ON THE INTERMEDIATE COHOMOLOGY GROUP OF A HOLOMORPHIC LINE BUNDLE OVER A COMPLEX TORUS

Yozo MATSUSHIMA

(Received August 7, 1978)

Let $E=V / L$ be a complex torus, where V is an n-dimensional complex vector space and L a lattice of V. Let H be a Hermitian form on V and A the imaginary part of H. Then A is an \boldsymbol{R}-bilinear alternating form on V. We say that H is a Riemann form of signature (s, r) for the torus E if
(a) H is non-degenerate and of signature (s, r);
(b) A is integral valued on the lattice L.

To a Riemann form H we associate a factor

$$
\begin{equation*}
J_{H, \psi}(g, z)=\psi(g) \varepsilon\left[\frac{1}{2 i} H(z, g)+\frac{1}{4 i} H(g, g)\right] \tag{1}
\end{equation*}
$$

with $g \in L, z \in V$, where $\varepsilon[\cdot]=\exp 2 \pi i \cdot$ and ψ is a map from L to $\boldsymbol{C}_{1}^{*}=$ $\left\{z \in \boldsymbol{C}||z|=1\}\right.$ satisfying $\psi(g+h)=\psi(g) \psi(h) \varepsilon\left[\frac{1}{2} A(g, h)\right]$; the function ψ being called a semi-character of L for A.
The factor $J_{H, \psi}: L \times V \rightarrow C^{*}$ satisfies the equation

$$
J_{H, \psi}(g+f, z)=J_{H, \psi}(g, h+z) J_{H, \psi}(h, z),
$$

where $g, h \in L, z \in V$.
Given the factor $J_{H, \psi}$ we define an action of the lattice group L on $V \times \boldsymbol{C}$ by the rule

$$
(z, \xi) \cdot g=\left(z+g, J_{H, \psi}(g, z) \xi\right),
$$

where $z \in V, \xi \in \boldsymbol{C}$ and $g \in L$. The action of L on $V \times \boldsymbol{C}$ is free and the quotient of $V \times \boldsymbol{C}$ by L has a natural structure of a holomorphic line bundle over the complex torus $E=V / L$. We shall denote this line bundle by $F(H, \psi)$.

The following vanishing theorem for the cohomology of $F(H, \psi)$ is wellknown [2, 4]: If H is a Riemann form of signature (s, r), then we have

$$
H^{q}(E, F(H, \psi))=0
$$

for $q \neq r$ (for a proof see Appendix 2 of this paper).
In particular if $r=0$, namely if H is positive definite, $H^{q}(E, F(H, \psi))=0$ except for $q=0$ and $H^{0}(E, F(H, \psi))$ is identified with the space of all holomorphic theta functions on V for the factor $J_{H, \psi}$. Replacing H by a suitable positive interger multiple of H, if necessary, these theta functions define a holomorphic imbedding of E into a complex projective space. A complex torus which admits a positive definite Riemann form is called an abelian variety. There exist complex tori which are not abelian varieties but which admit Riemann forms of signature (s, r) with $s>0$ and $r>0$ (see Appendix 1). For such a complex torus E, there exists no non-trivial theta function. However, there exists the non-trivial intermediate conomology group $H^{r}(E, F(H, \psi))$ with $0<r<n$.

The purpose of this paper is to give an interpretation of the intermediate cohomology group $H^{r}(E, F(H, \psi))$. Namely we associate to a Riemann form H of signature (s, r) a family of polarized abelian varieties $\left(E_{b}, H_{b}\right)$ parametrized by elements b of the Hermitian symmetric space $\mathscr{B}=U(H) / K$, where $U(H)$ is the unitary group of the Hermitian form H and K is a maximal compact subgroup of $U(H)$. Here E_{b} is of the form $E_{b}=V_{b} / L$, where V_{b} is an n-dimensional complex vector space with the same underlying real vector space as V and with a complex structure J_{b} distinct from that of V and parametrized by $b \in \mathcal{B}$ and H_{b} is a positive definite Riemann form for E_{b} whose imaginary part is equal to A. We then assign a family of line bundles $F\left(H_{b}, \psi\right)$ over E_{b} for each b. Finally we shall show that there exists a canonically defined isomorphism from $H^{r}(E, F(H, \psi))$ to $\left.H^{0}\left(E_{b}, F_{b}, \psi\right)\right)$ for each b. We also see that there exists a family Φ_{b} of differentiable imbedding of E into a complex projective space which is partially holomorphic and partially antiholomorphic.

It should be mentioned that C.L. Siegel [3] has associated to an indefinite quadratic form a family of theta series parametrized by a symmetric space. It is possible to interpret Stegel's family of theta series as a subfamily of the family $\left\{H^{0}\left(E_{b}, F\left(H_{b}, \psi\right)\right)\right\}$ of theta functions attached to a certain complex torus E and a Riemann form H related with the given indefinite quadratic form.

1. A Riemann form of signature (s, r) and a family of polarized abelian varieties

Let $E=V / L$ be a complex tours, where V is an n-dimensional complex vector space and L a lattice of V. We shall denote by W the underlying $2 n$ dimensional real vector space of V and by J the complex structure of W defining the complex vector space V.

Let H be a non-degenerate Hermitian form on V of signature (s, r), where $s+r=n$. We denote by A the imaginary part of H. Then we have

$$
H(u, v)=A(J u, v)+i A(u, v), u, v \in W
$$

We assume that the alternating \boldsymbol{R}-bilinear form A to be integral valued on $L \times L$ and we call H a Riemann form of signature (s, r) for the complex tours E.

We shall denote by $U(H)$ the unitary group of the Hermitian form H. A basis $B=\left\{v_{1}, \cdots, v_{n}\right\}$ of V is said to be a privileged basis for H if the matrix of H with respect to the basis B is of the form

$$
1_{s, r}=\left(\begin{array}{rr}
1_{s} & 0 \\
0 & -1_{r}
\end{array}\right)
$$

where 1_{s} and 1_{r} denote the unit matrix of size s and r respectively.
The group $U(H)$ acts simply transitively on the set of all privileged bases for H. We denote by $V_{1}(B)$ and $V_{2}(B)$ the subspaces of V spanned by $\left\{v_{1}, \cdots, v_{s}\right\}$ and $\left\{v_{s+1}, \cdots, v_{n}\right\}$ respectively. Then we have

$$
\begin{equation*}
W=V_{1}(B) \oplus V_{2}(B) \tag{2}
\end{equation*}
$$

We say that two privileged bases B and B^{\prime} are equivalent, $B \sim B^{\prime}$, if $V_{i}(B)=$ $V_{i}\left(B^{\prime}\right)$ for $i=1,2$. We shall denote by \mathscr{B} the set of equivalence classes of priveleged bases for H. Then the group $U(H)$ acts transitively on \mathscr{B} and \mathscr{B} is identified with the Hermitian symmetric space $U(H) / K$, where K is a maximal compact subgroup of $U(H)$.

Let $b \in \mathscr{B}$ and let B be a privileged basis representing b. We define a linear transformation J_{b} of W by requiring

$$
J_{b}=J \quad \text { on } \quad V_{1}(B)
$$

and

$$
J_{b}=-J \quad \text { on } \quad V_{2}(B)
$$

We have $J_{b}^{2}=-1$ and hence J_{b} defines a complex structure on W. We shall denote by V_{b} the complex vector space defined by W and J_{b}.
Define the symbol $\varepsilon_{k}(k=1,2, \cdots, n)$ by

$$
\varepsilon_{k}=\left\{\begin{array}{c}
1, k \in[1, s] \\
-1, k \in[s+1, n]
\end{array}\right.
$$

If $B=\left\{v_{1}, \cdots, v_{n}\right\}$ is a privileged basis representing b, then we have

$$
J_{b} v_{k}=\varepsilon_{k} J v_{k}
$$

We also have $H\left(v_{k}, v_{j}\right)=\varepsilon_{k} \cdot \delta_{k j}$ and since $H\left(v_{k}, v_{j}\right)=A\left(J v_{k}, v_{j}\right)+i A\left(v_{k}, v_{j}\right)$, we get $A\left(v_{k}, v_{j}\right)=0$ and $A\left(J v_{k}, v_{j}\right)=\varepsilon_{k} \cdot \delta_{k j}$. It follows from these that the decomposition (2) is orthogonal for A and also for H. We have also $A\left(J_{b} u, J_{b} v\right)=A(u, v)$ for $u, v \in W$. For let $u=u_{1}+u_{2}, v=v_{1}+v_{2}$ with $u_{1}, v_{1} \in V_{1}(B)$ and $u_{2}, v_{2} \in V_{2}(B)$. Then $J u_{b}=J u_{1}-J u_{2}$ and $J_{b} v=J v_{1}-J v_{2}$ and $J u_{1}, J v_{1} \in V_{1}(B)$ and $J u_{2}, J v_{2} \in V_{2}(B)$. Hence $A\left(J_{b} u, J_{b} v\right)=A\left(J u_{\mathrm{t}}, J v_{1}\right)+A\left(J u_{2}, J v_{2}\right)=A\left(u_{1}, v_{1}\right)+A\left(u_{2}, v_{2}\right)$. We can then
define a Hermitian form H_{b} on the complex vector space V_{b} by

$$
H_{b}(u, v)=A\left(J_{b} u, v\right)+i A(u, v) .
$$

Then the imaginary part of H_{b} is A and we have $H_{b}\left(v_{k}, v_{j}\right)=A\left(J_{b} v_{k}, v_{j}\right)+$ $i A\left(v_{k}, v_{j}\right)=\varepsilon_{k} A\left(J v_{k}, v_{j}\right)=\varepsilon_{k}^{2} \delta_{k j}=\delta_{k_{j}}$. This means that B is an orthonormal basis of V_{b} for the Hermitian form H_{b} and in particular H_{b} is positive definite and the decomposition (2) of W is also orthogonal for H_{b}.

Let now

$$
E_{b}=V_{b} / L
$$

Then H_{b} is a positive definite Riemann form for E_{b} and hence E_{b} is an abelian variety. Thus we have associated to a complex torus E and a Riemann form H of signature (s, r) a family of polarized abelian varieties $\left(E_{b}, H_{b}\right)$ parametrized by $b \in \mathscr{B}=U(H) / K$.

We need the following lemma in the next section.
Lemma. We have

$$
H(u, v)=H_{b}(u, v) \quad \text { for } \quad u \in V_{1}(B)
$$

and

$$
H(u, v)=-H_{b}(v, u) \quad \text { for } \quad u \in V_{2}(B)
$$

For we have $H_{b}(u, v)=A\left(J_{b} u, v\right)+i A(u, v)$ and $J_{b} u=J u$ or $J_{b} u=-J u$ according as $u \in V_{1}(B)$ or $u \in V_{2}(B)$.

2. The cohomology group $\boldsymbol{H}^{\boldsymbol{r}}\left(\boldsymbol{E}, \boldsymbol{F}\left(\boldsymbol{H}, \boldsymbol{y}^{\prime}\right)\right)$

We associate to the Riemann form H of signature (s, r) for E the factor $J_{H, \psi}$ defined by (1) and the line bundle $F(H, \psi)$ over E. For the cohomology groups of $F(H, \psi)$ we have the following theorem.

Theorem 1. (i) We have $H^{q}(E, F(H, \psi))=0$ for $q \neq r$.
(ii) Let $\left(z_{1}, \cdots, z_{n}\right)$ be the coordinates of the complex vector space V determined by a privnleged basis B of V for the Hermitian form H. Then $H^{\gamma}(E, F(H, \psi))$ is identified with the ccmplex vector space of all C^{∞} functions f \& $n V$ satisfying the following conditions:

1) f is a differentiable theta function fcr the factor $J_{H, \psi}$; namely we have

$$
f(z+g)=J_{H, \psi}(z, g) \cdot f(z), z \in V, g \in L .
$$

2) $\frac{\partial f}{\partial \bar{z}_{k}}=0$ for $k \in[1, s]$
and

$$
\frac{\partial f}{\partial z_{s+j}}+\pi \bar{z}_{s+j} \cdot f=0 \quad \text { for } \quad j \in[1, r]
$$

The assertion (i) in Theorem 1 is a well-known vanishing theorem due to Mumford. We shall give a proof of Theorem 1 in the Appendix 2 based on the harmonic theory.

We denote by $H(B)$ the space of C^{∞} functions f on W satisfying the above conditions (1) and (2) to make explicit its dependence of the condition (2) on the choice of the privileged basis B. We show that if B and B^{\prime} are equivalent, then we have $H(B)=H\left(B^{\prime}\right)$. In fact, let $\left(z_{1}^{\prime}, \cdots, z_{n}^{\prime}\right)$ be the coordinates of V determined by B^{\prime}. Then we have

$$
z_{i}^{\prime}=\sum_{j=1}^{s} a_{i j} z_{j} \quad(i=1, \cdots, s)
$$

and

$$
z_{s+i}^{\prime}=\sum_{j=1}^{r} b_{i}, z_{s+j} \quad(i=1, \cdots, r)
$$

where the matrices $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$ are both unitary. We get

$$
\begin{equation*}
\frac{\partial f}{\partial \bar{z}_{k}}=\sum_{i=1}^{s} a_{i k} \frac{\partial f}{\partial \bar{z}_{i}^{\prime}} \quad(k=1, \cdots, s) \tag{}
\end{equation*}
$$

and

$$
\frac{\partial f}{\partial z_{s+k}}+\pi \bar{z}_{s+k} f=\sum_{i=1}^{r} b_{i k} \frac{\partial f}{\partial z_{s+i}^{\prime}}+\pi\left(\sum_{i=1}^{\prime} \bar{b}_{k}^{\prime} \bar{z}_{s+1}^{\prime}\right) f,
$$

where $\left(b_{k i}^{\prime}\right)$ is the inverse matrix of $\left(b_{k i}\right)$. Since $\left(b_{k i}\right)$ is unitary, we have $\left(b_{k i}^{\prime}\right)=$ ${ }^{t}\left(\bar{b}_{k i}\right)$ and hence $\bar{b}_{k i}^{\prime}=b_{i k}$ Hence we get

$$
\begin{equation*}
\frac{\partial f}{\partial z_{s+k}}+\pi \bar{z}_{s+k} f=\sum_{i=1}^{\prime} b_{i k}\left(\frac{\partial f}{\partial z_{s+i}^{\prime}}+\pi \bar{z}_{s+i}^{\prime} f\right) \tag{**}
\end{equation*}
$$

From (*) and (**) we get $H(B)=H\left(B^{\prime}\right)$. Hence we can denote the space of C^{∞} functions f satisfying (1) and (2) by $H(b), b \in \mathcal{B}$.

Consider now the family of polarized abelian varieties $\left(E_{b}, H_{b}\right)(b \in \mathcal{B})$ defined in $\S 1$. We have the factor $J_{H_{b}, \psi}: L \times V_{b} \rightarrow C^{*}$ defined by

$$
J_{H_{b}, \psi}(g, u)=\psi(g) \varepsilon\left[\frac{1}{2 i} H_{b}(u, g)+\frac{1}{4 i} H_{b}(g, g)\right]
$$

where $g \in L$ and $u \in V_{b}$; this is because the imaginary part of H_{b} is equal to A for any b. Let $F\left(H_{b}, \psi\right)$ be the line bundle over E_{b} associated with the factor $J_{H_{b}, \psi}$. Since H_{b} is positive definite, we have $H^{q}\left(E_{b}, F\left(H_{b}, \psi\right)\right)=0$ for $q \neq 0$ and $H^{0}\left(E_{b}, F\left(H_{b}, \psi\right)\right)$ is identified with the complex vector space of all holomorphic theta functions on V_{b} for the factor $J_{H_{b}, \psi}$.

Let $p_{i}: W \rightarrow V_{i}(B)(i=1,2)$ be the projection of W onto $V_{i}(B)$ with respect
to the decomposition (2) of W and let

$$
\phi_{b}(u)=\exp \left[-\pi H_{b}\left(p_{2}(u), p_{2}(u)\right)\right] .
$$

We have

$$
\phi_{b}(u+g)=\phi_{b}(u) \exp L(u, g), u \in W, g \in L,
$$

where

$$
L(u, g)=-\pi\left[H_{b}\left(p_{2}(u), p_{2}(g)\right)+H_{b}\left(p_{2}(g), p_{2}(u)\right)+H_{b}\left(p_{2}(g), p_{2}(g)\right)\right] .
$$

Let θ be a holomorphic theta function on V_{b} for the factor $J_{H_{b}, \psi}$ and let

$$
f=\phi_{b} \cdot \theta
$$

We show that the function f satisfies the conditions (1) and (2) in Theorem 1, i.e. $f \in H(b)$. We have

$$
f(u+g)=f(u) \psi(g) \exp \left[L(u, g)+\pi H_{b}(u, g)+\frac{\pi}{2} H_{b}(g, g)\right] .
$$

Since the decomposition (2) is orthogonal for H_{b} we get

$$
\begin{aligned}
& \pi H_{b}(u, g)+\frac{\pi}{2} H_{b}(g, g)=\pi H_{b}\left(p_{1}(u), p_{1}(g)\right)+\pi H_{b}\left(p_{2}(u), p_{2}(g)\right)+\frac{\pi}{2} H_{b}\left(p_{1}(g), p_{1}(g)\right) \\
& \quad+\frac{\pi}{2} H_{0}\left(p_{2}(g), p_{2}(g)\right) \text { and hence } L(u, g)+\pi H_{b}(u, g)+\frac{\pi}{2} H_{b}(g, g) \\
& \quad=\pi\left[H_{b}\left(p_{1}(u), p_{1}(g)\right)-H_{b}\left(p_{2}(g), p_{2}(u)\right)\right]+\frac{\pi}{2}\left[H_{b}\left(p_{1}(g), p_{1}(g)\right)-H_{b}\left(p_{2}(g), p_{2}(g)\right)\right]
\end{aligned}
$$

From Lemma at the end of $\S 1$ and from the orthogonality of the decomposition (2) for H we see that the left hand side of the above equality is equal to $\pi H(u, g)+$ $\frac{\pi}{2} H(g, g)$. Hence we get $f(u+g)=f(u) \cdot \psi(g) \exp \left[\pi H(u, g)+\frac{\pi}{2} H(g, g)\right]=$ $f(u) J_{H, \psi}(g, u)$ which shows that f is a differentiable theta function for the factor $J_{H, \psi}$.

Now let B be any privileged basis representing b and let $\left(z_{1}, \cdots, z_{n}\right)$ be the coordinates of V determined by B. Then B is also an orthonormal basis of V_{b} for the Hermitian form H_{b} and let $\left(w_{1}, \cdots, w_{n}\right)$ be the coordinates of V_{b} determined by B. Then as functions on W we have

$$
\begin{aligned}
& z_{i}=w_{i} \text { for } i \in[1, s] \\
& \bar{z}_{s+i}=w_{s+i} \text { for } i \in[1, r] .
\end{aligned}
$$

Since θ is a holomorphic function on V_{b} we have

$$
\frac{\partial \theta}{\partial \bar{w}_{k}}=0, \quad \text { for } \quad k \in[1, n]
$$

and hence

$$
\frac{\partial \theta}{\partial \bar{z}_{i}}=0, \quad i \in[1, s] ; \frac{\partial \theta}{\partial z_{s+i}}=0, \quad i \in[1, r]
$$

If $u=\sum_{k=1}^{n} z_{k} v_{k}$, then $p_{2}(u)=\sum_{i=1}^{r} z_{s+i} v_{s+i}$ and hence $H_{b}\left(p_{2}(u), p_{2}(u)\right)=\sum_{i=1}^{r}\left|z_{s+i}\right|^{2}$ and so

$$
\phi_{b}=\exp \left[-\pi \sum_{i=1}^{r}\left|z_{s+i}\right|^{2}\right]
$$

We see easily that we have $\frac{\partial f}{\partial \bar{z}_{i}}=0$ for $i \in[1, s]$ and $\frac{\partial f}{\partial \bar{z}_{s+i}}+\pi \bar{z}_{s+i} f=0$ and hence f belongs to $H(b)$. Analogously we can see that if f is a function belonging to $H(b)$, then the function θ defined by $\theta(u)=f(u) \cdot \phi_{b}(u)^{-1}$ is a holomorphic theta function on V_{b} for the factor $J_{H_{b} \psi}$ and moreover the map $f \rightarrow \theta$ defines a bijection of $H(b)$ onto the space $H^{0}\left(E_{b}, F\left(H_{o}, \psi\right)\right)$ of holomorphic theta functions on V_{b} for the factor $J_{H_{b}, \psi}$. Since $H(b)$ is canonically isomorphic to $H^{\top}(E, F(H, \psi))$ by Theorem 1, we obtain the following theorem.

Theorem 2. Let H be a Riemann form of signature (s, r) for a complex torus E and let $F(H, \psi)$ be the holomorphic line bundle over E associated with the factor $J_{H, \psi}$ defined by (1). Let $\left(E_{b}, H_{b}\right)$ and $\left(F\left(H_{b}, \psi\right)\right)$ be the family of polarized abelian varieties and the family of line bundles over each E_{b} parametrized by $b \in \mathcal{B}$. Then there exists a canonical isomorphism of $H^{r}\left(E, F(H, \psi)\right.$) onto $H^{0}\left(E_{b}, F\left(H_{b}, \psi\right)\right)$.

In particular, we have

$$
\operatorname{dim} H^{r}(E, F(H, \psi))=\operatorname{dim} H^{0}\left(E_{o}, F\left(H_{b}, \psi\right)\right)
$$

and since the imaginary part of H_{b} is equal to the imaginary part A of H, we have $\operatorname{dim} H^{0}\left(E_{b}, F\left(H_{b}, \psi\right)\right)=e_{1}, \cdots, e_{n}$, where e_{1}, \cdots, e_{n} are the elementary divisors of the integral valued alternating form A on $L \times L$. Thus we get also

$$
\operatorname{dim} H^{\gamma}(E, F(H, \psi))=e_{1} \cdots e_{n}
$$

Let $N+1=\operatorname{dim} H^{r}\left(E, F(H, \psi)\right.$ and let $\left(f_{0}, f_{1}, \cdots, f_{N}\right)$ be a basis of the complex vector space $H(b)$ which is canonically isomorphic to $H^{r}(E, F(H, \psi)$. The map $u \rightarrow\left[f_{0}(u): \cdots: f_{N}(u)\right]$ defines a differentiable map $\tilde{\Phi}$ from W into the complex projective space P^{N}. Since each f_{i} is a differentiable theta function on W for the factor $J_{H, \psi}$, the map $\tilde{\Phi}$ defines a map Φ from $E=V / L$ into P^{N}.

Let $\theta_{i}=\phi_{b} \cdot f_{i}$ for $i \in[0, N]$. Then we have:

$$
\left[\theta_{0}(u): \theta_{1}(u): \cdots: \theta_{N}(u)\right]=\left[f_{0}(u): f_{1}(u): \cdots: f_{N}(u)\right]
$$

It follows from this that Φ defines a holomorphic map from $E_{b}=V_{b} / L$ to P^{N}. We
may assume without loss of generality that Φ is a holomorphic imbedding (this can be achieved by replacing H by $3 H$ and ψ by ψ^{3}). Then Φ defines a differentiable imbedding of E into P^{N}. Let $\left(z_{1}, \cdots, z_{n}\right)$ be the coordinates on V corresponding to a privileged basis of V for H. Then these coordinates define local coordinates of the complex torus E at each point of E. Since Φ is holomorphic as a map from E_{b} into P^{N}, we see that Φ is holomorphic in z_{1}, \cdots, z_{s} and anti-holomorphic in z_{s+1}, \cdots, z_{n}. Thus we get the following theorem.

Theorem 3. Let H be a Riemann form of signature (s, r) for a complex torus E. Then the cohomology group $H^{r}\left(E, F\left(3 H, \psi^{3}\right)\right.$) of the holomorphic line bundle $F\left(3 H, \psi^{3}\right)$ defines a differentiable imbedding of E into the complex projective space P^{N} with $N+1=\operatorname{dim} H^{r}\left(E, F\left(3 H, \psi^{3}\right)\right)$ which is holomorphic in z_{1}, \cdots, z_{s} and antiholomorphic. in z_{s+1}, \cdots, z_{n}, where $\left(z_{1}, \cdots, z_{n}\right)$ are the coordinates of the complex vector space V determined by a privileged basis for H.

Appendix 1. We give here an example of a complex 2-torus which is not an abelian variety and which admits a Riemann form or signature (1,1). Let

$$
\omega_{1}=\binom{1}{0}, \quad \omega_{2}=\binom{0}{1}, \quad \omega_{3}=\binom{i \sqrt{2}}{i \sqrt{3}}, \quad \omega_{4}=\binom{i \sqrt{3}}{-i \sqrt{5}} .
$$

These vectors are linearly independent over \boldsymbol{R} and they generate a lattice L of \boldsymbol{C}^{2}.

The matrix J_{0} of the complex structure of \boldsymbol{C}^{2} with respect to the basis $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ of \boldsymbol{C}^{2} over \boldsymbol{R} is of the form

$$
J_{0}=\left(\begin{array}{ll}
0 & J_{1} \\
J_{2} & 0
\end{array}\right)
$$

where

$$
J_{1}=\left(\begin{array}{cc}
-\sqrt{2} & -\sqrt{3} \\
-\sqrt{3} & \sqrt{5}
\end{array}\right)
$$

and

$$
J_{2}=\frac{1}{d}\left(\begin{array}{cc}
-\sqrt{5} & -\sqrt{3} \\
-\sqrt{3} & \sqrt{2}
\end{array}\right), \quad d=-\sqrt{10}-3
$$

Let A be an alternating \boldsymbol{R}-bilinear form on $\boldsymbol{C}^{2} \times \boldsymbol{C}^{2}$ which is integral valued on $L \times L$ and let A_{0} be the matrix of A with respect to the basis $\left\{\omega_{i}\right\}$ and write

$$
A_{0}=\left(\begin{array}{rr}
P_{1} & P_{2} \\
-{ }^{t} P_{2} & P_{3}
\end{array}\right) \quad P_{1}=\left(\begin{array}{rr}
0 & p \\
-p & 0
\end{array}\right) \quad P_{3}=\left(\begin{array}{rr}
0 & q \\
-q & 0
\end{array}\right)
$$

where p and q are integers and P_{2} is an integral 2×2 matrix.

The alternating form A is the imaginary part of a Riemann form if and only if the \boldsymbol{R}-bilinear form S on $\boldsymbol{C}^{2} \times \boldsymbol{C}^{2}$ defined by $S(u, v)=A(i u, v)$ is symmeiric and non-degenerate. Let S_{0} be the matrix of S with respect to $\left\{\omega_{i}\right\}$. Then we have $S_{0}={ }^{t} J_{0} \cdot A_{0}$. We see easily that the condition that S_{0} is symmetric is equivalent to the set of the following three conditions: (a) $P_{1} J_{1}=-{ }^{t} J_{2} P_{3}$; (b) $P_{2} J_{2}$ is symmetric; (c) ${ }^{t} P_{2} J_{1}$ is symmetric. The conditions (b) and (c) are both equivalent to the single condition that P_{2} is to be of the form

$$
P_{2}=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) \quad a \in Z
$$

The condition (a) is equivalent to the condition $p d=q$, where $d=-\sqrt{10}-3$ and p and q are integers and so (a) is equivalent to the condition $p=q=0$.

Thus we reached the conclusion that S_{0} is symmetric if and only if A_{0} is the form

$$
A_{0}=\left(\begin{array}{cc}
0 & a 1_{2} \tag{*}\\
-a 1_{2} & 0
\end{array}\right)
$$

where $a \neq 0$ is an integer and 1_{2} denote the 2×2 unit matrix. Then S_{0} takes the form

$$
S_{0}=\left(\begin{array}{cc}
-a J_{2} & 0 \\
0 & a J_{1}
\end{array}\right)
$$

and S_{0} is a non-singular matrix. However S_{0} is not definite because the symmetric matrix J_{1} is not definite. Thus A can be the imaginary part of a Riemann form if and only if A_{0} is of the form $\left(^{*}\right)$ and when this is the case, the corresponding Riemann form is not definite but of signature (1,1). Hence $E=C^{2} / L$ provides an example of a complex torus which is not an abelian variety and which admits a Riemann form of signature (1,1).

Appendix 2. Since the second assertion in Theorem 1 is an essential part of this article we give a proof of Theorem 1 in this appendix.

Let H be a Riemann form of signature (s, r) for a complex torus $E=V / L$ and $J_{H, \psi}$ the factor defined by (1) and $F(H, \psi)$ the holomorphic line bundle associated with $J_{H, \psi}$. Let D^{q} be the vector space of all $F(H, \psi)$-valued differential forms of type $(0, q)$ on E. Then the cohomology group $H(E, F(H, \psi))$ of E with coefficient in the sheaf of germs of holomorphic sections of $F(H, \psi)$ is isomorphic to the cohomology group of the complex $D=\sum_{i=0}^{n} D^{q}$, where the coboundary operator is given by $d^{\prime \prime}($ or $\bar{\delta})$. On the other hand, there exists a canonical identification of an $F(H, \psi)$-valued $(0, q)$-form α on E with $a(0, q)$ form φ on V (of class C^{∞}) satisfying the condition that

$$
T_{8}^{*} \varphi=J_{H, \psi}(g, \cdot) \mathcal{P}
$$

for $g \in L$, where T_{g} denotes the translation of V by g. Then $d^{\prime \prime} \varphi$ also satisfies the same condition $\left(^{*}\right)$ and $d^{\prime \prime} \alpha$ is identified with $d^{\prime \prime} \varphi$. Denote by A^{q} the vector space of all $(0, q)$-form on V (of class $\left.C^{*}\right)$ satisfying the condition (*). Then the cohomology group $H(E, F(H, \psi))$ is isomorphic to the cohomology group of the complex $A=\sum_{i=0}^{n} A^{q}$, where the coboundary operator is given by $d^{\prime \prime}$. Notice that A^{0} is the vector space of all differentiable theta functions on V. Let $\left(z_{1}, \cdots, z_{n}\right)$ be coordinates on V. Then a ($0, q$)-form is expressed uniquely in the form

$$
\varphi=\frac{1}{q!} \sum_{J} \varphi_{J} d \bar{z}_{J},
$$

where $J=\left(j_{1}, \cdots, j_{q}\right)$ is a multi-index and each φ_{J} is alternating in the indices and $d \bar{z}_{J}=d \bar{z}_{j_{1}} \wedge \cdots \wedge d \bar{z}_{j_{q}}$. Since $d \bar{z}_{J}$ is invariant by translation, φ satisfies the condition (${ }^{*}$) if and only if each component φ_{J} belongs to A^{0}.

Lemma 1. Let $f, g \in A^{0}$ and let $\langle f, g\rangle$ be defined by

$$
\langle f, g\rangle(u)=f(u) g(u) \exp [-\pi H(u, u)]
$$

for $u \in V$. Then the function $\langle f, g\rangle$ is invariant by the translation T_{g} for any $g \in L$.
We can verify the lemma by a straightforward computation.
We may consider $\langle f, g\rangle$ as function on the torus $E=V \mid L$.
Corollary of Lemma 1. Iff, $g \in A^{0}$, then

$$
|f(u)||g(u)|<C \exp \pi H(u, u)
$$

for any $u \in V$, where C is a positive constant.
Let us choose a positive definite Hermitian form G and let

$$
G=\sum_{i, j} g_{i j} z_{i} \bar{z}_{j}
$$

Let

$$
d V=\left(\frac{i}{2}\right)^{n} \operatorname{det}\left(g_{i j}\right) d z_{1} \wedge d \bar{z}_{1} \wedge \cdots \wedge d z_{n} \wedge d \bar{z}_{n}
$$

the volume element on V determined by G. The volume element $d V$ is invariant by translation and so it defines a translation invariant volume element $d v$ on E such that $\pi^{*} d v=d V$, where $\pi: V \rightarrow E$ is the canonical projection. We define the inner product (f, g), where $f, g \in A^{0}$, by

$$
(f, g)=\int_{P}\langle f, g\rangle d V
$$

where P is a fundamental paralleltop for the lattice L, or equivalently by

$$
(f, g)=\int_{\Xi}\langle f, g\rangle d v
$$

regarding $\langle f, g\rangle$ as function on E.
Let us write

$$
H=\sum_{i, j} h_{i j} z_{i} \bar{z}_{j}
$$

and introduce covariant derivations $D_{i}^{\prime}, D_{i}^{\prime \prime}(i=1, \cdots, n)$ by the formula

$$
\begin{aligned}
& \left(D_{i}^{\prime} f\right)(z)=\frac{\partial f}{\partial z_{i}}(z)-\pi\left(\sum_{k} h_{i k} \bar{z}_{k}\right) f(z) \\
& \left(D_{i}^{\prime \prime} f\right)(z)=\frac{\partial f}{\partial \bar{z}_{i}}(z)
\end{aligned}
$$

We can show without difficulty that if $f \in A^{0}$, then we have $D_{i}^{\prime} f, D_{i}^{\prime \prime} f \in A^{0}$ for $i=1, \cdots, n$. We have also the following formulas:

$$
\begin{aligned}
& \left\langle D_{i}^{\prime} f, g\right\rangle+\left\langle f, D_{i}^{\prime \prime} g\right\rangle=\frac{\partial}{\partial z_{i}}\langle f, g\rangle, \\
& \left\langle D_{i}^{\prime \prime} f, g\right\rangle+\left\langle f, D_{i}^{\prime} g\right\rangle=\frac{\partial}{\partial \bar{z}_{i}}\langle f, g\rangle .
\end{aligned}
$$

Integralating both sides of the equalities and using the Green's theorem we obtain

$$
\begin{aligned}
& \left(D_{i}^{\prime} f, g\right)+\left(f, D_{i}^{\prime \prime} g\right)=0, \\
& \left(D_{i}^{\prime \prime} f, g\right)+\left(f, D_{i}^{\prime} g\right)=0,
\end{aligned}
$$

where $f, g \in A^{0}$ and $i \in[1, n]$.
Denote by $g^{i j}$ the (i, j)-entry of the inverse matrix of the Hermitian matrix $\left(g_{i j}\right)$ and let

$$
g^{I J}=g^{i_{1} j_{1} \ldots g^{i_{q} j_{q}}}
$$

where $I=\left(i_{1}, \cdots, i_{q}\right)$ and $J=\left(j_{1}, \cdots, j_{q}\right)$.
For $\varphi, \psi \in A^{q}$, we define the function $\langle\varphi, \psi\rangle$ by

$$
\langle\varphi, \psi\rangle=\frac{1}{q!} \sum_{I, J} g^{I J}\left\langle\varphi_{I}, \psi_{J}\right\rangle
$$

Then $\langle\varphi, \psi\rangle$ is invariant by the translation $T_{g}(g \in L)$ and we define the inner
product (φ, ψ) by

$$
(\varphi, \psi)=\int_{P}\langle\varphi, \psi\rangle d V=\int_{P}\langle\varphi, \psi\rangle d v .
$$

There exists the adjoint operator \mathfrak{D} for the operator $d^{\prime \prime}: A^{q} \rightarrow A^{q+1}$ so that we have

$$
\left(d^{\prime \prime} \varphi, \psi\right)=(\varphi, \delta \psi)
$$

for $\varphi \in A^{q}$ and $\psi \in A^{q+1}$
We define the Laplacian \square by

$$
\square=d^{\prime \prime} \mathrm{D}+\delta d^{\prime \prime}
$$

Then \squareis an operator from A^{q} to A^{q} for all q and a $(0, q)$-form $\varphi \in A^{q}$ is said to be harmonic if $\square \varphi=0$. Each element of the cohomology group $H^{q}(A)$ of the complex A is represented by a unıque harmonic form. In this sense we can say that each element of the cohomology group $H^{q}(E, F(H, \psi)$ is represented by a unique harmonic form. Thus we may identify $H^{q}(E, F(H, \psi))$ with the vector space of all harmonic forms in A^{q}. We now introduce the following notation. For $I=\left(i_{1}, \cdots, i_{q+1}\right), I_{u}$ will denote the multi-index $\left(i_{1}, \cdots, \hat{i}_{u}, \cdots, i_{q+1}\right)$, where the index i_{u} under \wedge is omitted. We also introduce the operator $D^{\prime i}$ by

$$
D^{\prime i}=\sum_{j} g^{i j} D_{j}^{\prime}
$$

We can prove the following three formulas.
A) Let $\varphi \in A^{q}$. Then the components $\left(d^{\prime \prime} \varphi\right)_{I}, I=\left(i_{1}, \cdots, i_{q+1}\right)$ of $d^{\prime \prime} \varphi \in A^{q+1}$ is given by the formula

$$
\left(d^{\prime \prime} \varphi\right)_{I}=\sum_{u=1}^{q+1}(-1)^{u+1} D_{i_{u}}^{\prime \prime} \varphi_{I_{u}}
$$

B) Let $\psi \in A^{q+1}$. Then the component $(\delta \psi)_{J}, J=\left(j_{1}, \cdots, j_{q}\right)$, of $D \psi$ is given by the formula

$$
(\delta \psi)_{J}=-\sum_{j=1}^{n} D^{\prime j} \psi_{j J}
$$

where $j J=\left(j, j_{1}, \cdots, j_{q}\right)$.
C) Let $\varphi \in A^{q}$. Then the component $(\square \varphi)_{I}$ of $\square \varphi \in A^{q}$ is given by the formula

$$
(\square \varphi)_{I}=-\left(\sum_{i=1}^{n} D^{\prime i} D_{i}^{\prime \prime}\right) \cdot \varphi_{I}+\pi \sum_{u=1}^{q}(-1)^{u+1} \sum_{i=1}^{n}\left(\sum_{k=1}^{n} g^{i k} h_{k i_{u}}\right) \varphi_{i I_{u}}
$$

where $i I_{u}=\left(i, i_{1}, \cdots, \hat{i}_{u}, \cdots, i_{q}\right)$.
We omit the proof of these formulas. Similar formulas had been proved in [1] in a somewhat different context, but the proof can be carried out quite
similarly.
Up to this point the choices of the coordinates $\left(z_{1}, \cdots, z_{n}\right)$ and the positive definite Hermitian form $G=\sum_{i, j} g_{i,} z_{i} \bar{z}_{j}$ are arbitrary. From now on we choose privileged coordinates $\left(z_{1}, \cdots, z_{n}\right)$ for the Hermitian form H so that we have

$$
H=\sum_{i=1}^{s}\left|z_{i}\right|^{2}-\sum_{i=1}^{r}\left|z_{s+i}\right|^{2}
$$

and hence we have $h_{i j}=0$ for $i \neq j$ and $H_{i i}=\varepsilon_{i}$ (the symbol ε_{i} being defined in $\S 1)$. We choose G such that

$$
G=\frac{1}{a}\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{s}\right|^{2}\right)+\left|z_{s+1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}
$$

where $a>0$ (cf. [4]). Then we have $g^{i j}=0$ for $i \neq i$ and

$$
g^{i i}= \begin{cases}a & \text { for } i \in[1, s] \\ 1 & \text { for } i \in[s+1, n]\end{cases}
$$

Then we have

$$
\sum_{k} g^{i k} h_{k j}=\left\{\begin{aligned}
0, & i \neq j \\
a, & i=j \text { and } i \in[1, s] \\
-1, & i=j \text { and } i \in[s+1, n]
\end{aligned}\right.
$$

Let

$$
\alpha_{i}=\left\{\begin{aligned}
a & \text { for } \quad i \in[1, s] \\
-1 & \text { for } i \in[s+1, n]
\end{aligned}\right.
$$

Then we have $\sum_{i=1}^{n}\left(\sum_{k=1}^{n} g^{i k} h_{k i_{u}}\right) \varphi_{i I_{u}}=(-1)^{u+1} \alpha_{i_{u}} \varphi_{I}$ and we get

$$
(\square \varphi)_{I}=-\left(\sum_{i} D^{\prime i} D_{i}^{\prime \prime}\right) \varphi_{I}+\pi\left(\sum_{k=1}^{q} \alpha_{i_{u}}\right) \varphi_{I}
$$

where

$$
D^{\prime i}=g^{i i} D_{i}^{\prime} \quad(\text { not summed })
$$

From this we obtain

$$
\left((\square \varphi)_{I}, \varphi_{I}\right)=\sum_{i=1}^{n} g^{i i}\left(D_{i}^{\prime \prime} \varphi_{I}, D_{i}^{\prime \prime} \varphi_{I}\right)+\pi\left(\sum_{u=1}^{q} \alpha_{i_{u}}\right)\left(\varphi_{I}, \varphi_{I}\right) .
$$

Since the first term of the right hand side is non-negative, we get

$$
\left((\square \varphi)_{I}, \varphi_{I}\right) \geqq \pi \cdot \alpha(I) \cdot\left(\varphi_{I}, \varphi_{I}\right)
$$

where we put

$$
\alpha(I)=\sum_{w=1}^{q} \alpha_{i_{u}}
$$

Let us denote by $N(\operatorname{resp} . M)$ the number of indices i_{u} such that $i_{u} \leq s$ (resp. $\left.i_{u}>s\right)$. Then by the definition of α_{k}, we have

$$
\alpha(I)=a \cdot N-M .
$$

For the multi-index I we may assume that these q indices are distinct, otherwise we get $\varphi_{I}=0$. Suppose $q>r$. Then at least one of the indices i_{u} must be less than or equal to s and hence $N \geqq 1$. Then we get

$$
\alpha(I) \geqq a-r
$$

Choose a such that $a>r$. Then we have $\alpha(I)>0$ for $q>r$.
Suppose the $\square \varphi=0$, where $\varphi \in A^{q}$ with $q>r$. Then

$$
0=\left(\left(\square \varphi_{I}\right), \varphi_{I}\right) \geqq \pi \alpha(I) \cdot\left(\varphi_{I}, \varphi_{I}\right)
$$

with $\alpha(I)>0$. Hence we must have $\left(\varphi_{I}, \varphi_{I}\right)=0$ and hence $\varphi_{I}=0$ for any I and this means $\varphi=0$. This shows that $H^{q}(A)=0$ and hence $H^{q}(E, F(H, \psi))=0$ for $q>r$.

On the other hand, by the Serre duality, we have

$$
H^{q}(E, F(H, \psi)) \cong H^{n-q}\left(E, K \otimes F^{*}\right),
$$

where K is the canonical line bundle of E and F^{*} is the dual of $F(H, \psi)$. It is easy to see that $F^{*} \cong F\left(-H, \varphi^{-1}\right)$ and $-H$ is of signature (r, s). Moreover since E is a complex torus, K is a trivial bundle and so we get

$$
H^{q}(E, F(H, \psi)) \cong H^{n-q}\left(E, F\left(-H, \varphi^{-1}\right)\right) .
$$

Since $-H$ is of signature (r, s), we get from what we have already proved that $H^{n-q}\left(E, F\left(-H, \varphi^{-1}\right)\right)=0$ whenever $n-q>s$ or whenever $n-s=r>q$. Thus we get $H^{q}(E, F(H, \psi))=0$ for $q<r$ and these prove the first assertion in Theorem 1.

Consider now that case $q=r, \varphi \in A^{r}$ and $\square \varphi=0$. Even in this case we get $\alpha(I) \geqq a-r>0$ except in the case where all of the r indices in I are greater than s, namely except in the case where I is a permutation of $(s+1, \cdots, n)$. Then we get $\varphi_{I}=0$ for each I which is not a permutation of $(s+1, \cdots, n)$ and φ is of the form

$$
\begin{equation*}
\varphi=f d \bar{z}_{s+1} \wedge \cdots \wedge d \bar{z}_{n} \tag{**}
\end{equation*}
$$

where $f=\varphi_{s+1, \cdots, n}$.
Conversely let φ be a $(0, r)$-form on V of the type (${ }^{* *}$) belonging to A^{r}. Then $f \in A^{0}$ and we have

$$
d^{\prime \prime} \varphi=0 \rightleftharpoons \frac{\partial f}{\partial \bar{z}_{i}}=0 \quad \text { for } \quad i \in[1, s]
$$

and

$$
(D \varphi)_{I}=-\sum_{i=1}^{n} g^{i i} D_{i}^{\prime} \varphi_{i I}
$$

where $I=\left(i_{1}, \cdots, i_{r-1}\right)$. If $I \neq(s+1, \cdots, \hat{u}, \cdots, n)$ for some $u,(i, I)$ cannot be a permutation of $(s+1, \cdots, n)$ and $\varphi_{i I}=0$ and hence $(b \varphi)_{I}=0$. If $I=(s+1, \cdots$, \hat{u}, \cdots, n) for some u, then

$$
(D \varphi)_{I}= \pm g^{u u} D_{u}^{\prime} f
$$

Therefore we have

$$
\grave{ } \varphi=0 \rightleftharpoons D_{u}^{\prime} f=0 \quad \text { for } \quad u=s+1, \cdots, n .
$$

It follows from our definition of the operator D_{u}^{\prime} and from the fact $h_{i j}=\delta_{i j} \cdot \varepsilon_{j}$, we see that

$$
D_{u}^{\prime} f=\frac{\partial f}{\partial z_{u}}+\pi \bar{z}_{u} f
$$

We have thus proved that the space of harmonic $(0, r)$-form φ in A^{r} consists of all the $(0, r)$-form φ on V of the form

$$
\varphi=f d \bar{z}_{s+1} \wedge \cdots \wedge d \bar{z}_{n}
$$

where

1) f is a differentiable theta function for the factor $J_{H, \psi}$,
2) $\frac{\partial f}{\partial \bar{z}_{i}}=0$ for $i \in[1, s]$
and

$$
\frac{\partial f}{\partial z_{i}}+\pi \bar{z}_{i} f=0 \quad \text { for } \quad i \in[s+1, n] .
$$

Then we can identify the cohomology group $H^{r}(A)$ with the vector space of functions f satisfying the conditions 1) and 2) and this proves the second assertion in Theorem 1.

University of Notre Dame

Bibliography

[1] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963), 365-416.
[2] D. Mumford: Abelian varieties, Tata Inst. Studies in Math., Oxford Univ. Press, 1970.
[3] C.L. Siegel: Indefinite quadratische Formen und Funktionentheorie. I, Math. Ann. 124 (1951), 17-54.
[4] H. Umemura: Some results in the theory of vector bundles, Nagova Math. J. 52 (1973), 97-128.

