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Let R be a ring and E an injective hull of R;. We call R right QF-3’ if
every finitely generated submodule of E is torsionless. The dimension of a
right R-module M is defined as the superior of the lengths 7n of chains
M,cM,C--- M, of submodules of M such that each factor module M;,,/M; is
not torsion (under the Lambek torsion theory).

We shall characterize a finite dimensional (i.e. the dimensions of Rj and
#R are finite) right and left QF-3’ ring using the dimension of modules with
some properties. Next, let R be a noetherian ring. Jans [4] proved that every
finitely generated torsionless right R-module is reflexive if and only if R has
injective dimension <1 as a left R-module. When R is (not necessarily noe-
therian) a commutative integral domain, results analogous to above one were
proved by Matlis [6], where he further delt with some properties on torsion
modules. These properties, in case of noetherian QF-3’ ring, were investigated
by Zaks [11] and Sato [8]. In this note, we shall give characterizations of
non-singular noetherian (or artinian) QF-3’ ring with injective dimension <1
using the Lambek torsion theory.

Throughout we assume that if a ring R is said to be noetherian or QF-3’,
etc., we mean right and left noetherian or right and left QF-3’, etc.. Moreover
we assume that “every R-module’” means “every right R-module and every left
R-module,” and “R has injective dimension <1”” does ‘R has injective dimen-
sion <1 as right and left R-modules,” etc..

In this note, “torsion theory”’ means the Lambek torsion theory, which
is cogenerated by an injective hull of Rg(zR). We denote its torsion radical
by . Let R be a ring and M a right R-module. A chain

M, cM,CM;C-(resp. M\\DM,DM;>--)

of submodules of M is called ¢-chain (of M) if M;,,/M; (resp. M;/M,.,) is not
torsion for each 7. A module M is called finite dimensional if any ascending
t-chain and any descending #-chain of M terminate. A ring R is called right
finite dimensional if Ry is finite dimensional, (refer Goldman [3] for these defini-
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tions and their properties). The dimension of M is said to be equal to or larger
than n and we denote it by dim M >mn, if M has a #-chain of length n. The dimen-
sion of M is said to be equal to n if dim M>n and dim MZ>n+-1, and in parti-
cular, dim M=0 if M is torsion, and dim M=o if dim M >n for any positive
integer 7.

The following lemma is immediate from the fact that if 0->4—B—C—0
is a short exact sequence of right R-modules, B is torsion if and only if 4 and
C are torsion.

Lemmal. Let 0—>L—>M—->N—0 be an exact sequence of right R-modules.
Then we have dim M=dim L-+dim N.

By Lemma 1, it is easy to see that a right R-module M is finite dimensional
if and only if dim M=mn for some integer n>0. Let R be a right non-singular
ring and M a torsion-free right R-module. Then we should note that this
dimension of M is equal to the Goldie dimension of M. A right R-module M
is called finitely imbedded (more briefly FI), if M is imbedded in some finitely
generated right R-module. A ring R is called right QF-3" if R satisfies the
following equivalent properties:

(1) Any finitely generated submodule of E is torsionless, where E is an in-
jective hull of Rp.

(2) Every FI torsion-free right R-module is torsionless.

(3) 'The maximal right quotient ring O of R is a left quotient ring of R,
and every finitely generated submodule of an injective hull E(Qg) of Q, is
torsionless.

The equivalence of these was proved by Masaike [5].

If M is a right R-module, we denote Homg(M, R) and Exti(M, R) by M*
and M, respectively, and these are naturally regarded as left R-modules.

Lemma 2. Let R be a right QF-3" ring and M an FI right R-module.
Then M 1s torsion if and only if M*=0.

Proof. This is immediate from the definition of FI modules.

Lemma 3. Let R be a finite dimensional right QF-3" ring. Then the follow-
ing statements for a right R-module M are equivalent :

(1) M is finite dimensional torsionless.

(2) M is FI torsionless.

(3) M is FI torsion-free.

(4) M is imbedded in a finitely generated free right R-module.

Proof. We shall only show that (1) implies (4), for (4)=(3)=(2)=(1) are
clear. Assume (1). It follows from the definition of ““finite dimensional” that
there is a finitely generated submodule IV of M such that M/N is torsion. Hence
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M* is imbedded in N*. Since V* is imbedded in a finitely generated free left
R-module, so is M*, and in particular M* is also finite dimensional. Therefore,
using a similar discussion for M* it follows that M** is imbedded in a finitely
generated free right R-module. Thus (4) is satisfied since the canonical
map M—M** is monomorphic.

Proposition 1. Let R be a right QF-3' ring. Then the following statements
are equivalent:

(1) R is right finite dimensional.

(2) R satisfies the ascending chain conditions on annihilator right ideals and
annihilator left ideals.

Proof. First we note that the condition (2) is clearly equivalent to a con-
dition that R satisfies both the chain conditions on annihilator right ideals.
If I is a right ideal of R, I is right annihilator if and only if R/I is torsionless.
Hence, (1) implies (2). Assume (2), and let 7 and I’ be right ideals of R such
that I/’ and I’/ is not torsion. For a subset 4 of R, we denote by r(A4)
(resp. I(A4)) the right (resp. left) annihilator ideal of 4. Put J=rl(I) and
J'=rl(I"), and let K/I be the torsion submodule of R/I. Then, since R[] is
torsion-free, J/I contains K/, i.e., JDK. By the assumption, a cyclic torsion-
free right R-module R/K is torsionless, and hence K is an annihilator right
ideal of R. Therefore we have K=] from ICKC/I, and so J/I is torsion.
Since I'/I is not torsion, so is J'//, and in particular J&J'. This implies by
the condition (2) that any ascending #-chain and any descending #-chain of Rg
terminate. Thus the condition (1) is satisfied.

Remarks (i) InProposition 1, (1) implies (2) without the assumption that
R is right QF-3’. Hence, for a semi-prime ring R, R is right finite dimensional
if and only if R is right Goldie.

(i) From right-left symmetry of the condition (2) in Proposition 1, it
follows that a left QF-3"and right finite dimensional ring is also left finite
dimensional.

Lemma 4. Let R be a right QF-3" ring, M an FI right R-module and N a
submodule of M. Then the monomorphism (M|N)*—M*derived by the canonical
epimorphism M—M|N is isomorphic if and only if N is torsion.

Proof. “If” part is trivial, and we shall show “only if” part. Assume
that the map (M/N)*—M* is isomorphic. In case M is torsionless, we easily
see N=0. Now let M be an FI right R-module and M’ the torsion submodule
of M. Then, we have a following commutative diagram with exact rows and
columns:
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0 0 0

V ! l
0—-M an———>M’——>M'+N/N——> 0

0 ———>_1V ——> M—>M|N—> 0
v |
0 ->NM'ANN-M/M—-MM+N—0
Y y |
0 0 0.

Moreover, from this we obtain the following commutative diagram with exact
rows and isomorphic columns:

0~ N (MY (N 1N
0 —> (MINY* —>M¥*——>N*.

Since R is right QF-3’, M/M’ is torsionless, and so we have N/M' N N=0 by
the above case, and hence NCM’. Thus N is torsion.

Lemma 5. Let R be a right finite dimensional right QF-3' ring. If M is
an FI right R-module, we have dim M ,<dimy (M¥*).

Proof. In case dim M=0, the assertion is trivial. In case dim M=1, we
have dim M*>1, since M* is non-zero torsionless by Lemma 2. Assume that
the assertion is satisfied for dim M <n—1, and let the dimension of M be equal
to n. Then there is a submodule L of M such that dim L=1 and so dim ML=
n—1. Then the map (M/L)*—M?* is not isomorphic by Lemma 4, and hence
we have an exact sequence 0—(M/L)*—M*—K—0 with non-zero torsion-free
left R-module K. By inductional assumption, we have dim (M/L)*>n—1.
Therefore dim M*>dim M.

Let M and N be right R-modules. For a homomorphism f: M—N, we
denote its dual map by f*: N*>M*. On the other hand, by @, : M—M**
we denote the canonical homorphism of M to M**,

Theorem 1. Let R be a right finite dimensional ring. Then the following
conditions are equivalent :

(1) Ris QF-3'.

(2) dim M=dim M* for every FI module M.

(3) dim M=dim M* for every FI torsion-free module M.

Proof. (1)implies (2). Let dim Ry=n. Since, by Lemma 5 and Remark
(ii), dim Rp<dimg (R*) <dim (R**),, we have dim Ry=dim zR. Therefore we
only show that dim M=dim M* for every FI right R-module M, because the
same arguments hold for FI left R-modules. If dim M=0, this assertion is
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trivial. Suppose that M is a cyclic right R-module and N is the kernel of an
epimorphism R—M. If the dimension of M is n, we have M=—=Rj, and so
dim M=dim M*. If dim M=n—1, and so dim N=1, then we have dim M*=
n—1 by Lemma 4 and Lemma 5. Suppose dim M=n—2 and dim N=2. Let
L be a submodule N such that dim L=1. Since R/L is a cyclic right R-module
with dimension n—1. we have dim (R/L)*=n—1 as the above case. There-
fore, by Lemma4 and Lemma 5, dim M*=n—2. Iterating this discussion we
have dim M=dim M* for any cyclic right R-module M. Next suppose that M
is a finitely generated right R-module. Then, using inductuon on the number
of generators of M, the assertion is easily showed by Lemma 5. In the case
where M is an FI right R-module, there is a finitely generated submodule N
of M such that M/N is torsion, i.e., dim M=dim N. Then, from the exact
sequence 0—>N—->M—M|N—0, we have the monomorphism M*—-N* and so
dim M*<dim N*. Since N is finitely generated, dim N=dim N*. Thus we
have dim M=dim M* by Lemma 5.

(2) implies (3). This is trivial.

(3) implies (1). Since dim zR=dim R, R is left finite dimensional. Let
L be a finitely generated torsion-free left R-module, and let 0K —G—L—0 be
an exact sequence with a finitely generated free left R-module G. Then we
have an exact sequence 0—L*—>G*—>K*—L,—0, which implies dim Ly=0
by the assumption. Next let M be a finitely generated torsion-free right R-
module. Then we have a commutative diagram

0—->] - F—M—90

l 1¢F l?’M
0 " FHE s M** o (F*{ [0,

where F is a finitely generated free right R-module and J’ is the annihilator
of Jin F*. Since F*[]'is torsionless, dim (F*/]")+=0, so dim Im ¢@,=dim M.
This implies that ¢, is monomorphic. Thus R is right QF-3’ and similarly
left QF-3'.

Corollary 1. Let R be a finite dimensional QF-3' ring. Then we have:

(1) If M is a finite dimensional right R-module, M* is reflexive.

(2) Let M be a finitely generated right R-module, and let f: L—M be a mono-
morphism. Then My and Coker f* are torsion.

Proof. (1) This follows from a fact that the composition map of natural
maps @y: M*—M*** and (@,)*: M***—-M* is identity, and Theorem 1.
(2) The assertion for M is immediate from the equivalence of (1) and (2) in
Theorem 1. Hence (M/L)y is also torsion, and so the left R-module Coker f*
imbedded in (M/L)y is torsion.
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Proposition 2. Let R be a finite dimensional QF-3' ring. Then, for a finite
dimensional torsion-free right R-module M, dim M=dim M* if and only if M is
torsionless.

Proof. Suppose dim M=dim M* and dim M=n. We shall show by
induction on 7 that the canonical map M — M** is monomorphic. The
result holds for n=1, since M*=0. Assume the result for positive integer
<n—1. There exists a submodule N of M such that dim N=1 and M/N is
a torsion-free right R-module with dim M/N=n—1. Then an exact sequence
0—->N—->M—->M|N—0 derives the exact sequence 0—(M/N)*—M*—L—0,
where L is the image of the derived map M*—N*. Now, let 4 be a finite
dimensional right R-module. Then there is a finitely generated submodule B
of A such that A4/B is torsion, and so dim A*<dim B*. Hence we have
dim A*<dim A4, since dim B=dim B* by Theorem 1. Therefore in particular,
dim N*<1 and dim (M/N)*<n—1. On the other hand, dim M*=n. Conse-
quently dim N*=1 and dim (M/N)*=n—1, and so N and M|N are torsionless
by inductional assumption. Moreover dim L=1, so the dual map *: N**¥—L*
of the inclusion ¢: L—N* is monomorphic. Consider a commutative diagram

0 >N —M—>s M/N—>0

L Joe Jown

0 > L*—>M**—(M|N)**
with exact rows, where N—L* is the composition of the maps ¢,: N—N**
and *: N**—L* Then the middle map is monomorphic, since so are both

the out sides. Thus M is torsionless. The converse is followed from Lemma
3 and Theorem 1.

The following lemma is a slight extension of Matlis [6, Lemma, p. 19], and
this extension is essentially necessery in the proof of Theorem 3.

Lemma 6. Let R be a ring, and let 0— N — M — L — 0 be an exact sequence
of right R-modules. Suppose that N is reflexive, M is torsion-free and L, Ly and
Ly are simple torsion. Then M is reflexive.

Proof. By the sequence

OﬁN_f_,M_g_,L_A) ............ (A),

* )
an exact sequence 0 -/ *—]-(—»N * —— L is obtained. Suppose that f* is iso-
morphic. Then its dual map f** is also isomorphic. Since, in a commutative
diagram
N —f—> M
1‘?’1\/ frx 1¢M
N#*kZ s Mk
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@y and f** are isomorphic, the exact sequence (A) splits. 'Thisis a contradiction

because M is torsion-free and L is torsion. Thus f* is not isomorphic, that

is 80, which implies that § is epimorphic, since Ly is simple. Thus we
frx Y

have an exact sequence 0 >N **—— M** —— [, & is epimorphism, since
f** is not isomorphic. Therefore we have a map 7: L — Ly and the following
commutative diagram:

l‘PNf** l‘l’M Y l’?

Assume that @, is not epimorphic. Put My=Im ¢,. Since @y is isomorphic,
Im f**CM,. Therefore, since Lyy is simple, My=Im f**, which implies (A)
splits. 'This is a contradiction. Thus @, is an epimorphism. Therefore 7 is
isomorphic, and consequently @,, is isomorphic.

Let R be a ring, and let M be a finitely generated torsion right R-module
such that M is torsion. Consider an exact sequence 0 > L — P — M —0 with
finitely generated projective right R-module P. Then we have an exact
sequence 0 — P* — L*— M, —0 derived from the above sequence. Therefore,
since M* is torsion, we have a commutative diagram

0>L—P—M-—0

oo lor |

0 — L¥* — P¥* 5 M,
with exact rows, where M — My is the map induced by the left side square:

L— P

L[¥% 5 P¥x

We denote this map by py: M — Myy. Clearly p, does not depend on selec-
tion of the finitely generated projective right R-module P.

Theorem 2. Let R be a noetherian non-singular QF-3' ring with the maximal
quotient ring Q. Then the following statements are equivalent :

(1) For every cyclic torsion R-module M, p, is isomorphic.

(2) Any finitely generated submodule of Q is reflexive.

(3) R has injective dimension <1.

Proof. (3) implies (1) and (2). These follows from Sato [8] and Jans [4].
(2) implies (3). Let I be an essential right ideal of R. Since any essential
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right ideal is reflexive and I* is a noetherian left R-module, R/I has a com-
position series. Hence any cyclic torsion right R-module, and consequently,
any finitely generated torsion right R-module has a composition series. Next,
we have an isomorphism Homg(R, Q)=Homg(/, Q), since R/I is torsion and
O is injective. On the other hand, there is a monomorphism Homg(Z, R)—
Homg(Z, Q). Thus I* is imbedded in zQ, and so every submodule of I* is
reflexive by the assumption. Therefore, since we have an exact sequence
0—R*—>I*—(R/I)x—0, we easily see that if R/I is simple torsion, so is
(R/I)x. Similarly, if S is simple torsion as a left R-module, so is Sy as a
right R-module. Now let M be an essential submodule of a finitely generated
free right R-module F. Then there is an essential submodule N of M such
that NV is isomorphic to a finite direct sum of right ideals of R, and so N is
reflexive. Since F/N is finitely generated torsion, F/N and consequently M/N
are artinian. Therefore, from Lemma 6, it follows by induction on the length
of composition series of M/N that M is reflexive. Thus, by Jans [4], we have
inj. dim. pkR<1. Similarly, we can show inj. dim. R,<1.

(1) implies (3). Let I be an essential right ideal of R. Then, we have
a commutative diagram:

0>I—> R—> R[I—> 0

l¢1 l¢’k lIJ'R/[
00— I** - R** — (R/I)ys — (I*)4 — 0.

Since upg/, is isomorphic, I is reflexive and (/*)4=0. Therefore, it is easy to
see that Sy is simple torsion for every simple torsion module S. Thus the
assertion is showed as the proof of (2)=(3).

RemARKS (i) From the above commutative diagram, we obtain the following
exact sequence:

0 — I — I** — R/I — (R/I)xx — Exty(I*, R) — 0.

If R is an integral domain, this may be identified with the exact sequence of
Matlis [6, Theorem 1.2].

(ii) Let R be a noetherian integral domain with quotient field Q. If 4 is
a finitely generated submodule of Q, 4 is isomorphic to an ideal of R. Therefore,
the equivalence of (2) and (3) in Theorem 2 is an extension of that of (2) and (4)
in Matlis [6, Theorem 3.8].

Proposition 3. Let R be a non-singular right finite dimensional ring. Sup-
pose that for every finitely generated torsion R-module A, Ay is torsion. Then R
is QF-3'.

Proof. From the assumption, it is easily showed that dim zR=dim Ry, and
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dim 7*=1 for every uniform right ideal I of R, and in particular R is left finite
dimensional. Now, let L be a finitely generated torsion-free right R-module.
Since Ry is non-singular, there is a finite number of uniform right ideals whose
direct sum is isomorphic to an essential submodule of L. Consequently, we
have dim L*=dim L from the assumption. Next, let NV be an FI torsion-free
right R-module. Then N is clearly imbedded in a finitely generated torsion-free
right R-module M. Since M is finite dimensional, NPK is essential in M with
some finitely generated right R-module K. From the above case, we have
dim M*=dim M and dim K*=dim K, and therefore dim N*=dim N. Similar
arguments also hold for FI torsion-free left R-modules. Consequently, R is
QF-3’ by Theorem 1.

Lemma 7. Let R be a noetherian ring. Then the following conditions are
equivalent :

(1) If M is a finitely generated torsion module, then so is My, and Myy is
isomorphic to M.

(2) If M is a finitely generated torsion module, then so is My, and p,, is
isomorphic.

Proof. It is trivial that (2) implies (1). Assume (1). Then it is clear that if
S is a simple torsion module, Sy is non-zero. First we show that if S is simple
torsion as a right R-module, so is Sy as a left R-module. Let N be a maximal
submodule of Sy, and 0 >N — S, —Sx/N—0 the natural exact sequence.
Then we have the derived exact sequence 0—(Sy/N)x—> Sk, since N is
torsion. By the assumption, Sy is isomorphic to S, and so Sy is simple.
This implies (Sy/N)x=Sx%=S. Therefore Sx=(SxN)xx=Sx/N, and so Sx
is simple. If an R-module M has a composition series, we denote its length
by I(My). Let M be a torsion R-module with /(M)=n. Then, by induction
on n, we can easily show /[(My)=n. Now, let M be a finitely generated torsion
right R-module. Then there are a finitely generated free right R-module F and
its submodule K such that F/K—=M. In order to show that M is artinian, let

FOKDK,D-+DK = e (A)

by a chain of submodules of F such that [(F/K;)=i for each i. Since F|/K is a
finitely generated torsion right R-module, we may assume that we have a chain

F*cK*CcK,*C---CK* e (B)

of submodules of K*. Then we have K*/F*~(F|K)y and K;*/F*—=(F|K))x,
and so K*/F* is also finitely generated torsion and /(K;*/F*)=i. On the other
hand K* is noetherian, which shows that the chain (B) and consequently (A)
terminate. Now, we show that the canonical inclusion @g: K— K** is an
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isomorphism. Since K*/F* is torsion and F—=F** we may assume that K C
K**CF. Then we have F¥*CK***CK*. Therefore (pg)*: K***-K* is
isomorphic, since (@g)* is always epimorphic. Which implies I(F/K)=
[(F|K**), and so @ is isomorphic. We have, however, {(M)=I[(M**). Thus
£ 1s isomorphic.

The following Corollary is immediate from Proposition 3, Lemma 7 and
Sato [8]. (It seems that an isomorphism M —Exty(Exti(M, R), R) in Sato
[8, Theorem 2.3] means p,,.)

Corollary 2. Let R be a noetherian non-singular ring. Then the following
statements are equivalent :

(1) If M is a finitely generated torsion module, so is My, and Myyx—=M.

(2) R is a QF-3' ring with injective dimension <1.

A ring R is called right QF-3 if R has a minimal faithful right R-module.
The following lemma is a slight extension of Rutter [7, Corollary 3].

Lemma 8. Let R be a right perfect ring satisfying the ascending chain con-
dition on annihilator right ideals. If R is right QF-3’, then R is QF-3.

Proof. By Faith [2] R is semi-primary, and it follows from the proof
of Proposition 1 that R is right finite dimensional. Let M be a finitely
generated submodule of an injective hull E(R) of R;. Then NKer f=0 since

5

EM*

M is torsionless. For every subset 4 of M*, M/ N Ker fis torsionless. But M
fed

is finite dimensional, which implies that there exist f;, -+, f, in M* such that

A Ker fi=0, and so M is imbedded in a free right R-module. Therefore

i=1

E(Ry) is projective by Rutter [7], and R is right QF-3. Thus, by Colby-
Rutter [1], R is QF-3.

Corollary 3. Let R be an artinian ring. Then the following statements are
equivalent :
(1) R is a non-singular QF-3" ring with injective dimension <1.

(2) R is hereditary QF-3.

Proof. Assume (1). By Lemma 8 (or Rutter [7]), R is QF-3. Since R
is non-singular and artinian, R has the semi-simple maximal quotient ring.
Therefore, by Sumioka [9], R is hereditary. The converse is clear since any
QF-3 ring is QF-3’ (see Tachikawa [10], p. 47).

Theorem 3. Let R be a non-singular artinian ring. Then the following
conditions are equivalent :
(1) If S is a simple torsion module, then so is S.
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(2) R is hereditary QF-3.

Proof. It follows from Sato [8] that (2) implies (1). Assume (1). Let M be
a finitely generated torsion-free right R-module with I/(M)=n, where I(M)
explesses the length of a composition series of M. By induction on 7, we shall
show that M is reflexive. Suppose [(M)=1. Then, since M is a non-singular
simple module, M is projective and in particular reflexive. Let /[(M)=n, and
assume that the result holds for n—1. Let /N be a maximal submodule of M,
and consider the exact sequence 0—N—>M—M/N—0. By inductional
assumption, NN is reflexive. If M/N is simple torsion-free, then M/N is
projective, and so the above sequence splits, and consequently M is reflexive.
If M|N is simple torsion, then the result holds, by Lemma 6. Thus every
finitely generated torsion-free right R module is reflexive. The similar statement
on left R-module is also true. Therefore R is hereditary QF-3 by Jans [4] and
Corollary 3.
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