COHOMOLOGY OPERATIONS IN THE LOOP SPACE OF THE COMPACT EXCEPTIONAL GROUP F_{4}

Dedicated to Professor A. Komatu on his 70-th birthday

Takashi WATANABE

(Received April 14, 1978)

1. Introduction

Let F_{4} be the compact, simply connected, exceptional Lie group of rank 4. In [6] we have described the Hopf algebra structure of $H_{*}\left(\Omega F_{4} ; Z\right)$. Using this thoroughly, we can compute the action of the $\bmod p$ Steenrod algebra \mathcal{A}_{p} on $H^{*}\left(\Omega F_{4} ; Z_{p}\right)$ for every prime p. But here we deal with the cases $p=2$ (Theorem 4) and $p=3$ (Theorem 5) only, because in the other cases the result follows immediately from a spectral sequence argument for the path fibration $\Omega F_{4} \rightarrow$ $P F_{4} \rightarrow F_{4}$.

Let $C\left(=C_{s}\right)=T^{1} \cdot S p(3)$ in the notation of [3], which is a closed connected subgroup of F_{4}. Then in [6] the homogeneous space F_{4} / C has been found to be a generating variety for F_{4}. That is, there exists a map $f_{s}: F_{4} / C \rightarrow \Omega F_{4}$ such that the image of $f_{s^{*}}: H_{*}\left(F_{4} / C ; Z\right) \rightarrow H_{*}\left(\Omega F_{4} ; Z\right)$ generates the Pontrjagin ring $H_{*}\left(\Omega F_{4} ; Z\right)$. In this situation Bott $[1, \S 6]$ asserted that the Steenrod operations in $H^{*}\left(\Omega F_{4} ; Z_{p}\right)$ can be deduced from their effect on $H^{*}\left(F_{4} / C ; Z_{p}\right)$. This is the motive of our work.

Throughout the paper X will always denote any connected space such that $H_{*}(X ; Z)$ is of finite type.

2. The generating variety

In this section we shall compute the \mathcal{A}_{p}-module structure of $H^{*}\left(F_{4} / C ; Z_{p}\right)$ for $p=2$ and 3 .

First since C contains a maximal torus T of F_{4}, we have a commutative diagram

We require the following notations and results (2.2)-(2.6), whose details can be found in [3, §4]:
(2.2) $\quad H^{*}(B T ; Z)=Z\left[t, y_{1}, y_{2}, y_{3}\right] \quad$ where $\operatorname{deg} t=\operatorname{deg} y_{i}=2(i=1,2,3)$.

Put $z_{i}=y_{i}\left(t-y_{i}\right) \in H^{4}(B T ; Z)$ and let $q_{i}=\sigma_{i}\left(z_{1}, z_{2}, z_{3}\right) \in H^{4 i}(B T ; Z)$ for $i=1,2,3$ where σ_{i} denotes the i-th elementary symmetric function. Then we have

$$
\begin{align*}
& H^{*}(B C ; Z)=Z\left[t, q_{1}, q_{2}, q_{3}\right] \text { where } \operatorname{deg} t=2 \text { and } \operatorname{deg} q_{i}=4 i(i=1,2,3) . \tag{2.3}\\
& \rho^{*}(t)=t \text { and } \rho^{*}\left(q_{i}\right)=q_{i}(i=1,2,3) .
\end{align*}
$$

On the other hand we have
(2.5) $H^{*}\left(F_{4} / C ; Z\right)=Z[t, u, v, w] /\left(t^{3}-2 u, u^{2}-3 t^{2} v+2 w, 3 v^{2}-t^{2} w, v^{3}-w^{2}\right)$ where $\operatorname{deg} t=2, \operatorname{deg} u=6, \operatorname{deg} v=8$ and $\operatorname{deg} w=12$.

$$
\begin{equation*}
j^{*}(t)=t, j^{*}\left(q_{1}\right)=t^{2}, j^{*}\left(q_{2}\right)=3 v \text { and } j^{*}\left(q_{3}\right)=w . \tag{2.6}
\end{equation*}
$$

We shall say that an \mathcal{A}_{p}-action on $H^{*}\left(X ; Z_{p}\right)$ is non-trivial if it does not follow directly from the axioms 1), 4) or 5) of [4, p. 1 and p.76]. With these preliminaries we have

Proposition 1. The non-trivial \mathcal{A}_{2}-action on

$$
H^{*}\left(F_{4} / C ; Z_{2}\right)=Z_{2}[t, u, v, w] /\left(t^{3}, u^{2}-t^{2} v, v^{2}-t^{2} w, v^{3}-w^{2}\right)
$$

is given by:
(1) $S q^{2}(t)=t^{2}$.
(2) $S q^{2}(u)=v, S q^{4}(u)=t v$ and $S q^{6}(u)=t^{2} v$.
(3) $S q^{2}(v)=0, S q^{4}(v)=w, S q^{6}(v)=t w$ and $S q^{8}(v)=v^{2}$.
(4) $\quad S q^{2}(w)=t w, \quad S q^{4}(w)=0, \quad S q^{6}(w)=0, \quad S q^{8}(w)=v w, \quad S q^{10}(w)=t v w$ and $S q^{12}(w)=w^{2}$.

Proof. (1) and the last equalities in (2), (3) and (4) are immediate from the axiom 3) of [4, p.1].

First we consider (3) and (4). Since $v=j^{*}\left(q_{2}\right)$ and $w=j^{*}\left(q_{3}\right)$ in $H^{*}\left(F_{4} / C\right.$; Z_{2}) by (2.6), it suffices to determine $S q^{i}\left(q_{2}\right)$ and $S q^{i}\left(q_{3}\right)$ in $H^{*}\left(B C ; Z_{2}\right)$. To do so, by (2.4), it suffices to compute $S q^{i}\left(q_{2}\right)$ and $S q^{i}\left(q_{3}\right)$ in $H^{*}\left(B T ; Z_{2}\right)$. But this is a direct calculation, for $H^{*}\left(B T ; Z_{2}\right)$ is multiplicatively generated by the elements of degree 2 (see (2.2)).

Finally we show the remaining part of (2). By [3, Corollary 4.5] we may set

$$
\begin{aligned}
& S q^{2}(u)=k \cdot t u+l \cdot v \text { and } \\
& S q^{4}(u)=m \cdot t^{2} u+n \cdot t v
\end{aligned}
$$

for some $k, l, m, n \in Z_{2}$. Then from the Adem relations $S q^{2} S q^{2}=S q^{3} S q^{1}$, $S q^{2} S q^{4}=S q^{6}+S q^{5} S q^{1}$ and $S q^{4} S q^{4}=S q^{7} S q^{1}$, it follows that $k l=0, l m+n=1$ and $l=n$ respectively. Hence $k=m=0$ and $l=n=1$, which proves (2).

Next we turn to the case $p=3$. To begin with we need some preparations.
As in [6, §3], put $x=t / 2$ and $x_{i}=x-y_{i}$ for $i=1,2,3$. Thus $x, x_{i} \in H^{2}$ (BT; $Z[1 / 2])(i=1,2,3)$. Furthermore put

$$
\begin{equation*}
t_{1}=-x_{1}+x_{2}, t_{2}=x_{1}+x_{2}, t_{3}=-x_{3}-x \text { and } t_{4}=-x_{3}+x . \tag{2.7}
\end{equation*}
$$

Note that $t_{i} \in H^{2}(B T ; Z)(i=1,2,3,4)$. For later convenience we introduce the notation:

$$
\begin{aligned}
& c_{i}=\sigma_{i}\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in H^{2 i}(B T ; Z) ; \\
& p_{j}=\sigma_{j}\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right) \in H^{4 j}(B T ; Q),
\end{aligned}
$$

where $1 \leq i \leq 4$ and $1 \leq j \leq 3$. A straightforward calculation using (2.7) yields:
(2.8) $\quad c_{1}^{2}-2 c_{2}=2\left(p_{1}+x^{2}\right) ;$
$c_{2}^{2}-2 c_{3} c_{1}+2 c_{4}=\left(p_{1}+x^{2}\right)^{2}+2\left(p_{2}+p_{1} x^{2}-3 x_{1}^{2} x_{2}^{2}-3 x_{3}^{2} x^{2}\right)$.
We also need:
(2.9) $\quad p_{1}=-q_{1}+3 x^{2} ; \quad p_{2}=q_{2}-2 q_{1} x^{2}+3 x^{4}$.

This follows from [6, (3.6)].
Now put $\gamma_{1}=c_{1} / 2$. From the discussion in [3, §4.2] we observe that

$$
H^{*}(B T ; Z)=Z\left[t_{1}, t_{2}, t_{3}, t_{4}, \gamma_{1}\right] /\left(c_{1}-2 \gamma_{1}\right)
$$

on which the Weyl group $\Phi\left(F_{4}\right)$ acts as follows:

	\tilde{R}	R_{1}	R_{2}	R_{3}	R_{4}
t_{1}			t_{2}	$-t_{1}$	$t_{1}-\gamma_{1}$
t_{2}		t_{3}	t_{1}		$t_{2}-\gamma_{1}$
t_{3}	t_{4}	t_{2}			$t_{3}-\gamma_{1}$
t_{4}	t_{3}				$t_{4}-\gamma_{1}$

This allows us to identify the t_{i} with that given in [5, §4(A)]. Then by [5, Theorem A] we have

$$
\begin{align*}
& H *\left(F_{4} / T ; Z\right)=Z\left[t_{1}, t_{2}, t_{3}, t_{4}, \gamma_{1}, \gamma_{3}, w_{4}\right] /\left(c_{1}-2 \gamma_{1}, c_{2}-2 \gamma_{1}^{2}, c_{3}-2 \gamma_{3}, c_{4}-2 c_{3} \gamma_{1}\right. \tag{2.10}\\
& \left.+2 \gamma_{1}^{4}-3 w_{4},-c_{4} \gamma_{1}^{2}+\gamma_{3}^{2}, 3 c_{4} \gamma_{1}^{4}-\gamma_{1}^{8}+3 c_{3} \gamma_{1} w_{4}+3 w_{4}^{2}, w_{4}^{3}\right) \text { where } \operatorname{deg} t_{i}=\operatorname{deg} \\
& \gamma_{1}=2(i=1,2,3,4), \operatorname{deg} \gamma_{3}=6 \text { and } \operatorname{deg} w_{4}=8 .
\end{align*}
$$

(By abuse of notation we have written t_{i}, c_{i}, etc. for their images under ι^{*}.)
It is well known that $\operatorname{Spin}(9)$ is a closed connected subgroup of F_{4}, and
the homogeneous space $F_{4} / \operatorname{Spin}(9)$ can be identified with the Cayley projective plane Π, whose integral cohomology is given by:
(2.11) $H^{*}(\Pi ; Z)=Z[w] /\left(w^{3}\right)$ where $\operatorname{deg} w=8$.

Since $T \subset \operatorname{Spin}(9) \subset F_{4}$, we have a natural map

$$
F_{4} / T \xrightarrow{p} F_{4} / \operatorname{Spin}(9)=\Pi .
$$

Then it follows from [5, (6.9)] that
(2.12) $\quad p^{*}(w)=w_{4}$.

The following result may be of independent interest.
Lemma 2. $q^{*}(v)=w_{4}+x_{1}^{2} x_{2}^{2}+x_{3}^{2} x^{2}+2 x^{4}$ in $H^{8}\left(F_{4} / T ; Z\right)$.
Proof. From (2.6), the commutativity of (2.1), and (2.4) we see that $q^{*}(v)=q_{2} / 3 \in H^{8}\left(F_{4} / T ; Z\right) . \quad$ (2.10), together with (2.8) and (2.9), gives:

$$
\begin{aligned}
w_{4} & =\frac{1}{3}\left(c_{4}-c_{3} c_{1}+\frac{1}{2} c_{2}^{2}\right) \\
& =\frac{1}{3}\left(p_{2}+p_{1} x^{2}-3 x_{1}^{2} x_{2}^{2}-3 x_{3}^{2} x^{2}\right) \\
& =\frac{1}{3} q_{2}-x_{1}^{2} x_{2}^{2}-x_{3}^{2} x^{2}-2 x^{4} .
\end{aligned}
$$

Combining these we get the result. (It is easy to verify that $x_{1}^{2} x_{2}^{2}+x_{3}^{2} x^{2}+2 x^{4}$ is in fact an integral class.)

Proposition 3. The non-trivial \mathcal{A}_{3}-action on

$$
H^{*}\left(F_{4} / C ; Z_{3}\right)=Z[t, v] /\left(t^{8}, v^{3}\right)
$$

is given by:
(1) $\quad P^{1}(t)=t^{3}$.
(2) $\mathcal{P}^{1}(v)=-t^{6}, \mathscr{P}^{2}(v)=0, \mathscr{P}^{3}(v)=0$ and $\mathcal{P}^{4}(v)=0$.

Proof. (1) and the last equality in (2) are immediate from the axiom 3) of [4, p.76].

To show (2), we must compute $\mathcal{P}^{i}(v)$ for $i=1,2,3$. Since $q^{*}: H^{*}\left(F_{4} / C ; Z\right) \rightarrow$ $H^{*}\left(F_{4} / T ; Z\right)$ is a split monomorphism (see $\left.[3, \S 3]\right)$ and its image is known with Z_{3}-coefficients (see Lemma 2), it suffices to determine $q^{*}\left(\mathcal{P}^{i}(v)\right)$ in $H^{*}\left(F_{4} / T ; Z_{3}\right)$. (2.10) and the same calculation as in (2.8) yield:

$$
\begin{gathered}
H^{*}\left(F_{4} / T ; Z_{3}\right)=Z_{3}\left[t_{1}, t_{2}, t_{3}, t_{4}, w_{4}\right] /\left(c_{2}+c_{1}^{2}, c_{4}-c_{3} c_{1}-c_{1}^{4},\right. \\
\left.\quad c_{3}^{2}-c_{4} c_{1}^{2}, c_{1}^{8}, w_{4}^{3}\right) \\
=Z_{3}\left[x_{1}, x_{2}, x_{3}, x, w_{4}\right] /\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x^{2}, x_{2}^{4}+\right. \\
\\
\quad x_{2}^{2} x_{3}^{2}+x_{3}^{4}+x_{2}^{2} x^{2}+x_{3}^{2} x^{2}+x^{4}, x_{3}^{6}+x_{3}^{4} x^{2}+x_{3}^{2} x^{4} \\
\\
\left.\quad+x^{6}, x^{8}, w_{4}^{3}\right) .
\end{gathered}
$$

Moreover (2.12) and (2.11) imply that $\mathcal{P}^{i}\left(w_{4}\right)=0$ for all $i \geq 1$. Therefore we have

$$
\begin{aligned}
q^{*}\left(\mathcal{P}^{1}(v)\right) & =\mathcal{P}^{1}\left(q^{*}(v)\right) \\
& =\mathcal{P}^{1}\left(x_{1}^{2} x_{2}^{2}+x_{3}^{2} x^{2}-x^{4}\right) \\
& =-x_{1}^{4} x_{2}^{2}-x_{1}^{2} x_{2}^{4}-x_{3}^{4} x^{2}-x_{3}^{2} x^{4}-x^{6} \\
& =-x^{6} .
\end{aligned}
$$

So since $q^{*}(t)=-x$ it follows that $\mathcal{P}^{1}(v)=-t^{6}$. Using the Adem relation $\mathcal{P}^{2}=-\mathcal{P}^{1} \mathcal{P}^{1}$, we also get $\mathcal{P}^{2}(v)=0$. Finally we consider $\mathcal{P}^{3}(v)$. By [3, Corollary 4.5] we may set

$$
\mathcal{P}^{3}(v)=k \cdot t^{6} v+l \cdot t^{2} v^{2}
$$

for some $k, l \in Z_{3}$. Then $q^{*}\left(\mathcal{P}^{3}(v)\right)=k \cdot x^{6} w_{4}+l \cdot x^{2} w_{4}^{2}+\cdots$. On the other hand notice that $\mathcal{P}^{3}\left(q^{*}(v)\right)$ does not involve $x^{6} w_{4}$ or $x^{2} w_{4}^{2}$, and they are linearly independent in $H^{20}\left(F_{4} / T ; Z_{3}\right)$. This implies that $k=l=0$ as required.

3. Main results

As seen in [6], the algebraic description of $H_{*}\left(\Omega F_{4} ; Z\right)$ is much easier than that of $H^{*}\left(\Omega F_{4} ; Z\right)$. For this reason we shall treat the right \mathcal{A}_{p}-action on $H_{*}\left(X ; Z_{p}\right)$ which dualizes to the usual left \mathscr{A}_{p}-action on $H^{*}\left(X ; Z_{p}\right)$.

We first consider the case $p=2$ and follow the notation of [2]. For $i \geq 0$ let () $S q^{i}$ be the dual to $S q^{i}()$. Then these operations have the following properties (cf. [4, p. 1]):
(3.1) () $S q^{i}: H_{n}\left(X ; Z_{2}\right) \rightarrow H_{n-i}\left(X ; Z_{2}\right)$.
(3.2) If $\operatorname{deg} \alpha<2 i,(\alpha) S q^{i}=0$.
(3.3) If $\operatorname{deg} \alpha=2 i,(\alpha) S q^{i}=\sqrt{\alpha}$ where $\sqrt{ }$ is the dual of the squaring map for Z_{2}-algebras.
(3.4) (diagonal Cartan formula) Let $\psi: H_{*}\left(X ; Z_{2}\right) \rightarrow H_{*}\left(X ; Z_{2}\right) \otimes H_{*}\left(X ; Z_{2}\right)$ be the coproduct (induced from the diagonal map $\Delta: X \rightarrow X \times X)$. If $\psi(\alpha)=$ $\sum \alpha^{\prime} \otimes \alpha^{\prime \prime}$, then

$$
\psi\left((\alpha) S q^{k}\right)=\sum_{i+j=k}\left(\alpha^{\prime}\right) S q^{i} \otimes\left(\alpha^{\prime \prime}\right) S q^{j}
$$

Suppose now that X is an H-space, and $\alpha \cdot \beta$ denotes the Pontrjagin product of α and β in $H_{*}\left(X ; Z_{2}\right)$. Then one can readily check:

(internal Cartan formula)

$$
\begin{equation*}
(\alpha \cdot \beta) S q^{k}=\sum_{i+j=k}(\alpha) S q^{i} \cdot(\beta) S q^{j} \tag{3.5}
\end{equation*}
$$

We shall say that an \mathcal{A}_{2}-action on $H_{*}\left(X ; Z_{2}\right)$ is non-trivial if it does not follow from (3.1), (3.2) or (3.5).

Let us now consider the case $X=\Omega F_{4}$. Hereafter we shall use the notations and results of [6] without specific reference.

First we have
$H_{*}\left(\Omega F_{4} ; Z_{2}\right)=Z_{2}\left[\sigma_{1}, \sigma_{2}, \sigma_{5}, \sigma_{7}, \sigma_{11}\right] /\left(\sigma_{1}^{2}\right) \quad$ where $\operatorname{deg} \sigma_{i}=2 i(i=1,2,5,7,11)$. Moreover $\sigma_{1}, \sigma_{5}^{\prime}=\sigma_{5}+\sigma_{2}^{2} \sigma_{1}, \sigma_{7}$ and $\sigma_{11}^{\prime}=\sigma_{11}+\sigma_{5}^{2} \sigma_{1}+\sigma_{7} \sigma_{2}^{2}$ are primitive, and $\tilde{\psi}\left(\sigma_{2}\right)=\sigma_{1} \otimes \sigma_{1}$.

Therefore (by (3.5)) we have only to determine the ()S q^{i} on the elements $\sigma_{1}, \sigma_{2}, \sigma_{5}^{\prime}, \sigma_{7}$ and σ_{11}^{\prime}. On the other hand, (3.4) implies that for $i \geq 1$ ()Sq q^{i} sends a primitive element to another primitive element. In vicw of (3.6), the primitive elements of $H_{*}\left(\Omega F_{4} ; Z_{2}\right)$ which appear in degrees ≤ 22 are:

deg	2	8	10	14	16	20	22
	σ_{1}	σ_{2}^{2}	σ_{5}^{\prime}	σ_{7}	σ_{2}^{4}	$\sigma_{5}^{\prime 2}$	σ_{11}^{\prime}.

These, together with (3.1) and (3.2), show that possible non-zero operations (among non-trivial operations) are:

deg	2	8	10	14	16	20
	$\left(\sigma_{2}\right) S q^{2}$	$\left(\sigma_{5}^{\prime}\right) S q^{2}$	$\left(\sigma_{7}\right) S q^{4}$	$\left(\sigma_{11}^{\prime}\right) S q^{8}$	$\left(\sigma_{11}^{\prime}\right) S q^{6}$	$\left(\sigma_{11}^{\prime}\right) S q^{2}$
		$\left(\sigma_{7}\right) S q^{6}$				

Let us compute these operations. First by (3.3) we have $\left(\sigma_{2}\right) S q^{2}=\sigma_{1}$. Next we want to determine the coefficient $k \in Z_{2}$ in the equation $\left(\sigma_{5}^{\prime}\right) S q^{2}=k \cdot \sigma_{2}^{2}$. By use of (3.5) we have $\left(\sigma_{5}^{\prime}\right) S q^{2}=\left(\sigma_{5}\right) S q^{2}+\left(\sigma_{2}^{2} \sigma_{1}\right) S q^{2}=\left(\sigma_{5}\right) S q^{2}$ and so (σ_{5}) $S q^{2}=$ $k \cdot \sigma_{2}^{2}$. Dualizing this gives $S q^{2}\left(a_{4}\right)=k \cdot b_{5}+l \cdot a_{5}$ for some $l \in Z_{2}$. Since $f_{s}^{*}\left(S q^{2}\left(a_{4}\right)\right)=S q^{2}\left(f_{s}^{*}\left(a_{4}\right)\right)=S q^{2}(t u)=t^{2} u+t v$ by use of (1) and (2) of Proposition 1 , and since $f_{s}^{*}\left(b_{5}\right)=t^{2} u+t v$ and $f_{s}^{*}\left(a_{5}\right)=t v$, it follows that $k=1$ (and also $l=0)$. Thus we obtain $\left(\sigma_{5}^{\prime}\right) S q^{2}=\sigma_{2}^{2}$.

Instead of proceeding further, we state here a pattern of computation: The problem is to determine the coefficient $k^{\prime} \in Z_{2}$ in the equation

$$
\left(\alpha^{\prime}\right) S q^{i}=k^{\prime} \cdot \beta
$$

where α^{\prime} and β are primitive. In particular $\alpha^{\prime}=\alpha+$ decomposables and α is
the image under the mod 2 reduction of an integral class which is indecomposable. Using (3.5) we get

$$
(\alpha) S q^{i}=k \cdot \beta+\cdots
$$

where $k\left(\in Z_{2}\right)$ and k^{\prime} determine each other. Dualizing this gives

$$
\begin{equation*}
S q^{i}(b)=k \cdot a+\cdots \tag{}
\end{equation*}
$$

where a and b are dual to α and β respectively. In particular a is the image under the mod 2 reduction of an integral class which is primitive. Since the composite

$$
P H^{*}\left(\Omega F_{4} ; Z\right) \xrightarrow{\subset} H^{*}\left(\Omega F_{4} ; Z\right) \xrightarrow{f_{s}^{*}} H^{*}\left(F_{4} / C ; Z\right)
$$

is a split monomorphism, it is sufficient to consider $\left(^{*}\right)$ in $H^{*}\left(F_{4} / C ; Z_{2}\right)$ via f_{s}^{*}. But in $[6, \S 4]$ the cohomology ring $H^{*}\left(\Omega F_{4} ; Z\right)$ and its image under f_{s}^{*} have been described, and by Proposition 1 we already know the \mathcal{A}_{2}-action on $H^{*}\left(F_{4} / C ; Z_{2}\right)$. Thus k and hence k^{\prime} are computable.

In this way routine computations yield
Theorem 4. The non-trivial \mathcal{A}_{2}-action on

$$
H_{*}\left(\Omega F_{4} ; Z_{2}\right)=Z_{2}\left[\sigma_{1}, \sigma_{2}, \sigma_{5}^{\prime}, \sigma_{7}, \sigma_{11}^{\prime}\right] /\left(\sigma_{1}^{2}\right)
$$

is given by:
(1) $\left(\sigma_{2}\right) S q^{2}=\sigma_{1}$.
(2) $\left(\sigma_{5}^{\prime}\right) S q^{2}=\sigma_{2}^{2}$ and $\left(\sigma_{5}^{\prime}\right) S q^{4}=0$.
(3) $\left(\sigma_{7}\right) S q^{2}=0,\left(\sigma_{7}\right) S q^{4}=\sigma_{5}^{\prime}$ and $\left(\sigma_{7}\right) S q^{6}=0$.
(4) $\left(\sigma_{11}^{\prime}\right) S q^{2}=\sigma_{5}^{\prime 2},\left(\sigma_{11}^{\prime}\right) S q^{4}=0,\left(\sigma_{11}^{\prime}\right) S q^{6}=\sigma_{2}^{4},\left(\sigma_{11}^{\prime}\right) S q^{8}=\sigma_{7}$ and $\left(\sigma_{11}^{\prime}\right) S q^{10}$ $=0$.

The argument for the case $p=3$ is similar (we have prepared Proposition 3 in place of Proposition 1) and so we only present the result.

Theorem 5. The non-trivial \mathcal{A}_{3}-action on

$$
H_{*}\left(\Omega F_{4} ; Z_{3}\right)=Z_{3}\left[\sigma_{1}, \sigma_{3}, \sigma_{5}^{\prime}, \sigma_{7}^{\prime}, \sigma_{11}^{\prime}\right] /\left(\sigma_{1}^{3}\right)
$$

is given by:
(1) $\left(\sigma_{3}\right) \mathcal{P}^{1}=\sigma_{1}$.
(2) $\left(\sigma_{5}^{\prime}\right) \mathcal{P}^{1}=0$.
(3) $\left(\sigma_{7}^{\prime}\right) \mathcal{P}^{1}=\sigma_{5}^{\prime}$ and $\left(\sigma_{7}^{\prime}\right) \mathcal{P}^{2}=0$.
(4) $\left(\sigma_{11}^{\prime}\right) \mathcal{P}^{1}=\sigma_{3}^{3},\left(\sigma_{11}^{\prime}\right) \mathcal{P}^{2}=0$ and $\left(\sigma_{11}^{\prime}\right) \mathcal{P}^{3}=0$.

Osaka City University

References

[1] R. Bott: The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
[2] A.K. Bousfield and E.B. Curtis: A spectral sequence for the homotopy of nice spaces, Trans. Amer. Math. Soc. 151 (1970), 457-479.
[3] K. Ishitoya and H. Toda: On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ. 17 (1977), 225-243.
[4] N.E.Steenrod and D.B.A. Epstein: Cohomology operations, Princeton University Press, Princeton, N.J., 1962.
[5] H. Toda and T. Watanabe: The integral cohomology rings of F_{4} / T and $E_{6} / T, \mathrm{~J}$. Math. Kyoto Univ. 14 (1974), 257-286.
[6] T. Watanabe: The homology of the loop space of the exceptional group F_{4}, Osaka J. Math. 15 (1978), 463-474.

