Tsushima, Y. Osaka J. Math. 15 (1978), 647-653

SOME NOTES ON THE RADICAL OF A FINITE GROUP RING

YUKIO TSUSHIMA

(Received September 6, 1977)

1. Introduction

Let p be a prime number and G a finite group with a Sylow p -subgroup P of order *p a .* Let be *SSI* the radical of the group ring *kG* of *G* taken over a field *k* of characteristic p . If \mathcal{S} is the radical of the center of kG , then we see easily that $k\in\{G\cdot\}\subset\mathbb{R}$. We shall show that $\mathbb{R}=kG\cdot\mathbb{S}$ holds if and only if G is pnilpotent and *P* is abelian.

The nilpotency index of \mathfrak{N} , which is denoted by $t(G)$, is the smallest integer *t* such that $\mathfrak{R}^t = 0$. Suppose G is *p*-solvable, then it is known that $a(p-1)+1 \leq$ $t(G) \leq p^a$ (Passman [11], Tsushima [12], Wallace [16]). Furthermore if G has the p-length one, it holds that $t(G)=t(P)$ (Clarke [2]). We see easily from this that the first equality holds in the above if *P* is elementary, while the second holds if P is cyclic. However the equality $t(G)=a(p-1)+1$ does not necessarily imply that P is elementary, as is remarked by Motose (e.g. $G = S_4$ $p=2$, see Ninomiya [10]). In contrast with this, we shall show that if $t(G) = p^a$, then P is cyclic.

NOTATION: p is a fixed prime number. G is always a finite group and P a Sylow p-subgroup of order p^a . As usual, $|X|$ denotes the cardinality of a set *X.* Let K be an algebraic number field containing the $|G|$ -th roots of unity and φ the ring of integers in K. We fix a prime divisor φ of ρ in φ and we let *k*= \circ /p. We denote by $\{\varphi_1, \dots, \varphi_r\}$ and $\{\eta_1, \dots, \eta_r\}$ the set of irreducible Brauer characters and principal indecomposable Brauer characters of G respectively, in which the arrangement is such that $(\eta_i, \varphi_j) = \delta_{ij}$ and φ_1 is the trivial character. We put $s(G) = \sum_{i=1}^{n} \varphi_i(1)^2$.

For a block *B* of *kG*, we denote by δ_B and ψ_B its block idempotent and the associated linear character respectively. $\mathfrak{N}(G)$ (or \mathfrak{N} for brevity) denotes the radical of the group ring *kG* and 3 the radical of the center of *kG.* The nilpotency index of $\mathfrak{N}(G)$, which will be denoted by $t(G)$, is defined to be the smallest integer t such that $\mathfrak{N}(G)^{t}=0$. If $G \triangleright H$, then $kG \cdot \mathfrak{N}(H)=\mathfrak{N}(H) \cdot kG$ is a two sided ideal of kG contained in \mathfrak{R} , which will be denoted by \mathfrak{L}_H (or $\mathfrak K$ for brevity). Other notations are standard.

 \sharp **CORE** [Metadata, citation and similar papers at core.ac.uk](https://core.ac.uk/display/35273615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1)

We shall several times refer to the following Theorem of Green (Green [7], Dornhoff [4] § 52).

Theorem. Let $G \triangleright H$ and G/H is a p-group.

If V is a finitely generated absolutely indecomposable kH-module, then V^G is also absolutely indecomposable.

2. Square sum of the degrees of irreducible characters

In this section, we mention some remarks about the dimension of $\mathfrak{N}=\mathfrak{N}(G)$, most of which are direct consequences of our results [14].

Let *S* be the set of the *p*-elements of *G* and $c=\sum_{x\in S}x\in kG$. In [14], we have shown that $\Re \subset (0: c)$ and we have the equality provided G is p -solvable. For $\lambda = \sum_{\lambda} a_{\lambda} x \in kG$, $a_{\lambda} \in k$, we put $\sigma_{\rho}(\lambda) = \sum_{\lambda} a_{\lambda}$. Note that $\sigma_{\rho}(\lambda)$ is the coefficient of the identity in $c\lambda$. Hence $c\lambda = 0$ if and only if $\sigma_p(\lambda x) = 0$ for any $x \in G$, or

(0: *c) = {X£ΞkG\ (r^p (xX)* = *Ofor any* xeG} (1)

Therefore, our result quoted above is written as

Proposition 1. If
$$
\lambda \in \mathbb{R}
$$
, then $\sigma_p(x\lambda) = 0$ for any x of G.

We next discuss the dimension of $(0: c)$. Let $M = M_c = (a_{g,h})$ be the $(|G|, |G|)$ -matrix over *k* defined as

1, if *gh* is a *p*-element 0, otherwise

Then, we have

$$
dim_k(0; c) = |G| - r(M)
$$
, where $r(M)$ denotes the rank of M over k.(2)

Indeed, for $\lambda = \sum a_x x \in kG$, we have $\sigma_p(x\lambda) = \sum_{x \in \mathcal{F}^{-1} g} a_y$, that is $M\left(\frac{?}{a_s}\right) = \left(\frac{?}{\sigma_p(x\lambda)}\right)$ for $x \in G$. From this and (1), we get easily (2).

Furthermore from that $\mathfrak{N}\subset (0: c)$ and (2), we have

$$
s(G) = |G| - dim_k N \ge r(M) \qquad \qquad \cdots \cdots \cdots \cdots \cdots (3)
$$

If H is a subgroup of G , then M_H appears in M_G as a submatrix. In particular $r(M_G) \ge r(M_H)$. Now, recall that we have $\mathfrak{N}=(0: c)$ and hence $s(G)=r(M)$ provided G is p -solvable. Summarizing the aboves, we have

Proposition 2. If G is p-solvable, then we have $s(G) \geq s(H)$ for any subgroup *HofG.*

REMARK 1. If H is a p' -subgroup, then $r(M_H)=|H|$. Hence we have from (3) that $s(G) \ge |H|$ for any p'-subgroup H of G, which has been shown in *Brauer and Nesbitt [1] by the inequalities* $s(G)$ \geq $\frac{|G|}{\geq}$ \geq $|H|$ *, where* u *=* η *₁(1). u*

In connection with the above remark, we give the following, which is essen tially due to Wallace [15].

Proposition 3. We have $s(G) = |H|$ for some p'-subgroup H of G if and *only if* $G\triangleright P$, in which case H is necessary a complement of P in G.

Proof. "if part" is well known and easily shown (Curtis and Reiner [3] § 64 Exercise 1).

Suppose $s(G) = |H|$ for some p'-subgroup *H* of *G*. Then we have $s(G) = \frac{|G|}{u}$, which forces that $\eta_i = \varphi_i \eta_1$ for any $i(1 \le i \le r)$ (see [1] pp. 580). We claim that $u=p^a$. If this would be shown, then H is necessary a complement of *P* and $\eta_1(x)$ is rational for any $x \in G$. Then the argument of Wallace [15] is valid, concluding $G \triangleright P$ (see also M.R. 22 \sharp 12146 No. 12 (1966)).

Let

 $\int p^a$ if *x* is *p*-regular $\theta(x) = \left\{\begin{array}{c} 1 \\ 1 \end{array}\right.$ t 0 otherwise

As is well known, θ is an integral linear combination of η_i 's: $\theta = \sum m_i \eta_i =$ $\eta_1 \sum m_i \varphi_i$, where each m_i is a rational integer. Comparing the degrees of both sides, we get $u = p^a$ as claimed. This completes the proof.

3. LC type

For convenience, we call a (finite dimensional) algebra *A* over a field to be LC if its (Jacobson) radical is generated over *A* by the radical of its center.

The objective of this section is to prove

Theorem 4. *The fallowings are equivalent to each other.*

- (1) *kGisLC*
- (2) the principal block B_0 of kG is LC
- (3) *G is p-nilpotent and P is abelian*

"(1) \Rightarrow (2)" is trivial. On the other hand, we have already shown "(3) \Rightarrow (1)" in [13] assuming *P* is cyclic. The same argument, being simplified by virtue of the Green's Theorem quoted in the introduction, will be made below to yeild the present assertion.

We begin with

Lemma 5. Let $G \triangleright H$ and b a block of kH. Let B_1, \dots, B_s be the blocks

of kG which cover b. If a defect group of each B{ is contained in H, then we have $\Re B_i = \Re B_i$ for each i ($1 \le i \le s$).

Proof. Let b_1, \cdots, b_t be the blocks of kH which are conjugate to b under G and ε_i the block idempotent of b_i .

From the choice of B_i 's we have

$$
\varepsilon = \varepsilon_1 + \dots + \varepsilon_t = \delta_1 + \dots + \delta_s, \quad \text{where } \delta_i = \delta_{B_i}
$$

Let $\Lambda = kG \epsilon / 8 \epsilon \supset \Gamma = kH \epsilon / \mathfrak{N}(H) \epsilon$. We show that Λ is semisimple. Let M be a Λ-module and N any submodule of M. The inclusion map $N \rightarrow M$ splits as Γ-modules, since Γ is semisimple and then it does as Λ-modules, since *M* is (G, H) projective by the assumption. Therefore Λ is semisimple and our assertion is clear.

The following remark is useful.

REMARK 2.

(1) (well known) If G/H is a p' -group, then the assumption of Lemma 5 is always satisfied and hence we have $\mathfrak{N} \text{=} \mathfrak{L}_H$.

(2) (Feit [5] pp. 268) If G/H is a p -group, then there is a unique block which covers *b.*

The following Lemma is not so essential here, but we write down it for its own interest. The result is noticed by Y. Nobusato.

Lemma 6. Suppose $G \triangleright H$ and G/H is a p-group. Then for any simple kH-module N, N^G has the composition length $[I:H]$, where I is the inertia group of *NinG.*

Proof. Clear from the Green's Theorem and the orthogonality relations $(\eta_i, \varphi_j)=\delta_{ij}$

The following result has been shown in our previous paper [13].

Lemma 7. Let $G \triangleright H$ and $[G:H]=p$. Let B be a block of kG. Suppose *there is a conjugate class C of G such that* $C \nsubseteq H$ and $\psi_B(\tilde{C}) = 0$ *, where* $\tilde{C} = \sum_{x \in G} x$ *. Then, we have* $\Re B = \Re B + kG(\tilde{C} - \psi_B(\tilde{C}))\delta_B$. $\ddot{}$

Proof. We put $\delta = \delta_B$ and $\psi = \psi_B$ for brevity. Let $\delta = \sum e$ be a decompo sition into the sum of primitive idempotents. We may assume each *e* is contained in kH by the Green's Theorem. It suffices to show that $\Re e =$ $\&e+kG(\&{-}\psi(\&{C}))e$. Let $a\in G$ be any element not contained in *H*. We have

$$
(\tilde{C} - \psi(\tilde{C}))^{p-1}e = a^{p-1}\lambda_1 + \dots + a\lambda_{p-1} - \psi(\tilde{C})^{p-1}e, \quad \text{where } \lambda_i \in kH.
$$

Since $\psi(\tilde{C})$ \neq 0, this implies that $(\tilde{C} - \psi(\tilde{C}))^{p-1}e$ is not contained in $\&e$ $a^{p-1}\mathfrak{N}(H)e\oplus \cdots \oplus \mathfrak{N}(H)e$. Therefore we have a sequence (note that $(\tilde{C}-\psi(\tilde{C}))\delta$ $\in \mathfrak{N}$

 $kG\bar{\epsilon} \equiv (\tilde{C} - \psi(\tilde{C}))kG\bar{\epsilon} \equiv \cdots \equiv (\tilde{C} - \psi(\tilde{C}))^{p-1}kG\bar{\epsilon} \equiv 0$, where $kG\bar{\epsilon} = kGe/2\epsilon \approx$ $kG\otimes_{kH}kHe/\mathfrak{N}(H)e.$

However, since $kG\bar{e}$ has at most p composition factors by Lemma 6, we have $(\tilde{C}-\psi(\tilde{C}))kG\bar{e}$ = $\Re \bar{e}$, that is $\Re e=\Re e+kG(\tilde{C}-\psi(\tilde{C}))e$ as required. This completes the proof.

Before proceeding, we mention a remark. If *B* is a block of *kG* of full defect, then there is an ordinary irreducible character X belonging to B whose degree is not divisible by p. If x is a p-element, then $X(x) \equiv X(1) \mod p$. Hence it follows that if C is a conjugate class of a p -element, then $\psi_B(\tilde{C})= \mid C\!\mid$.

The following proposition proves "(3) \Rightarrow (1)" of Theorem 4.

Proposition 8. Suppose G is p-nilpotent and P is abelian. Let $\{C_1, \dots, C_v\}$ *be the set of the conjugate classes of p-elements of G. For a {normal) subgroup H* of G containing $O_{p'}(G)$, let Δ_H be the sum of the block idempotents of kH of full \emph{defect} and for any C_i such that $C_i{\subset}H,$ let $\Delta(C_i,$ $H){=}{(\tilde{C_i}{-}\mid}C_i){\Delta}_H.$

Then we have $\mathfrak{N}=\sum kG\Delta(C_i,H)$, where H is taken over the subgroups of G *containing* $O_p(G)$. In particular, kG is LC.

Proof. Let *B* be any block of *kG.* If *B* has the defect smaller than *a,* then there is a normal subgroup H of index p which contains a defect group of B . Then by Lemma 5 and Remark 2, we have $\Re B = \Re B$ *B.* On the other hand, assume *B* has full defect. Let *H* be any normal subgroup of *G* of index *p.* There is some C_i such that $C_i \text{ }\subset H$ and $\psi_B(\tilde{C}_i) = |C_i| \neq 0$, since *P* is abelian. Hence by Lemma 7, we have $\Re B = \&_H B + kG(\tilde{C_i} - |C_i|) \delta_B$. From the aboves, we have $\Re = \sum_{H} \Re_H + \sum_{i=1}^{n} kG \Delta(C_i, G)$, where *H* is taken over the normal subgroups of *G* of index \hat{p} and thus the result will follow by the induction on the order of *G* (note that if $H \supset C_i$, where $H \supset O_{p'}(G)$, then C_i is also a conjugate class of *H*). We next go into the proof of " $(2) \Rightarrow (3)$ ".

Lemma 9. Let I be the augumentation ideal of kG and δ_0 the block idempotent *of the principal block B^o of kG. If iyiSQ=3lIS09 then G is p-nilpotent.*

Proof. Let *e* be a primitive idempotent of *kG* such that *kGe/Wle* is the trivial G-module. It is easy to see that $Ie=\Re e$. Hence we have $I\Re e=I\Re \delta_0e=$ $\mathfrak{M} \delta_e = \mathfrak{M} e = \mathfrak{M}^e e$. Recurring this, we get $I \mathfrak{M}^e = \mathfrak{M}^{s+1} e$ for any $s \geq 0$. This implies that *G* acts trivially on each factor of the series,

 $kGe \supset \Re e \supset \cdots \supset \Re^s e=0$, in other words, kGe has the only (non isomorphic) simple constituent, the trivial one. Hence G is p -nilpotent.

Lemma 10. *Suppose G is a p-group. If kG is LC, then G is abelian.*

Proof. We prove by the induction on the order of G. It is clear that if *kG* is LC , then $k(G/H)$ is also LC for any normal subgroup H of G .

652 Y. TSUSHIMA

Let *Z* be the center of *G* and let *z* be an element of *Z* of order *p.* We may assume $G/\langle z \rangle$ is abelian by the induction hypothesis. Assume G is not abelian. Then we have $G' = [G, G] = \langle z \rangle$. Since $|gG'| = p$, gG' is the conjugate class of *g* unless *g* is central. Therefore, \hat{B} is spanned over *k* by the set $\{u-1, x\sigma | u \in Z,$ $x \in G - Z$, where $\sigma = \sum_{x \in G} x$. Let $t = t(Z)$ be the nilpotency index of $\Re(Z)$. We show that $\mathfrak{F}^{\prime}=0$. This will be deduced from the following observations.

(1) $x\sigma \cdot y\sigma = xy\sigma^2 = 0$.

(2) $(x\sigma)$ $\prod_{i=1}^{n}(z_i-1) \in (x\sigma)\Re(Z)^{t-1} = (x\sigma)k\tau = 0$, where $\tau = \sum_{i=1}^{n}z$. In fact,

 $\mathfrak{R}(Z)^{t-1} = k\tau$, as is easily shown (for any p-group Z) and $\sigma \tau = p\tau = 0$, since $G' \subset Z$.

(3) $\prod_{i=1}^{t} (z_i-1)=0$, since $t=t(Z)$, where z_1, \dots, z_t are arbitrary elements of Z.

Now, from the assumption, we conclude that $\mathfrak{R}^t = 0$. Take $y \in G - Z$. Then $(y-1)\tau$ is not zero and is contained in $(y-1)\Re(Z)^{t-1}\mathbb{C}\Re^t=0$, a contradic tion. This completes the proof.

Proof of "(2) \Rightarrow (3)". Let $\delta_0 = \delta_{B_0}$. Since by the assumption $\Re \delta_0$ is generated by central elements over kG , we have $\mathfrak{M}\delta_{0}=\mathfrak{M}\delta_{0}$ and hence G is p nilpotent by Lemma 9. In particular, B_0 is isomorphic to $k(G/O_{p'}(G)) \cong kP$. Hence *kP* is also *LC,* implying *P* is abelian by Lemma 10. This completes the proof of Theorem 4.

4. Application of a result of Clarke

In this section we shall show,

Theorem 11. Suppose G is p-solvable. If $t(G)=p^a$, then P is cyclic.

To prove this, the following Theorem is essential.

Theorem (Clarke [2]). *If G is a p-solvable group of p-length one, then* $t(G)=t(P).$

Proof (of Theorem 11). We prove by the induction on the order of *G.* If G is a p -group, then our result follows from the Theorem 3.7 of Jennings [9]. If G has a proper normal subgroup H of index prime to p , then we have $\Re = \Re$ and the result follows from the induction hypothesis on *H.* Hence we may assume *G* has no proper normal subgroup of index prime to *p.* Furthermore, by the Theorem of Clarke, it suffices to show that G is p -nilpotent.

Let *H* be a normal subgroup of index *p*. Since $\mathfrak{R}^p \subset \mathfrak{L}_H$ ([11] or [12]), we find $t(H) = p^{a-1}$. Hence a Sylow p-subgroup Q of H is cyclic by the induction hypothesis. In particular *H* has the *p*-length one. Let $K = O_p$ ['](G) = O_p '(*H*). Then $G/K \triangleright QK/K = O_p(H/K)$. Now, assume $G \neq PK$. Then we have $O_p(G/K)$ $=$ QK/K and $C_{G/K}(QK/K)$ $=$ QK/K , as is well known (Hall and Higman [8]).

Therefore, *GjQK* is isomorphic to a subgroup of *Aut{QKjK),* whence *GjQK* is abelian, since the automorphism group of a cyclic group is abelian. Since we have assumed that *G* has no normal subgroup of index prime to *p, G/QK* must be a p-group, contradicting that $G=PK$. This completes the proof.

OSAKA CITY UNIVERSITY

References

- [1] R. Brauer and C. Nesbitt: *On the modular characters of groups,* Ann. of Math. 42 (1941), 556-590.
- **[2] R J. Clarke:** *On the radical of the group algebra of a p-nilpotent* **group, J. Austra lian** Math. Soc. 13 (1972), 119-123.
- [3] C.W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
- [4] L. Dornhoff: Group representation theory Part B, Marcel Dekker, New York, 1972.
- [5] W. Feit: Representations of finite groups, Lecture notes, Yale University.
- [6] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- **[7] J.A. Green:** *On the indecomposable representation of a finite group.* **Math. Z. 70** (1959), 430-445.
- **[8] P. Hall and G. Higman:** *On the p-length of p-solvable groups and reduction theorems for Burnside's problem,* Proc. London Math. Soc. 6 (1965), 1-42.
- **[9] S.A. Jennings:** *The structure of the group ring of a p-group over a modular field,* Trans. Amer. Math. Soc. 50 (1941), 175-185.
- **[10] Y. Ninomiya:** *On the nilpotency index of the radical of a group algebra,* **Sympo sium** on algebra (1974) (in Japanese).
- [11] D.S. Passman: *Radicals of twisted group rings,* Proc. London Math. Soc. 20 (1970), 409-437.
- [12] Y. Tsushima: *Radicals of group algebras,* Osaka J. Math. 4 (1967), 179-182.
- **[13] :** *A group algebra of a p-solvable group, ibid,* **5 (1968), 89-98.**
- **[14] :** *On the annihilator ideals of the radical of group algebra, ibid,* **8 (1971),** 91-97.
- [15] D.A.R. Wallace: *On the radical of a group algebra,* Proc. Amer. Math. Soc. 12 (1961), 133-137.
- **[16] :** *Lower bounds for the radical of the group algebra of a p-soluble group,* Proc. Edinburgh Math. Soc. 16 (1968/69), 127-134.

Added in proof.

Lemma 5 has been obtained in

[17] R. Knδrr: *Blocks, vertices and normal subgroups,* Math. Z. **148** (1976), 53-60.