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In a recent paper, K. Uchida [3] has established by specific methods of
algebraic number theory the following nice characterization:

Theorem. Let Rbe a. Dedekind domain, K its quotient field, S an integral
domain with R^S, and α G S an integral element over R. Then R[α] is a
Dedekind domain if and only if φ&M2 for every maximal ideal M of R[X],
where φ is the minimal polynomial of α over K.

In the present paper, we show that Uchida's result can be generalized
to arbitrary Noetherian regular domains. Our proof is very simple and natural,
and is based on standard facts about regular rings which can be found for instance
in Kaplansky's book [1], From our generalization it may be derived im-
mediately a global version of a result of Maury [2] concerning simple finite
extensions of regular local rings; this result was established by him in a more
complicated manner.

1. Terminology and notations

Throughout this paper, R will denote a commutative ring with unit element,

R\_X\ the polynomial ring in X with coefficients in i?, dim (R) the Krull dimension

of jR, Spec (R) the set of all prime ideals of R, and Max (R) the set of all maximal

ideals of R.

Let K be a commutative field and U a i£-algebra, not necessarily commuta-

tive. If we U is an algebraic element (i.e. an integral element) over K, then

{f^K[X] \f(u)=0} is an ideal of K\X], which is generated by a. unique monic

polynomial with coefficients in K; this polynomial is called the minimal poly-

nomial of u over K and is denoted by Irr (w, K).

We recall that a Noetherian local ring R with maximal ideal M is regular if

M can be generated by n elements, where n=dim(jR), and a Noetherian ring

R is regular if for each M e Max (i?), the local ring RM is regular. The Noe-

therian regular domains R with dim (i?)< 1 are exactly the Dedekind domains.
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2. Three lemmas

The following three simple facts will be used to prove the main result of
this paper:

Lemma 1. Let R be an integrally closed domain, K its quotient field, U a K-
algebra {not necessarily commutative), u^U an integral element over R, and
f=lrτ(u,K). Thenf<EΞR[X], and the R-algebras R[X]/fR[X] and R[u] are
naturally isomorphic.

Lemma 2. Let R be a commutative ring, PeSpec (R)y PφO,
T=R/xR, and Q=P/xR. Then the rings TQ and RPjxRP are naturally isomorphic.

Lemma 3. Let Rbe a regular local ring with maximal ideal M. For a non-
zero element x of R, the following two statements are equivalent:

(1) x€ΞM\M2,
(2) RjxR is a regular (non-zero) ring.

Proof. The lemma follows from [4], Theorem 26, p. 303.

3. The main result

Theorem Let R be a Noetherian regular domain, K its quotient field, U a
K-algebra (not necessarily commutative) u^U an integral element ever R and
/ = I r r (u, K). The following two statements are equivalent'.

(1) R[u] is a regular ring,
(2) f $M2 for every

Proof. We abbreviate R[X] to S. Since R is regular, so is S. On the other
hand, R is integrally closed, so R[u]~R[X]/fR[X]=SlfS by Lemma 1.

(1) implies (2). Suppose that / e M 2 for some M e Max(5); then
TN~SM/fSMi where T=S/fS and N=M/fS, by Lemma 2. Since f(=M2SM, it
follows by Lemma 3 that SM/fSM is not a regular ring, i.e. TM is not a regular
ring, contradiction.

(2) implies (1). Let iVeMax(Γ), where T^StfS; then N=M/fS for
some M e Max(S) wi th/eM. We have/<$M2SM, for otherwise/<=M2SM Π S=
M2, M2 being a M-primary ideal of S. By Lemma 3, SM/fSM is a regular ring,
hence TN^SMlfSM is regular, i.e. T is regular.

Corollary 1. Let R be a Noetherian regular domain, K its quotient field, L a
finite separable field extension of K, R' the integral closure of R in L,u<=R! an
element such that L=K(u\ andf=Irr (u, K). If f ^M2 for allMeMax(i?[X]),
then R'=R[u].

Proof. By the previous Theorem, R[u] is a regular ring, hence R[u] is in-
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tegrally closed, and so R'=R[u].

REMARK. The c o n d i t i o n / φ M 2 for all M<=Max(R[X]) is sufficient for

R'=R[u], but is not necessary; for instance let k be a commutative field,

R=k\Y, Z]> K=k(Y, Z), L=K(u), where u is a root (in an algebraic closure of

K) of the polynomial X2- YZ<=K[X]. Then R[u] is the integral closure of R

in L, but/=Irr (u, K)=X2- YZϊΞ(Xy Y, Z)2 and (X, Y, Z)<=Max (R[X]).

The next corollary contains Uchida's result [3]:

Corollary 2. Let R be a Dedekind ring, K its quotient field, L afield extension

of K, u^L an integral element over R, and f=Irr (u, K). The following statements

are equivalent:

(1) R[u] is a regular ring,

(2) R[u] is a Dedekind ring,

(3) R[u] is integrally closed,

(4) The integral closure of R in K(u) is R[u],

(5) f$M2forallMζΞMax(R[X]).

Now we shall give an equivalent form of condition (2) of the previous

Theorem, which is sometimes more adequate for applications. The following

simple result, which is proved in [3], will be used:

Lemma 4 [3]. Let Rbe a commutative ring, and iVeMax (R[X]) If N

contains a monic polynomial gEίR[X]y then N is of the form

N = MR[X]+fR[X],

where M e Max (R) and f^R[X] is a monic polynomial which is irreducible modulo

M.

If R is an arbitrary commutative ring, for each h^R[X] and M e Max (R)

we denote throughout the remainder of this paper by hM^(RjM)[X] (or some-

times, more simple by h, if no confusion can occur) the polynomial obtained

from h by reducing the coefficients of h modulo M.

Proposition. Let Rbe a commutative ring, andf^R[X] a monic polynomial.

For each M e Max (R), let

be the expression of fM as a product of monic irreducible, mutually distinct poly-

nomials φMi<=(RIM)[X]. For each M e M a x ( R ) and 1 <i<kM, let gMi(=R[X] be

a monic polynomial with {gMι)M=zCPMi' Then the following two statements are equi-

valent :

(1) f <£N2 for each NsΞMzx{R[X})y
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(2) For each M e Max (R) and each \^i^kM with eMt>2, the remainder of
the euclidean division of f by gMi has not all its coefficients in M2.

Proof. (1) implies (2). Let M<=Max(i?), and 1 <i<kM with eMt>2. We
denote for brevity gMt =gy eMi=e and/ M =/. Assume that,

where qy r&R[X], and deg(r)<deg(#) with r^M2R[X]. By reduction modulo
M, we obtain f=gq~{-r=gq=:geh, where h=ΐlge

IfJ. Hence geh—gq<=MR[X],

so (q—gs)g&MR[X], where s—ge~2h. Sinceg is a monic polynomial and MR[X]
eSpec (R[X])> it follows q-gseMR[X]. Hence q&MR[X]+gR[X], that is

/ = gq+r<Ξg2R[X]+gMR[X]+M2R[X] = (MR[X]+gR[X])2,

and MR[X] +gR[X]<= Max(R[X])y contradiction.
(2) implies (1). Suppose that/eiV 2 for some N ^MΆX(R[X]). By Lemma

4, N-= MR[X] +gR[X] for some M e Max (R) and g <zR[X] irreducible modulo
M, hence f <=M2R[X]+gMR[X]+g2R[X]. By reduction modulo Λf, we have
f—g2t for some ίGi?[X], hence g=φMi f°r some i with 1 < / < ^ M it follows that
ί - ; M ί £ M Λ [ - ϊ ] , and so, we can suppose that g=gMi- From f^M2R[X]+
gMR[X]+g2R[X], we have f=gq+r, for some ?ei?[Z] and r£ΞM2R[X]. If
r=#0 and d e g ^ ^ d e g ^ ) , we can write r=gqγ-{-rly with qlyrx^R\X\y and r x =0
or deg(r1)<deg(g). Let

Then

But 6*<ΞM2, hence ( t i ^ ^ + + i o k + ^ ^ ^ P ] . s 0 Vi^Af2, etc. There-
fore f jeM 2/?^, and then, we have

with rj=O or deg(rj)<deg(r), and also /ΊGM2fi[I], contradiction.

Corollary 3 (Maury [2]). Let R be a regular local ring with maximal ideal
M, K its quotient field, U a K-algebra {not necessarily commutative), u&U an
integral element over R and f=Irr (uy K). The following two statements are equi-
valent:

(1) R[u] is a regular local ring,
(2) The reduction f of f modulo M has the form f=φe with <pG(R/M)[X] a

monic irreducible polynomial, and if e^2, the remainder of the euclidean division of
f by g has not all its coefficients in M2

3 g&R[X] being a monic polynomial with
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Proof. The condition f=φe with <p^(RjM)[X] irreducible is equivalent by

[2], Theorem, p. 35, with the condition that R[u] is a local ring.

Corollary 4. Let R be a Dedekind domain, K its quotient field, L a finite

separable field extension of Ky R' the integral closure of R in L, u^R' a primitive

element of the extension LΏ.K {i.e. L=K(u))y and f=lrr(u, K). Let 8(f) be the

discriminant of f and Ml9 M2f •••, Mr the distinct non zero prime divisors of 8(f) in

R (possibly r = 0 ) . For each 1 <*'</-, let

be the expression of fM. as a product of monic irreducible, mutually distinct poly-

nomials φij^(RIMt)[X]. For each l < z < r and 1 <;<&,, let gtJ&R[X] be a

monic polynomial with (gt^M.^ψij- The following two statements are equivalent:

(1) R>=R[u],

(2) For each 1 < / < r and K j <&, uith £ υ >2, the remainder of the euclidean

division off by gtj has not all its coefficients in M'j.

Proof. It suffices to prove only (2) implies (1). If f^N2 for some

N EϊMax(i?[.AΓ|) then we obtain in the same way as in the proof of the previous

Proposition that/ M — g2h, for some M e Max (/?), that is fM has multiple roots.

Since the discriminant S(fM)==O is the residue class of δ(/) modulo M, we have

S(/) = 0 (mod M) and therefore M=Mι for some l < z ' < r and g=φt$ for some

K j ^ ^ ; by the proof of the previous Proposition, this is a contradiction.

The author is indebted to the referee for some useful suggestions which led

to the present version of this paper.
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