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1. Introduction

A binary system A is called a symmetric set if (1) aca=a, (2) (acb)ob=a
and (3) (aob)oc=(aoc)o(boc) for elements a, b and ¢ in 4. Define a mapping .S,
of A for an element @ in 4 by S,(x)=xca. Asin [2], [3] and [4], we denote
S,(x) by £S,. S, is a homomorphism of 4 due to (3), and is an automorphism
of A due to (2). Every group is a symmetric set by a definition: acb=>ba"'b.
A subset of a group which is closed under this operation is also a symmetric set.
In this paper, we consider a symmetric set which is a subset of the group SL,(K)
consisting of all unimodular symmetric matrices. We denote it by SM,(K).
For a symmetric set 4, we consider a subgroup of the group of automorphisms
of A generated by all S,S; (a and b in 4), and call it the group of displacements
of A. We can show that the group of displacements of SM,(K) is isomorphic
to SL,(K)/{x1} if n>3 or n>2 when K=+ F, (Theorem 5). Also we can show
that PSM,(K), which is defined in a similar way that PSL(,K) is defined, has its
group of displacements isomorphic to PSL,(K) under the above condition (The-
orem 6). A symmetric set 4 is called transitive if A=aH, where a is an element
of 4 and H is the group of displacements. A subset B of 4 is called an ideal if
BS,C B for every element @ in 4. For an element a in A4, aH is an ideal since
aHS ,=aS,H=aS,S,H=aH for every element x in 4. Therefore, 4 is transi-
tive if and only if 4 has no ideal other than itself. Let F, be a finite field of ¢
elements (g=p™). We can show that SM,(F,) is transitive if p3=2 or if z is odd,
and that SM,(F,) consists of two disjoint ideals both of which are transitive if #
is even and p=2 (Theorem 7).

A symmetric subset B of 4 is called quasi-normal if BT N B=B or ¢ for
every element T of the group of displacements. When A has no proper quasi-
normal symmetric subset, we say that 4 is simple. In [4], it was shown that
if A is simple (in this case, A is transitive as noted above) then the group of
displacements is either a simple group or a direct product of two isomorphic
simple groups. In 4, we show some examples of PSM,(F,). The first ex-
ample is PSM,(F,), which is shown to be a simple symmetric set of 28 elements.
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The second example is PSM,(F;), which we show consists of 21 elements and is
not simple. We analize the structure of it and show that PSL,(F;) (which is
isomorphic to PSLy(F,) and is simple) is a subgroup of A,. The third example
is one of ideals of PSM (F,) which consists of unimodular symmetric matrices
with zero diagonal. It has 28 elements and we can show that it is isomorphic
to a symmetric set of all transpositions in S;. This reestablishes the well known
theorem that PSL,(F,) is isomorphic to A,.

2. Unimodular symmetric matrices

Theorem 1. SL,(K) is generated by unimodular symmetric matrices if n>3
or n>2 when K+ F,.

Proof. Consider a subgroup of SL,(K) generated by all unimodular
symmetric matrices. It is a normal subgroup because if s is a symmetric matrix
and u is a non singular matrix then u™'su=(u‘u)"* (u'su) which is a product of
symmetric matrices. The subgroup clearly contains the center of SL,(K)
properly so that it must coincide with SL,(K) if n>3 or n>2 when K=F, or
F;, since PSL,(K) is simple. If n=2 and K=F,, Theorem 1 follows directly

from [1 l]:,:l 1] [O l] and [1 O]:[O l:l [1 1:'. If n=2 and K=F,
01 10JL10 11 10JL10

Theorem 1 does not hold since [é H is not expressed as a product of unimo-

dular symmetric matrices.

Two matrices a and b are said to be congruent if b=u'au with a non singular
matrix #. Suppose that a is congruent to 1 (the identity matrix) and that
deta=1. Then 1=u'au, where we may assume that det u=1, because otherwise

-1 0
det u=—1 and then we can replace u by uv with v= ! o
0 1

Theorem 2. Suppose that n>2 and p=+2. Then every unimodular symmetric

matrix in SL,(F ) is congruent to 1.

Theorem 2 is known. ([1], p. 16)

Theorem 3. Suppose that n>2 and q=2". Ifnis odd, every unimodular
symmetric matrix in SL,(F,) is congruent to 1. If n is even, every unimodular
symmetric matrix in SL,(F,) is congruent either to 1 or to | J P~ J, where
J :[(1) (1)] The latter occurs if and only if every diagonal entry of the symmetric

matrix is zero.

Proof. First, we show a lemma.
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Lemma. Suppose that the characteristic of K is 2. If every diagonal entry
of a symmetric matrix s over K is zero, then u'su has the same property where u is
any matrix over K.

Proof. Let s=(a;;), u=(b;;) and w'su=(c;;). Then a;;=a;; and a;=0.
We have ¢;;=> b,,iakjb,-izkzj bi(a,;+a;,)b;;=0 since a,;+a;,=2a,;=0.
¥ <i

Now we return to the proof of Theorem 3. Let s=(a;,) be a symmetric
matrix in SL,(F,)). Suppose that a;=0 for all . Then a,,#0 for some k.
Taking a product of elementary matrices for u, we have that, in u'su=(b;}), b,,+
0 and &,;=0 for all j==2. Since b, =b,#+0, we can apply the same argument to
the second row (and hence to the second column at the same time) to get a matrix
(¢i;) congruent to s such that (¢; j):[O 6:]69 s/, where ¢ is a symmetric matrix

¢
of (n—2)x(n—2). Then take an element 4 in F, such that d’*=c¢"!, and let
U= [g 2] ¢ I,,, where I,_, is the identity matrix of (n—2)x (n—2). Thusfar,

we have seen that s is congruent to /Ps’. By Lemma, s’ has the zero diagonal.
Proceeding inductively, we can get J@ JP .- J which is congruent to s, if s
has the zero diagonal. In this case, # must be even. Next, suppose that a;;=0
for some 7. As in above, we can find u such that w'su=[1]Ps’, where s is of
(n—1)x(n—1). By induction, s’ is congruent either to I,_, orto J& JP---PB J.
In the former case, s is congruent to 1=17. In the latter case, we just observe

that
100 1117110077111 10
1 J=001]|and |1 10|00 1 110}:01 }
010 00

010 101 101
Theorem 4. Suppose that n is even and g=2". Then SL,(F,) is generated
by a b where a and b are umimodular symmetric matrices with zero diagonal. Also,
SL,(F,) is generated by c'd where ¢ and d are unimodular symmetric matrices
which have at least one non zero entry in diagonal.

—o o

So, we can reduce s to the identity matrix by congruence.

Proof. For a and b in Theorem 4, we have s™'(a"'b)s=(sas) '(sbs), where s
is a symmetric matrix in SL,(F)). By Lemma, sas and sbs have zero diagonal.
Since SL,(F,) is generated by symmetric matrices by Theorem 1, the above fact
implies that the subgroup of SL,(F,) generated by all ™4 is a normal subgroup.
On the other hand, the center of SL,(F,) consists of 2/ where z is an element of
F, such that 2"=1. Since z/=a"'(za), the center of SL,(F,) is contained in the
subgroup generated by a™'b. It is also easy to see that the subgroup contains an
element which is not contained in the center. Again, by the simplicity of PSL,
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(F,), the subgroup must coincide with the total group. The second part of
Theorem 4 is proved in the same way.

3. Symmetric sets of unimodular matrices

Theorem 5. The group of displacements of SM,(K) is isomorphic to SL,(K)/
{£1} ifn>3 or n>2 when K+F,.

Proof. Forwe&SL,(K)and acSM,(K), we define a mapping T, of SM,(K)
by aT,=w'aw. T, is an automorphism of SM,(K) since w'(ba™'b)w=(w'bw)
(w'aw) Yw'dbw). If especially w=ss, with s, and s, in SM,(K), then aT,=
s(sTla7sTY) 'sy=aS1S,,, and hence T,=S,-1S,,. By Theorem 1, w is a pro-
duct (of even number) of s; in SM,(K). Thus w—T, gives a homomorphism of
SL,(K) onto the group of displacements of SM,(K). w is in the kernel of the
homomorphism if and only if w'aw=a for every element a in SM (K). In this
case, especially we have w'w=1 or w'=w~. Then wlaw=a, or wa=aw. Since
SL,(K) is generated by g, the above implies that w must be in the center of
SL,(K). So, w=zI with z in K. Then w'w=1 implies w’=1, or 2==+1.
This completes the proof of Theorem 4.

To define PSM,(K), we identify elements a and za in SM,(K), where 2 is
an element in K such that 2"=1. The set of all classes defined in this way is a
symmetric set in a natural way, and we denote it by PSM,(K).

Theorem 6. The group of displacements of PSM,(K) is isomorphic to
PSL,(K)if n=>3 or n>2 when K +F,.

Proof. Denote by a an element of PSM (K) represented by a in SM,(K).
For w in SL,(K), we define T,: a—w’aw. As before, w—T, gives a homomor-
phism of SL,(K) onto the group of displacements of PSM,(K). T,=1 if and
only if w'aw=a for every a. If w is in the center of SL,(K), then clearly T,=
1. So, the kernel of the homomorphism contains the center. On the other

hand, we have [1 OJP 0][1 1]=[1 1], which indicates that w:[l 1} ®1,.,
1 1JL0 140 1 12 01

is not contained in the kernel. Therefore, the kernel must coincide with the
center due to the simplicity of PSL,(K). This completes the proof of Theorem
6.

Theorem 7. Suppose that n>3 or n>2 if K=+F,. If p=+2 or if nis odd,
then SM(F,) is transitive. If p=2 and n is even, then SM(F,) consists of two
disjoint ideals, which are transitive.

Proof. First suppose that p==2 or # is odd. Then by Theorems 2 and 3,
every unimodular symmetric matrix a is congruent to 1, i.e., a=u'u with a uni-
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modular matrix #. By Theorem 1, u is a product of even number of unimodular
symmetric matrices: u==s,-+-8;;. 'Then T,=S5-15,,---S,,; as in Theorem 6. Then
a=1T,€1H, where H is the group of displacements. Thus SM,(F,) is transitive
in this case. Next suppose that p=2 and 7 is even. Let B, be the set of all
unimodular symmetric matrices with zero diagonal. Elements of B, are con-
gruent to j=/JP JP---@DJ. So, for an element a in By, there exists # such that
w'au=j. Here det u=1 since p=2. By Theorem 4, u is a product of elements
a 'b where a and b are in B,. For a, b and ¢ in B,, we have (b~'c)'a(b~'c)=aS,S.,
from which we can conclude that aH(B,), where H(B,) is the group of displace-
ments of By, contains j, and hence a= jH(B,). Thus, B, is transitive. It is also
clear that B, is an ideal of SM,(F,) by Theorems 4 and 5. In the same way, we
can show that the complementary set of B, in SM(F,) is an ideal of SM,(F )
and is transitive as a symmetric set.

4. Examples

First of all, we recall the definition of cycles in a finite symmetric set (see
[3]). Leta and b be elements in a finite symmetric set such that aS,#a. Then
we call a symmetric subset generated by a and b a cycle. To indicate the struc-
ture of a cycle, we use an expression: @,—a,— ---, where a,=a, a,=b and a;,,—
a;_,S,, (1=2). If a symmetric set is effective (i.e. S,#S,; whenever c=4d), the
above sequence is repetions of some number of different elements (Theorem 2,
[3]). For example, a,—a,—---—a,—a,—a,—--- where a;%a, (1<i#j<n). In
this case, we denote the cycle by a,—a,—---—a, and call n the length of the
cycle.

ExampLE 1. PSM(F,) (=SMyF,)).
SM(F,) consists of the following 28 elements.

10 0] 0 1 07 110] [0 1 07
a=1010|,4a=1]100|,a;,=|100},a,=}]110],
1001 10 0 1] 00 1] 1 00 1)
[0 1 17 0 1 0 1117 [0 107
a;=1100|,a,=1101|,a,=(100],a,=1(111},
101 1011} 10 1] 101 1]
[0 1 17 0 0 17 10 17 0 0 17
ag=|101],a,=[010,a,=[010}{, a,=|010],
|11 1] |10 0] 11 00] |10 1]
[0 1 17 [0 0 17 (111 [0 0 17
a;=1110|,a,=|011],a;,=|110{,a,=(011],
[ 100} |1 10] 1100 1111}
[0 1 17 10 0] 100 10 0]
a;=1111],a,=1]001|,a,=1011],a={001],
1110/ 1010} 1010 101 1]
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110 1017 110 101
ay=1{101{,a,=]001|,a,=|111|,a,=001]|,
010 110 010 111
111
101
110

111 110 101
= cae= 110, ay=1111} au=1011].
| 101 011 111

We denote S,, by S;, and a transposition (a;, a;) by (3, 7). Then each S; is a
product of 12 transpositions as follows.

1
0
1
1
0
1

S,=(3, 4) (5, 8) (6, 7) (9, 28) (11, 12) (13, 16) (14, 15) (17, 27) (19, 20) (21, 24)
(22, 23) (25, 26), S,=(5, 7) (6, 8) (9, 28) (10, 18) (11, 20) (12, 19) (13, 24) (14, 23)
(15, 22) (16, 21) (17, 26) (25, 27), S;=(1,4) (5, 7) (6, 28) (8, 9) (10, 22) (11, 24)
(12, 17) (13, 20) (15, 18) (16, 25) (19, 26) (21, 27), S,=(1, 3) (5, 28) (6, 8) (7, 9)
(10, 23) (11, 27) (12, 21) (13, 26) (14, 18) (16, 19) (17, 24) (20, 25), Ss=(1, 14)
(2,3) (4,23) (6, 11) (8, 24) (9, 13) (10, 25) (12, 26) (15, 21) (16, 18) (20, 28) (22, 27),
Si=(1, 22) (2, 4) (3, 15) (5, 19) (7, 16) (9, 21) (10, 24) (12, 28) (13, 23) (14, 26)
(17, 18) (20, 27), S,=(1,23) (2, 3) (4, 14) (6, 13) (8, 20) (9, 11) (10, 21) (15, 25)
(16, 22) (17, 19) (18, 27) (24, 28), Se=(1, 15) (2,4) (3, 22) (5, 21) (7, 12) (9, 19)
(10, 26) (11, 25) (13, 18) (14, 24) (16, 28) (17, 23), Sy=(1, 2) (3, 10) (4, 18) (5, 17)
(6, 25) (7, 27) (8, 26) (11, 14) (12, 23) (15, 20) (16, 24) (19, 22), S,=(2,18)(3, 19)
(4, 20) (5, 23) (6, 24) (7, 21) (8, 22) (9, 26) (13, 15) (14, 16) (17, 27) (25, 28), Sy=
(1,12) (2, 21) (3, 23) (4, 9) (5, 19) (7, 18) (8, 25) (13, 15) (14, 27) (16, 17) (20, 26)
(22, 28), Sp=(1, 11) (2, 24) (3, 28) (4, 22) (5, 26) (6, 18) (8, 20) (9, 23) (13, 27)
(14, 16) (15, 17) (19, 25), Sy=(1, 6) (2, 25) (3, 14) (4, 26) (5, 17) (7, 22) (8, 18)
(10, 11) (12, 24) (16, 23) (19, 27) (21, 28), S,,=(1, 21) (2, 23) (4, 27) (5, 24) (6, 26)
(7,11) (8, 15) (9, 18) (10, 12) (13, 20) (17, 22) (19, 28), S,s=(1, 24) (2, 22) (3, 17)
(5, 14) (6, 12) (7, 25) (8, 21) (9, 20) (10, 11) (16, 19) (18, 28) (23, 27), Si=(1,7)
(2, 26) (3, 25) (4, 15) (5, 18) (6, 23) (8, 27) (9, 24) (10, 12) (11, 21) (13, 22) (17, 20),
Sp=(1, 10) (2, 11) (3, 6) (4, 24) (7, 19) (8, 23) (9, 13) (12, 18) (14, 25) (15, 28)
(16, 26) (20, 21), S,=(2, 10) (3, 12) (4, 11) (5, 16) (6, 15) (7, 14) (8, 13) (9, 27)
(17, 28) (21, 23) (22, 24) (25, 26), S,=(1, 20) (2, 13) (3, 9) (4, 15) (6, 11) (7, 17)
(8, 10) (12, 27) (14, 28) (21, 23) (22, 26) (24, 25), Su=(1, 19) (2, 16) (3, 14)
(4, 28) (5, 10) (6, 27) (7, 12) (9, 15) (11, 17) (21, 26) (22, 24) (23, 25), S,=(1, 5)
(2, 17) (3, 27) (4, 22) (6, 25) (7, 10) (8, 14) (11, 26) (13, 28) (15, 24) (16, 20)
(18, 19), Sp=(1, 13) (2, 15) (3, 26) (5, 27) (6, 16) (7, 23) (8, 19) (9, 10) (11, 28)
(12, 21) (14, 25) (18, 20), S,=(1, 16) (2, 14) (4, 25) (5, 20) (6, 22) (7, 13) (8, 17)
(9, 12) (10, 28) (11, 24) (15, 26) (18, 19), S,=(1, 8) (2, 27) (3, 23) (4, 17) (5, 15)
(6, 10) (7, 26) (9, 16) (12, 25) (13, 19) (14, 21) (18, 20), S,=(1, 18) (2, 19)
(3, 16) (4, 5) (7, 15) (8, 11) (9, 21) (10, 20) (12, 13) (17, 22) (23, 28) (24, 27),
S,=(1, 18) (2, 20) (3, 8) (4, 13) (5, 12) (6, 14) (9, 22) (10, 19) (11, 16) (17, 21)
(23, 27) (24, 28), S,=(1, 10) (2, 12) (3, 21) (4, 7) (5, 22) (6, 20) (9, 14) (11, 18)
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(13, 25) (15, 26) (16, 28) (19, 24), S,=(1, 2) (3, 18) (4, 10) (5, 25) (6, 17) (7, 26)
(8, 27) (11, 22) (12, 15) (13, 21) (14, 19) (20, 23).

From the above, we can find that for a fixed element there exist two cycles
of length 7, three cycles of length 4 and three cycles of length 3 which contain the
given element. Also we can find that there are exactly 8 cycles of length 7 in
the set given by C;: 1—5—14—24—21—-15—-8, C,: 1—6—22—16—13—23—7,
Cy: 22—19-—-26—10—9—-3—-8, C,: 13—27—25—-24—12—2—-19, C,: 23—5—
4—28—10—25—20, Cg: 11—-26—16—2—21—-17—20, C,: 6—17—3—12—
28—15—18 and C;: 7—18—14—9—11—4—27. By observation we see that
every element is contained in exactly two of C; and that conversely any two of C;
have exactly one element in common. Clearly S; induces a permutation of C,,
j=1,2, -, 8, and S; is uniquely determined by its effect on C;. Now we are
going to show that SMy(F,) is a simple symmetric set. First, we note that if
t& C;, then there exists ¢’ in C; such that ¢'S,=t". Let B be a quasi-normal
symmetric subset. We may assume that B contains 1 (=a,). Suppose that B
contains one of C, or C,, say, C,. For C;#C,, let 5;=C,NC; and let ¢; be such
that t,=C; and ¢, C,. Since there exists ¢,/ in C, such that ¢S, =t/’, we have
that BS, =B by the definition of quasi-normality of B. Then s;S,, is contained
in B, which implies that two elements of C; are contained in B. B is a symmetric
subset and the length of C; is 7 (prime), and hence all of the elements in C; must
be in B. Thus B must coincide with the total symmetric set. To discuss the
general case, we consider all cycles of length 4 and 3 containing 1: D;: 1—9—2—
28, D,: 1—26—18—25, D;3: 1—-27—10—17, E;: 1—3—4, E,: 1—11—12, E;: 1 —
19—20. Clearly, S,, S;, and Sj; fix the element 1, and we see that D,S,,=D,,
D,S;=D,, D,S,=D,, E\S;=F,, ES,=FE; and E,S,=E, Therefore, if B con-
tains one of D,, it contains all of D,, and similarly if B contains one of E,, it
contains all of £, In this case, we can verify that B contains one of C; and hence
B must coincide with the total set. Lastly suppose that B which contains 1
contains one of 2, 10 and 18, say, 2. Then B=BS,, must contain 2.5,,=18, and
similarly B contains 10. It is concluded that if B contains one of 2, 10 and 18
then B contains all of them. In this case, 25,=2 implies that BS,=B. So, B
contains 1.5,=3. Thus B contains E,, and then B coincides with the total set.
We have completed the proof that SM,(F,) is simple.

EXamMPLE 2. PSM,(F,;) (=SMy(F,)/{x1}).
This symmetric set consists of the following 21 elements (mod {#1}).

_ 10a_[20a_[3 0] [ 1 1
“=l o 1%~ 0-3p%=| 0—2%T] 1 2
—3
1

o 2 1 . 3 1 . 1 -1 1
as = 1 1 y Qg = 1 3:“7— 3 y Ag = 1 -2
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=2 17 . 1 2 =2 27 -1 2
ay = 1 —1) A= 2 2 W= L2 1) ap= 2 210
VA . 3 2 -3 27 1 3
a3= 2 —1) ay= 2 3| &= | 2 3] A= L3 30
[ 3 37 -1 3 =3 3] I 2 3
= 3 1) 5= 3 3| %= |3 -1 an= L 3 =2
—2 3]
an= L 3 2]

As in Example 1, S; stands for S,; and (3, j) for (a;, ;) Then we have

S,=(2, 3) (4, 9) (5, 8) (6, 7) (10, 13) (11, 12) (16, 19) (17, 18), S,=(1, 3) (4, 8)
(5,6) (7,9) (11, 14) (13, 15) (16,20) (18,21), S,=(1,2) (4, 6) (5, 9) (7, 8) (10, 15)
(12, 14) (17, 21) (19, 20), S,=(1, 20) (2, 8) (3, 18) (5, 10) (7, 12) (13, 17) (14, 19)
(16, 21), Se=(1, 21) (2, 19) (3, 9) (4, 11) (7, 13) (12, 16) (15, 18) (17, 20), S,=
(1,7) (2, 19) (3, 18) (8, 14) (9, 15) (12, 20) (13, 21) (16, 17), S,=(1, 6) (2, 17)
(3, 16) (4, 15) (5, 14) (10, 21) (11, 20) (18, 19), Sy=(1, 21) (2, 4) (3, 16) (6, 10)
(9, 12) (11, 19) (15, 17) (18, 20), S,=(1,20) (2, 17) (3, 5) (6, 11) (8, 13) (10, 18)
(14, 16) (19, 21), S,=(1, 13) (3, 15) (4, 11) (7, 21) (8, 14) (9, 18) (12, 17) (16, 20),
Sy=(1, 12) (2, 14) (5, 10) (7, 20) (8, 19) (9, 15) (13, 16) (17, 21), S,=(1, 11)
(3, 14) (4, 15) (5, 16) (6, 20) (8, 13) (10, 19) (18, 21), Sy,=(1, 10) (2, 15) (4, 17)
(5, 14) (6, 21) (9, 12) (11, 18) (19, 20), S,=(2, 11) (3, 12) (4, 19) (6, 10) (7, 13)
9, 16) (15, 20) (17, 18), Sy=(2, 13) (3, 10) (5, 18) (6, 11) (7, 12) (8, 17) (14, 21)
(16, 19), Sy=(1, 15) (2, 10) (4, 21) (5, 12) (6, 17) (7, 8) (9, 14) (11, 18), S,=
(1, 14) (3, 11) (4, 13) (5, 20) (6, 16) (7, 9) (8, 15) (10, 19), S,=(1, 14) (2, 12)
(4, 6) (5, 15) (7, 19) (8, 20) (9, 10) (13, 16), Sy=(1, 15) (3, 13) (4, 14) (5, 6)
(7, 18) (8, 11 (9, 21) (12, 17), Sp=(2, 10) (3, 13) (4, 9) (5, 17) (6, 12) (7, 11)
(8, 18) (14, 21), Sy=(2, 12) (3, 11) (4, 16) (5, 8) (6, 13) (7, 10) (9, 19) (15, 20).

It can be verified that we have the following quasi-normal symmetric subsets B;
which are mapped each other by S.. B,={a,, ay, a5}, By=1{as, a,,, ay}, By=
{an ap, a}, Bi={aw, ay, axs}, Bs={a;, a5, a;i}, Be={as, a5, ar}, and B;={a;,
ay, a}. Then we have a homomorphism ¢ of the group generated by all S; to
the symmetric group of 7 objects B, (j=1, 2, -+, 7). For example, since B,S,=
B,;, B;S,=B; and B,S,=B, (k*2, 3,5, 6), we have ¢(S,)=(B,, B;) (Bs, By).
Moreover we can see that the mhoomorphism is into A4, (the alternating group).
Naturally the homomorphism induces a homomorphism of PSL,(F;) (=the group
of displacements of PSM,(F;)) into 4,. Since the former is a simple group, it is
an isomorphism onto a subgroup of 4,. Thus we have shown that PSL,(F,) is
a subgroup of 4,.

ExamPLE 3. An ideal in SM(F,).
We consider the set of all unimodular symmetric matrices of 4 x4 over F, that
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have zero diagonal. It is a symmetric set (an ideal of SM,(F,)) and consists

of the following 28 elements. In the following, Iz[(l) (1):] and =[(1) (1)]

r . C10 F 00 F 01
. Of | Joo| ,_|J o1 _|7 00
1= )2_‘10 a3—00 ’4—“00 ’
10 J 0o J | 01 /| 10 J |
© 007 ST F 00 F 10
17 10 a_foo AR A
s=1o1 , "%=|10 ,"%=|0o1 ,|"®=|11 ., |
0o J | 10 J ] 01 J | oo J |
-0 F 11 : 1 - 1
J o1 J 11 I 0 J
ay, = ) Q= y ay= ) A= ,
9 -(1)(1) _]_ 10 ji ]— 1 _I ()_ 12 _] 0
S F 10 DUREE F0 1
. 0 01 . 101 11, 0 10 - 0 11
137 b - b - b - b
RN S Y S Y el TS
. - - 7 SRS C 1 0]
0 0 J 0 01 0 11
ay7= y A= y A19= 10 » =1 1 ’
LT J T 11 /| 01 J |
SR F 01 1 - .
0 1s 091 J I J U
4= 111 ] y A= 01 J y Go3= 7 0 y A= J 0 ’
10 J 11 7] i ] i ]
SRR T 10 11 F 01
a_101a_f11a2_(110 |1
5= 10 . |"®= (11 _|"@=|11 %= |01 . |
11 0] 01 0O 10 O] 11 0

As before, we have

S,=(17, 23) (18, 24) (19, 25) (20, 26) (21, 27) (22, 28), S,=(3, 11) (7, 14) (9, 13)
(10, 16) (18, 27) (21, 24), S;=(2, 11) (6, 13) (8, 14) (10, 15) (18, 28) (22, 24),
S,=(5, 12) (7, 16) (8, 15) (10, 14) (17, 25) (19, 23), Sy=(4, 12) (6, 15) (9, 16)
(10, 13) (17, 20) (23, 26), Se=(3, 13) (5, 15) (8, 12) (9, 11) (20, 28) (22, 26), S,=
(2, 14) (4, 16) (8, 11) (9, 12) (19, 27) (21, 25), Sy=(3, 14) (4, 15) (6, 12) (7, 11)
(19, 28) (22, 25), Sy=(2, 13) (5, 16) (6, 11) (7, 12) (20, 27) (21, 26), S,,=(2, 16)
(3, 15) (4, 14) (5, 13) (17, 24) (18, 23), Su,=(2, 3) (6, 9) (7, 8) (15, 16) (21, 22)
(27, 28), Sp=(4, 5) (6, 8) (7, 9) (13, 14) (19, 20) (25, 26), S,=(2, 9) (3, 6)
(5, 10) (12, 14) (18, 20) (24, 26), Sy,=(2,7) (3, 8) (4, 10) (12, 13) (18, 19) (24, 25),
Ss=(3, 10) (4, 8) (5, 6) (11, 16) (17, 22) (23, 28), S,=(2, 10) (4, 7) (5, 9) (11, 15)
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(21, 22) (23, 27), Sy=(1, 23) (4, 25) (5, 26) (10, 24) (15, 22) (16, 21), S,=(1, 24)
(2, 27) (3, 28) (10, 23) (13, 20) (14, 19), S,=(1, 25) (4, 23) (7, 27) (8, 28) (12, 20)
(14, 18), S,=(1, 26) (5, 23) (6, 28) (9, 27) (12, 19) (13, 18), S,=(1, 27) (2, 24)
(7, 25) (9, 26) (11, 22) (16, 17), S,=(1, 28) (3, 24) (6, 26) (8, 25) (11, 21) (15, 17),
S,=(1, 17) (4, 19) (5, 20) (10, 18) (15, 28) (16, 27), S,=(1, 18) (2, 21) (3, 22)
(10, 17) (13, 26) (14, 25), Su=(1, 19) (4, 17) (7, 21) (8, 22) (12, 26) (14, 24),
Sy=(1, 20) (5, 17) (6, 22) (9, 21) (12, 25) (13, 24), Sp=(1, 21) (2, 18) (7, 19)
(9, 20) (11, 28) (16, 23), S,s=(1, 22) (3, 18) (6, 20) (8, 19) (11, 27) (15, 23).

We can verify that the length of all cycles is three and there exist six cycles which
contain a given element. On the other hand, the symmetric set consisting of all
transpositions in Sy satisfies the same property. As a matter of fact, we can find
an isomorphism ¢ of our symmetric set to the latter as follows. ¢(a,)=(1, 2),
(a)=(4, 7), $la)=(4, 8), $(a)=(3, 5), $(as)=(3, 6), b(ax)=(6, 8), b(a)=(5, 7),
$(a)=(5, 8), $(a)=(6, 7), dla)=(3, 4), plan)=(7, 8), $an)—(5, 6), P(ar)—
4, 6), ¢(a14):(4’ 5), p(ai)=(3, 8), P(a,)=(3,7), dlan)=(1, 3), Pla)=(2, 4),
d(a10)=(2, 5), P(axn)=(2, 6), p(ax)=(1, 7), $(ax)=(1, 8), Pp(as)=(2, 3), H(az)=
(1, 4), $laz)=(1, 5), p(ax)=(1, 6), $(ax)—(2, 7), $(az)—=(2, 8). Since the group
of displacements of the symmetric set of all transpositions in Sy coincides with
As, this reestablishes the well known theorem of Dickson that PSL,(F,) is iso-
morphic to 4.
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