Watanabe, T. Osaka J. Math. 16 (1979), 471-478

COHOMOLOGY OPERATIONS IN THE LOOP SPACE OF THE COMPACT EXCEPTIONAL GROUP F4

Dedicated to Professor A. Komatu on his 70-th birthday

TAKASHI WATANABE

(Received April 14, 1978)

1. Introduction

Let F_4 be the compact, simply connected, exceptional Lie group of rank 4. In [6] we have described the Hopf algebra structure of $H_*(\Omega F_4;Z)$. Using this thoroughly, we can compute the action of the mod p Steenrod algebra \mathcal{A}_p on $H^*(\Omega F_4;Z_p)$ for every prime p. But here we deal with the cases p=2 (Theorem 4) and p=3 (Theorem 5) only, because in the other cases the result follows immediately from a spectral sequence argument for the path fibration $\Omega F_4 \rightarrow$ $PF_4 \rightarrow F_4$.

Let $C(=C_s)=T^1 \cdot Sp(3)$ in the notation of [3], which is a closed connected subgroup of F_4 . Then in [6] the homogeneous space F_4/C has been found to be a generating variety for F_4 . That is, there exists a map $f_s: F_4/C \to \Omega F_4$ such that the image of $f_{s^*}: H_*(F_4/C; Z) \to H_*(\Omega F_4; Z)$ generates the Pontrjagin ring $H_*(\Omega F_4; Z)$. In this situation Bott [1, §6] asserted that the Steenrod operations in $H^*(\Omega F_4; Z_p)$ can be deduced from their effect on $H^*(F_4/C; Z_p)$. This is the motive of our work.

Throughout the paper X will always denote any connected space such that $H_*(X; Z)$ is of finite type.

2. The generating variety

In this section we shall compute the \mathcal{A}_p -module structure of $H^*(F_4/C; Z_p)$ for p=2 and 3.

First since C contains a maximal torus T of F_4 , we have a commutative diagram

We require the following notations and results (2.2)-(2.6), whose details can be found in $[3, \S4]$:

(2.2) $H^*(BT; Z) = Z[t, y_1, y_2, y_3]$ where deg $t = \deg y_i = 2$ (i=1, 2, 3).

Put $z_i = y_i(t-y_i) \in H^4(BT; Z)$ and let $q_i = \sigma_i(z_1, z_2, z_3) \in H^{4i}(BT; Z)$ for i=1, 2, 3 where σ_i denotes the *i*-th elementary symmetric function. Then we have

- (2.3) $H^*(BC; Z) = Z[t, q_1, q_2, q_3]$ where deg t=2 and deg $q_i=4i$ (i=1, 2, 3).
- (2.4) $\rho^{*}(t) = t \text{ and } \rho^{*}(q_i) = q_i \ (i=1, 2, 3)$.

On the other hand we have

(2.5) $H^*(F_4/C; Z) = Z[t, u, v, w]/(t^3 - 2u, u^2 - 3t^2v + 2w, 3v^2 - t^2w, v^3 - w^2)$ where deg t=2, deg u=6, deg v=8 and deg w=12.

(2.6)
$$j^{*}(t) = t, j^{*}(q_1) = t^2, j^{*}(q_2) = 3v \text{ and } j^{*}(q_3) = w$$
.

We shall say that an \mathcal{A}_p -action on $H^*(X; Z_p)$ is *non-trivial* if it does not follow directly from the axioms 1), 4) or 5) of [4, p.1 and p.76]. With these preliminaries we have

Proposition 1. The non-trivial A_2 -action on

$$H^*(F_4/C; Z_2) = Z_2[t, u, v, w]/(t^3, u^2 - t^2v, v^2 - t^2w, v^3 - w^2)$$

is given by:

(1) $Sq^2(t) = t^2$.

(2)
$$Sq^{2}(u) = v$$
, $Sq^{4}(u) = tv$ and $Sq^{6}(u) = t^{2}v$.

- (3) $Sq^{2}(v) = 0$, $Sq^{4}(v) = w$, $Sq^{6}(v) = tw$ and $Sq^{8}(v) = v^{2}$.
- (4) $Sq^2(w) = tw, Sq^4(w) = 0, Sq^6(w) = 0, Sq^8(w) = vw, Sq^{10}(w) = tvw$ and $Sq^{12}(w) = w^2$.

Proof. (1) and the last equalities in (2), (3) and (4) are immediate from the axiom 3) of [4, p.1].

First we consider (3) and (4). Since $v=j^*(q_2)$ and $w=j^*(q_3)$ in $H^*(F_4/C; Z_2)$ by (2.6), it suffices to determine $Sq^i(q_2)$ and $Sq^i(q_3)$ in $H^*(BC; Z_2)$. To do so, by (2.4), it suffices to compute $Sq^i(q_2)$ and $Sq^i(q_3)$ in $H^*(BT; Z_2)$. But this is a direct calculation, for $H^*(BT; Z_2)$ is multiplicatively generated by the elements of degree 2 (see (2.2)).

Finally we show the remaining part of (2). By [3, Corollary 4.5] we may set

$$Sq^2(u) = k \cdot tu + l \cdot v$$
 and $Sq^4(u) = m \cdot t^2 u + n \cdot tv$

for some $k, l, m, n \in \mathbb{Z}_2$. Then from the Adem relations $Sq^2Sq^2 = Sq^3Sq^1$, $Sq^2Sq^4 = Sq^6 + Sq^5Sq^1$ and $Sq^4Sq^4 = Sq^7Sq^1$, it follows that kl = 0, lm + n = 1 and l = n respectively. Hence k = m = 0 and l = n = 1, which proves (2).

Next we turn to the case p=3. To begin with we need some preparations. As in [6, §3], put x=t/2 and $x_i=x-y_i$ for i=1, 2, 3. Thus $x, x_i \in H^2$ (BT; Z[1/2]) (i=1, 2, 3). Furthermore put

$$(2.7) \quad t_1 = -x_1 + x_2, \ t_2 = x_1 + x_2, \ t_3 = -x_3 - x \ and \ t_4 = -x_3 + x$$

Note that $t_i \in H^2(BT; Z)$ (i=1, 2, 3, 4). For later convenience we introduce the notation:

$$c_i = \sigma_i(t_1, t_2, t_3, t_4) \in H^{2i}(BT; Z);$$

 $p_j = \sigma_j(x_1^2, x_2^2, x_3^2) \in H^{4j}(BT; Q),$

where $1 \le i \le 4$ and $1 \le j \le 3$. A straightforward calculation using (2.7) yields:

(2.8)
$$c_1^2 - 2c_2 = 2(p_1 + x^2);$$

 $c_2^2 - 2c_3c_1 + 2c_4 = (p_1 + x^2)^2 + 2(p_2 + p_1x^2 - 3x_1^2x_2^2 - 3x_3^2x^2).$

We also need:

$$(2.9) \quad p_1 = -q_1 + 3x^2; \quad p_2 = q_2 - 2q_1x^2 + 3x^4.$$

This follows from [6, (3.6)].

Now put $\gamma_1 = c_1/2$. From the discussion in [3, §4.2] we observe that

$$H^{*}(BT; Z) = Z[t_{1}, t_{2}, t_{3}, t_{4}, \gamma_{1}]/(c_{1}-2\gamma_{1})$$

on which the Weyl group $\Phi(F_4)$ acts as follows:

	Ĩ	R_1	R_2	R_{3}	R_4
t_1			t_2	$-t_{1}$	$t_1 - \gamma_1$
t_2		t_3	t_1		$t_2 - \gamma_1$
t_3	t_4	t_2			$t_3 - \gamma_1$
t_4	t ₃				$t_4 - \gamma_1$

This allows us to identify the t_i with that given in [5, §4(A)]. Then by [5, Theorem A] we have

(2.10)
$$\begin{aligned} H^*(F_4/T;Z) &= Z[t_1, t_2, t_3, t_4, \gamma_1, \gamma_3, w_4]/(c_1 - 2\gamma_1, c_2 - 2\gamma_1^2, c_3 - 2\gamma_3, c_4 - 2c_3\gamma_1 \\ &+ 2\gamma_1^4 - 3w_4, -c_4\gamma_1^2 + \gamma_3^2, 3c_4\gamma_1^4 - \gamma_1^8 + 3c_3\gamma_1w_4 + 3w_4^2, w_4^3) \end{aligned}$$
where $\deg t_i = \deg \gamma_1 = 2$ (i=1, 2, 3, 4), $\deg \gamma_3 = 6$ and $\deg w_4 = 8$.

(By abuse of notation we have written t_i , c_i , etc. for their images under ι^* .)

It is well known that Spin(9) is a closed connected subgroup of F_4 , and

the homogeneous space F_4 /Spin(9) can be identified with the Cayley projective plane Π , whose integral cohomology is given by:

(2.11)
$$H^*(\Pi; Z) = Z[w]/(w^3)$$
 where deg $w = 8$.

Since $T \subset \text{Spin}(9) \subset F_4$, we have a natural map

$$F_4/T \xrightarrow{p} F_4/\text{Spin} (9) = \Pi$$

Then it follows from [5, (6.9)] that

(2.12) $p^*(w) = w_4$.

The following result may be of independent interest.

Lemma 2. $q^{*}(v) = w_4 + x_1^2 x_2^2 + x_3^2 x^2 + 2x^4$ in $H^{*}(F_4/T; Z)$.

Proof. From (2.6), the commutativity of (2.1), and (2.4) we see that $q^*(v) = q_2/3 \in H^8(F_4/T; Z)$. (2.10), together with (2.8) and (2.9), gives:

$$w_4 = \frac{1}{3} (c_4 - c_3 c_1 + \frac{1}{2} c_2^2)$$

= $\frac{1}{3} (p_2 + p_1 x^2 - 3x_1^2 x_2^2 - 3x_3^2 x^2)$
= $\frac{1}{3} q_2 - x_1^2 x_2^2 - x_3^2 x^2 - 2x^4$.

Combining these we get the result. (It is easy to verify that $x_1^2x_2^2+x_3^2x^2+2x^4$ is in fact an integral class.)

Proposition 3. The non-trivial A_3 -action on

$$H^{*}(F_{4}/C; Z_{3}) = Z[t,v]/(t^{8}, v^{3})$$

is given by:

(1)
$$\mathcal{O}^{1}(t) = t^{3}$$
.
(2) $\mathcal{O}^{1}(v) = -t^{6}, \mathcal{O}^{2}(v) = 0, \mathcal{O}^{3}(v) = 0$ and $\mathcal{O}^{4}(v) = 0$

Proof. (1) and the last equality in (2) are immediate from the axiom 3) of [4, p.76].

To show (2), we must compute $\mathcal{O}^i(v)$ for i=1,2,3. Since $q^*: H^*(F_4/C; Z) \rightarrow H^*(F_4/T; Z)$ is a split monomorphism (see [3, §3]) and its image is known with Z_3 -coefficients (see Lemma 2), it suffices to determine $q^*(\mathcal{O}^i(v))$ in $H^*(F_4/T; Z_3)$. (2.10) and the same calculation as in (2.8) yield:

T. WATANABE

$$\begin{split} H^*(F_4/T;Z_3) &= Z_3[t_1,t_2,t_3,t_4,w_4]/(c_2+c_1^2,c_4-c_3c_1-c_1^4, \\ & c_3^2-c_4c_1^2,c_1^8,w_4^3) \\ &= Z_3[x_1,x_2,x_3,x,w_4]/(x_1^2+x_2^2+x_3^2+x^2,x_2^4+x_2^2x_3^2+x_3^4+x_2^2x_3^2+x_3^2x_2^2+x_3^2x_2^2+x_3^2x_3^2+x_3^4+x_3^6+x_3^4x_2^2+x_3^2x_4^4+x_6^6,x^8,w_4^3) \,. \end{split}$$

Moreover (2.12) and (2.11) imply that $\mathcal{O}^{i}(w_{4})=0$ for all $i \geq 1$. Therefore we have

$$egin{aligned} q^*(\mathcal{O}^1(v)) &= \mathcal{O}^1(q^*(v)) \ &= \mathcal{O}^1(x_1^2x_2^2 + x_3^2x^2 - x^4) \ &= -x_1^4x_2^2 - x_1^2x_2^4 - x_3^4x^2 - x_3^2x^4 - x^6 \ &= -x^6 \,. \end{aligned}$$

So since $q^*(t) = -x$ it follows that $\mathcal{O}^1(v) = -t^6$. Using the Adem relation $\mathcal{O}^2 = -\mathcal{O}^1 \mathcal{O}^1$, we also get $\mathcal{O}^2(v) = 0$. Finally we consider $\mathcal{O}^3(v)$. By [3, Corollary 4.5] we may set

$$\mathcal{O}^{3}(v) = k \cdot t^{6}v + l \cdot t^{2}v^{2}$$

for some $k, l \in Z_3$. Then $q^*(\mathcal{O}^3(v)) = k \cdot x^6 w_4 + l \cdot x^2 w_4^2 + \cdots$. On the other hand notice that $\mathcal{O}^3(q^*(v))$ does not involve $x^6 w_4$ or $x^2 w_4^2$, and they are linearly independent in $H^{20}(F_4/T; Z_3)$. This implies that k = l = 0 as required.

3. Main results

As seen in [6], the algebraic description of $H_*(\Omega F_4; Z)$ is much easier than that of $H^*(\Omega F_4; Z)$. For this reason we shall treat the right \mathcal{A}_p -action on $H_*(X; Z_p)$ which dualizes to the usual left \mathcal{A}_p -action on $H^*(X; Z_p)$.

We first consider the case p=2 and follow the notation of [2]. For $i \ge 0$ let ()Sqⁱ be the dual to Sqⁱ(). Then these operations have the following properties (cf. [4, p. 1]):

- (3.1) () $Sq^i: H_n(X; Z_2) \to H_{n-i}(X; Z_2)$.
- (3.2) If deg $\alpha < 2i$, $(\alpha)Sq^i = 0$.
- (3.3) If deg $\alpha = 2i$, $(\alpha)Sq^i = \sqrt{\alpha}$ where $\sqrt{-}$ is the dual of the squaring map for Z_2 -algebras.
- (3.4) (diagonal Cartan formula) Let $\psi: H_*(X; Z_2) \rightarrow H_*(X; Z_2) \otimes H_*(X; Z_2)$ be the coproduct (induced from the diagonal map $\Delta: X \rightarrow X \times X$). If $\psi(\alpha) = \sum \alpha' \otimes \alpha''$, then

$$\psi((\alpha)Sq^k) = \sum_{i+j=k} (\alpha')Sq^i \otimes (\alpha'')Sq^j.$$

Suppose now that X is an H-space, and $\alpha \cdot \beta$ denotes the Pontrjagin product of α and β in $H_*(X; Z_2)$. Then one can readily check:

(3.5) (internal Cartan formula)

$$(\alpha \cdot \beta)Sq^k = \sum_{i+j=k} (\alpha)Sq^i \cdot (\beta)Sq^j$$
.

We shall say that an \mathcal{A}_2 -action on $H_*(X; \mathbb{Z}_2)$ is *non-trivial* if it does not follow from (3.1), (3.2) or (3.5).

Let us now consider the case $X = \Omega F_4$. Hereafter we shall use the notations and results of [6] without specific reference.

First we have

(3.6) $H_*(\Omega F_4; Z_2) = Z_2[\sigma_1, \sigma_2, \sigma_5, \sigma_7, \sigma_{11}]/(\sigma_1^2)$ where deg $\sigma_i = 2i (i=1, 2, 5, 7, 11)$. Moreover σ_1 , $\sigma'_5 = \sigma_5 + \sigma_2^2 \sigma_1$, σ_7 and $\sigma'_{11} = \sigma_{11} + \sigma_5^2 \sigma_1 + \sigma_7 \sigma_2^2$ are primitive, and $\tilde{\psi}(\sigma_2) = \sigma_1 \otimes \sigma_1$.

Therefore (by (3.5)) we have only to determine the () Sq^i on the elements $\sigma_1, \sigma_2, \sigma'_5, \sigma_7$ and σ'_{11} . On the other hand, (3.4) implies that for $i \ge 1$ () Sq^i sends a primitive element to another primitive element. In view of (3.6), the primitive elements of $H_*(\Omega F_4; Z_2)$ which appear in degrees ≤ 22 are:

These, together with (3.1) and (3.2), show that possible non-zero operations (among non-trivial operations) are:

Let us compute these operations. First by (3.3) we have $(\sigma_2)Sq^2 = \sigma_1$. Next we want to determine the coefficient $k \in \mathbb{Z}_2$ in the equation $(\sigma_5')Sq^2 = k \cdot \sigma_2^2$. By use of (3.5) we have $(\sigma_5')Sq^2 = (\sigma_5)Sq^2 + (\sigma_2^2\sigma_1)Sq^2 = (\sigma_5)Sq^2$ and so $(\sigma_5)Sq^2 = k \cdot \sigma_2^2$. Dualizing this gives $Sq^2(a_4) = k \cdot b_5 + l \cdot a_5$ for some $l \in \mathbb{Z}_2$. Since $f_s^*(Sq^2(a_4)) = Sq^2(f_s^*(a_4)) = Sq^2(tu) = t^2u + tv$ by use of (1) and (2) of Proposition 1, and since $f_s^*(b_5) = t^2u + tv$ and $f_s^*(a_5) = tv$, it follows that k=1 (and also l=0). Thus we obtain $(\sigma_5')Sq^2 = \sigma_2^2$.

Instead of proceeding further, we state here a pattern of computation: The problem is to determine the coefficient $k' \in \mathbb{Z}_2$ in the equation

$$(\alpha')Sq^i = k' \cdot \beta$$

where α' and β are primitive. In particular $\alpha' = \alpha + \text{decomposables and } \alpha$ is

476

the image under the mod 2 reduction of an integral class which is indecomposable. Using (3.5) we get

$$(\alpha)Sq^i = k \cdot \beta + \cdots$$

where $k \in Z_2$ and k' determine each other. Dualizing this gives

$$Sq^i(b) = k \cdot a + \cdots$$

where a and b are dual to α and β respectively. In particular a is the image under the mod 2 reduction of an integral class which is primitive. Since the composite

$$PH^*(\Omega F_4; Z) \xrightarrow{\subset} H^*(\Omega F_4; Z) \xrightarrow{f_s^*} H^*(F_4/C; Z)$$

is a split monomorphism, it is sufficient to consider (*) in $H^*(F_4/C; Z_2)$ via f_s^* . But in [6, §4] the cohomology ring $H^*(\Omega F_4; Z)$ and its image under f_s^* have been described, and by Proposition 1 we already know the \mathcal{A}_2 -action on $H^*(F_4/C; Z_2)$. Thus k and hence k' are computable.

In this way routine computations yield

Theorem 4. The non-trivial A_2 -action on

$$H_{*}(\Omega F_{4}; Z_{2}) = Z_{2}[\sigma_{1}, \sigma_{2}, \sigma_{5}', \sigma_{7}, \sigma_{11}']/(\sigma_{11}^{2})$$

is given by:

(1)
$$(\sigma_2)Sq^2 = \sigma_1$$
.
(2) $(\sigma'_5)Sq^2 = \sigma_2^2 \text{ and } (\sigma'_5)Sq^4 = 0$.
(3) $(\sigma_7)Sq^2 = 0, (\sigma_7)Sq^4 = \sigma'_5 \text{ and } (\sigma_7)Sq^6 = 0$.
(4) $(\sigma'_{11})Sq^2 = {\sigma'_5}^2, (\sigma'_{11})Sq^4 = 0, (\sigma'_{11})Sq^6 = {\sigma'_2}, (\sigma'_{11})Sq^8 = {\sigma_7} \text{ and } ({\sigma'_{11}})Sq^{10} = 0$.

The argument for the case p=3 is similar (we have prepared Proposition 3 in place of Proposition 1) and so we only present the result.

Theorem 5. The non-trivial A_3 -action on

$$H_{*}(\Omega F_{4}; Z_{3}) = Z_{3}[\sigma_{1}, \sigma_{3}, \sigma_{5}', \sigma_{7}', \sigma_{11}']/(\sigma_{1}^{3})$$

is given by:

- (1) $(\sigma_3) \mathcal{P}^1 = \sigma_1$.
- (2) $(\sigma'_5) \mathcal{P}^1 = 0$.

COHOMOLOGY OPERATIONS IN THE LOOP SPACE

- (3) $(\sigma'_7)\mathcal{O}^1 = \sigma'_5 \text{ and } (\sigma'_7)\mathcal{O}^2 = 0$.
- (4) $(\sigma'_{11})\mathcal{P}^1 = \sigma^3_{3}, (\sigma'_{11})\mathcal{P}^2 = 0 \text{ and } (\sigma'_{11})\mathcal{P}^3 = 0.$

OSAKA CITY UNIVERSITY

References

- [1] R. Bott: The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
- [2] A.K. Bousfield and E.B. Curtis: A spectral sequence for the homotopy of nice spaces, Trans. Amer. Math. Soc. 151 (1970), 457-479.
- [3] K. Ishitoya and H. Toda: On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ. 17 (1977), 225-243.
- [4] N.E.Steenrod and D.B.A. Epstein: Cohomology operations, Princeton University Press, Princeton, N.J., 1962.
- [5] H. Toda and T. Watanabe: The integral cohomology rings of F_4/T and E_6/T , J. Math. Kyoto Univ. 14 (1974), 257-286.
- [6] T. Watanabe: The homology of the loop space of the exceptional group F_4 , Osaka J. Math. 15 (1978), 463-474.

478