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Until now, there appeared several papers which deal with characteriza-
tions for a ring to have a QF (quasi-Frobenius) maximal left quotient ring.
Among them, Masaike's one [9, Theorem 2.1] seems to us to be the most de-
cisive in a certain direction. As for QF maximal two-sided quotient rings, we
shall give another characterization (Theorem 4.2). Its classical version will be
given in Theorem 4.4.

On the other hand, Lenagan investigated noetherian rings with Krull
dimension one (see [7] and [8]). A ring R is said to satisfy the restricted mi-
nimum condition for left ideals if R/I is an artinian module for any dense left
ideal /. Applying Lenagan's result and Theorem 4.4, we shall obtain our
main theorem that if a noetherian QF-3 ring with zero socle satisfies the re-
stricted minimum condition for left ideals and right ideals, then it has a QF
classical (two-sided) quotient ring (Theorem 5.7). As its corollary, we shall
see that a QF-3 1-Gorenstein ring with zero socle has a QF classical quotient
ring.

Throughout this paper, we assume that all rings have identity elements and
all modules are unitary, and we use the Lambek torsion theory except for §2,
unless otherwise specified. We denote by E(M) the injective hull of a module

M.
When the author was preparing the present paper, T. Sumioka showed

him the paper [16] which appears in this volume. The author would like to
express his thanks to Dr. Sumioka for his kindness.

1. Preliminaries

We recall some definitions and results which we need in the sequal. A
ring is said to be left 1-Gorenstein if it is left and right noetherian and if it -has
left self-injective dimension at most one. A left and right 1-Gorenstein ring

express his thanks to Dr. Sumi- is called 1-Gorenstein in short.
Let M be a left Λ-module. When M has Krull dimension, we denote

its Krull dimension by K-dim M in the present paper. If a ring R is left noether-
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ian, then RR has Krull dimension, and for any ordinal β there exists the largest
left ideal τadβ(RK) with Krull dimension at most β. We call it the left /3-radical
of R, which is clearly a two-sided ideal. In particular, if R is left and right
noetherian, then rad°(ΛJR) coincides with rad°(i?Λ) which is called the artinian

radical of R and is denoted by A(R) (see [3] for Krull dimension and [2] for
the artinian radical). Thus, for a left and right noetherian ring R, Soc(ΛjR)=0
if and only if Soc(RR)=Q. So we call such a ring a noetherian ring with zero
socle. For a 1-Gorenstein ring Λ, Soc^^O if and only if E(R)/R is an in-
jective cogenerator (see [5]).

A ring R is said to be left QF-3 if every finitely generated submodule of
E(RR) is torsionless. On the other hand, R is said to be left QF-3 ' if every finitely
generated submodule of RQ is torsionless where Q is a maximal left quotient
ring of #(see [10, Proposition 2]). Clearly left QF-3 implies left QF-3'. But
the converse is not true. However, Sumioka has shown in [16] that a left QF-
3' and left 1-Gorenstein ring is QF-3.

REMARK 1. The last statement holds for a commutative w-Gorenstein
ring jR. For, R has a QF maximal quotient ring by [6, Theorem 5] and R is QF-
3 by [12, Theorem 1.5].

REMARK 2. The notion of QF-3' in the sense of [14] and [15] differs from
ours and it is the same as our notion of QF-3.

A finite or infinite chain of submodules of a module M\

is called /-chain if Λf f /Mί+1 is not a torsion module (with respect to the Lambek
torsion theory) for any integer /. We define the Lambek dimension of M, which
is denoted by L-dim M so as not to confuse it with K-dim M (the Krull dimen-
sion of M), as follows. If M has a maximal /-chain of finite length n, then
L-dim M=n. On the other hand, if M has no finite maximal /-chain, then
L-dim M= oo . In this case, it is said that the Lambek dimension of M is in-

finite.

Lemma 1.1. For any submodule N of a module M, we have L-dim M=
L-dim N+ L-dim M/N. (See [14].)

A finite or infinite /-chain of a module M;

is said to be standard if M^JMf is torsion-free and L-dim M^/M—l for
any ί>2. It is clear that if M has finite Lambek dimension, then M has a
finite standard /-chain. The following lemma is useful.



MAXIMAL QUOTIENT RINGS OF QF-3 I-GORENSTEIN RINGS 385

Lemma 1.2 (Sumioka [16]). Let RM be a torsion-free module with L-dim

M— 1. Then M can be embedded into RO where Q is a left maximal quotient ring
ofR.

2. Perfect topologies and strongly perfect topologies

In the present section, we recall and some definitions and results concern-
ing topologies so that we can apply them to §4 easily and effectively.

Let R be a ring, and © a family of left ideals of R. It is said that © is a
left topology on R if it satisfies the following properties.

(Tl) If /e® and a^Ry then Ia~l= {rεΞR\ra<=I} <EΞ®.
(T2) If / is a left ideal of R and there exists /e© such that la'1^® for

all αe/, then Je®.
Let φ be a ring homomorphism of R into T. Then it is said that T is a

left perfect localization of R if Φ is a ring epimorphism and TR is flat. In that

case, it is known that the family ®={RI^R\ T(Iφ)=T} is a left topology on
R and there exists a ring isomorphism of T onto R®, the quotient ring of R
with respect to © (see [13, XI, Theorem 2.1]). On the other hand, a left topo-
logy © is said to be perfect if the canonical ring homomorphism R-*R$ is a

left flat epimorphism. A left perfect topology © is said to be strongly perfect
if ®={RIςιR\Rβ(Iφ)=:Rβ} where φ is a canonical ring homomorphism of
R into R$. A left topology © on R is strongly perfect if and only if for any R-

module My

0 -̂  M -> M -

is an exact sequence where % is the torsion radical corresponding to the topology
© (see [13, XI, Proposition 3.4]). We should remark that in Stenstrϋm's book

[13] topologies and strongly perfect topologies in our sense are called Gabriel

topologies and perfect Gabriel topologies respectively.
The following lemmas are used repeatedly in the later sections.

Lemma 2.1. Let © be a strongly perfect topology on a ring R. Then for
every left R-module M, M is a ®-torsion module if and only if T®RM=Q where

T=R®.

Proof. Clear by definition.

Lemma 2.2. Let φ be a left flat epimorphism of R into T. Then for every
left T-module E and every left ideal I of R, HomR(RII, E)^Homτ(T/T(Iφ), E).

Proof. Clear by definition and adjointness.

Lemma 2.3. Let & be a left topology on a ring R, and T a quotient ring of
R with respect to @. Then © is strongly perfect if and only if T(Iφ)=T for
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every /e© where φ is a canonical ring homomorphism of R into T.

Proof. It is sufficient to show that T(Tφ)=T implies /e© (see [13, XI,
Theorem 2.1]). Let E be a cogenerating injective module for ©. It is well-

known that E becomes a T-module in a canonical way. Since HomΛ(.R//, E)
^Homτ(Γ/Γ(/φ), E) for every left ideal / of R by Lemma 2.2, T= T(Iφ) implies

HomR(RII, E)=Q, that is, /6Ξ®.

3. Topology gβ

Throughout the present section, a ring 7? is assumed to be left noetherian
unless otherwise specified. It is well-known that such a ring R has left Krull

dimension. Let K-dίmRR=a. For any ordinal /3<α, we denote by γ$β the
family of all left ideals / such that K-dim R/I<β and by $ the union of all
gβ's for β<a. Also we denote by 3) the topology of dense left ideals of R.
We clarify the connection of 3) and £$ or $β after we give some definitions.

At first, we show

Theorem 3.1. Let R be a left noetherian ring with K-dίmRR=a. Then
for each ordinal β<a,^β is a topology on R.

Proof. We must show that f$β satisfies two properties (Tl) and (T2)
stated in §2. Let I^γ$β and a^R. Since a homomorphism φ of R into
Rjl defined by xφ=xa-\-I for all x^R induces a monomorphism of R/Ia'1 into
R/I, we have K-dim R/Ia'1^ K-dim R/I<β. Hence /α^egp. This shows
that §β satisfies the property (Tl). Let / be a left ideal of R, for which there
exists /e§/3 such that Ia~1^γ$β for all a^J. The above argument shows
that R/Ia~1^(Ra+I)/I^R/I for any a^J. Since R is left noetherian, we have
K-dim (J+I)/I<β. On the other hand, K-dim R/(I+J)<β because J<=%β.
Recall K-dim R/I= sup {K-dim(I+J)II, K-dim R/(I+J)} . Thus K-dimR/I < β
and hence /^Sβ This shows that %β satisfies the property (T2).

It is of much interest what condition on R makes 3) contain $β or con-

versely. For this purpose, we give some definitions. Let R be a ring with
left Krull dimension. For an ordinal β, we say that R satisfies the /3-restricted
minimum condition for left ideals if K-dim R/I<β for each dense left ideal /.
If /3=0, we say in short the restricted minimum condition instead of the 0-
restricted minimum condition. We should remark that our notion of the

restricted minimum condition is slightly different from the notion defined in [1]
by Chatters. (In non-singular rings, our notion coincides with his notion.) It

seems that his interest lies in non-singular rings and however it seems to us
that his notion does not fit rings which are not non-singular.

Proposition 3.2. Let R be a left noetherian ring. For any ordinal β, the
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following statements hold.

(1) 3) contains gβ if and only if radβ (RR)=Q.

(2) $β contains 3) if and only if R satisfies the β-restricted minimum con-
dition for left ideals.

Proof. The assertion (2) is the definition of the /3-restricted minimum con-

dition. Assume rad^Λ^O. Given /egβ and f<=HomR(R/I, E(R))y it is

clear that K-dim (Im(f)Γ(R)<β and hence Im(f)f}R=Q because radβ(JPΛ)=0.
Since RR is essential in E(R), Im(f)=0 and hence JΓe®. Conversely assume

®Ξ>S/3 Since R is left noetherian, radβ(RR) is finitely generated, say radβ(RR)

=Σ?=ι Rχί f°Γ some Λ?feradβ(fllZ). Denote by l(x) the left annihilator ideal of x
in R. Then K-dim Rft(xt)=K-dim Rx{ < β. Thus /(#,•) e ®. This implies that

all 7?#/s and radβ(^ί?) are torsion modules. Thus radβ(ΛjR)=0.

Proposition 3.3. Let R be a left noetherian ring. For every finitely genera-

ted R-module M, the following statements hold.

(1) If S)^δβ onά K-dim M<β, then M is a torsion module.
(2) If gβ^® and M is a torsion module, then K-dim M<β.

(3) If ®=gp, then M is a torsion module if and only if K-dim M<β,

Proof. Note that both classes of torsion modules and of modules with Krull
dimension at most β are closed under taking submodαles, factor modules and

extension. Thus we may assume that M is cyclic. Then our assertions are

all clear.

Let R be a ring with left Krull dimension a. In the remainder of the
present paper, we denote by S the set of all regular elements in R. Let Σ(^)
= {Ra\a^S}. It is well-known that K-dim R/Ra<a for every a^S. This

shows, in our notation, that Σ(*5)^δ where £?— U§β. It is obvious that R
β<<*

has a classical left quotient ring if and only if Σ(*^) 1S a cofinal family of some
topology © on R (see [13, XI, §6]). The latter statement means that any /e©

contains a regular element and I^^(S) is a member of ©.
Recall that a ring R is said to be a left Kasch ring if E(RR) is a cogenerator.

Proposition 3.4. The following conditions are equivalent for any ring R.

(1) 2(5) is a cofinal family of 3X
(2) R has a classical left quotient ring which is a left Kasch ring.

Proof. Assume that *Σ(S) is cofinal in ®. Then R has a classical left quo-

tient ring Q. First we show that Q is the maximal left quotient ring of R. We
give here an elementary proof for it. Let q be any element of the maximal

left quotient ring of R. Then a left ideal Rq~1={r^R\rq^R} is dense.
By assumption, it contains a regular element c of R. Put cq=r, which is an el-
ement of R. Then q=c~1r is an element of Q. This shows that Q is the maxi-
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mal left quotient ring of R. Thus 3) is a left perfect topology on R. For
every dense left ideal /, we have QI=Q by our assumption. It follows from
Lemma 2.3 that S) is a strongly perfect topology and hence from [13, XI, Pro-
position 5.2] that Q is a left Kasch ring. Assume that R has a classical left
quotient ring Q which is a left Kasch ring. The family ©— {RI^R\ QI=Q}
is a topology and clearly *Σ(S) *s cofinal in ©. Hence we have only to show
©=3). Let E be the injective hull of RR. Then E is also an injective hull of

QQ. Then for a left ideal / of R, HomR(R/Iy E)^HomQ(Q/QI, E) by Lemma
2.2. Thus /e© implies /e®. Conversely /e® implies that OI is dense left
left ideal of Q. Since Q is a left Kasch ring, we have Qΐ=Q, that is, /e@.

4. A criterion for a ring to have a QF two-sided maximal or classical
quotient ring

In the present section, we shall give a criterion for a ring to have a QF
two-sided maximal or classical quotient ring. Masaike gave a criterion for it,
in which he used the notion of "generalized non-singular" (see [9, Theorem
2.1]). We do use nothing but Lambek torsion theoretical notions. Throughout
the present section, it is assumed that Q is a maximal left quotient ring of a
ring R and we denote by ®/ the topology of dense left ideals of R, and by Σ(£)/
the family of principal left ideals of R generated by an element in S. Similarly
®r and Σ(S)r are defined.

Lemma 4.1. Let R be a QF-3 two-sided Kasch ring with finite Lambek
dimension. Then R is a QF ring.

Proof. Let n=L-dιmRR. By [15, Theorem 4], we have L-dίm RR=n.
Thus, by [14, Proposition 1], R satisfies the ascending chain condition and the
descending chain condition on annihilator left ideals and annihilator right ideals.
So we prove our statement by showing that R has the double annihilator con-
dition. By left and right symmetry of our assumption, we have only to show
lr(I)=I for every left ideal /. Since r(I)^HomR(RIIy R), we have L-dim r(I)=
L-dim R/I=n — L-dim /by [15, Theorem 4]. Similarly we have L-dim lr(I)=
n— L-dim r(I). Thus we have L-dim lr(I)=L-dim I. Hence lr(I)/I is a torsion
module. Since R is a left Kasch ring, we have lr(I)=L

Theorem 4.2. For any ring R, the following statements are equivalent.
(1) R has a QF two-sided maximal quotient ring.
(2) R is a QF-3 ring with finite Lambek dimension, and both 357 and ®r are

strongly pet feet topologies.

Proof. Assume that the statement (1) holds. Then R is a QF-3 ring, and
both ®7 and ®r are perfect topologies (see [12, Theorem 1.5]). Let Q be the

QF two-sided maximal quotient ring of R. For /eS)/, QIQI is a torsion
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^-module by Lemma 2.2 and hence Q=QI because Q is a QF ring. Thus ©,
is strongly perfect. Similarly ®r is strongly perfect. Assume that RR has a

ΐ-cham of length k\

By Lemma 2.1, QIi-lIQIi=Q®R(Ii-lIIt

:)*Q for l<i<k-l. Thus we have a
proper descending chain of left ideals of Q. Since Q is an artinian ring, this

shows that L-dίmRR is finite. Conversely assume that the statement (2) holds.
Put L-dimRR=n(<°o). Then L-dim RR=n by [15, Theorem 4] and R has the QF-3

two-sided maximal quotient ring Q by [10, Proposition 2 and Theorem 1]. Since

S), and S)r are strongly perfect, Q is a two-sided Kasch ring by [13, XI, Proposi-
tion 5.2]. In order to prove that (2) impies (1), we have only to show that L-

dimQQ or L-dim QQ is finite by Lemma 4.1. Since E=E(RR)=E(QQ) and Q is a

Kasch ring, any ^-module is torsion-free as J?-module. Assume that QQ has a
ί-chain of length k

Then each Ji~\IJi is torsion-free as J?-module. Since L-dimRQ=L-dimRR=n,
we have k<n. Thus L-dintqQ is finite and L-dimqQ<n. This complets the
proof of our theorem.

As for the Lambek dimension of Q, we have

Proposition 4.3. Let R be a ring which has a QF maximal two-sided quotient
ring Q. Then we have L-dim RR= L-dim RR=L-dimQQ= L-dim QQ.

Proof. We have shown in the proof of Theorem 4.2 that all of them are

finite and n= L-dim RR= L-dim RR>L-dίmqQ= L-dim QQ. So it is sufficient to

show L-dimQQ>n. Since L-dίmRR is finite, there exists a finite standard t-
chain of RR

By Lemma 1.2, /,•_!//,• can be embedded into RQ. Since 3) is strongly perfect,

Q*QIi-1/QIi=Q®R(Ii-1IIi)C>Q®RQ^Q as left ρ-module by Lemma 2.1. Thus
we have L-dimQQ>^!=1

Theorem 4.4. For any ring R, the following statements are equivalent.
(1) R has a QF classical two-sided quotient ring.

(2) R is a QF-3 ring with finite left Lambek dimension, and 2(*5)/ ana

r are cofinal in (£)l and ®r respectively.

Proof. That (1) implies (2) follows from Theorem 4.2 and Proposition
3.4. Assume the condition (2). By Proposition 3.4, R has a classical two-
sided quotient ring Q because R is QF-3. Also clearly ©7 is a perfect topology.
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It is easy to show that for any left ideal / of R, QI=Q if and only if / contains

a regular element in R. Since Σ(S')/ *s cofinal in S)7, QI=Q if and only if
/eS)/. Hence 3), is strongly perfect by Lemma 2.3. It follows from Theorem
4.2 that Q is a QF ring.

5. Krull dimension and maximal quotient rings of QF-3' 1-Goren-
stein rings with zero socle

In the present section, we deal with QF-3' 1-Gorenstein rings with zero
socle.

Theorem 5.1. Let R be a left noetherίan ring with finite left Lambek dimen-
sion. If R satisfies the β-restricted minimum condition for left ideals, then K-
dimRR<β+\.

Proof. Given any descending chain of left ideals of R

we have L-dίmRR>^ϊ>

S3l L-dίm /,•_!//,-. Since L-dimRR is finite, there exists an
integer n such that L-dίm Iί_1ιli=0 for all ί>n. Since R is left noetherian, it

is immediate from Proposition 3.3 that K-dim /,-_!//,-< β for all i >n. This shows
K-dimRR<β+l.

The following theorem follows from the proof of [11, Theorem 2.4] (see
[11, Added in Proof (2)]).

Theorem 5.2. Let R be a right \-Gorenstein ring. Then R satisfies the res-
tricted minimum condition for left ideals.

Thus, by Theorem 5.1 and Theorem 5.2, we have immediately,

Theorem 5.3. Any right \-Gorenstein ring with finite left Lambek dimension

has left Krull dimension at most one.

Corollary 5.4. Any QF-3' \-Gorenstein ring has Krull dimension at most

one on both sides.

Proof. By result of Sumioka in [16], such a ring has finite Lambek dimen-

sion. Hence our assertion follows from Theorem 5.3.

Corollary 5.5 (See [4, (3.52)]). Any noetherίan hereditary ring has Krull

dimension at most one on both sides.

Proof. In order to prove the above statement, it is sufficient to show that
such a ring R is QF-3. Let Q be a maximal left quotient ring of R. It is
well-known that RQ is injective and flat. Thus R is QF-3 (see [12, Theorem

1.1]).
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The following lemma is crucial in studying maximal quotient rings of
QF-3' 1-Gorenstein rings with zero socle.

Lemma 5.6 ([7, Corollary 3.7]). Let R be a noetherian ring with left Krull

dimension one. Further if Soc(R)=Q, ΣK^) ^ cofinal family of%. (See §3 for
the definition of

We have reached the point to prove our main theorem.

Theorem 5.7. Let R be a noetherian QF-3 ring with zero socle. Further
if R satisfies the restricted minimum condition for left ideals and right ideals, then R
has a QF classical two-sided quotient ring.

Proof. By [14, Proposition 1], both L-dίmRR and L-dίm RR are finite.
Since R satisfies the restricted minimum condition for left ideals, we have K-
dimRR<l by Theorem 5.1. Since the artinian radical of R is zero, we have

K-dimRR—\. By Lemma 5.6, Σ(S)/ *s cofinal in £$. It follows from Pro-

position 3.2 that 3), coincides with £$. Thus Σ(^)/ *s cofinal in ®7. Simi-
larly Σ(^)r is cofinal in 3)r. Hence it follows from Theorem 4.4 that R has a
QF classical two-sided quotient ring.

Corollary 5.8. Let R be a QF-3' \-Gorenstein ring with zero socle. Then
R has a QF classical two-sided quotient ring.

Proof. By Sumioka's result as stated in §1, such a ring is QF-3. Our
assertion is immediate from Theorem 5.2 and Theorem 5.7.

6. Noetherian orders in QF rings

In the present section, we shall study noetherian orders in QF rings.

Proposition 6.1. Let R be a noetherian ring which is a two-sided order in
a QF ring. Then R is decomposed into a ring direct sum of a QF ring and a QF-3
ring with zero socle.

Proof. By Theorem 4.4, R is a QF-3 ring. Let A be the artinian radical
of R. By [2, Theorem 10], R is decomposed into a ring direct sum, say R=
AφB for some two-sided ideal B of R. Since R is QF-3, so is B. Clearly B
has zero artinian radical and hence Soc(S)— 0. Since R has a QF classical

two-sided quotient ring, so does A. Since an artinian ring is its own classical
two-sided quotient ring, A is a QF ring.

Lemma 6.2. Let R be a noetherian ring with zero socle, which is a two-sided
order in a QF ring. Then the following statements are equivalent.

(1) K-dimRR=l.
(2) R satisfies the restricted minimum condition for left ideals.
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Proof. Assume the statement (1). It follows from Proposition 3.4 that
Σ(£) is cofinal in 3). Since R has zero socle, it follows Proposition 3.2 that

© contains £$. Since R has left Krull dimension one, $ contains Σ(* )̂ Hence
we have ®=$ and hence R satisfies the restricted minimum condition for left
ideals. Conversely assume the statement (2). Since R is QF-3, R has finite
left Lambek dimension. Thus we have K-dimRR<l Theorem 5.1. Thus K-
dimRR=l because Soc(Λ)=0.

Proposition 6.3. Let R be a noetherian ring which is a two-sided order in
a QF ring. Then the following statements are equivalent.

(1) K-dίmRR<\.
(2) R satisfies the restricted minimum condition for left ideals.

Proof. It is immediate from Proposition 6.1 and Lemma 6.2.

Finally we show that the converse of Theorem 5.7 holds under a certain
condition.

Theorem 6.4. Let R be a noetherian ring with Krull dimension at most one
on both sides. If R is a two-sided order in a QF ring, then R is decomposed into
a ring direct sum, say R—A®B3 where A is a QF ring and B is a noetherian QF-3
ring with zero socle which satisfies the restricted minimum condition for left ideals

and right ideals.

Proof. By Proposition 6.1, we see that R is decomposed into a ring direct
sum of a QF ring A and a noetherian QF-3 ring B with zero socle. It is clear
that B is a two-sided order in a QF ring and Krull dimension of B is exactly one
on both sides. It follows from Proposition 6.3 that B satisfies the restricted
minimum condition for left ideals and right ideals.

WAKAYAMA UNIVERSITY

References

[1] A.W. Chatters: The restricted minimum condition in noetherian hereditary rings,

J. London Math. Soc. (2) 4 (1971), 83-87.
[2] S.M. Ginn and P.B. Moss: A decomposition theorem for noetherian orders in

artinian rings, Bull. London Math. Soc. 9 (1977), 177-181.
[3] R. Gordon and J.C. Robson: Krull dimension, Mem. Amer. Math. Soc. No.

133, Rhode Island, 1973.
[4] A.W. Goldie: The structure of noetherian rings, Lecture Notes in Math. 246,

Springer, Berlin, 1971.
[5] Y. Iwanaga: On rings with self-injective dimension <1, Osaka J. Math. 15 (1978),

33-46.



MAXIMAL QUOTIENT RINGS OF QF-3 I-GORENSTEIN RINGS 393

[6] Y. Iwanaga: On rings with finite self-injective dimension, Comm. Algebra 7 (1979),

393-414.

[7] T.H. Lenagan: Artinian quotient rings of Macaulay rings, Lecture Notes in

Math. 545, Springer, Berlin, 1976.

[8] T.H. Lenagan: Noetherian rings with Krull dimension one, J. London Math.

Soc. (2) 15 (1977), 41-47.

[9] K. Masaike: Quasi-Frobenius maximal quotient rings, Sci. Rep. Tokyo Kyoiku

Daigaku A. 11, (1971), 1-5.

[10] K. Masaike: On quotient rings and torsionless modules, Sci. Rep. Tokyo Kyoiku

Daigaku A, 11 (1971), 26-31.

[11] H. Sato: Duality of torsion modules over a QF-3 one-dimensional Gorenstein

ring, Sci. Rep. Tokyo Kyoiku Daigaku A. 13 (1975), 28-36.

[12] H. Sato: On localizations of a I-Gorenstein ring, Sci. Rep. Tokyo Kyoiku Daigaku

A, 13 (1977), 188-193.

[13] Bo Stenstrδm: Rings of quotients, Grundlehren Math. Wiss. 217, Springer,

Berlin, 1975.

[14] T. Sumioka: On non-singular QF-3' rings with injective dimension <1, Osaka

J. Math. 15 (1978), 1-11.

[15] T. Sumioka: On finite dimensional QF-3' rings, Proceddings of the 10-th Sympo-

sium on ring theory at Shinshu University, Okayama, 1978.

[16] T. Sumioka: On QF-3 and 1 -Gorenstein rings, Osaka J. Math. 16 (1979), 395-403.






