Hiramine, Y. Osaka J. Math. 16 (1979), 817-830

 \sharp

DOUBLY TRANSITIVE GROUPS OF EVEN DEGREE WHOSE ONE POINT STABILIZER HAS A NORMAL SUBGROUP ISOMORPHIC TO PSL(3,2ⁿ)

CORE [Metadata, citation and similar papers at core.ac.uk](https://core.ac.uk/display/35273558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1)

YUTAKA HIRAMINE

(Received October 16, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. By [4], the product of all minimal normal subgroups of *G^Λ* is the direct product $A \times N$, where *A* is an abelian group and *N* is 1 or a nonabelian simple group.

In this paper we consider the case $N \approx PSL(3,q)$ with q even and prove the following:

Theorem. *Let G be a doubly transitive permutation group on* Ω *of even degree and let* α , β ∈Ω (α \neq β). If G_{α} has a normal subgroup $N^{\boldsymbol{\alpha}}$ isomorphic to $PSL(3,q)$, $q=2^n$, then N^{α} is transitive on $\Omega - {\alpha}$ and one of the following *holds:*

(i) G has a regular normal subgroup E of order q^3 $=$ 2^{3n} , where n is odd and G_{α} *is isomorphic to a subgroup of* ΓL(3,#). *Moreover there exists an element g in* $Sym(\Omega)$ such that $\alpha^g = \alpha$, $(G_a)^g$ normalizes E and $A\Gamma L(3,q) {\geq} (G_a)^g E {\geq} ASL(3,q)$ *in their natural doubly transitive permutation representation.*

(ii) $|\Omega| = 22$, $G^2 = M_{22}$ and $N^2 \approx PSL(3, 4)$.

(iii) $|\Omega| = 22$, $G^2 = Aut(M_{22})$ and $N^2 \simeq PSL(3,4)$.

We introduce some notations.

V(n,q) a vector space of dimension *n* over *GF(q)*

- *TL(n,q)* the group of all semilinear automorphism of *V(n,q)*
- $A\Gamma L(n,q)$: the semidirect product of $V(n,q)$ by $\Gamma L(n,q)$ in its natural action
- *ASL(n,q)* the semidirect product of $V(n,q)$ by $SL(n,q)$ in its natural action

- $X(\Delta)$ the global stabilizer of a subset Δ ($\subseteq \Omega$) in X
- the pointwise stabilizer of Δ in X X_Δ $\ddot{\cdot}$
- X^{Δ} $\ddot{\cdot}$ the restriction of *X on* Δ
- $Sym(\Delta)$: the symmetric group on Δ

818 Y. HlRAMINE

 X^{\prime} $:$ the set of H -conjugates of X $|X|_p$: the maximal power of a prime *p* dividing the order of *X I(X) :* the set of involutions contained in *X Em :* an elementary abelian group of order *m* Other notations are standard and taken from [1],

2. Preliminaries

Lemma 2.1 *Let G be a doubly transitive permutation group on Ω of even degree,* $\alpha \in \Omega$ *and* N^* *a normal subgroup of* $G_{\boldsymbol{\alpha}}$ *isomorphic to* $PSL(2,q)$ *,* $Sz(q)$ *or PSU(3,q) with q(>2) even.* Then $N^{\infty} \cong PSL(2,q)$, $N^{\infty} \ncong Sz(q)$, *PSU(3,q),* N^{∞} is *transitive on* $\Omega - \{\alpha\}$ *and one of the following holds:*

(i) G has a regular normal subgroup E of order q^2 , $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta} \simeq E_q$ and *GΛ is isomorphic to a subgroup of TL(2,q). Moreover there exists an element g* i n Sym(Ω) such that $\alpha^g = \alpha$, $(\hat{G_{_{\bm{a}}}})^g$ normalizes E and $A\Gamma L(2,q)$ \geq $(G_{_{\bm{a}}}})^g$ E \geq $ASL(2,q)$ *in their natural doubly transitive permutation representation.*

(ii) $|\Omega| = 6$ and $G^{\Omega} = A_6$ or S_6 .

Proof. By Theorem 2 of [2], it suffices to consider the case that *Nβ=* $N^{\phi} \cap N^{\beta}$ $\!\simeq$ $\! E_q$ and G has a regular normal subgroup of order q^2 . Since $\mid\! N^{\phi}\!\!$: $N_{\mathcal{B}}^{\alpha}|=q^2-1$, N^{α} is transitive on $\Omega-\{\alpha\}.$

Let *E* be the regular normal subgroup of G. Then we may assume *Ω= E,* $\alpha=0\in E$ and the semidirect product $GL(E)E$ is a subgroup of $Sym(\Omega)$. There is a subgroup *H* of *GL(E)* such that $H \simeq \Gamma L(2,q)$ and $HE \simeq A\Gamma L(2,q)$. Let *L* be the normal subgroup of *H* isomorphic to $SL(2,q)$. Then $L_{\beta} \simeq E_q$ for $\beta \in \Omega - {\alpha}$. Hence $(N^{\phi})^{\Omega - {\phi}} \simeq L^{\Omega - {\phi}}$ and so there are an automorphism f from N^* to *L* and $g \in Sym(\Omega)$ satisfying $\alpha^g = \alpha$ and $(\beta^x)^g = (\beta^g)^{f(x)}$ for each $\beta \in$ $\Omega - \{\alpha\}$ and $x \in N^{\alpha}$. From this, $(\beta^g)^{g-1}{}^{s} = (\beta^g)^g = (\beta^g)^{f(x)}$, so that $g^{-1}xg = f(x)$. Hence $g^{-1}N^{\alpha}g=L$.

Set $S = L_{\beta}$, $X = Sym(\Omega) \cap N(L)$, $D = C_X(L)$ and $Y = N_L(S)$. By the properties of $A\Gamma L(2,q)$, L is transitive on $\Omega - {\alpha}$, $|F(S)| = q$ and $Y/S \simeq Z_{q-1}$. Hence *D* is semi-regular on $\Omega - {\alpha}$ and $Y^{F(S)}$ is regular on $F(S) - {\alpha}$ and so $D \simeq$ $D^{F(S)} \le Y^{F(S)}$ because $[D, N^{\alpha}] = 1$. Therefore $D \le Z_{q-1}$. Since X/DL is isomorphic to a subgroup of the outer automorphism group of $SL(2,q)$, we have $|X| \leq$ $|\Gamma L(2,q)|$, while $\Gamma L(2,q) \cong H \leq X$. Hence $X = H$ and X normalizes E. Therefore, as $(G_a)^g \trianglerighteq (N^a)^g = L$, we have $(G_a)^g \leq H$. Thus Lemma 2.1 is proved.

Lemma 2.2 *Let G be a doubly transitive permutation group on Ω of even degree and N* a nonabelian simple normal subgroup of* G_a *,* $\alpha \in \Omega$ *. If* $C_G(N^a)$ ± 1 , ι *hen* $N_{\beta}^{\alpha} = N^{\alpha} \cap N^{\beta}$ for $\alpha \neq \beta \in \Omega$ and $C_G(N^{\alpha})$ is semi-regular on $\Omega - \{\alpha\}$. More*over* $C_G(N^a) = 0(N^a)$.

Proof. See Lemma 2.1 of [2].

Lemma 2.3 Let G be a transitive permutation group on a finite set Ω , H *a stabilizer of a point of* Ω *and M a nonempty subset of G. Then*

$$
|F(M)| = |N_c(M)| \times |\{M^g | M^g \subseteq H, g \in G\}| / |H|.
$$

Proof. See Lemma 2.2 of [2].

Lemma 2.4 *Let H be a transitive permutation group on a finite set* Δ *and N a normal subgroup of H. Assume that a subgroup X of N satisfies X^H =X^N . Then* (i) $|F(X) \cap \beta^N| = |F(X) \cap \gamma^N|$ for $\beta, \gamma \in \Delta$.

(ii) $|F(X)| = |F(X) \cap B^N| \times r$, where r is the number of N-orbits on Δ .

Proof. By the same argument as in the proof of Lemma 2.4 of [3], we obtain Lemma 2.4.

2.5 Properties of PSL(3,q),
$$
q=2^n
$$
.
\nLet $N_1=SL(3,q)$, $S_1=\begin{cases} \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \end{cases}$ a, b, $c \in GF(q)$, $A_1=\begin{cases} \begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{cases}$ a, b $C \in GF(q)$, $A_1=\begin{cases} \begin{pmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{cases}$ b, $c \in GF(q)$ and $Z=\begin{cases} \begin{pmatrix} d & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{pmatrix} \end{cases}$ d $\in GF(q)$, $d^3=1$.
\nThen $|Z|=(3,q-1)$ and $\overline{N}_1=N_1/Z$ is isomorphic to $PSL(3,q)$. Set $N=\overline{N}_1$.

Then $|Z| = (3,q-1)$ and $\bar{N}_1 = N_1/Z$ is isomorphic to $PSL(3,q)$. Set $N = \bar{N}_1$ $S=\bar{S}_1$, $A=\bar{A}_1$ and $B=\bar{B}_1$. Then the following hold.

(i) N is a nonabelian simple group of order $q^3(q-1)^3(q+1)(q^2+q+1)$ / $(3, q-1).$

(ii)
$$
|S| = q^3
$$
, $S' = \Phi(S) = Z(S) = \{x^2 | x \in S\} = \left\{ \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| b \in GF(q) \right\} \approx E_q$,

 $S/S' \simeq E_{q^2}$ and *S* is a Sylow 2-subgroup of *N*.

(iii) $S=\langle A, B \rangle, A \cap B=Z(S), I(S) \subseteq A \cup B$ and each elementary abelian subgroup of S is contained in A or B. Let $z \in I(S) - Z(S)$. Then $C_s(z) =$ A or B .

(iv) Set $M_1 = A^N$, $M_2 = B^N$. Then $M_1 \neq M_2$ and $M_1 \cup M_2$ is the set of all subgroup of N isomorphic to E_{q^2} .

(v) Let z be an involution of N. Then $I(N)=z^N$ and $|C_N(z)| = (q-1)$

(vi) Let *E* denote *A* or *B*. Then $|N_N(E)| = (q-1)^2(q+1)q^3/(3,q-1)$, $N_N(k)$ $E{\simeq}Z_{\ast}{\times}PSL(2,q),$ where $k{=}(q{-}1){\mid} (3,q{-}1)$ and $N_{\scriptscriptstyle N}(E)$ is a maximal subgroup *of N.*

(vii) Set $M=(N_N(E))'$. If $q>2$, then $M=M'$, $M\geq E$, $M/E\simeq PSL(2,q)$ and M acts irreducibly on E .

(viii) Set $\Delta = E^N$. Then $|\Delta| = q^2 + q + 1$ and by conjugation N is doubly transitive on Δ , which is an usual doubly transitive permuation representation of *N.* If $C \in \{A, B\} - \{E\}, |F(C)| = q+1$, *C* is a Sylow 2-subgroup of $N_{F(C)}$ and C is semi-regular on $\Delta - F(C)$.

Lemma 2.6 ([6]). Let notations be as in (2.5) and set $G = Aut(N)$. Then *the following hold.*

(i) *There exist in G a diagonal automorphism d, a field automorphism f and a graph automorphism g and satisfy the following:*

$$
G=\langle g, f, d \rangle N \ge H_1=\langle f, d \rangle N \ge H_2=\langle d \rangle N, H_1=PTL(3, q), H_2=PGL(3, q)
$$

\n
$$
H_2/N \approx Z_r, where r=(3, q-1), G/H_1 \approx Z_2, H_1/H_2 \approx Z_n and G/H_2 \approx Z_2 \times Z_n.
$$

(ii) $M_1 = A^{H_1}$, $M_2 = B^{H_1}$ and $A^g = B$.

Lemma 2.7 Let $N=PSL(3,q)$, where $q=2^n$. Let R be a cyclic subgroup of N of order $q+1$ and Q a nontrivial subgroup of R . Then $N_N(Q)=N_N(R) \simeq Z_k \times I$ ρ , where $k{=}(q{-}1)/(3,q{-}1)$ and $D_{2(q{+}1)}$ is a dihedral group of order $2(q{+}1).$

Proof. We consider the group *N* as a doubly transitive permutation group on $\Delta = PG(2, q)$ with q^2+q+1 points. By (2.5) (i), R is a cyclic Hall subgroup of *N* and so we may assume $R \le N_a$, where $\alpha = \begin{pmatrix} 1 \ 0 \end{pmatrix} \in PG(2,q).$ Since $\langle 0 \rangle$

 $|N_{\alpha\beta}| = (q-1)^2 q^2/(3,q+1)$ for $\alpha \neq \beta \in \Delta$ and $(q+1,(q-1)^2q^2)=1$, *R* is semiregular on $\Delta - {\alpha}$. Hence $N_N(Q) \le N_\alpha$. Put $E = 0_2(N_\alpha)$. Then $N_\alpha = N_N(E)$ by (2.5) (viii) and $N_N(Q)E/E \simeq Z_k \times D_{2(q+1)}$ by (2.5) (vi). Since $N_N(Q) \cap E = C_E(Q) = 1$ by (2.5) (v). Hence $N_N(Q) \approx Z_k \times D_{2(q+1)}$. As R is cyclic, $N_N(R) \le N_N(Q)$. Thus $N_{N}(Q) = N_{N}(R) \approx Z_{N} \times D_{2(q+1)}$.

Lemma 2.8 Let $N=PSL(3,q)$, $q=2ⁿ$ and let $H(4N)$ be a subgroup of N of odd index. Then $H \leq N_N(E)$ for an elementary abelian subgroup E of N of *order q 2 .*

Proof. Let S, A and B be as in (2.5) and let Δ be as in Lemma 2.7. Since ^I *N: H* is odd, *H* contains a Sylow 2-subgroup of *N* and so we may assume

 $S \leq H$. Set $\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\gamma = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Then $S \leq N_{\alpha} = N_{N}(A)$, $S_{\beta} = B$, $S_{\gamma} =$ $\langle 0 \rangle$ $\langle 0 \rangle$ $\langle 1 \rangle$ $(1 a 0)$ $\left\{ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$ \cong *a* $\left\{ F_q \text{ and hence } |\alpha^s| = 1, |\beta^s| = q \text{ and } |\gamma^s| = q^2.$

If $\alpha^H = {\alpha}$, $H \le N_{\alpha} = N_N(A)$ and the lemma holds. By (2.5) (i), $(q^2 + 1,$ $\vert N\vert$)=1. Hence α^H \neq { α } \cup γ ^s, so that we may assume either α^H = { α } \cup β^H or $\alpha^H = \Delta$.

If $\alpha^H = {\alpha}$ U β^H , $\alpha^H = F(B)$ and *B* 'is a unique Sylow 2-subgroup of $H_{F(B)}$ by (2.5) (viii). Hence $H \trianglerighteq B \simeq E_{q^2}$ and the lemma holds.

If $\alpha^H = \Delta$, by (2.5) (iv), $N_H(A)^{F(A)}$ is transitive and so $|H|$ is divisible by *q*+1. Since $(q^2+q+1,q+1)=1$, $|H_a|$ is divisible by *q*+1. By (2.5) (vi) and by the structure of $PSL(2,q)$, $Z_m \times PSL(2,q) \approx H_\alpha/A \leq N_N(A)/A$, where m is a divisor of $(n-1)/(3, n-1)$. Therefore $|N: H|\leq q-1$. We now consider the action of *N* on the coset $\Gamma = N/H$. As $|\Gamma| = 1$ and *N* is a simple group, N^{Γ} is faithful. But N has a cyclic subgroup of order $q+1$ and so $|\Gamma| > q+1$, which implies $|N: H| > q+1$, a contradiction.

Lemma 2.9 Let $N=PSL(3,q)$, where $q=2^{2m}$ and t a field automorphism *of N of order* 2. *Let S be a t-invarίant Sylow 2-subgroup of N. Then the following hold.*

- (i) $Z(\langle t\rangle S) \simeq E_{\sqrt{q}}.$
- (ii) If S_1 is a subgroup of $\langle t \rangle S$ isomorphic to S, then $S_1 = S$.

Proof. Since $C_s(t)$ is isomorphic to a Sylow 2-subgroup of $PSL(3,\sqrt{\overline{q}})$, $Z(C_s(t)) \approx E_{\sqrt{t}}$ and $Z(C_s(t)) \leq Z(S)$ by (2.5) (ii). Hence $Z(\langle t \rangle S) = Z(\langle t \rangle S)$ $\langle t \rangle C_s(t) \cap C(Z(S)) = Z(\langle t \rangle S) \cap C_s(t) = Z(C_s(t)) \simeq E_{\sqrt{q}}.$ Thus we have (i).

Suppose $S_1 \neq S$. Then $\langle t \rangle S = S_1 S \geq S_1$ and $[\langle t \rangle S: S] = [S_1: S_1 \cap S] = 2$. If $Z(S_1) \leq S$, we have $S_1 = \langle z \rangle \times (S_1 \cap S)$ for an involution *z* in $Z(S_1) - S$. By (2.5) (ii), $z \in \Phi(S_1)$ and so $S_1 = \langle z, S_1 \cap S \rangle = S_1 \cap S$, a contradiction. Hence $Z(S_1) \leq S$.

If $Z(S_1)=Z(S), E_q \approx Z(S) \leq Z(S_1S)=Z(\langle t\rangle S) \approx E_{\sqrt{q}}$ by (i), which is a contradiction. Hence $Z(S_1) \neq Z(S)$.

Let z be an involution in $Z(S_1) - Z(S)$. Then $C_s(z) \simeq E_{q^2}$ by (2.5) (iii). On the other hand, $S_1 \leq C_{\langle t \rangle S}(z)$ and $[C_{\langle t \rangle S}(z): C_S(z)]=1$ or 2. From this S_1 has an elementary abelian subgroup of index 2. Hence $q=2$, a contradiction. Thus we have (ii).

3. Proof of the theorem

Throughout the rest of the paper, G^{Ω} always denote a doubly transitive permutation group satisfying the hypotheses of the theorem.

Since $G_{\alpha} \ge N^{\alpha}$, $|\beta^{N^{\alpha}}| = |\gamma^{N^{\alpha}}|$ for $\beta, \gamma \in \Omega - {\alpha}$ and so $|\Omega| = 1+r|\beta^{N^{\alpha}}|$, where r is the number of N^{ω} -orbits on $\Omega - {\alpha}$. Hence r is odd and N^{ω}_{β} is a proper subgroup of N^{ϕ} of odd index for $\alpha + \beta \in \Omega$. Therefore, by Lemma 2.8 $N_{\rm B}^{\alpha} \geq A$ for some elementary abelian subgroup A of order q^2 . Let S be a Sylow 2-subgroup of N_{β}^{α} . Then, by (2.5) (iii) there exists a unique elementary abelian 2-subgroup *B* of *S* such that $A \simeq B \simeq E_q$ ² and $A \neq B$. Set $M_1 = A^{N^*}, M_2 = B^{N^*}$ and $K\!\!=\!G_{\bf a}(M_1)\!\!=\!G_{\bf a}(M_2)$. By (2.5) (iv), $M_1\!\cup\!M_2$ is the set of all elementary abelian 2-subgroup of $N^{\textit{a}}$ of order q^2 and $G_{\textit{a}}$ acts on $\{M_1,\,M_2\}$, so that $\,G_{\textit{a}}/K$ \leq Z_2 . Hence K is transitive on $\Omega - \{\alpha\}$.

(3.1) Let $E=A$ or B. Then $N_{G_{\alpha}}(E)$ is transitive on $F(E)-\{\alpha\}.$

822 Y. HIRAMINE

Proof. If $E^h \le K_\beta$ for some $h \in K$, $E^h \le N^{\alpha} \cap K_\beta = N^{\alpha}_{\beta}$. Since $E^{N^{\alpha}} = E^K$ and A^K \neq *B*^K, *E*^{*h*} is conjugate to *E* in N_{β}^{α} . By a Witt's theorem $N_K(E)$ is transitive on $F(E) - \{\alpha\}$. Thus $N_{Ga}(E)$ is transitive on $F(E) - \{\alpha\}$.

(3.2) *If* $q=2$, G^{Ω} *is of type* (i) *of the theorem.*

Proof. Assume *q=2.* We note that PSL(3,2) is isomorphic to *PSL(2,7).* It follows from [3] that G has a regular normal subgroup *R.*

Since *K* is transitive on $\Omega - \{\alpha\}$, by Lemmas 2.3 and 2.4

$$
|F(A)| = 1 + \frac{|N^{\alpha} \cap N(A)|}{|N^{\alpha}_{\beta}|}r = \frac{24r}{|N^{\alpha}_{\beta}|} + 1 \text{ and}
$$

$$
|F(B)| = 1 + \frac{|N^{\alpha} \cap N(B)|}{|N^{\alpha}_{\beta}|} \cdot \frac{|N^{\alpha}_{\beta} \cap N(B)|}{|N^{\alpha}_{\beta}|}r = \frac{24r}{|N^{\alpha}_{\beta} \cap N(B)|} + 1.
$$

Let $E = A$ or *B*. As $N_R(E) \neq 1$, $N_G(E)^{F(E)}$ is doubly transitive by (3.1). Hence $E \le N^{\beta}$ and $|F(A)|=2^{a}$, $|F(B)|=2^{b}$ for some integers a,b. From this $S=$ $\langle A, B \rangle \le N^{\alpha} \cap N^{\beta}$ and $|N^{\alpha}_{\beta}: N^{\alpha} \cap N^{\beta}|$ is odd. Hence, if $S^g \le G_{\alpha\beta}$, $S^g \le N^{\gamma}_{\beta} \cap N^{\gamma}_{\beta}$ where $\gamma = \alpha^g$ and so $S^g \le N^{\alpha} \cap N^{\beta}$. Since *S* and S^g are Sylow 2-subgroups of *N*^{*a*} ∩ *N*^{*β*}, *S^{<i>g*} is conjugate to *S* in $N^a \cap N^{\beta}$. By a Witt's theorem $N_G(S)^{F(S)}$ is a doubly transitive permutation group with a regular normal subgroup *N^R (S).* Hence $|F(S)| = 2^c$ for an integer *c*. By Lemmas 2.3 and 2.4,

$$
|F(S)| = 1 + \frac{8 \times |N^{\alpha}_{\beta}:S|}{|N^{\alpha}_{\beta}|} r = r + 1 = 2^{c}.
$$

Let z be an involution of $Z(S)$ and assume $z^g \in G_{\alpha}$ for some $g \in G$. Then $z^{\ell} \in N_a^{\gamma}$, where $\gamma = \alpha^{\ell}$. Since $|N_a^{\gamma}: N^{\gamma} \cap N^{\alpha}|$ is odd, z^{ℓ} is contained in N^{α} . By $z^* \in N_a$, where $\gamma = \alpha^*$. Since $|N_a^*: N' \cap N''|$ is odd, z^* is contained in N^* . By (2.5) (v), z^s is conjugate to z in N^* . Hence $C_c(z)$ is transitive on $F(z)$ and by Lemmas 2.3 and 2.4,

$$
|F(z)| = 1 + \frac{8 \times |I(N_{\beta}^{\alpha})|}{|N_{\beta}^{\alpha}|} r.
$$

Suppose $N^{\alpha}_{\beta} = S$. Then $|F(A)| = 3r + 1 = 2^{\alpha} = 2^{\epsilon} + 2r$ and $|F(z)| = 5r + 1$. Suppose $N_{\beta}^{\alpha} = S$. Then $|F(A)| = 3r + 1 = 2^{\alpha} = 2^{\alpha} + 2r$ and $|F(z)| = 5r + 1$.
Hence $r = 1$. Since $N_R(A) = C_R(A) \leq C_G(z)$ and $N_R(A) \approx E_4$, $|F(z)|$ is divisible by 4. But $|F(z)| = 5r+1=6$. This is a contradiction.

 $\text{Suppose } N^{\textbf{\textit{a}}}_{\textbf{\textit{p}}} \text{=} S$. Then $N^{\textbf{\textit{a}}}_{\textbf{\textit{p}}} = N_{N^{\textbf{\textit{a}}}}(A)$ as $N_{N^{\textbf{\textit{a}}}}(A) \text{=} S_4$. From this, $|F(B)|$ $=2^{b}=2^{c}+2r$ and so $r=1$. Hence $|\Omega|=1+|N^{\alpha}:N^{\alpha}|=8$. Thus $|R|=8$ and $G_{\alpha} \simeq GL(3,2)$, hence $G \simeq AL(2,3)$.

By (3.2), it suffices to consider the case $q>2$ to prove the theorem. From now on we assume the following.

Hypothesis (*): $q=2^n \geq 4$

(3.3) *The following hold.*

- (i) $|N^{\alpha}_{\beta}|N^{\alpha} \cap N^{\beta}|$ *is odd.*
- (ii) Let $\gamma \in \Omega$ and S_0 a 2-subgroup of N^{γ} . Then $F(S_0) = {\delta \in \Omega | S_0 \le N^{\delta}}$.

Proof. Suppose false and let *T* be a Sylow 2-subgroup of *N&Nβ* such that $T \ge S$. Then $T \ne S$. Set $S_1 = T \cap N^{\alpha}$ and $S_2 = T \cap N^{\alpha} \cap N^{\beta}$. Then S_1 is a Syow 2-subgroup of N_a^B , $S_1 \neq S$ and S_1 , S_2 and S are normal subgroups of T. By Lemma 2.2, S_1N^{α}/N^{α} is isomorphic to a subgroup of the outer automorphism group of N^* . It follows from Lemma 2.6 that S_1N^{α}/N^{α} is abelian of 2-rank at most 2. Since $S_1 N^{\alpha}/N^{\alpha} \approx S_1/S_2$ and $S_1 \approx S$, we have $S_1/S_2 \le E_4$ by (2.5) (ii).

Let A_1, B_1 be the subgroups of S_1 such that $A_1 \simeq B_1 \simeq E_{q^2}$ and $A_1 \cap S_2 \leq$ $A, B_1 \cap S_2 \leq B$. Since $A_1/A_1 \cap S_2 \cong A_1S_2/S_2 \leq S_1/S_1 \leq E_4$ and by the hypothesis (*), $q \ge 4$, we have $|A_1 \cap S_2| \ge q^2/4$. Therefore, if $A_1 \cap S_2 \le Z(S)$, then $q=4$, $A_1 \cap S_2 = Z(S)$ and $T = A_1 S$ and so $Z(S) \leq Z(T)$, contrary to Lemma 2.9. Hence $A_1 \cap S_2 \leq Z(S)$. Similarly $B_1 \cap S_2 \leq Z(S)$.

Let $x \in A_1 \cap S_2 - Z(S)$. Then $x \in A^\nu \leq S$ for each $y \in A_1$ and so A_1 normalizes *A.* Hence *A¹* normalizes *B.* Similarly *B^l* normalizes *A* and *B.* From this *T=* $\langle A_1, B_1 \rangle S \unrhd A, B$ and so $S_1 N^{\mathfrak{a}} \preceq K$. Hence $S_1 N^{\mathfrak{a}}/N^{\mathfrak{a}} \simeq S_1/S_2 \simeq Z_2$, so that there exists a field automorphism t of order 2 such that $T=\langle t\rangle S\supset S$. Since $S_1\leq T$ and $S_1 \cong S$, we have $S_1 = S$ by Lemma 2.9, a contradiction. Thus (i) holds.

Let $\delta \in F(S_0) - \{ \gamma \}$. Then $S_0 \leq N_s^{\gamma}$. Since $N_s^{\gamma} \geq N^{\gamma} \cap N^{\delta}$ and $| N_s^{\gamma} / N^{\gamma} \cap N^{\delta} |$ is odd by (i), $S_0 \le N^{\gamma} \cap N^{\delta} \le N^{\delta}$. Hence $F(S_0) \subseteq {\delta \in \Omega} | S_0 \le N^{\delta}$. The converse implication is cleas. Thus (ii) holds.

- (3.4) *The following hold.*
- (i) $N_G(B)^{F(B)}$ is doubly transitive.
- (ii) If $F(A) = {\alpha, \beta}$, $N_G(A)^{F(A)}$ is doubly transitive.

Proof. Let $E=A$ or B. By (3.3) (i), S is a Sylow 2-subgroup of N^{α}_{β} . Therefore, by a similar argument as in (3.1), $N_{G_{\beta}}(E)$ is transitive on $F(E) - \{\beta\}$. Suppose $N_G(E)^{F(E)}$ is not doubly transitive. Then, $F(E) = {\alpha, \beta}$ by (3.1) and (3.3). Since $N_{N} \alpha(E)$ acts on $F(E)$ and fixes $\{\alpha\}$, we have $N_{N} \alpha(E) \le N_{\beta}^{\alpha}$. On the other hand $N_{N^{\alpha}}(E)$ is a maximal subgroup of N^{α} by (2.5) (vi). Hence $N_{N} \alpha(E) = N_{\beta}^{\alpha}$. If $E = B$, then $N_{\beta}^{\alpha} \not\equiv A$, a contradiction. Thus $E = A$ and (3.4) follows.

- (3.5) *The following hold.*
- (i) Put $M = (N_{N} \alpha(A))'$. Then $F(M) = F(A)$.
- (ii) $N^{\alpha}_{\beta} = N^{\alpha}_{\gamma}$ for each $\gamma \in F(A) {\alpha}.$

Proof. Suppose $F(M)$ $\!\!\!+\! F(A)$. Then M $\!\!\!\leq$ $\!\!\!\!\!\!\!\! N_G(A)_{F(A)}.$ It follows from (3.4) that $F(A)$ \neq { α , β } and $N_G(A)^{F(A)}$ is doubly transitive. Moreover by (2.5) (vii) $N_{Ga}(A)^{F(A)} \ge M^{F(A)} \approx PSL(2,q)$ as $q>2$. By Lemma 2.1, $r=1$ and either (1) $q=$ 4 and $N_G(A)^{F(A)} = A_6$ or S_6 or (2) $|F(A)| = q^2$.

If (1) holds, $|F(A)| = 1 + |N_{N^{\alpha}}(A) : N^{\alpha}_{\beta}|$ $= 2^{\circ}3$. Hence $|\Omega| = 1 + |N^{\alpha}: N^{\alpha}{}_{\beta}| = 1 + 2^{\circ} \cdot 3^{\circ} \cdot 5 \cdot 7/2^{\circ} \cdot 3 = 2 \cdot 53$. Let *z* be an involution of $N^{\alpha} \cap N^{\beta}$. Then, by (2.5) (v) and (3.3), $z^G \cap G_{\alpha} = z^{G_{\alpha}}$, so that $C_G(z)^{F(z)}$ is transitive by a Witt's theorem. On the other hand $|F(z)| = 1 +$ $=$ 10. In particular $|C_G(z)|$ is divisible by $|N^{\alpha}_{\mathbf{B}}|$

5. Let *R* be a Sylow 5-subgroup of $C_G(z)$. Then $|\Omega|$, $|G_{\alpha}: N^{\alpha}|$ and $|N^{\alpha}_{\beta}|$ are not divisible by 5 and so $F(R) = \{ \gamma \}$ and $R \leq N^{\gamma}$ for some $\gamma \in \Omega$. Therefore $\langle z \rangle$ $\times R \le N^{\gamma}$ by (3.3) (ii). But $|C_{N}r(z)| = 2^{6}$ by (2.5) (v). This is a contradiction.

If (2) holds, $q^2 = |F(A)| = 1 + |N_{N^{\alpha}}(A): N^{\alpha}_{\beta}|$, hence $|N^{\alpha}_{\beta}| = (q-1)q^3/(3,q-1)$. From this $|\Omega| = 1 + |N^*; N^*_{\beta}| = 1 + (q-1)(q+1)(q^2+q+1) =$ Hence $|\overline{G}|_2 = |\Omega|_2 \times |\overline{G}_a|_2 = q \times |\overline{G}_a:K| \times |K|_2$. On the other hand $|N_c(A)|_2$ $= |F(A)| \times |N_{G_{\alpha}}(A)|_2 = q^2 |K|_2$ because $K = N_{G_{\alpha}}(A)N^{\alpha}$. Therefore $q^2 |K|_2 =$ $|N_G(A)|_2 \leq |G|_2 = q \times |G_{\alpha}: K| \times |K|_2 \leq 2q |K|_2$ and we obtain $q=2$, contrary to the hypothesis (*). Thus we have (i).

Let $\gamma \in F(A) - \{\alpha\}$. By (i) and (3.4) (ii), $N^{\alpha}_{\gamma} \geq A$ and $M \leq N^{\alpha}_{\gamma}$. Since Let $\gamma \in F(A) - \{\alpha\}$. By (i) and (3.4) (ii), $N_{\gamma}^* \ge A$ and $M \le N_{\gamma}^*$. Since $N_{N}(\alpha A)/M \approx Z_k$, where $k=(q-1)/(3,q-1)$ and $|N_{\beta}^{\alpha}|M|=|N_{\gamma}^{\alpha}/M|$, we have $N^{\alpha}_{\beta}=N^{\alpha}_{\gamma}$. Thus (ii) holds.

 (3.6) $B \notin A^G$ and $G_{\alpha} = K$.

Proof If $B \in A^c$, by (3.4) (i), there is an element $g \in G_{\alpha\beta}$ such that $B = A^g$. Hence $N_{\beta}^{\alpha} = g^{-1}N_{\beta}^{\alpha}g \geq g^{-1}Ag = B$ and so M normalizes $\langle A, B \rangle = S$, a contradiction.

(3.7) Set $L = (N_{N} \alpha(B))'$. Then $r = 1$, $L_{F(B)} = B$, $L^{F(B)} = L/B \approx PSL(2,q)$, *Lp=S and one of the following holds.*

(i) $C_G(N^{\bullet})=1, |F(B)|=6, q=4 \text{ and } N_G(B)^{F(B)}=A_6 \text{ or } S_6$

(ii) $C_G(N^a) \leq Z_{q-1}$, $|F(B)| = q^2$ and $N_G(B)^{F(B)}$ has a regular normal subgroup.

Proof. By (3.4) (i), $N_G(B)^{F(B)}$ is doubly transitive. If $L \leq G_{\alpha\beta}$, then $L \leq$ N^{α}_{β} and so $B \trianglelefteq L = L' \leq (N^{\alpha}_{\beta})' = M$. Therefore $L = M$ and $M \geq \langle A, B \rangle = S$, a contradiction. Hence $L \nleq G_{\alpha\beta}$. From this $N_{G_{\alpha}}(B)^{F(B)} \nsubseteq L^{F(B)} \simeq PSL(2,q)$ and (3.7) follows from Lemmas 2.1 and 2.2.

(3.8) *If* (i) *of* (3.7) *occurs, then we have* (ii) *or* (iii) *of the theorem.*

Proof. Since $|F(B)| = 1 + |N_{N^{\alpha}}(B): N_{N^{\alpha}_{\beta}}(B)| = 6$ and $|N^{\alpha}_{\beta}:$ $N_{N\overset{\alpha}{\beta}}(S)|=5$, we have $|N^{\alpha}_{\beta}|=2^6 \cdot 3 \cdot 5$. Hence $N^{\alpha}_{\beta}=N_{N^{\alpha}}(A)$ and so $|\Omega-\{\alpha\}|$ $= |N^{\alpha}:N^{\alpha}_{\beta}| = 21$. By (3.6), $PSL(3,4) \leq (G_{\alpha})^{\alpha - (\alpha)} \leq P\Gamma^{\alpha}(3,4)$ in their natural doubly transitive permutation representation and hence (3.8) follows from Satz 7 of [7].

In the rest of this paper, we consider the case (ii) of (3.7). From now on

we assume the following.

Hypothesis (**): $r=1$, $q=2^r>2$, $|F(B)|=q^2$ and $N_G(B)^{F(B)}$ is a doubly transitive permutation group with a regular normal subgroup.

- (3.9) *The following hold.*
- (i) $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta} = M$ and $|N^{\alpha}_{\beta}| = (q-1)(q+1)q^3$.
- (ii) *n is odd.*
- (iii) $|F(A)| = q$.

Proof. Since $q^2 = |F(B)| = 1 + |N_{N^{\alpha}}(B):N_{N^{\alpha}_{N}}(B)|$ by (3.7), we have $|N_{N\beta}(B)| = |N_{N\beta}(B)|/(q^2-1) = (q-1)q^3/(3,q-1).$ As $N_{\beta}^{\alpha} \geq A$, $N_{N\beta}(B) =$ $N_{N_{\beta}^{\alpha}}(\langle A,B \rangle) = N_{N_{\beta}^{\alpha}}(S)$. On the other hand, from (2.5) (vi) $|N_{N_{\beta}^{\alpha}}(S)| = |N_{\beta}^{\alpha}|$. $M|\times |N_{\scriptscriptstyle M}(S)| = |N^{\scriptscriptstyle \sf ds}_{\scriptscriptstyle \sf B}\!:M|\times (q\!-\!1)q^3.$ Therefore $(3,q\!-\!1)\!=\!1$ and $|\tilde{N}^{\scriptscriptstyle \sf ds}_{\scriptscriptstyle \sf B}\!:M|\!=\!1.$ Hence $N^{\alpha}_{\beta} = M$ and *n* is odd. By (3.3) (i) and (2.5) (vii), $N^{\alpha}_{\beta} = N^{\alpha} \cap N^{\beta}$. Hence $F(A)=1+|N_{N^{\alpha}}(A)|/|N^{\alpha}|=q.$ Thus we have (3.9).

- (3.10) Put $m=|G_{\alpha}: N^{\alpha}|$. Then the following hold.
- (i) m is odd and S is a Sylow 2-subgroup of G_{α} .
- (ii) $|\Omega|=q^3$ and $|G|=q^6(q-1)^2(q+1)(q^2+q+1)m$.

Proof. Set $C^{\omega} = C_G(N^{\omega})$. By (3.6), (3.9) (ii) and Lemma 2.6, $|G_{\omega}|C^{\omega}N^{\omega}|$ is odd. Since $C^{\omega} \cap N^{\omega} = 1$, $m = |G_{\omega}|C^{\omega}N^{\omega}| \cdot |C^{\omega}|$ and so *m* is odd by Lemma 2.2. Therefore *S* is a Sylow 2-subgroup of G_{α} and so (i) holds.

Since $|\Omega| = 1 + |N^{\alpha}: N^{\alpha}_{\beta}|$, $|\Omega| = q^3$ by (3.9). From this $|G| = |\Omega| \times |G_{\alpha}|$ $=q^3 m |N^{\alpha}| = q^6 (q-1)^2 (q+1) (q^2+q+1)m$. Thus (ii) holds.

(3.11) Let z be an involution of G_a . Then $|F(z)|=q^2$. In particular B *is semi-regular on* $\Omega - F(B)$.

Proof. By (3.10) (ii), ∞ is contained in N^{α} . By (2.5) (vii) and (3.9) (ii), $\frac{1}{2}|I(N_{\beta}^{\alpha})| = |N_{\beta}^{\alpha} \colon N_{N_{\beta}^{\alpha}}(S)| \times (q^{2}-q)+q^{2}-1 = (q+1)(q^{2}-q)+q^{2}-1 = (q-1)(q+1)^{2},$ hence $|F(z)| = 1 + q^3(q-1) \times (q-1) (q+1)^2/q^3(q-1) (q+1) = q^2$ by Lemma 2.3. As $|F(B)| = q^2$, *B* is semi-regular on $\Omega - F(B)$.

- (3.12) Set $\Delta = F(B)$. Then the following hold.
- (i) $G_{\Delta} \trianglerighteq B$ and B is a Sylow 2-subgroup of G_{Δ} .
- (ii) $G(\Delta) = N_G(B)$ and $|N_G(B)| = q^5(q-1)$

Proof. Since $N_{N} \alpha(B) \le N^{\alpha}(\Delta) \ne N^{\alpha}$ and $N_{N} \alpha(B)$ is a maximal subgroup of N^{α} , we have $N_{N^{\alpha}}(B) = N^{\alpha}(\Delta)$. By (3.7), *B* is a normal Sylow 2-subgroup of $(N^{\mathsf{\scriptscriptstyle d}})_{\mathtt{\scriptscriptstyle \Delta}}$ and (i) follows immediately from (3.10) (i).

Since $G(\Delta) \trianglerighteq G_{\Delta}$ and *B* is a characteristic subgroup of G_{Δ} by (i), we have $G(\Delta) \leq N_c(B)$. The converse implication is clear. Thus $G(\Delta) = N_c(B)$. By (3.6), $G_{\alpha} = N_{G_{\alpha}}(B)N^{\alpha}$ and so $|N_{G_{\alpha}}(B): N_{N^{\alpha}}(B)| = |G_{\alpha}: N^{\alpha}| = m$. Hence $|N_{G}(B)|$ 826 Y. HIRAMINE

 $= |F(B)| \times |N_{G_{\alpha}}(B)| = q^2 m \times |N_{N^{\alpha}}(B)| = q^5 (q-1)^2 (q+1)m$. Thus we have (ii).

(3.13) Let T_1 be a Sylow 2-subgroup of $N_G(B)$ and T_2 a Sylow 2-subgroup *of* $N_c(T_1)$. Then $T_1 \neq T_2$. Let x be an element of $T_2 - T_1$ and set $U = BB^x$. Then $U \simeq E_{q^4}$ and for each $\gamma \in \Omega$, $U_{\gamma} \simeq E_{q^2}$, $U_{\gamma} \in B^c$, $\gamma^U = F(U_{\gamma})$ and $|\gamma^U| = q^2$. More*over Uy= U⁸ for all*

Proof. If $B \cap B^* = 1$, by (3.11) and (3.12) (i), we have $B = B^*$ and so $x \in$ *T*₁, contrary to the choice of *x*. Hence $B \cap B^* = 1$. As $T_1 \trianglerighteq B$ and $T_1 =$ $U = B \times B^*$ and $U \simeq E_{a^4}$.

Let $\gamma \in \Omega$ and put $D = U_{\gamma}$. Then $F(D) \supseteq \gamma^U$ as *U* is abelian. Therefore $\vert U\colon D\vert = \vert \gamma^{\bar{U}}\vert \leq q^2$ by (3.11), while $\vert D\vert \leq q^2$ because D is an elementary abelian subgroup of N^y. Hence $D \cong E_{q^2}$ and $|F(D)| = |\gamma^U| = q^2$. By (3.6) and (3.9) (iii), $D \in B^G$. Since $U_\gamma \leq U_\delta \simeq E_q$ ² for each $\delta \in \gamma^U$, we have $U_\gamma = U_\delta$.

(3.14) Let U be as in (3.13). Let $\Gamma = \{X_i | 1 \leq i \leq s\}$ be the set of U-orbits *on* Ω *and set* $B_i = U_\gamma$ *for* $\gamma \in X_i$ with $1 \leq i \leq s$. Then the following hold.

(i)
$$
s=q
$$
, $\Omega = \bigcup_{i=1}^{i} X_i$ and $|X_i|=q^2$.

(ii) B_i is semi-regular on $\Omega - X_i$ and $B_i \cap B_j = 1$ for each i, j with $i + j$.

Proof. By (3.10) (ii) and (3.13), $|X_t| = q^2$ and $|\Omega| = q^3$, hence $s = q$. Cleary $\Omega = \bigcup_{i=1}^{n} X_i$. Thus we have (i).

By (3.13) (ii), B_i is conjugate to B for each i . Hence B_i is semi-regular on $\Omega - X_i$ by (3.11). Therefore, if $B_i \cap B_j = 1$, then $X_i = F(B_i) = F(B_j) = X_j$ so that $i=j$ Thus we have (ii).

(3.15) Set $Y = \{B_i | 1 \le i \le q\}$ and let $D \in Y$. Then $N_G(D) \le N_G(U)$ and U *is a unique Sylow 2-subgroup of* $C_G(D)$ *.*

Proof. Suppose $N_G(D) \not\leq N_G(U)$. Since $[N_G(D), U] \not\leq U$, there exist $g \in$ *N*_G(*D*) and $B_i \in Y - \{D\}$ such that $(B_i)^g \notin U$. Set $D_i = (B_i)^g$. Since $[D_1, D] =$ $[B_i, D]^{\mathsf{g}} = 1$, it follows from (3.10) (i) that $F(D_1) \cap F(D) = \phi$ and so D is regular on $F(D_1)$ by (3.11). Hence $F(D_1) = \gamma^p = \gamma^U$ for $\gamma \in F(D_1)$. By (3.14), $F(D_1) =$ $F(B_j)$ for some $B_j \in Y$. By (3.12) (i), $D_1 = B_j$, so that $D_1 \le U$, a contradiction. Thus we have $N_c(D) \le N_c(U)$. Hence $U \le 0₂(C_c(D))$. Since $U \le C_c(B)$, $C_c(B)$ is transitive on $F(B)$. Hence $| C_G(B) |_{z} = |F(B)| \times | C_{G(a)}(B) |_{z} = q^4$ by (3.10) (i). Therefore $|C_G(D)|_2 = q^4$ as $D \in B^G$ and so U is a unique Sylow 2-subgroup of $C_{\textit{\textbf{G}}} (D).$

 (3.16) $|N_G(U)|=q⁶(q-1)²(q+1)m$.

Proof. Let S_1 be a Sylow 2-subgroup of $N_G(U)$ and S_2 be a Sylow 2subgroup of $N_c(S_1)$. Suppose $S_1 \neq S_2$ and let w be an element of S_2-S_1 .

Set $\gamma = \alpha^{w^{-1}}$. Then $(U_{\gamma})^w \in B^c$ by (3.13) and $(U_{\gamma})^w \le (G_{\gamma})^w = G_{\alpha}$. Since *U* and $U^{\textit{w}}$ are normal subgroups of $S_{1}, \langle B, (U_{\gamma})^{\textit{w}}\rangle$ is 2-subgroup of $G_{\textit{a}}\cap S_{1}=S.$ Hence $B=(U_{\gamma})^w$ by (2.5) (iii) and (3.6). Therefore *U*, $U^w \leq C_c(B)$, so that $U=U^w$ by (3.15) and $w \in S_2 \cap N_G(U) = S_1$, contrary to the choice of w . Hence $S_1 = S_2$ and S_1 is a Sylow 2-subgroup of *G*. It follows from (3.10) that $|S_1| = q^6$.

We now consider the action of $N_G(U)$ on $\Gamma = \{X_i | 1 \le i \le q\}$. Set $\Delta = F(B)$. $By (3.12), S_1(\Delta) \le G(\Delta) = N_G(B)$ and $|N_G(B)|_2 = q^5$ and so $|S_1: S_1(\Delta)|$ is divisible by q. Hence S_1 is transitive on Γ and so $N_G(U)$ is transitive on Γ . Therefore $|N_c(U)| = q \times |N_c(U) \cap N_c(B)| = q \times |N_c(B)| = q^6(q-1)^2(q+1)m$ by (3.12) (ii) and (3.15).

(3.17) Let R be a cyclic subgroup of N^*_{β} of order $q+1$. Then $\vert F(R)\vert =q$ *and R is semi-regular on* $\Omega - F(R)$.

Proof. Since $N_{\mathcal{B}}^{\alpha}/A \simeq PSL(2,q)$, there exists a cyclic subgroup *R* of $N_{\mathcal{B}}^{\alpha}$ of order $q+1$. Let $Q+1$ be a subgroup of *R*. Then, by Lemma 2.7 $|F(Q)|$ (3.17) hold =1+ - - *=q*. Thus (3.17) h

 $(I3.18)$ Let $V \in U^G$. If $V + U$, then $|F(U_\gamma) \cap F(V_\gamma)| = 1$ or q for $\gamma \in \Omega$.

Proof. Suppose $\gamma + \delta \in F(U_\gamma) \cap F(V_\gamma)$. By (3.13), U_γ , $V_\gamma \in B^c$ and so by (3.3) (ii), U_{γ} , $V_{\gamma} \le N^{\gamma} \cap N^{\delta}$. Set $H=0_{2}(N_{\delta}^{s})$. Then, by (3.6) and (3.9) (i), $U_{\gamma}H$ and $V_{\gamma}H$ are Sylow 2-subgroups of N_{δ}^{γ} . If $U_{\gamma}H=V_{\gamma}H$, then $U_{\gamma}=V_{\gamma}$ and U, V \leq C_c(U₇). By (3.15) we have U=V, a contradiction. Therefore U₇H + V₇H. Set $X = \langle U_\gamma, V_\gamma \rangle$. Then $XH = N_\delta^\gamma$ because $N_\delta^\gamma/H \simeq PSL(2,q)$, $q=2$ ", and *PSL(2, q)* is generated by its two distinct Sylow 2-subgroups. Hence $N_s^* \ge X \cap H$. By (2.5) (iii), $E_q \approx U_q \cap H \leq X \cap H$. Since N_q^{γ} acts irreducibly on H by (2.5) (vii), $X \cap H = H$ and hence $H \leq X$. From this $X = N_s^{\gamma}$. Thus, by (3.5)(i) and (3.9), $|F(U_{\gamma}) \cap F(V_{\gamma})| = |F(X)| = |F(N_{\delta})| = q.$

(3.19) Let Q be a cyclic subgroup of $N_{N^{\alpha}}(B)$ of order $q+1$, $V \in U^G$ and set *P=N^Q (V). Then the following hold.*

- (i) Q is semi-regular on $\Omega F(Q)$ and $|F(Q)| = q$.
- (ii) If $P=1$ and $V\geq D\in B^G$, then P normalizes D and $\vert F(P)\cap F(D)\vert = 1$.

Proof. Since $N_{N^{\mathbf{a}}}(\mathcal{B})/B{\simeq}PSL(2,q),$ there exists a cyclic subgroup $\mathcal Q$ of $N_{N^{\alpha}}(B)$ of order $q+1$. Clearly Q is a cyclic Hall subgroup of N^{α} , hence Q is conjugate to *R* defined in (3.17). By (3.17), *Q* is semi-regular on $\Omega - F(Q)$ and $|F(Q)| = q$. Thus (i) holds.

Suppose $P+1$ and let $\gamma \in F(P)$. Then, by (3.9) (i), $P \le N^{\gamma}$ and hence *P* normalizes $N^{\gamma} \cap V$. By (3.10) (i) and (3.13), $N^{\gamma} \cap V = V_{\gamma}$ and $V_{\gamma} \in B^c$ and so $P \leq N_N^{\gamma}(V_\gamma)$ and $N_G(V_\gamma)^{F(V_\gamma)} \approx N_G(B)^{F(B)}$. Hence we have $F(P) \cap F(V_\gamma) = \{\gamma\}$ by (3.7). As $|F(P)| = q$ by (i), (ii) holds.

(3.20) Let $V \in U^G - \{U\}$ and let Q be a cyclic subgroup of $N_{N^{\alpha}}(B)$ of order $q+1$ *. Then* $N_Q(V)=1$ *.*

 $Proof.$ Set $P = N_Q(V)$ and assume $P = 1$. Let $\gamma \in \Omega - F(Q)$ and set $B_1 = U_\gamma$ $B_2 = V_\gamma$. By (3.15), Q normalizes U and so by (3.19) Q normalizes B_1 . Similarly *P* normalizes B_2 . Therefore $F(B_1) \cap F(B_2) \ge \gamma^p \ne \{\gamma\}$ as $P \ne 1$ and P is semiregular on $\Omega - F(Q)$. By (3.18), we have $|F(B_1) \cap F(B_2)| = q$. Since P acts on $F(B_1) \cap F(B_2)$ and $|P|$ divides $q+1$, P fixes at least two points of $F(B_1) \cap F(B_2)$, which contradicts to (3.19).

 (3.21) Let T be a Sylow 2-subgroup of $N_G(U)$. Then, for each $V \in U^G - \{U\}$, $|T: N_T(V)|$ is divisible by q.

Proof. Suppose $|T: N_T(V)| < q$ and set $T_1 = N_T(V)$. Then $|T_1| > q^5$ as $|T| = q^6$ by (3.16). Hence $q > |T_1V: T_1| = |V:V \cap T_1|$ and so $|V \cap T_1| > q^3$. Therefore, for each $B_1 \in B^G$ such that $B_1 \leq V$, $q > |B_1(V \cap T_1): V \cap T_1| = |B_1:$ $B_1 \cap T_1 = |B_1:B_1 \cap T|$. Hence $|B_1 \cap T| > q$. Let $\gamma \in F(B_1 \cap T)$ and set $B_2 = U_\gamma$. Then $\langle B_1 \cap T, B_2 \rangle \le N^{\gamma} \cap T$. As $|B_1 \cap T| > q$ by (2.5) (iii), $B_1 \cap T \cap B_2 \ne 1$. By $(3.11), \langle B_1 \cap T, B_2 \rangle \le G_{F(B_2)}$. By (3.12) (i), we have $B_1 \cap T \le B_2$, so that $F(B_1)$ $= F(B_1 \cap T) = F(B_2)$. Again, by (3.12) (i), $B_1 = B_2$ and so $U, V \leq C_G(B_2)$. Therefore $U=V$ by (3.15), a contradiction.

(3.22) Put $W = U^G$. Then $|W| = q^2 + q + 1$ and G^W is doubly transitive.

Proof. Set $H = N_G(U)$. By (3.10) (ii) and (3.16), $|W| = |G:H| = q^2$ *2 +q+l.* Let $V \in W - \{U\}$ and let Q be as defined in (3.20). By (3.15), $Q \leq H$ and by (3.20), Q acts semi-regularly on $W - \{U\}$. Hence $|V^H|$ is divisible by $q+1$ On the other hand, by (3.21), $|V^H|$ is divisible by q and so we have $|V^H|$ = $q(q+1)$. Thus (3.22) holds.

 (3.23) $G_w \cap U \neq 1$.

Proof. Suppose $G_W \cap U=1$. Since $G \trianglerighteq G_W$ and $H \trianglerighteq U$, $[G_W, U] \leq G_W \cap U$ $=$ 1. Hence $G_W \leq C_G(U)$. By (3.15), U is a unique Sylow 2-subgroup of $C_G(U)$ and so $G_W \leq 0$ (G). On the other hand, as $|\Omega|$ is even and G is doubly transitive on Ω , we have $0(G)=1$. Therefore $G_w=1$ and hence G acts faithfully on W. Since U is not semi-regular on $W - \{U\}$, by [4], $PSL(n_1, q_1) \leq G \leq P\Gamma L(n_1, q_1)$ for some $n_1 \geq 3$ and q_1 with q_1 even. As $|W| = q^2 + q + 1 = q_1^{n_1-1} + \cdots + q_1 + 1$, $q(q+1) = q_1 (q_1^{\ast_1 -2} + \cdots +1)$ and so $q = q_1$ and $n_1 =3$. Therefore $PSL(3,q) \leq G \leq$ $P\Gamma L(3,q)$. But $|P\Gamma L(3,q)|_2=q^3$ by (3.9) (ii) and Lemma 2.6. Hence $q^3=q^6$ by (3.10) (ii). This is a contradiction. Thus $G_W \cap U = 1$.

(3.24) G^Ω *has a regular normal subgroup.*

Proof. Since $G_W \leq N_G(U)$, $G_W \cap U$ is a normal subgroup of G_W . As $G_W \cap U$

 $U \!\leq\! 0$ ₂($G_{\textit{W}}$) and $G \!\triangleright\! G_{\textit{W}}$, 0 ₂($G_{\textit{W}}$) is a normal subgroup of $G.$ Let E be a minimal normal subgroup of G contained in $0_2(G_{\rm \textit{W}}).$ Then E is an elementary abelian 2-subgroup of G and acts regularly on Ω .

 (3.25) *If* (ii) of (3.7) occurs, we have (i) of the theorem.

Proof. By (3.9) , (3.10) and (3.24) , G has a regular normal subgroup E of order q^3 , where $q=2^n$ and $n\equiv 1 \pmod{2}$ and N^{ω} is transitive on $\Omega - \{\alpha\}$. Moreover $G{=}G_{\bf a}E$ and $G_{\bf a}$ is isomorphic to a subgroup of $GL(E)$. As in the proof of Lemma 2.1, we may assume $\Omega = E$, $\alpha = 0 \in E$ and $GL(E)E \le Sym(\Omega)$. There exists a subgroup H of $GL(E)$ such that $H\simeq \Gamma L(3, q)$ and $HE \!\simeq\! A\Gamma L(3, q).$ Let L be a normal subgroup of H isomorphic to $SL(3,q)$. Since $q=2^n$ and $n \equiv 1 \pmod{2}$, L is isomorphic to $PSL(3, q)$.

By (3.9) (i) and by the structure of *AΓL(3,q),* there exist an automorphism *f* from N^* to *L* and $g \in \text{Sym}(\Omega)$ such that $\alpha^g = \alpha$ and $(\beta^x)^g = (\beta^g)^{f(x)}$ for each $\beta \in \Omega - {\alpha}$ and $x \in \overset{\circ}{N}^{\alpha}$. From this $(\beta^g)^{g^{-1}x} = (\beta^g)^{f(x)}$ for each $\beta \in \Omega$ $\{\alpha\}$ and so $g^{-1}xg=f(x)$. Hence $g^{-1}N^*g=L$.

Set $X = N(L) \cap Sym(\Omega)$ and $D = C_X(L)$. Then D is semi-regular on $\Omega - \{\alpha\}$ as L is transitive on $\Omega - \{\alpha\}$. Put $T = f(A)$. Then $N_L(T)^{F(T)} \simeq Z_{q-1}$ and it is semi-regular on $F(T) - \{\alpha\}$ by (3.5) (i) and (3.9) (i), (iii). It follows that $D \le$ *Zq_^λ .* Since *X/DL* is isomorphic to a subgroup of the outer automorphism group of *PSL(3,q)* and *f(A)* and *f(B)* are not conjugate in Sym(Ω) by the hypothesis (**) and (3.9) (ii), it follows from Lemma 2.6 (i) that $|X|DL|\leq n$. Hence $\left|X\right|\leq n(q-1)\left|L\right|=\left|\Gamma L(3,q)\right|$. On the other hand $\Gamma L(3,q){\simeq}H{<}X$ and so $X=H$. Therefore $g^{-1}G_{\mathscr{A}}g\succeq g^{-1}N^{\mathscr{A}}g=L$ and $g^{-1}G_{\mathscr{A}}\leq X=H$. Thus we have (3.25).

The conclusion of the theorem now follows immediately from steps (3.2), (3.7), (3.8) and (3.25).

OSAKA KYOIKU UNIVERSITY

References

- [1] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- [2] Y. Hiramine: *On doubly transitive permutation groups,* Osaka J. Math. 15 (1978), 613-631.
- [3] Y. Hiramine: *On some doubly transitive permutation group in which socle(G^Λ) is nonsolvable,* Osaka J. Math. **16** (1979), 797-816.
- [4] M. O*Nan: *A characterization of Lⁿ (q) as a permutation group,* Math. *Z.* 127 (1972), 301-314.
- [5] M. O'Nan: *Normal structure of one-point stabilizer of a doubly transitive permutation group* II, Trans. Amer. Math. Soc. 214 (1975), 43-74.
- [6] R. Steinberg: *Automorphism of finite linear groups,* Canad. J. Math. 12 (1960),

830 Y. HIRAMINE

606-615.

[7] H. Zassenhaus: *Uber transitive Erweiterungen gewisser Gruppen aus Automorphismen endlicher mehrdimensίonaler Ceometrien,* Math. Ann. Ill (1935), 748-759.