see that

mic;; = tr(mE,;C) = tr(m(E,;;+mE)EC)—tr(mC)
and taking U=E, T=E,,,
me;; = tr(mE;C)

are algebraic integers. Hence m?C is a matrix of algebraic integers. Con-
sidering /7'T" J instead of T, it is immediate that m*B is a matrix of algebraic
integers. Considering

(e e R G
(e b )= (e )

6 4
it follows that m*4 and m3D are matrices of algebraic integers. Now méX2="" X}

and

is in M(2n, Q) and its entries are algebraic integers, hence because Z is integrally
closed, X? is integral.

3. Let I be an arithmetic subgroup of Sp(n, R) of level m. Then each X
in " can be written as

1
X = \7—r_(.X),A(X),

where A(X) is a positive integer and A(X) is an integral matrix, such that the
ideal generated by its entries is Z. Then the maps

A:T — M(2n, Z) } (10)

MI—-2Z
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are well defined. For a rational prime p, let a,(X)=v,(A(X)), i.e., the greatest
integer /, such that p’ divides M(X). Let a,(T")=Lu.b. {a,(X)| X €T}. Since
I is arithmetic, «,(I") is a non-negative integer. Infact, by Th. 2.1, a,(T")<
v,(m°). In this section we prove that if n=2, then any prime divisor of A(X)
for any X in T is a divisor of m.

ﬁ g)QMAﬂ£M
with A, B, C, D two rowed square matrices, such that A'C—C’A=0=B'D—D’'B
and A’D—C'B=B-E with some S3€k. Then there exist M, and M, in Sp(2, k),

such that MIMM2=<; *), each block being again a 2 X2 matrix.
E3

Lemma 3.1. Suppose k is an arbitrary field and M :(

Proof. Choose P and Q in SL(n, k) such that if

(P 0 ) (Q :
U= and V = )
0 P! 0 Q"‘)

(6 s) -

UMV =
(Cu "12)
*
€ Cx
If a=b6=0, then we put M,=JU, M,=V. Otherwise, if necessary, replacing
U and V by RU and VR respectively, where,

R
o)

we can assume that a==0. Multiplying on the left by

then

E 0
‘1 Cn
U = a a z
23! 0
a

U,UMV =
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If 50, one can assume by multiplying on the left by
E 0

(0 0
d) E
0 -5

that d&=0. The condition 4'C—C’A=0 then implies that ¢=0. If =0, again
the above condition implies that ¢=0. Putting M,=U,U,U and M,=V, where

)
696

Lemma 3.2. For a rational prime p, let ¢,: Z—F, be the natural map and
the map A=(a;;)— A=((a;,)) induced by ¢, from M(n, Z)—>M(n, F,) be again
denoted by ¢,. If p does not divide m, then

the proof is complete.

$y: SL,(Z, m) > SL(n, F,) (1)

is surjective. Hence if k=F, in lemma 3.1, then there exist L, in Sp,(Z, m), such
that ¢,(L;)=M,, i=1, 2.

Proof. Itis enough to remark that SL(n, F,) is generated by the matrices
of the form E--xE;;, i=j and xE F,.

Theorem 3.3. Suppose T" is an arithmetic subgroup of Sp(2, R) of level m.

If for a rational prime p, (') >0, then p divides m.
Proof. Suppose p does not divide m. Let X&T, such that «,(X)>0.
By lemma 3.2, there exist L, and L, in Sp,(Z, m) such that ¢,(L,A(X)L,)=
MIA(X)MZ:-(‘g g) Because A(X)=0, we can assume that 4+0. Let
P, 0= SL,(Z, m), such that PAQ:(SI 0
a,

P 0 00
U= ( ) and V = ( ) ,
0 P! 0 Ot

we put L=ULA(X)L,VV. Then

_ *
L={\0 a

0 *

) with a,+0. If
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with ;0. If Y=1/(v/A(X))L, we can see that ¥V is in T". Hence a,(Y*)>
v,(m°), for a sufficiently large / and this is a contradiction.

4. Suppose p is a rational prime, such that a,(I')>0. We define
23, (I) = {4A(X)| X in T and a,(X >0}

and
D) = {AX)| X in T, a)X) = a,T)} .
Obviously, 23 (I")=23,(I"). We have written each X in T uniquely as

1
= ———A(X),
VAMX) %)
where A (X) is a positive integer and the ideal generated by the coefficients of

A(X) over Zis Z itself. Let A(X)eX3}(T) and A(Y)eX),(T'). Then

-—________1 — . *
Y = \/WWA(X) A(Y)erT . (%)

Since

ay)(T) = a)(X) = v,(MX))22,(MY)) = a,(¥Y)>0,

we have v,(AMX)MY))>a,(T"). In view of (), p has to divide the ideal gene-
rated by the coefficients of A(X)A(Y), otherwise a,(XY)> a,(T"). Therefore,

b5 (T) 23,(T) = (23, (T) 23 (T)) = 0. (12)

Consider the 4-dimensional vector space V=F,*. Let V,(T") be the subspace of
V generated by ¢,(33F(I"))V over F,. Then a,(I")>0 implies that

0<dim V(I)<4.

We need to get some more informations about V,(I"). For any field &, let us
denote by Sp(n, k), the subgroup of Sp(n, k) generated by the elements of the

form
E T ( 0 E) (U 0
, and ,
(O E) —E 0 0 U’“l)

where T is an # X n symmetric matrix over k and U & SL(n, k).

Lemma 4.1. Suppose o is in Sp(2, F,), and (‘g g) tsin o713, (T)o.

D —-FB

o ) is also in o7 23, (T)o.

Then (
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Proof. This lemma is a trivial consequence of (5). It is easy to check that
¢,(Sp(2, Z)) contains Sp(2, F,),. If Fisin Sp(2, Z), such that ¢,(F)=c, then

D B\ .
( ) = FAX)F = o7 AX Vo
—c A

and A(X ™) is in 23,(T).

Lemma 4.2. If «,(I')=1, then dimV, (T)=2. If «a,T)>1, then
dim V(T)<2. If dim V (I")=2, then V (T) is not a hyperbolic space (with respect
to the skew symmetric bilinear form f associated with J). Hence there exists o in
Sp(2, F,)y, such that if o ;=a(e;), where

6= y Uty €=

1 0
0 0
0 0
0 1
dim¥ (I

is the standard basis for V, then V(T')= & Fa,.
=1

Proof. We have already seen that 4>dimV (I")>0. We first rule out the
case dim V(I")=3. If dim V(T")=3, then V,(I") contains a hyperbolic sub-
space, say {a, a3, such that there exists another hyperbolic subspace {«,, at,>
with

V =<a,, a1 {as o> (13)

and V (T")= ;Glepa ;+ Now V can also be written as
V ={<e, ;> | ey, e (14)
as an orthogonal sum of hyperbolic spaces; the linear transformation defined by
a(e;) = a; (15)
leaves f invariant. Any o< Sp(2, k) for an arbitrary field & can be written as

o=q,+0, where o, is the product of the matrices of the form (f; 2) and

<__23 g:), T €M(2, k) is symmetric and az:((l)] UO"1>’ with Ue GL(2, k).

Hence there exists o*&Sp(n, k), and B, k*, such that o(e;)=B;-o%*(e;).
Therefore, we can assume that o appearing in (15) is in Sp(2, F,),. From (12)
it follows that for any A(X) in 3},(T'), o~ (A(X)o)(e;)=0 for j=1, 2, 3. Hence
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0 0 0 =
— 0 0 0 =%

ol A(X)o =
0 0 0 =
0 0 0 =

By lemma 4.1 for each A(X) in 2},(T),

0 0 00
o A(X)r = 00 00O
0 0 0 =
00 00

Now dimension of F,-subspace generated by o133F(T)o is equal to dim V(T
=3 which is a contradiction.

Now we suppose that a,(I")=1 and dim V,(I')=1. For a suitable «, in
V,(T), we write V as in (13) and define o by (15). Then for each A(X) in

235 ()
c'A(X)e =(0C, C; C),

Ch
where C;= Ciz and C,»z'yCJ. for some v in F,. Choosing o, suitably in
Ci3
Ciy
Sp(2, F,), and replacing o by o -0y, we can assume that
0 (x O)
o A(X)o = 0 0/], x=+0. (16)
. 0 0

If X isin T, such that a,(X)=1, it follows that det(X)=1 is divisible by p, a
contradiction.

Finally, we prove that if dim V(I")=2, then it is not a hyperbolic space. Sup-
pose itis. Then V(I")=<a,, a3y and V=_a,, a;> | {a,, ;> and o defined by
o(e;)=a, leaves f invariant. Thus each element of o713, (T)o is of the form

0 0N0 O
(0 +Jo )
0 0\/0 0
(0 2o )
We choose o in such a fashion that there exists ¢ "14(X)o in o' >7F(T")o with 0
in the (4, 4)" entry. But this can be seen to contradict the fact

*

*
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e (AX)e) = 0.

and this proves the lemma.
Let o be as in Lemma 4.2. Then for all A(X) in 2},(T),

“A(X)o = (O *) 17
o A(X)o = 0 0 (17)
each block being 2 X 2 matrix.

Lemma 4.3. Suppose a,(I')>2. Then there exits an F in Sp(2, Z), such

that if T''=F 7'T'F, then
(i) For each X in T, with o )(X)=0a,(T),

=2 1)

with C =0(mod p?) and A=D=0 (mod p).
(ii) T, contains Sp(Z, m).
Proof. Let o be given by lemma 4.2 and F &€ Sp(2, Z), such that ¢ (F)=c.
H ; — — p4, By . * .
(i) Let dim V,(T)=2. We fix A(X,) (pco pDo) in SYT); Ao, By, Co,
D, being integral matrices. We can find T'€SL(2, Z), such that if o,=¢ (T,

then 0-0‘1500'0:<b1 0 ), b,#0. Therefore, if necessary, replacing F by

b12 bZ
F<'g OTH), ((17) still holds and) we can assume that
(o
axy =% g b |,

G pD,
with p not dividing b{Y. Because «,(T',)>2, this implies that if A(X) is in
S(T,) with A(X):(% fD> and A(X(,)-A(X)z(" 2) then G =0 (mod %)

*
X
and hence first row of C is =0 (mod p?). Because dim VV,(T")==2, we can choose
A(X,) in23F(T,), such that all entries in its 4th column are not divisible by p.

If A(Xl)-A(X):(: ;) then G,=0 (mod ) and it follows that second row
1

of C is also=0 (mod p?).
(i) dim V(T")=1. We can assume that for each element 4(X) of 3¥(T")),
(16) is true. Because «,(I")>2, using similar arguments as earlier, one can see

that for each A(X) in 23¥T)), 0 'A(X)o==
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(1;25()) ii ;) (;(c) ig ;) |
G ) Go s

Since m is square-free, for a suitable 7, s and ¢ in Z and multiplying X on the
right or left by matrices of the form

1 0
E 0 ( ) 0
—tm 1

rm sm or
E 1 tm
sm 0 0
0 1

pAx

one can see that there exist X, and X, in T, with a,(X))=a,(Xz)=a,(T;), such
that

() () » ()

Ay —| X *
e e *

() () = up

Ay —| F o *
e *

with p not dividing y, 2 and u. Now a,(I';)>2 implies that p?| 4(X;) A (X),
i=1,2. From p|A(X))A(X) it follows that

p() () x p()
() p() () 2()
() () p() %)
pC) p() p() 2()

whereas p*| A(X;)A(X) implies now that
pA B
rC pD) ’

AX) =

y

A(X) = (

A, B, C, D being integral matrices and this proves (i). (ii) is trivial.
Now suppose T is maximal. From lemma 4.3, it follows that if «,(T,)>2,
then the group generated by T", and the matrices of the form
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E+mv, v,
?
mpVs, E+mV,,

where V;;EM(2, Z), such that E+mVy  mVy ) is in SpN(Z, m), is an
mV, E+mV,

arithmetic subgroup of Sp(2, R) and because T, is maximal, must coincide with
I Now if P=(1’0E2 g) U=FP, where Fis given by lemma 4.3 and T,=
2

U-'T'U, then T, has the following properties:

(1) T,=Sp(2, R) and is a maximal arithmetic subgroup of level m.

(2) If a)(T)>2, then a,(T;)<a,(T')—2

(3) a,(Ty)<a,T) for all primes g= p.
Hence if we repeat this process sufficiently many times for each prime, we get
the following

Theorem 4.4. Suppose T is a maximal arithmetic subgroup of Sp(2, R) of
level m. Then there exists an arithmetic subgroup T'* of Sp(2, R) of level m, such
that there exists U Sp(2,Q), such that T=U "'T*U and 0<a (T*)<2 for all p.

5. Let S;={p, -+, p} and S,={p,_,, :**, p,+:} be disjoint sets of rational
primes. For R={g,, -, ¢,} €S, and Ry=1{g,.,, ", ¢+ )} E 5, we put

U=7p; " Psy U=7Poiy Pers>

X={q " qss Y =gst1""" Gsig -
Let

A B\
(S, Ry; So,Ry) = I.M{X = ( )‘A = (a”xy al?xy) ,
y\/ X C D aZIxy azzxy

B — (bu blzv) L C= ((:uuyz Clzuyz) D= xy(du dlz) ’
by by Cutty?  Cptty dy dyp
where a;;, b,;, ¢;j, d;;€Z and A’C—C’A=0=B'D—D'B; A’D—C'B= xyZE}I- .
Let T'(S,, S,) be the subgroup generated by U I'(S, R;; S;, R;). We put
R, R,
Ty(Sy, S2)=T(Sy, ¢; Sz, @) R;CS;

Theorem 5.1. T(S,, S,) is a subgroup of Sp(2, R) and T'\(S,, S;) is a
normal subgroup of T'(S,, S,). Further, {T'(S,, R; S,, R)|R,CS,, i=1, 2} are
generators of G=T'(S,, S,)/Ty(S;, S.) and each element of G is of order 2 and hence
G is Abelian. Order of G 1is 2%, where s<k<2*'. Therefore, T(S,, S,) is
arithmetic.
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Proof. All statements are either trivial or can be easily checked.

Theorem 5.2. T'(¢, $)=Sp(2, Z) and if S,=%=S1 or S, S}, then T(S,, S)
1s not conjugate to T'(S{, S?).

Proof. 1If there exists 7€ GL(4, R), such that T-'T(S,, S,)T=TI(S{, S%),
then we can assume that T €GL(4, Q).
(i) Ifpisin S;={p, ---, p.} but not in S}, then it is enough to prove that

I'(S,, S,) contains an element of the form X=71FX1, X, eM(4, Z), because,

then T7'XT cannot be in T'(S{, S4). For this let u=p, --- p,, “i='§° Choose
i
a” and @ in Z, such that
pa’a? = 1(mod uf); j=1,-,s.
Let
_ baPaf—1

2
u;j

b,

J

and

i

(E e
pubE p.aPE,

7

Then for each j, \7113__-)(,. is in TY(S,, S,).
i
(ii) If S,#8}, let us assume that ¢, € {g,, -+, ¢,} —S%, and S,={g;, >, ¢} -
Again it is enough to prove that T'(S,, S,) contains an element of the from
L .1y, with Y,eM(4, 2). Let X, be as in the case (i) above and we
\/Pj U
simply put

i 0 .
by ¢ q.pa’E
1

Theorem 5.3. Any maximal arithmetic subgroup T of Sp(2, R) of square-
free level m is conjugate to T'(S,, S,) for some disjoint subsets S, and S, of prime
divisors of m.

Proof. By theorem 4.4, we can find a subgroup T'* of Sp(2, R), such that
0<a,(T*)<2forall p and T is conjugate to T*. If a,(I"*)=0 for all p, then
T*C Sp(2, Z)=T(¢, ¢) and since T is maximal, T'*=Sp(2, Z). Let p,, -+, p, be
the primes for which a,(I'*)=1 and p,,,, -**, p,+,, the one for which a,(I'"*)=2.
Then by theorem 3.3, p, divides m for all j.
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For each j, let o; be the element of Sp(2, F; ), given by lemma 4.2, with T
replaced by T'*. 'Then for each X in T* with a,(X)=a,(T'*),

T dxpe,=() )
b 0 0
and if j <s or j >s+1+41, where ¢ is such that p_,,.,, **-, ps+, are supposed to be
all the prime divisors of m for which «, (I'*)=2 and dim IV, (T'*)=2, then for
all XeT*,

7oA, = (5 7).

It can be checked that for each j, ¢, ( SpZ(Z, —&—p’*—‘”)) contains Sp(2, F} ), and
’ P,

for F; in Sp) 2,2 PPW) and i%j, ¢, (F,)=FE. Let F, ESp2<Z by Pw),

such that ¢, (F)=oc, and for j>st1, le G=F(!/BF %) 1f

2
F=F\F,,G,.,. G, then it is easy to check that F™T*F C T'(S,, S)),
where S;={p,, ---, p} and S,={p,.1, ***, psss}. Maximality implies that
F-ITF=T*(S,, S,).

Corollary 5.4. Suppose T is an arithmetic subgroup of Sp (2, R) of square-
free level m. Then [T'|T' N Sp(2, Z)]=3" for some non-negative integer .

Proof. 3'=[I'/T'NSH2, Z)][T NSp2, Z)/SpsZ, m)].

Corollary 5.5. Let m=p,---p,, p;=p;, if i==j. Then the number (up to
conjugacy) of maximal arithmetic subgroups of T Sp(2, R) of level m is 3°. If T
1s such a subgroup and T < Sp(2, Q), then there exists T &Sp(2, Q) such that I'=
T-'Sp(2, Z)T.

Proof. The numbers of tuples (S,, S,), such that S, and S, are disjoint
subsets of {p,, ---, p;} is 3°.
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