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Introduction

Loos has shown in [3] that a symmetric space can be defined as a manifold
carrying a diffeomorphic binary operation that satisfies three algebraic and one
topological condition. This algebraic approach to symmetric spaces has been
explored by Loos in [4], and by various other workers, for example Kikkawa in
the series of papers [2]. Abstracting the algebraic properties of a symmetric space,
Nobusawa introduced in [6] the concept of symmetric structure on a set. In
that paper, and a sequel to it [1], the structure of finite symmetric sets satisfying
a certain transitivity condition has been invesitgated. In particular, it was
shown in [1] that there is a close relationship between symmetric sets and groups
that are generated by involutions.

The purpose of this paper is to lay the foundations of a general theory of
symmetric sets. The principal emphasis of this program is the connection
between symmetric sets and groups that are generated by involutions. For
the most part, we use the resources of group theory to gain insight into the
structure of symmetric sets. It is to be hoped that in the future the flow of
ideas will move the other way.

Our viewpoint in this paper is influenced by the ideas of universal algebra
and category theory. Symmetric sets are looked upon as members of a par-
ticular variety of groupoids. For this reason, it seems appropriate to break a
tradition by using the term "symmetric groupoid" rather than "symmetric set."
Henceforth, this convention will be followed. Also, we will use the abbreviation
"G/ Group" for a group that is generated by the set of its involutions. Other
than these idiosyncrasies our terminology in the paper is generally standard.

A brief outline of this work follows. The first section introduces the pri-
ncipal concepts that form the subject of the paper. Standard notation is es-
tablished, and a few elementary facts are noted. Section two is devoted to
categorical matters. Special kinds of morphisms of symmetric groupoids and
GI groups are introduced in such a way that the natural correspondence between
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symmetric groupoids and GI groups is functorial. The third section further
explores the correspondence between symmetric groupoids and GI groups.
A method of constructing all symmetric groupoids from their associated GI
groups is developed in this section. The last section of the paper is concerned
with the semantics of symmetric groupoids and GI groups. Explicit construc-
tions of the free objects in these categories are given, and the free algebras are
used to investigate certain closure properties of the classes of GI groups and
symmetric groupiods.

1. Basic concepts

DEFNITION 1.1. A symmetric groupoid is a groupoid <^4, o> that satisfies the
identities:

1.1.1. aoa — a]

1.1.2. ao(aob) = b;

1.1.3. a°(b°c) = (aob)°(aoc) .

The algebraic analogues of the symmetric groupoids that arise in the study
of symmetric spaces can be described in the following way.

EXAMPLE 1.2. Let G be a group, / an involution in aut G, and H a sub-

group of G such that/(#)=# for all x^H. Let A be the left coset space G/H.
Define xHoyH=xf(x)~1f(y)H. A straightforward calculation shows that o is
a well defined binary operation under which G/H is a symmetric groupoid.

For the purpose of this paper, the following example of a symmetric grou-
poid is of fundamental inportance.

Proposition 1.3. Let G be a group. Denote I(G)={a^G: a2=l}, the set
of involutions of G, including 1. For a and b in /(G), define aob=aba. Then
</(G), o> ίs a symmetric groupoid. If f:G-*H is a homomorphism of groups,

then /(/(G)) c I(H), and f \ I(G) is a groupoid homomorphism. The maps G ~^/(G),
f-^f\I(G)=I(f) define a functor from the categroy of groups to the category of
symmetric groupoids.

The straightforward proof of Proposition 1.3 is omitted.

DEFINITION 1.4. A symmetric groupoid A is called special if A is isomor-
phic to a subgroupoid of /(G) for some group G. A homomorphism/: A->B
of special symmetric groupoids is called special if it preserves the partial product
operation that A inherits from G. That is, if A<I(G), B<I(H), and if
al9 •••, an, and b in A satisfy b—aλ an in G, then
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It is obvious that if/: G-*H is a group homomorphism, then

is a special homomorphism of symmetric groupoids.

In general, the groupoid operation in a special symmetric groupoid does
not determine the multiplication in the ambient group, so that the definition of

a special homomorphism presupposes fixed embeddings into I(G) and I(H).
Special groupoids will be studied in Section 4. They will also play a

minor part in the considerations of Section 2.

The following property is an easy consequence of Definition 1.1.

Lemma 1.5. Every symmetric groupoid satisfies the identity

The observation Lemma 1.5, together with 1.1.2 and 1.1.3 yields the next

result.

Proposition 1.6. Let A be a symmetric groupoid. For elements a and b of

A, define \a(b)—aob. Then \a^aut A, and the mapping pA\ a-*\a is a groupoid
homomorphism from A to I(aut A).

Corollary 1.7. Z(A) = {(a,b)^AxA: \a=\b} is a congruence relation on
the symmetric groupoid A.

We will call Z(A) the central congruence of A. This concept is different
from the notion of the center of a symmetric space that was introduced in [4].
Note that A is effective (in the terminology of [6]) if and only if Z(A) is the
identity congruence on A.

NOTATION 1.8. Let A be a symmetric groupoid. Denote M(A) =
{\a:a^A}, and define K(A) to be <M(̂ 1)>, the subgroup of aut A that is
generated by M(A).

Since λj"1=λβ, every element of K(A) can be written in the form ξ =λΛιλfl2

λβm, a^A. Moreover, ξ~1=\am \a2\aι. Obviously Λ(^4) is GI group and

Corollary 1.9. If A is a symmetric groupoid y then pA: A-+I(A(A)) induces
an ίnjective homomorphism pA: A/Z(A)-^>I(A(A)), with ImpA=M(A). In par-
ticular, A/Z(A) is a special symmetric groupoid.

Lemma 1.10. Let G be a GI group. Let uly u2, ••-, un, v^I(G). Denote

x=u1u2 ••• un. Then \Ul\U2 ••• \Un(v)=v if and only if x^CG(v), the centralizer
of v in G. In particular, \Ul\U2 ••• \UH is the identity automorphism of I(G) if
and only if # eC(G), the center of G.
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Proof. By definition, \u \U2 ••• \u (v)=xvx~1, from which the first state-
ment follows. Since G is a GI group, CG(I(G))=CG(G)=C(G), which proves
the second assertion.

Proposition 1.11. Let G be a GI group. Then there is a unique epίmor-
phism qG: G-^Λ(/(G)) satisfying qG(u)=\u for all u^I(G). The kernel of qG is
C(G), so that qG induces an isomorphism qG\ G/C(G)^»Λ(/(G)).

Proof. If tf^G, then x=ulu2 un for some #t e/(G). Define qG(x)=
λMlλM2 λWίf. This definition is well posed since X=u1u2 un=v1v2 vm implies

VlV2'"vmun'"u2ul=l> SO tnat ^u^u2 ' " ̂ ^X^X^ "* ^vm t>v I IO It follows

from our definition, that, qG is a group epimorphism from G to Λ(/(G)). By

1.10,Ker?c=C(G).
In the next section, we will extend the object maps A-*A(A), G-»/(G) to

functors. There is no natural way to do this on the full categories of symmetric
groupoids and GI groups; it is necessary to restrict the allowable morphisms.
The foundation for this work will be laid in the rest of this section. It is econo-
mical to introduce a convention for dropping parentheses.

NOTATION 1.12. If aly •• ,an_1, an are elements of a symmetric groupoid,
denote

Lemma 1.13. Let aly ••-,#„, and a be elements of a symmetric groupoid.
Then:

1.13.1. CV'λ««)(α) = 0ι° °tf«°tf;

1.13.2. λΛl0...oβMoΛ = λ^o oλ^oX,;

1.13.3. if f e=Λ(2ί), then ξ\aξ-1 = λfi(β) .

These equations are direct consequences of the definition of λΛ. Note
that 1.13.3 is a reformulation of 1.13.2.

DEFINITION 1.14. Let A be a symmetric groupoid. The extended center

of A is the set Z(A) of all ra-tuples (aly •-, an}<^A", n=l, 2, •••, such that

for all β<Ξ A.

By 1.13, (aly , αj e 2(^4) if and only if λβl λβjι=l. In particular Z(A)=

Proposition 1.15. Let f: A-+B be a homomorphism of symmetric groupoids.

Then there is a group homomorphism Λ(/): A(A)-*Λ(B) satisfying

if and only if f(Z(A})= {(/fa), -,j(au)): fa, •••, an}
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Proof. The condition A(f)pA=pB/ is equivalent to A(f)(\a)=\f(a) for
all αeA Thus, Λ(/) can be defined by Λ(/)(λβl λβJ=λ/(βl) λ/(βjι) if and

Lemma 1.6. Let f: A -> B be a homomorphism of symmetric groupoids such
thatf(2>(A)}^Z(B}. I f / i s infective (surjective), then Λ(/) is injectίve (surjective).

Proof. If f=λβl-λβjιeΛ(-4) satisfies Λ(/)(?)=l, then /(^)o-- o/(αn) ob

=b for all b^B. In particular, /(£(#))— /(flι° ° an°
a)=f(aι)° "' °f(an)°f(a)

=f(a) for all αeA Thus, if /is injective, then £=1. It is obvious that i f /
is surjective then so is Λ(/).

REMARK. If /: A^>B is surjective homomorphism of symmetric
poids, then f(2>(A))^ 2>(B) is certainly satisfied, because λ/(βl) λ/(βjι)(/(α))=

Proposition 1.17. Let G be a GI group. Then Z>(I(G))= {(uly -••,
I(G)n: uλ " un^C(G)}. If f:G^>H is a homomorphism of GI groups ,
f(S>(I(G)))^2>(I(H)) if and only iff(C(G))^C(H).

This proposition is a corollary of 1.10.
The extended center of a symmetric groupoid has properties that are an-

alogous to the conditions that define a congruence relation. In particular,
the following fact will be used in Section 4.

Lemma 1.18. Let a^ •••,#,•, ••-,#„, b, and c be elements of the symmetric
groupoid A. Assume that a~b°c. Then (aly •• ,ai_l, ah ai+1, '~,a^^Z(A) if
and only if (aly •••, at.l9 b, c, b, ai+1, •••, an)<=Z>(A).

Proof. By 1.13.2, \ai=\b°\c=\bλ,cλ,b, which clearly implies the lemma.

2. Categorical imperatives

The goal for this section is to extend the object maps Λ and / to functors.
The fact that Λ is not functorial in a naive way is shown by Proposition 1.15.
At the same time, 1.15 suggests that the right solution to this extension problem
lies in the direction of restricting the classes of morphisms of symmetric grou-
poids and GI groups.

We begin with purely categorical considerations. If Jl is a category, let
ob Jl denote the class of all objects of Jl. It will sometimes be convenient to
identify ob JL with the identity morphisms of Jl. The notation/ e Jl abbreviates
"/is a morphism of Jl" When the domain A and range B of a morphism

have to be specified, we will write f ^Jί (A, B).

Proposition 2.1. Let JL and 9$ be categories, JLQ and j£0 subcategorίes of
JL and S$ respectively such that ob J10— ob JL and ob J2?0=ob J3. Assume that
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Σ3 Jl<Q->Sl and T: Ά^-^Jl are functors. Define recursively:

Let Jlω= Γ\n<ωJίn, -£5ω— ΓU<ω-® Then for every n<ω, Jίn and £Bn are sub-
categories of cΛ and £B0 respectively, with ob An=ob JL and ob <Bn=ob <B.
Moreover, the restriction of 2 to JLω is a functor to <Bω and the restriction of T to
@ω & a functor to Aω.

Proof. Induction on n shows that Jln+λ is a subcategory of <Jln, £Bn+l a
subcategory of &„ with ob Jln+1= ob JLn, ob ̂ w+1-:ob $n. Thus, Jll^Jl^Jl^

^A2Ώ. •-, and ̂ 3-S0̂ -®ι3^3 - . Hence cX is a subcategory of cΛ such
that ob ̂ ?ω=ob Jl, and ̂ ω is a subcategory of J30 such that ob .3ω=ob ̂ . By

definition, f^Jlω implies /e^ϊn+1 for all n<ω. Thus, Σ/e-®» for all
so that Σ/e^ω. Similarly,

REMARKS 2.2. (Corollaries of the proof of 2.1).

2.2.1. /<ΞcΛ and Σ/^-^ω implies /e J[ω; ^e^0 and Tg(=Jlω implies

2.2.2. For m<ω, ^2(w+1) - {/eJZ0: Σ/e^0 and

Ϊ e c Λ and

Lemma 2.3. L ί̂ Jibe a category, and let Jl§ be a subcategory of Jl such
that ob Jl0=ob Jl. Let Jibe a class of commutative squares

A MB

in JL with the properties: hλ e JL0, h2 e JLQ, andf e c-Λ0 if ana °nfy if g^ <-A *̂
Φ: c ?̂0 ~* J^ ana *&: Jlo-^Jl be functors that satisfy:

2.3.1. if Sq(f, g\ A!, A2)e JC, with /, ̂ e J?0, then Sq(ψf, Ψg; Ψhϊ} Ψh2)

eJC;

2.3.2. there is a natural transformation {hA\ : Φ—>Ψ such that if
β), then

Φ/

*4 w,
belongs to JC. For w>0, define recursively

JlΛ+l=
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For all n<ωy it follows that:

(a) if Sq(f, g A l f h2) e Jf, then f^Jlnif and only if £ e J?*

(b) if / e <J0> then Φ/ e J^ if and only if Ψ/ e <Λ

(c) / e cΛ>, Ψ/ e cA> Ψ2/ e J?0, > Vf e J?0 implies / e c^?Λ+1

(d) JL^Jί^JL^^ .

Proof. The implication (a) follows by induction from 2.3.1; (c) and (d)

are similarly obtained by induction. The case n=Q of (b) is a consequence of
2.3.2. Assume that (b) holds for n. lίf^JLQ(A, B\ then Φ/<Ξ<_Λ if and only

if Ψ/e^?0, so that it will suffice to prove: ΨΦf<=Jln if and only if
under the assumption that Φf^JlQ and Ψf^JL0. By 2.3.2

Φ/
ΦA—J-+ ΦB

ΨA—ί+

is in JC. Therefore, by 2.3.1, so is

ψφ/
ΨΦB

Ψ25.

Consequently, by (a), ΨΦf<=Jln if and only if Ψ2/<Ξc3?w.
In the first application of 2.3, let Jί=ΰ be the category of all GI groups

and homomorphisms. Let oίo=^0= {/e ̂ (̂  H)'ΆC(G)) ^ C1 )̂) Define JC
to be the class of all commutative squares

*•
such that A! and A2

 are isomorphisms. Plainly, /^EΞ.δΌ, A2^^o> an(i /e

only if ^GΞ^O. Let Φ=Γ: ^0->^ be the functor defined by ΓG=G/C(G),

Γ(f)(xC(G))=f(x)C(G) for/e^0(G, /ί). Thus, the square

G -̂ -> ίί

commutes, where rG and rH are the natural projection homomorphisms.

Let Ψ — Λ/: QQ-*Q. By 1.15 and 1.17, Ψ is well defined. Note that if
» then
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G -̂ -> H

ίcj ^j, Jί*

commutes, where qG and qH are defined as in 1.11. It follows from 1.11 that
{#G} : Γ-»Λ/ is a natural equivalence of functors. The hypothesis 2.3.2 is
automatically satisfied because the vertical maps are isomorphisms. It follows
from 2.3 that for all ra<ω, the inductive definitions Sn+1= {f e <?0

: Γ/e^?«}
and <2n+l= {/e^0: AIf^Sn} are equivalent. As in 2.1, denote <2ω= ΠM<ω βn.

Lemma 2.4. Let G and H be GI groups, and let f be a group homomorphism
from G to H. Then f^Qωίf and only ιff(Cn(G)) c Cn(H) for all natural numbers
n, where Cn(G) and Cn(H) are the n'th terms of the upper central series of G and H
respectively.

Proof. It suffices to prove by induction on n that/e<?w if and only if
f(C\G))<^C\H) for all k<n+l. For w-=0, this equivalence is the definition of
Q§, since C1(G)=C(G). Assume that the equivalence is valid at level n. By
the remarks above and 2.3 (d), f^.Gn+l if and only if f^Q^ f^Sn, and
Γ/EΞ Qn. Thus, by the induction hypothesis, /EΞ Qn+\ is equivalent to
f(C\G})^C\H) and Γ/(C*(ΓG))cC\TH) for all k<n+l. It follows from
the commutativity of

G -̂ -» H
r4 Γ/ K

~r~ι/^ι ^ T^ TT1 (jr > 1 Γί ,

the fact that rH is surjective, and the definitions Cn+2(G)=rG1(Cn+\G/C(G)))=
r G

1(Cn+\ΓG))ίC
n+2(H) = rff1(Cn+1(ΓH)) that Tf(Cn+1(TG))^Cn+1(TH) if and

only if f(Cn+2(G)) c Cn+2(H). This completes the induction.
For the second application of 2.3, let Jl be the full category S of symmetric

groupoids and groupoid homomorphisms. Let S0 be the subcategory of homo-
morphisms that preserve the extended center, that is, f^S0(A, B) if and only
/(2>(A)) c Z(B). For the class JC, we take all squares in

/

*ι| J^2

satisfying:

2.5.1. hλ and A2 are injective;
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2.5.2. C and D are special symmetric groupoids and g is a special homo-
morphism;

2.5.3. every element of C (of D) can be written as a group product of

elements of h^A) (respectively, of h2(B)).

It is a consequence of 2.5.3 that hλ and hλ are members of <50. In fact,

suppose that (#1, •••, an)^Z>(A). By 1.10, the group product A^αO AI(«*)
centralizes every h^cή&h ̂ A). Consequently, h^a^ h^a^) is central by 2.5.3,

so that (Ai^), •••, fh.(aH))^S(C) according to 1.17.
In order to prove that the class JC satisfies the conditions imposed in 2.3, it

remains to show that/e<50 if and only if g^S0. If g^SQ, then h1of=goh1^SQ.
Consequently, since h2 is injective /ecS0. Conversely, assume that/ ̂ S0. Let

(cl9 •• ,^)<ΞS(C). By 2.5.3, ci=h1(ail)—hl(aik(i)). It follows from 1.17 that

(Ai(flu), — , AiKjK^eSίC), so that since Ax is injective, (αu, ••-, ank(n))<=2>(A).

Consequently, (A2/(^n), — , h2f(ank(n}) <E 2?(Z>), because / e cS0 and A2 e S0. Using
1.17 again, together with the hypothesis that g is special, it follows that ^( ι̂)

central. Hence, (̂ ), -,g(cu))t=3HD).

The role of the functor Φ in 2.3 is taken by Δ, where Δ(A)=AIZ(A),

with Z(A) the central congruence of A. If f(=S0(A, B), then f(Z(A))=

f(Z(A)Γ(A2)^Z>(B)Γ}B2=Z(B), so that /induces a unique homomorphism

Δ/: ΔA -> Δ^ such that

A -i 5

Δ/

commutes, with SA and % defined to be the natural projection homomorphisms.

For the functor Ψ in 2.3 take 7Λ: <SQ-*S. This functor is defined by

virtue of 1.15. By 1.9, there exist injective homomorphisms pA: ΔA-+IAA

such that PA=PAOSA Since ΔfosA—sBof and IAfopA=pBof for /e<50(A B),

it follows that {pA} is a natural transformation from Δ to /Λ. Moreover, the

squares

ΔA -

PA\iL
plainly satisfy 2.5.1, 2.5.2, and 2.5.3. Thus, 2.3.2 is satisfied. To show that
2.3.1 holds, let
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Sq(f,g;hl,h2) = hl\ \hz

/"* ^ 7~)

belong to K, with/ and g in S0. Then Sq(IΛf, IKg\ IAhly IAh2) satisfies 2.5.1
(by 1.16) and 2.5.2 (by definition). If ceC, then since Sq&JC, there exist

#!, •••, an in A such that c=h1(a1) h1(an). It follows from 1.13 that λc=λΛl(βl)

^A/^) —^ΛA^λ^ /ΛA^λ^). Thus, Sq(IAf, /Λg; IKhly /ΛA2) also satisfies
2.5.3, and is therefore a member of JC.

Since the conditions of 2.3 are satisfied, we conclude that for all n<ω, the
inductive definitions

are equivalent. Define c5ω— nw<ωcSM as in 2.1. Using the definition of Sω in

terms of Δ, it is possible to characterize Sω in a form that is analogous to the
description of Qω in 2.4.

DEFINITION 2.5. Let A be a symmetric groupoid. The sequence of
higher extended centers of A is defined inductively by 2>\A)=2>(A) and Zn+1(A)
=sA

1(Z>n(A/Z(A))), where SA: A^A/Z(A) is the natural projection homomor-
phism.

Lemma 2.6. Let A and B be symmetric groupoids, and let f be a groupoid

homomorphism from A to B. Then f^Sωif and only if f(Zn(A)) c 2>n(B) for all
natural numbers n.

The proof of 2.6 runs parallel to the proof of 2.4, so that it can be omitted.

Proposition 2.7. If f e S is surjective, then f^Sω. If g e Q is surjective,
then g£ΞSω.

Proof. Let f^S(A, B) be surjective. By the remark following 1.16,

/ecS0. Since f°sA—sB

0f and SB is surjective, it follows that Δ/ is surjective.
By induction, Δw/ecS0 for all n<ω. Hence, f^Sω by 2.3(c).

Corollary 2,8. For all A^ob S, the homomorphism pA: A-*IΛA belongs

to cSω. Moreover, ΛpA==qAA, and IqG=pIG for all A eob S and Geob Q.

Proof. As we noted above, ^^<S0. Thus, since PA=PA°SA> anc^ SA ίs

surjective, it follows that pA^S0. Moreover A.pA(\a)=\χa=qAA(\a) for all a^A,
so that ΛpA=qAA. By 2.7, qAA^£ω, from which it follows that pA^<Sω by 2.2.1.

Finally, if «e/G, then qG(u)=\u=pIG(u). Thus, IqG=pIG.
Collecting the results of 2.1 through 2.8, we obtain the main theorem of

this section.
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Theorem 2.9. Let Sω be the category whose objects are symmetric groupoids y

and whose morphίsms are groupoid homomorphίsms f: A-^B such that f(2>n(A))^
2>n(B) for all natural numbers n. Let Q^ be the category whose objects are GI
groups, and whose morphίsms are group homomorphisms g: G-+H such that g(Cn(G))
^Cn(H)for all natural numbers n. Then Λ is a functor from <5ω to 3ω and I is
a functor from Qω to Sω. Moreover} the class {pA: A^όb Sω} is a natural trans-
formation in S^from the identity functor on <5ω to /Λ, and the class {qG: G^ob £ω}
is a natural transformation in <2ω from the identity functor on βω to Λ/.

Corollary 2.10. Let Qc be the full subcategory of Q whose objects are the GI
groups ziith trivial center, and let Sz be the full subcategory of <50 whose objects are
the symmetric groupoids A such that Z(A) is the identity congruence on A. Then
A(SZ)<ΞΞ:SC and I(3C)^SZ. Moreover, the identity functor on Qz is naturally
equivalent to Λ/, and the identity functor on Sz is naturally equivalent to a sub-
functor of IK.

Proof. If C(G)={1}, then C"(G)={1} for all w, so that £J(G,H) =
β(G, H) by 2.4. Moreover, by 1.17, Z(IG)=\IG. Similarly, if Z(A)=1A, then
Sω(A, B)=S0(A, B) by 2.5 and 2.6. Also, C(AA) is trivial. In fact, by 1.13.3,
ξ(=C(ΛA) if and only if (ξ(a), ά)^Z(A) for all a<=A. The corollary now
follows from 2.9.

Corollary 2.11. The functor I is faithful and full on Qc. The functor Λ is
faithful on Sz and full on the subcotegory I(SC) of Sz.

The corollary is a straightforward consequence of 2.10 and 2.8. Notice
that Λ: SZ-+GC is also representative. It will follow from the results of Sec-
tion 3 that Λ: S-+S is representative as well.

The implication of 2.10 and 2.11 is that the bond between centerless GI
groups and their involution groupoids is so tight that the two concepts are
virtually interchangeable. For instance, the following observation is a special
case of 2.11.

Corollary 2.12. Let G and H be centerless GI groups.

2.12.1. G^HifandonlyiflG^IH.

2.12.2. aut G ̂  aut IG by the restriction map.

EXAMPLE 2.13. The functor Λ is not full on <SZ. To see this, let G be a
finite simple group with at least twτo conjugate classes of involutions, say G is
the alternating group on 5 letters. Let A=IG, and let B be a single conjugate
class of involutions in G. Since G is simple, C(G)={1} and (A)>=(By = G.
By 1.17, Z(B)<Ξ^Sί(A), so that the inclusion map i:B-+A is a member of
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S0(B,A). By 2.11, Λi: KB-*KA = KIG^ G is injective. In fact, since

=G, hi is an isomorphism. Let /^(Λi)"1: ΛA-+ΔJB. If f=Λg, where

, B), then If=IΛg is injective, so that g is also injective. This is im-

possible because | B \ < | A \ . It is also worth noting that B cannot be isomor-

phic to IH for any H^QC. Otherwise, G^hB^MH^H, so that B^IG=A.

As a final remark, note that 2.12.1 makes essential use of the hypothesis

that G and H are centerless. In fact, if G is a finite GI group such that | C(G) \

is odd (for instance, if G=SL3(GF(25))), then it is easy to check that the natural

projection G^>G/C(G) induces an isomorphism 7(G)^/(G/C(G)).

3. Symmetry systems

The results in Section 2 show that centerless GI groups are faithfully re-

presented by their associated symmetric groupoids and vice versa, any symmetric

groupoid whose central congruence is trivial can be realized as a subgroupoid of

/(G) for some centerless GI group G. This circummstance suggests that the

central congruence may be one of the most important aspects of the theory of
symmetric groupoids. In this section, we will see how much extra data is

needed to recover a symmetric groupoid A from Λ(^4) and M(A). The results
provide a new way to look at Z(A). Our construction is somewhat like Nagata's

* idealization' ' of a module (see [5], for example).

DEFINTION 3.1. A symmetry system is an ordered quadruple @— <^G; M;

[Xu: u^M} {θ(x, u): χ(=G, weM}> such that:

3.1.1. G is a GI group;

3.1.2. M is a subgroupoid of 7(G) satisfying <M>=G;

3.1.3. each Xu is a non-empty set, and Xu Γ\XV= 0 f°r u^v\

3.1.4. θ(x, u) is a bijection from Xu to Xxux-ι satisfying

(a) Θ(x1x2y u) = Θ(xl9 x2uxJ1)θ(x2ί u), and

(b) θ(u,u)=lXu.

Henceforth, we will use the simpler notation <G; M {Xu} {θ(x, u)}y to
designate a symmetry system.

Proposition 3.2. Let A be a symmetric groupoid. For μ^M(A), denote

: \a=μ}> and for geΛ(^ί), μeM(A), define θA(ξ, μ)=ξ\Xμ,. Then
'y M(A); {Xμ} θA(ξ, μ)}> is a symmetry system.

This observation is just a short calculation beyond 1.8 and 1.13.

We will presently associate a symmetric groupoid with each symmetry
system; first it is convenient to assemble some properties of the mappings

Θ(X, μ).
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Lemma 3.3. Let {%, u): x<=G, u<=M} satisfy 3.1.4. Then:

3.3.1. 0(1, u) = lXu for all u^M\

3.3.2. θ(x, u)-1 = θ(x~\ xux'1) for all x<=G, u^M\

3.3.3. Θ(u19 u2° °unow)θ(u2, u3o ounow) θ(un-ι, unow)θ(un, w)

= θ(ulul

 tmun, w) for HI €Ξ M and w €Ξ M.

Proof. 0(1, u) = θ(u, uuu-l)θ(u, u)=lXu. Also, θ(x~\ xux~l}θ(x, u) =
θ(x~1x, u)=lXu. Finally, 3.3.3 follows from 3.1.4 by induction on n.

Proposition 3.4. Let @=<G; M {Xu} {θ(x, u)}y be a symmetry system.
Define:

3.4.1. ,4(6)= U.6Jf̂ .;

3.4.2. for atΞXUJ bϊΞXϋy denote aob=θ(u, v)(b).

Then ^4(@), o^> is a symmetric groupoid.

Proof. If b£ΞXv, then θ(u, v)(b)<=Xuvu-ι=Xttov. Hence, aob<=Xuov. By
3.1.4(6), aoa=θ(u, u)(a)=a. By 3.3, ao(aob)=θ(u, uov)θ(u, v)(b)=θ(u2, v)(b)=
0(1, v)(b)=b. Finally, if ^eJΓ^, then (aob)o(aoc) = θ(uov, u°w)θ(u, w)(c) =

)u, w)(c)=θ(uv) w)(c)=θ(u, vow)θ(v, zv)(c)=ao(boc).

Lemma 3.5. Let @-=<G; M; {̂ M} {θ(x, u)}ybe a symmetry system. Let

u. for l<i<n. Then (a1)-)an)^Z(A(&))ιfandonlyifθ(u1—unyw)=lXw

for allw^M.

This lemma is a direct consequence of 3.3.3.

DEFINITION 3.6. A symmetry system @ = <G;M; {Xu} {θ(x, w)}> is
reduced if, for every #Φ 1 in G, there exists u^M such that θ(x, u)

If #φC(G), then xux~l3=u for some u^M. In this case, 0(#, w) maps Xtt

to a disjoint set Xxux-ι.

Corollary 3.7. If @ = <G;M; {Xu} {%,w)}> w α reduced symmetry

system, then Z(A(&))= U uζΞM Xu X ̂

Proposition 3.8. If A is a symmetric groupoid, then &(A) is reduced, and

A(®(A))=A.

Proof. If |Φ1^, then ξ(a)*a for some «e^4. Hence, θ(ξ, λβ)(α)ΦΛ, so
that 6(^4) is reduced. By definition, A(&(A))= U μ,eMXμ=A as a set. An easy
calculation shows that products in A and A(@(A)) are identical.

DEFINITION 3.9. Let 61==<G1; MI; {^ΓlM} {0 ,̂ w)}> and @2-<G2; M2;
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> v)}y be symmetry systems. A morphism from @x to @2 is
 a Pa*

F=</; K: we MJ), such that:

3.9.1.

3.9.2.

3.9.3. ^:^1M-^^Γ2/(M) satisfies Θ2(f(x), f(u))oeu = e^ioθfa u) for all

Our next two observations are direct consequences of this definition.

Lemma 3.10

3.10.1. Let ©j, @2j
 β^ ©a ̂  symmetry systems, and let ίV =</,-; {eiu:

Mt}>: @t.->@m fo morphίsms for i=\, 2. D<?/me F2oF1=<f2^1y
y. Then F2°F1: @!̂ @3 is a morphism of symmetry systems.

3.10.2. /@=<lc; {!*„}> is an endomorphism of @ = ({G\M\ {Xu}\
Θ(x9 «)}>.

3.10.3. The class of all symmetry systems and their morphίsms forms a

category in which composition is defined as in 3.10.1 and the identity morphism

of @ is /©.

Lemma 3.11 Let F=?ζf; {*„}>: @ι -* @2 be a morphism of symmetry
systems. Then F is an isomorphism if and only if f is a group isomorphism such that

f(M1)= M2, and each map eu is bίjectίve. In this case, F~l=(f~l\ {(ef -i^)) -1}>.

NOTATION. Denote the full category of all reduced symmetry systems by Si.

Proposition 3.12. If @=<G;.Λf {Xu} {θ(x, w)}> is a reduced symmerty
system, then there is an isomorphism

Proof. For #<EG, define f(x)= \JueMθ(x9 u). Then/(Λ;) maps A(®) =

UuξΞMXu to itself, and f(x1x2)=f(oe1)f(x2) by 3.1.4(a). If v(=M and a<=ΞXUJ

then f(v)(a)=θ(v, u)(a)=boa for every b(ΞXv. Hence, \b=f(o) for all b(=Xv.

Therefore, M(A(@))= {\b:
 : bt=A(®)}=f(M), and /(G)=Λ(^(@)). Since @ is

reduced, f(x)=lA(®) implies x=l. Thus, /is an isomorphism of G to Λ(^4(@)).
For a^Xu and b^XVJ we have \a=\b if and only if u — v (by 3.7). Thus,

Xλa = Xu. Let eu be the identity map on Xu = Xf(u). By Definition 3.2,

θ(f(x),f(u))=f(x)\Xfω = θ(x, u). Hence, F(@)=</; fe}>: @->@(-4(@)) is an
isomorphism in the category SI by 3.11.

Our next objective is to extend the object maps A -+&(A) and @-»^4(@) to
functors.

Lemma 3.13. Let A and B be symmetric groupoid, and let f^Sω(A, B).
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Then @(/)=<Λ(/) {/ 1 Xμ, : μ<=M(A)} > is a morphism of &(A) to @(5). More-

over, ίfgϊΞ<Sω(B, C), then ®(g°f)=®(g)<>®(f).

Proof. By 2.9, Λ(/)e£ω(Λ(.4), A(J5)), and if \a<EΞM(A\ then Λ(/)(λ.)=
Thus, 3.9.1 and 3.9.2 are satisfied. A calculation shows that if

, and aGΞ*μ (ί.*., λ.=μ), then 0B((Λ/)(f), (Λ/)(/*))M«))=
μ)(β)). Hence, @(/) is a morphism. The equality @fe°/)

°®(/) is a consequence of the functorial nature of Λ.
Obviously, @(l^)=/@u). Thus, @ is a functor from ^>ω to 51.

Lemma 3.14. Let @t=<Gί;Mί; {.X }̂ {#,(#, «)}> fo reduced symmetry
systems for i=l, 2. Lβί F=</; {βκ}>: @!->@2 δβ α morphism. Define A(F)=

Moreover,, if

Proof. If ae^ and 6e JΓP, then a°b=θ(u, v)(b)<=Xuov, and
euυA(u,v}(b)=θ2(f(u}J(v))eM^ by 3 A3. Thus ^(F) is a
groupoid homomorphism. If (aly ^^ an)^Z(A(&1))y where aj^XUj^ then by
3.5 and the assumption that @x is reduced, u1 uu=l. Consequently,

f(uι) ~f(un)=l> so that since A(F)(aj)^Xf(uj)y it follows that (A(F)(a1)> ••-,
A(F)(an))t=2>(A(®2)). This shows that A(F)<EΞS0. Let /,-: G,- -> Λ(^ (©,.)) be
the isomorphism that was defined in 3.12. By the proof of 3.12, aξΞXu implies

/ι(«) = λ. and /2(/(«)) = λβ.(β). Thus, Λ(4(F))o/1=/2o/. Since /e ^ω, it
follows that Λ^jF1))^^. Consequently, ^(F)e Jω by 2.2.1. A calculation
proves the last assertion of 3.14.

Plainly, A(I&)=1A(&), so that A is a functor from 31 to <5ω.

Lemma 3.15. Let f^<Sω(A, B) be a homomorphism of symmetric groupoids.

Then A(@(f))=f. Thus, Ac® is the identity functor on <Sω.

Proof. By definition, @(/)=<Λ(/); {f\Xμ: μ<=M(A)}y. Hence, A(@(f))

We can now prove the principal result of this section.

Theorem 3.16. The category Sω of all symmetric groupoids and morphisms
that preserve the higher extended centers is naturally equivalent to the category
jR of all reduced symmetry systems and their morphisms.

Proof. By 3.15, it suffices to prove that &oA is naturally equivalent to
the the identity functor on 31. This is accomplished by showing that if

1, @2), then the square
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commutes, where F(^) and F(@2)
 are the isomorphisms that were defined in

3.12. By definition, F(@2)oF=<g; &}>, where£ = U W^M2 02(*, w)of. Thus, if
xtΞGly then g(x)=[J w^M2θ2(f(x)y w). On the other hand, &(A(F))oF(®1) =

<#*> {*«}>> where /* = Λ(UM ( Ξ M l £«) 0(UM € Ξ M l #ι(*» w)) Let veM^ and choose
c <=Xlv. Then h(v) = A( U ̂ MI *„)( U ̂  0ι(*, w)) = A( U «eMl eu)(\e) = λ..(c) -
U ̂ ^ 02(/(«0> «>)=£(«;). Therefore, £ | Mt= h \ Mλ consequently, g=h.

This theorem showτs that the theory of symmetric groupoids is substantially
equivalent to the theory of symmetry systems. The latter objects have the
virtue that they can be constructed from familiar algebraic structures. The
rest of this section is concerned with the fabrication of symmetry systems.

For any set X, we denote by S(X) the group of all permutations of X, that
is, bijections of X to itself.

DEFINITION 3.17. A partial symmetry system is a 5-tuρle

φ = <{G; M {vt: iϊΞj} (X,: i^J} {θt: ίe/}> ,

such that:

3.17.1. G a GI group;

3.17.2. Mis a subgroupoid of I(G) such that G=<M>; and M= U |W /£,-,
where .K^ are distinct conjugate classes of involutions;

3.17.3. ^eΛΓj fora l l ίe/ ;

3.17.4. JSff is a non-empty set, and XiΓ[XJ = 0 for ίΦy in/;

3.17.5. 0, is a homomorphism from CG(vf) to 5(̂  ) such that ̂

As in the case of symmetry systems, we will abbreviate the notation for
a partial symmetry system to <G; M; {v{} {X{}

REMARK. Since M is a subgroupoid of /(G) and <M>^G, it follows that
M is closed under conjugation by elements of G. Thus, M is indeed a union of
conjugate classes of G.

Every symmetry system gives rise to a partial symmetry system. It is the
converse of this observation that is most interesting however.

Lemma 3.18. Let @ = <G;M; {Xu} {θ(x, ι/)}> be a symmetry system.
Let M= U i&j Ki} where the Kt are distinct conjugate classes. For each i^J, let
v^K{. Denote X{=XVi, and θ~ 0(*, O|CG«). Then <(G;M;{^.};

f} , {#,}> is a partial symmetry system.

Proof. By 3.1.4, θ{ is a homomorphism of CG(vt) to S(Xt) such that

t)=\.
Construction 3.19. Let <G: M; {v{} {̂ } {#,}> be a partial symmetry
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system. Write M= U ίe/ Ki9 a disjoint union of conjugate classes. For z'e /,
choose a set Y{ of representatives of the left cosets of CG(vt) in G. Define

τrt : G-> Y{ and p, : G-*CG(vt) by the condition

3.19.1. Λ? = πi(x)pi(x) for all

Define γf : K{ -> Ft by the conditions

3.19.2 w = 7i(u)vi7iu)~1, γf tte F. for all

For u^Kiy define JfM= fy} X^ , and for #eG, u^Kh define ^(Λ:, w): Xu-+Xxux-ι

by 0(*, «)(«, α)=(

Proposition 3.20. ίFiίA ίte notation of 3.19 @ = <G;M;
{^(jc, u): Λ?eG, z/eM}> w α symmetry system. For @ ίo i^ reduced, it is neces-
sary and sufficient that C(G) Π Π , 6/ Ker ,̂.= {1} .

Proof. The verification of 3.1.4 uses two simple identities whose proofs

we omit:

(1) pi(xy)=pi(xπi(y))pi(y)
(2)

To prove 3.1.4(0), let u^Ki9 a^Xh x,y<=G. Then

θ(x, yuy-l)θ(y, u)(u, a) = θ(x,

= (xyuy-lχ-1, θ^p

- (xyuy~lχ-\ Θi(pi(xy7i(u)))(a)) = θ(xy, u)(u, a) .

Moreover,

θ(u, u)(U) a] = (uuu-\ θtMwMWa)) = (u, θ^p^^v^a)))

= (u, θ&Ma)) = (11, a) ,

by 3.19.2, 3.19.1, and 3.17.5. Thus, 3.1.4(0) also holds. Finally, note that
θ(χy u)=lXu for all u^M if and only if xux~l=u for all u^M, and Θi(pi(x7i(u)))
= lχf for all u^Kj. Since <M>=G, xux~1=u for all z/eM is equivalent to
Λ?GΞC(G), in which case p, (Λ?7i(w))=pf (7l (w)Λ?)=Λ:. Hence, @ is reduced if and

only if θi(x)=lXi for all ίe/ and Λ:eC(G) implies #=1. That is, C(G) Π
'

It can be shown that different choices of the sets Y{ in 3.19 will lead to
isomorphic symmetry systems. We omit this verification.

Corollary 3.21. Let G be a GI group, and let M be subgroupoίd of 7(G)
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such that <M>=G. Moreover, if \G\ =2, assume that M=G. Then there is a
symmetric groupoid A and an isomorphism/: Λ(^l) -> G such that M=f(M(A)).

Proof. Write M= U ίe/ Kiy where the K{ are distinct conjugate classes.
For each ie/, choose v^Kf. Define Xi=CG(vi)/^viyy and let 0, be the
left regular representation of CG(^t) on Xiy so that Ker θ{ = <\v^>. Then
sβ=<G; M; {v^ {X{} {0t }> is a partial symmetry system. If |/ | >1, or if

I J I = 1 and v& C(G), then clearly C(G) (Ί Π ,-<=/ Ker θf= {1} . The alternative
to these cases is | G | — 2 and M— {̂ }, which was excluded by hypothesis.
Therefore, the symmetry system @ associated with β̂ is reduced. By 3.12.,
there is an isomorphism/: G->Λ(^4(@)) such

REMARK. If A is a symmetric groupoid such that | Λ(^4) | = 2, then
necessarily M(A)=Λ(A). In fact, if \M(A)\=19 then λβ=λ* for all a, b in A.
Hence, \a(b)=\b(b)=b for all by so that λβ=l^ for all a. Consequently,

EXAMPLE 3.22. Let G be an abelian GI group. Then G is an elementary
2-group, since any product of involutions is an involution. A subset M of G
satisfies 3.17.2 provided <M>=G. The conjugate classes being singletons, the
set M itself can serve as the indexing set / in the notation of 3.17. With this
convention, vu= u and CG(u)=G for u^M, so that yM={l} is a set of coset
representatives of CG(u) for the construction 3.19. With this choice of YM, we
have πu(x)=l, pu(x)=x for #eG, and ju(u)=l for u^M. Let {Xu:u^M}

be a set of non-empty sets such that XUΓ\XV=0 for U^FV in M. For each

u^My let θu: G-*S(XU) be a homomorphism such that we Ker θu. Then

<G; M; M; {̂ : u^M} {0W: weM}> is a partial symmetry system whose as-

sociated symmetry system @ = <G;M; {{u}xXu}', {θ(x, z/)}> is defined by

0(#, w)(z;, δ) = ( ,̂ θv(u)(b)). Moreover, the corresponding symmetric groupoid

A(&) can be identified with \JU(=M Xu> where aob=θv(u)(b) if αe^Γu and ie^Γ,.

Note that @ is reduced if and only if Π U&M Ker 0M= {1} .

4. Semantical matters

Our attention in this section is on the classes of GI groups, symmetric

groupoids, and special symmetric groupoids. Closure properties of these

classes are studied. Free GI groups and free symmetric groupoids are con-

structed, and the relation between them is exhibited. The section closes with

a characterization of the class of special symmetric groupoids by means of a set

of Horn formulas.

Lemma 4.1. Let {Gjij ^J} be a set of subgroups of the group G, such that

each Gj is a GI group , and G=( U ; e/ Gr

y>. Then G is a GI group.
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Proof. G=< U ,e/ Gy>=< U ,e/</(G .)>=< U ,.6/ /(G,)>c</(G)>.

Corollary 4.2. 7%£ £/<m ^ w closed under free products, direct limits, finite
products, and split extensions. Any homomorphic image of a GI group is a GI group.

Of course, Q is not closed under the formation of subgroups. In fact, every
group can be embedded in a group of the form S(X), the permutations of Xy

and S(X) is a GI group (see [8], p. 306). We will prove shortly that Q is not
closed under the formation of ultrapowers.

Proposition 4.3. Let a be a cardinal number. Then there is a GI group

GΛ containing a set L of a non-identity involutions such that :

4.3.1. every x^GΛ has a unique representation

x = uw Uk-i > wyeL, Uj*u.+1 for allj <k—\\

4.3.2. If G is any group , and f is a mapping from L to /(G), then f has a
unique extension to a group homomorphίsm of GΛ to G.

The group G is uniquely determined by either of the properties 4.3.1 or 4.3.2.

Proof. For each ordinal £?<α, let Z)g={l, v%} be a cyclic group of
order two. Define GΛ to be the free product of {D%: ξ <α}, and let L consist
of the images in GΛ of the generators v^ of D%. The proposition is just a res-
tatement of standard properties of free products ([8], pp. 175-6), together with
4.2.

We will call GΛ the free GI group on L, or the free GI group on a generators.
A representation

of Λ?eGΛ will be called reduced if UJ^FUJ+I for all j <k— 1.

Lemma 4.4. Every element o//(GΛ)— {1} is conjugate in GΛ to some

Proof. Let a=uQul uk.1^I(Gcί)— {1} be a reduced representation of a.
Then k>ly because #φl. We argue by induction on k that a is conjugate to

some w€zL. This is obvious if ft=l. Assume &>1. Then I = α2 = tι0w1

ttjk-itto"!" •«*-!• By 4.3.1, uk-!=u0. Thus, b=UQauQ=u1 uk-2^I(G<Λ), andόΦl
(otherwise, a=uQuk,1=Uo=l). By the induction hypothesis, b— xux~l for some
x^GΛ, u^L and a=u0xu(u0x)~l.

Theorem 4.5. The class of all GI groups is not closed under the formation

of ultrapowers.

Proof. Let G=G$0 be the free GI group on the countably infinite set
L—{un: «<ω} of distinct involutions. We will prove that if £F is any non-
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principal filter on ω, then the reduced power Gω/£F is not a GI group. The
proof is based on the following observation:

(1) if α0, al9 •••,#„,_! are elements of /(G) satisfying aQaλ • • am_1 = u<μλ •••
%_!, then m>k.

To prove (1), note that by 4.4, each a{ can be written in the form viQVn

viri-ι^iviri-ι'"viivioy where the Vfj and «;,- belong to L. By 4.3.1, each ul with
/<& occurs an odd number of times in the product

tfw ϋoro-lWoϋoro-Γ '^^

Consequently, each ιιl occurs an odd number of times in the list zu0, •• ywm_l.

In particular, m>k. Returning to the main part of the proof, define /eGω by
f(k)=u0u1 uk-l. It will suffice to show that the equivalence class off in G^/S
is not product of involutions. Suppose otherwise: there exist g0, gl9 • t

ygm-ι in
Gω such that the sets Q{= {j <ω: gi(j)2=l}y i<m, and R = {j <ω:f(j) =

gQ(J)gι(J) gm-ι(J)} are members of £F. Then R n QQ Π Qλ Π - Π Qm-ι^3, and
since £F is not principal, there exists k>m such that k^R ΓiQoΓiQiΓi ••• Π ̂ w-ι
Hence, uQu1^'Uk.1=f(k)=g0(k)g1(k) -gm_1(k)ί and^ (Λ)e/(G) for all z<m. Since
k>my this contradicts (1).

Corollary 4.6. 77z£ cteί ί' is not axiomatic: there is no set 6 of first order
sentences in the language of group theory such that Q is the class of all models of 6.

Indeed, by the theorm of Los, every axiomatic class is closed under ultra-
products.

We wish now to characterize the extended center of the symmetric groupodis
I(GΛ)— {1} . A definition is needed.

DEFINITION 4.6. Let Q= {&0, k19 •••, k2m+ι} be a subset of ω listed in strictly
increasing order. A nested pairing of Q is a partition Π of Q into two element
subsets that satisfies the inductive condition:

4.6.1. there exists i <2m+l such that {ki9 ki+1} e Π and Π — {{&,, &, +ι}}
is a nested pairing of Q— {kh ki+ί} .

Let S>

m denote the set of all nested parings of {0, 1, •••, 2m-\-\] .

DEFINITION 4.7. Let A be a symmetric groupoid. A sequence (a0, al9 •••,

a2m+1)^A2(m+l) is collapsible if there exists Π^^ sucn tnat {i,j}^ϊl implies

Lemma 4.8. If («0, al9 ••-, a2m+l) is a collapsible sequence of elements in the
symmetric groupoid A, then (α0, al9 •••, a2m +1)

Proof. If m=0, the assertion is obvious, since £P0={{{0, !}}}• Assume
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that m>0. By 4.6.1, there exists {/,y+l}<ΞΠ such that Π— {{/> ./+!}} is a

nested pairing of 2(m+l)- {j,j+l}. Then λβoλ.1-λβίιιl+1=λβoλβl-λβy_1λβy+2

•• λβ2w+1 The lemma follows by induction on m.

DEFINITION 4.9. Let ^4 be a symmetric groupoid. Denote by 2>0(A) the
set of all sequences (ΛO, tfj, •••, ΛΛ) of elements of A for which there is a represen-

tation ai=biQθbilo obir(i).1obi such that the composite sequence (/30, &, •••, /9ft)

is collapsible, where βi = (bio, bilf — ,*,>(,•)-!, ft,, ftI>ω-ι, — , ft,ι, ftio). The sym-
metric groupoid ^ is called centerless if Z(A)=1A and

REMARKS. (1) It follows by an inductive argument from 1.18 that
Z>(A) for all symmetric groupoids A.

(2) If/: A->B is a groupoid homomorphism of symmetric groupoids, then
Z>Q(B). Consequently, if A is centerless (so that Zn(A) = Z>(A)=

for all n<ω), then Sω(A, B)=S(A, B).

We will show that for all α, I(GΛ) — {1} is centerless. The proof is based

on a property of GΛ.

Lemma 4.10. Let GΛ be the free G I group on a set L of a involutions. If

a> 1, then C(GΛ)= {!}. Moreover, if (u0y uly •••, un)^Ln+l satisfies u^ ••• un=l,
then (UQJ uly •••, ww) w collapsible.

Proof. Assume that α>l. Let jceG^— {1} have the reduced repre-
sentation UQU^ U,. Since a>l, there exists weL such that either ^Φw0 or
z/Φw r. In both cases, it follows from 4.3.1 that ux^pxu. Hence, C(GΛ)={1}.

The second assertion is obtained by induction on n. By 4.3.1, M0ι/1 wn=l

implies that Uj—uj+1 for some j" <n. Consequently,

Proposition 4.11. For α>l, the symmetric groupoid Aa—I(GΛ)— {1} is
centerless, where GΛ is the free GI group on a involutions.

Proof. If α=l, then GΛ is cyclic of order 2, and |^4 r t |=l. In this

case, the assertion is trivially true. Assume that α>l, so that C(GΛ)=1 by

by 4.10. By 1.17, (α0, aλ, •••, ak)&5£(AΛ) implies ΛOΛI ΛΛ=I. Thus, if Λ=l,
then 00=^. Hence Z(A<Λ)=lA<ύ. Moreover, it follows from 4.4 and 4.10 that

Z>(Aa)^2>Q(Aa). By the first remark following 4.9, AΛ is centerless.

Not all sequences in 2>(Aa) are collapsible. For instance, if a0=u0u1u0,
a1=u0u1u0u1u0u1u0y and a2=uλ, then (a0, al9 aQy a2)<=2!>(A2).

Theorem 4.12. Let GΛ be the free GI group on the set L of a involutions.
Denote the symmetric groupoid /(GΛ)— {1} by AΛ. Then A^ is the free symmetric

groupoid on L.

Proof. By 4.3 and 4.4, every a^I(GΛ)— {1} has a unique reduced repre-
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sentation a=u0ou1o ouk_ly withΛ>l, u^L and w; φw.+ι for j <k— 1. Denote

by l(ά) the number & of terms in the reduced representation of a. Let / be a

mapping of L to a symmmetric groupoid A Extend / to AΛ by defining

f(a)=f(uo)°f(uι)0'"°f(uk-ι)> where a=u0°u1o ouk_1 is reduced. This definition
is well posed by the uniquess of reduced representations. We argue by induc-
tion on l(ά) ihatf(aob)=f(a)of(b) for all α, b^A. Let 0=1/00^0 •• OMΛ_ I and b—

^o°^i°*"0^w-i be the reduced representations of a and b. Assume that Λ—
l(a)=l. If UQ^VO, thtnuQθv0ov1o^ ovm_1 is the reduced representation of αoi,
so that /(αo^^^z/^o/^o/^o. .o/ .̂̂ ^/^o/^). If tt0=uo, then tfoi=

tfio — oi^ by 1.1.2. Thus,/(αo6)=/(^

=f(a)of(b). Assume that /(#)> 1. Then a=u0oc, where c=M1o..-oM j f e_1 satisfies

l(c) = l(ά) — 1. By the induction hypothesis and 1.5, f(aob)=f((u0oc)ob) =

REMARK. As we noted in the comment after 4.9, every homomorphism of

a centerless symmetric groupoid is a member of cSω. Thus, AΛ is free in either
of the categories S or <5ω.

The rest of this section is concerned with the class of special symmetric

groupoids: those groupoids that are isomorphic to a subgroupoid of I(G) for

some GI group G. An example shows that the special symmetric groupoids
constitute a proper subclass of S.

EXAMPLE 4.13. Let A={a, b, c}, where #, b, and c are distinct. Define
aoχ=coχ= x for all x^A, and boa=c, bob=b, boc=a. Then A is a symmetric

groupoid, but A is not special. In fact, if G is a group, then any subgroupoid
of /(G) satisfies: χoy=y implies yoχ=χ. This implication obviously does not

hold in A.
It follows from a theorem of A. I. Omarov [7] that the class of special

symmetric groupoids is a quasivariety. In particular, this class is hereditary,

and closed under the formation of products and ultraproducts. By 4.12 and

4.13 homomorphic image of a special symmetric groupoid needn't be speical.
We proceed to give an explicit construction of the universal special sym-

metric groupoid asscoiated with an arbitrary symmetric groupoid A. This

will make it possible to exhibit a recursive set of Horn formulas that axiomatize

the class of all special symmetric groupoids.

Proposition 4.14. Let A be a symmetric groupoid. Let u: A-+L be a bijec-

tive map. Let G# be the free GI group on L where a= \A\. Let NA be the normal

subgroup of GΛ that is generated by {u(aob)u(ά)u(b)u(a): a, b^A}. Denote
EA=GaINA, with t: Ga-*EA the natural projection. Define fA=tou: A-+I(EA).

Then:

4.14.1. EA is a GI group;
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4.14.2. fA is a groupoid homomorphism

4.14.3. fA(A) generates EA as a group;

4.14.4. if H is a group, and#: A-*I(H) is a homomorphism, then there

is a group homomorphism A: EA-*H such that g=(h\I(EA))°fA.

The pair (EA,fA) is uniquely determined by 4.12.1-4.12.4.

Proof. The properties 4.14.1, 4.14.2, and 4.14.3 are direct consequences

of the definitions. To prove 4.14.4, define /: L^I(H) by f(v)=g(u"\v)). By
4.3.2, / extends to a group homomorphism of G# to //. If fl, b^A, then

f(u(aob)u(a)u(b)u(a))=g(aob)g(a)g(b)g(a)=l, so that Λ^cKer/. Thus, there is
a group homomorphism A: EA-^H such that f=hot. Then h(fA(a))=h(t(u(a)))

=f(u(a))=g(a). The uniqueness is a categorical fact.

Corollary 4.15. ^4 symmetric groupoid A is special if and only iffA is injective.

A more explicit description of the normal subgroup NA that was defined in

4.14 is needed.

Lemma 4.16. Let the notation and hypotheses be as in 4.14. For aQ, a^ •••,
ar, b in A, denote w(aQ) aly •• ,αr; b)=u(a0oa1o oarob)u(a0)u(al)" u(ar)u(b)u(ar)

u(a^)u(aj). Then NA consists of the set of all products of elements of the

form w(a0yaly yaryb)^ where floΦ^Φ Φ^Φδ in A.

Proof. Using the identities of 1.1 and the fact u(a)2=l in Grt, it is easily
seen that:

4.16.1. if #,•_! = a{ for i<r, then w(aQ, ••-, ar\ b) = w(a^ •••, αt _2, «, +ι, •••>
βr; δ), and if αr=i, then w(α0, •••, ar\ b)=w(aQ, •••, ̂ ^ ar}\

4.16.2.

4.16.3.

Consequently, the set N of all products of elements of the form w(aQ, aly ,ar]b)
with βQφtfjΦ φd^Φό is a normal subgroup of GΛ that includes all products

of the form u(aob)u(a)u(b)u(a). Thus N^NA. On the other hand, it follows
from 4.16.3 by induction on r that every w(aOJ •••, ar\ V) is a member of ./V^.

Corollary 4.17. The symmetric groupoid A is special if and only if every

relation of the form

in G entails £=</ in ^4.

Proof. fA(c)=fA(d) if and only if u(c)u(d)^NA.
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It is reasonably clear from 4.10 that the criterion of 4.17 can be formalized.
The details follow.

Lemma 4.18. Let GΛ be the free GI group on the set L of involutions. Let

(^o> wι> •"> un)^Ln+1. Then U0u1 un=vw9 where vyw^L if and only if either
v=w and (u0y uly ~ yun) is collapsible, or there exist i<j<n such that v — uiy

w=ujy and the sequences (uQy •••, M, _I), (ui+ly •••, Wy-i), (̂ ; +ι, •••, un) are collapsible
or empty.

Proof. These conditions obviously imply u0u1 un=vw. For the proof
of the converse, it can be assumed by 4.10 that v^w and n>2. By 4.3.1 there
exists j <n such that Uj=uj+l. Moreover, if Uj=vy then v=uί for some /Φj,

j -\- 1. The same is true if Uj—w. The result then follows by induction on n.

NOTATION 4.19. Let L be the first order language of symmetric groupoids

with a countable sequence {zn: n<ω\ of distinct variables. Thus, in addition

to the usual logical symbols Λ , V, ~, -», 3, Vy = of the first order
predicate calculus with equality, L includes a binary operation symbol o. It
is convenient to add to the operation symbols of L the n-fold composition of o ,

grouped according to the convention of 1.12. Of course, these operations are
definable in L:

4.19.1. for r+1 <s, denote by W(ry s) the formula

(Z2r+1 = *2s

4.19.2. for a nested pairing Π = { ft, Ί} , fe;2}, — , fcj'J} of a finite
subset of ω, denote by V(ΐ[) the formula

let V(ΐΐ) be the empty formula when Π^Φ

Theorem 4.20. Let M be the set of all formulas in L that are of the form

)Λ W(rl9 r2)Λ - Λ W(rk.l9 m)Λ F(Πι)Λ ^(Π2)Λ F(Π3) -* («, = ̂  ) >

where 1 <rj, r1+l<r2, •••, rk^-\-\ <m, 0<i<j <2m— 1, Πi w « nested pairing

of {0, 1, ••-,£— 1}, Π2 w a nested pairing of {i+1, £+2, •••,;—!}, αnrf Πa w a

nested pairing of {/+l,y+2, •••, 2m— I } . Then the class of symmetric groupoids
that satisfy all of the formulas of M coincides with the class of special symmetric

groupoids.

Proof. Let A be a symmetric groupoid, and suppose that (a0, aly •• ,#2w_ι)
2m, where m>\. By 4.16, u(a0)u(a1) 'u(a2tn_1)^NA (in the notation of 4.14)

if and only if (aQ, aly — , ίZg^-x) satisfies W(Q, r^Λ ̂ i, ^2)Λ — Λ W(rk_ly m) for a
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suitable choice 0<rl9 ^-f I<r2, •• ,rk_1-\-l<m. For c and d in A, it follows

from 4.18 that u(c)u(d)^NA if and only if c occurs as a{ and d occurs as a^ in a

sequence (a0, alt •• ,a2m_1)<=A2m that satisfies F(Πι)Λ I7(Π2)Λ V(ΐί3) for suitable

nested pairing Πi of {0, 1, •••,/—!}, Π2 of {i+1, i+2, —,;—!}, and Π3 of
{/+!, •••, 2m— 1} , and u(a0)tι(a1) u(a2m_1)^NA. On the basis of these observa-

tions and 4.17, it is clear that A is special if and only if A satisfies all formulas
in.*.

It is evident that the set M is recursive with respect to a Gϋdel numbering
of L. However, the construction process will frequently produce sentences

that are deducible from the identities of the class of symmetric groupoids.

Example 4.13 shows that there is at least one formula in Si that is not a con-

sequence of the theory of symmetric groupoids. The following example shows

that M is effectively infinite.

EXAMPLE 4.21. Let n be a positive integer. For &<ω, denote by (k)

the least non-negative residue of k modulo n-\-\. Let U(k) denote the formula

*{*}°*θm}0 0*{*+»} =*{*+*}• It is easy to see [7(1) Λ [7(2) Λ — Λ ί7(n)->[7(0) is
equivalent to a formula of M. For example, if #=3, then [7(1) Λ U(2)/\ [7(3) ->

[7(0) can be obtained by the rule of substitution from W(Q, 4) Λ W(4, 8)Λ

W(&, 12)ΛW(12, 16)ΛF(Π)->(*0=*3i)> where Π is the nested pairing {7, 8},
{6,9}, {5, 10}, {4, 11}, {15, 16}, {14, 17}, {13, 18}, {12, 19}, {23,24}, {22,25},

{21, 26} , {20, 27} , {3, 28} , {2, 29} , {1, 30} . Assume now that n>3. We will

construct a symmetric groupoid that satisfies [7(1) Λ [7(2) Λ ••• Λ [7(m)-»[7(0) for

all m<w, but does not satisfy this formula for m=n. Let G=<%>X<WI)>X •••

X<wn> be a direct product of n-\-\ copies <wί> of the cyclic group of order 2.

Denote M={u0, u1} •••,#„}. Then <M>=G. Define subgroups H{ of G by
H0=(u^, Hf=ζui9 wy for !</<7i, where w=M0M1 wn. Let X~XU. be the

coset space G/^ . Finally, define θ~θu.: G-+S(Xt) by θ^x^yH^xyHf.

Plainly, θ i(x)(yH ,)=yH i for some j ^G if and only if x^H{. By 3.22, the

partial symmetry system <G; M\ M\ \X^\ { t̂ }> determines a symmetric
groupoid A in which

where ak^Xik for k<m. Thus, aQoa1o oam^1oam=am if and only if w^w^-

uim_1^Him. In particular, if m<n, then ^o0^!0*"0^-!0^^^ is equivalent to
the product uiouiι uim_1 being equal to either wίm or 1. If wίowίι w l m_1^w t m,

then uio"'Uij_ιui.+ι-'Uim=ui.y so that a^^oarloa^^Qamoa.=ajy for all >.

Thus, [7(1)Λ [7(2) Λ — Λ [7(w)-*[7(0) is satisfied by (ΛO, ̂ , -••, αw) in this case.

Assume that u^ u^^l. Then m>2, and M, O— Mlv-iMiy+r"M'--.= M'VM«« for

aliy<τw. Moreover, the number of j" such that i^im is even, hence either 0
or >2. From this observation, it follows that (#0, ΛJ, •••,«„,) satisfies [7(1) Λ

[7(2)Λ ••• Λί7(w)-» [7(0) in all cases. Assume that m=^n. Choose a{
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for all i<n. Then aj+loaj+2o oanoa0o...oaj=-θj(uj+1uj+2 unu0 uj-l)(aj)==

θj(UjW)(aj). Hence fly+1oβy+2o o0.—#. f°r !</<#, and

Thus A does not satisfy E7(1)ΛZ/(2)< Λ t/(fi)-*C7(0).
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