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Let E=V/L be a complex torus, where V' is an n-dimensional complex
vector space and L a lattice of V. Let H be a Hermitian form on 7 and 4 the im-
aginary part of H. Then A4 is an R-bilinear alternating form on V. We say
that H is a Riemann form of signature (s, r) for the torus E if

(a) H is non-degenerate and of signature (s,7);

(b) A is integral valued on the lattice L.

To a Riemann form H we associate a factor
1 1
@ T8 %) = e o Hlz, )+ - HEe. )|
with g €L, z€V, where &[-]=exp 27i+and + is a map from L to C¥=
{zeC||2|=1} satisfying \,b(g—i-h):\}r(g)\,lr(k)é[%A(g, h)]; the function + being

called a semi-character of L for A4.
The factor [ y: L X V—C* satisfies the equation

Juu(@+f, 3) = Juu(g, h+2)]nu(h, 2),

where g, he L, z€ V.
Given the factor [y we define an action of the lattice group L on V'xC
by the rule

(2, &)-g = (248, Ju (g 2)E),

where z€V, £C and gL. The action of L on VXC is free and the
quotient of X C by L has a natural structure of a holomorphic line bundle
over the complex torus E=V/L. We shall denote this line bundle by F(H, ).
The following vanishing theorem for the cohomology of F(H, ) is well-
known [2, 4]: If H is a Riemann form of signature (s, 7), then we have

HY(E, F(H, ¥)) =0
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for g==r (for a proof see Appendix 2 of this paper).

In particular if =0, namely if H is positive definite, H*(E, F(H, r))=0
except for ¢g=0 and H%(E, F(H, v)) is identified with the space of all holomor-
phic theta functions on V for the factor J; y. Replacing H by a suitable positive
interger multiple of H, if necessary, these theta functions define a holomorphic
imbedding of E into a complex projective space. A complex torus which
admits a positive definite Riemann form is called an abelian variety. There exist
complex tori which are not abelian varieties but which admit Riemann forms
of signature (s,7) with s>0 and >0 (see Appendix 1). For such a complex
torus FE, there exists no non-trivial theta function. However, there exists the
non-trivial intermediate conomology group H'(E, F(H, +)) with 0<<r<mn.

The purpose of this paper is to give an interpretation of the intermediate
cohomology group H'(E, F(H,)). Namely we associate to a Riemann form
H of signature (s,7) a family of polarized abelian varieties (E;, H,) parametrized
by elements b of the Hermitian symmetric space 8=U(H)/K, where U(H) is
the unitary group of the Hermitian form H and K is a maximal compact sub-
group of U(H). Here E, is ot the form E;=V /L, where V; is an n-dimensional
complex vector space with the same underlying real vector space as ¥ and
with a complex structure J, distinct from that of V' and parametrized by b&B
and H, is a positive definite Riemann form for E;, whose imaginary part is equal
to A. We then assign a family of line bundles F(H,, y) over E, for each b.
Finally we shall show that there exists a canonically defined isomorphism from
H'(E, F(H, ) to HE,, Fy,r)) for each b. We also see that there exists a
family @, of differentiable imbedding of E into a complex projective space
which is partially holomorphic and partially antiholomorphic.

It should be mentioned that C.L. Siegel [3] has associated to an indefinite
quadratic form a family of theta series parametrized by a symmetric space. Itis
possible to interpret Siegel’s family of theta series as a subfamily of the family
{HYE,, F(H}, ¥))} of theta functions attached to a certain complex torus E
and a Riemann form H related with the given indefinite quadratic form.

1. A Riemann form of signature (s, r) and a family of polarized
abelian varieties

Let E=V/L be a complex tours, where V' is an n-dimensional complex
vector space and L a lattice of V. We shall denote by W the underlying 2n-
dimensional real vector space of V" and by J the complex structure of W defining
the complex vector space V.

Let H be a non-degenerate Hermitian form on V of signature (s, r), where
s+r=n. We denote by A4 the imaginary part of H. Then we have

H(u, v) = A(Ju, v)+iA(u, v), u, vEW.
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We assume that the alternating R-bilinear form 4 to be integral valued on Lx L
and we call H a Riemann form of signature (s, 7) for the complex tours E.

We shall denote by U(H) the unitary group of the Hermitian form H.
A basis B={v,, **+,v,} of V is said to be a privileged basis for H if the matrix of
H with respect to the basis B is of the form

lsr=
=0 -1,

where 1, and 1, denote the unit matrix of size s and r respectively.

The group U(H) acts simply transitively on the set of all privileged bases
for H. We denote by V(B) and V,(B) the subspaces of ¥ spanned by {vy, :+-, v,}
and {v,4,, -**, v,} respectively. Then we have

) W= V(B)®VB).

We say that two privileged bases B and B’ are equivalent, B~B’, if V(B)=
Vy(B’") for i=1,2. We shall denote by B the set of equivalence classes of
priveleged bases for H. Then the group U(H) acts transitively on 8 and B
is identified with the Hermitian symmetric space U(H)/K, where K is a maximal
compact subgroup of U(H).

Let b3 and let B be a privileged basis representing . We define a
linear transformation J, of W by requiring

Jo=J on Vy(B)

and
Jo=—J on VyB).

We have J;=—1 and hence J, defines a complex structure on W. We shall
denote by V, the complex vector space defined by W and J,.
Define the symbol &,(k=1, 2, :++, n) by

. _{ 1, ke[l, 5],
Pl =1, ke[s+1, 1]

If B={v,, -*+, v,} is a privileged basis representing b, then we have

Jovw = & Jvs

We also have H(v,, v;)=&,+8;; and since H(vy, v;)=A(Jvy, v,;)+i4(, v,), we get
Ay, v;)=0 and 4A(Jvy, v;)=E&;8,;. It follows from these that the decomposi-
tion (2) is orthogonal for 4 and also for H. We have also A(Ju, Jv)=A(u, v)
for u, veW. For let u=u,+u,, v=v,+v, with u;, v, € V(B) and u,, v,E V,(B).
Then Ju,= Ju,— Ju, and J,o=Jv,— Jv, and Ju,, Jv,€Vy(B) and Ju,, Jv,€ V,(B).
Hence A(Ju, J,0)=A(Jur, Joi)+A(Jus, Jo,)=A(ur, v1)+A(uy, v;). We can then
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define a Hermitian form H, on the complex vector space V, by
Hyu, v) = A(Ju, v)+iA(u, v) .

Then the imaginary part of H, is A and we have Hy(v;, v;)=A4(Jys v;)+
iA(vy, v;)=E,A(Jvy, v;)=E%8;;=8;. This means that B is an orthonormal basis
of V, for the Hermitian form H, and in particular H, is positive definite and the
decomposition (2) of W is also orthogonal for H,.

Let now

Eb = Vb/L .

Then H, is a positive definite Riemann form for E, and hence E, is an
abelian variety. 'Thus we have associated to a complex torus E and a Riemann
form H of signature (s,7) a family of polarized abelian varieties (£, H,) para-
metrized by be B=U(H)/K.

We need the following lemma in the next section.

Lemma. We have
H(u, v) =Hy(u, v) for usV,(B)
and
Hu,v) = —Hyv, u) for ucsV,yB).

For we have Hy(u, v)=A(Ju, v)+iA(u, v) and Ju=Ju or Jyu=— Ju according
as uc Vy(B) or uc Vy(B).

2. The cohomology group H'(E, F(H, «))

We associate to the Riemann form H of signature (s, ) for E the factor J, 4
defined by (1) and the line bundle F(H, +) over E. For the cohomology groups
of F(H, ) we have the following theorem.

Theorem 1. (i) We have HY(E, F(H, 4))=0 for q=7v.

(ii) Let (2, *+, 2,) be the coordinates of the complex vector space V determined
by a privileged basis B of V for the Hermitian form H. Then H'(E, F(H, )
is identified with the ccmplex vector space of all C* functions f «n V satisfying the
Sollowing conditions:

1) f is a differentiable theta function fcr the factor [ y; namely we have

f(z+8) = Ju (2, ) f(2), 2:€V, geL.
2) %: 0 for ke[, 5]

and

O oz, f=0 for je[l,q].

0%+ ;
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The assertion (i) in Theorem 1 is a well-known vanishing theorem due to
Mumford. We shall give a proof of Theorem 1 in the Appendix 2 based on
the harmonic theory.

We denote by H(B) the space of C* functions f on W satisfying the above
conditions (1) and (2) to make explicit its dependence of the condition (2) on
the choice of the privileged basis B. We show that if B and B’ are equivalent,
then we have H(B)=H(B’). In fact, let (2], -+, 2;) be the coordinates of V deter-
mined by B’. Then we have

and
B =20z, (=1 7)
where the matrices (a;,) and (b;;) are both unitary. We get

* of _ of 1. e s
*) L=%ad, (=19
and

Vo rtaf = S bus

/
azs+k a Bs+i

+7 (b,

where (b%;) is the inverse matrix of (b,;). Since (b;) is unitary, we have (bf;)=
#(b,;) and hence bj;=b,, Hence we get

(**) U tf = Fyba(s T n2lof)

Rs+k s+i
From (*) and (**) we get H(B)=H(B'). Hence we can denote the space of
C~ functions f satisfying (1) and (2) by H(b), b= 3.
Consider now the family of polarized abelian varieties (E,, H,)(bs B)
defined in §1. We have the factor [y, y: LX V,~C* defined by

Jio (85 1) = Qe [ - Hioe )+ 3 Hl2,8) |

where g L and u€V,; this is because the imaginary part of H, is equal to 4
for any b. Let F(H,, ) be the line bundle over E, associated with the factor
Ju, . Since H, is positive definite, we have H*(E,, F(H,, vr))=0 for ¢=+0 and
HY(E,, F(H,, ) is identified with the complex vector space of all holomorphic
theta functions on V, for the factor [y, y.

Let p;: W—V(B) (i=1, 2) be the projection of W onto V(B) with respect
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to the decomposition (2) of W and let

Puu) = exp [—mHy(p(u), p(u))] -
We have

Po(utg) = ¢py(u) exp L(u, g), ueW, gL,
where

L(u, g) = —a[Hy(p,u), pg))+Hy(b:8), pAw)+Hy(p:(8), p(8))] -
Let 0 be a holomorphic theta function on V), for the factor [y, y and let
f=¢s-0
We show that the function f satisfies the conditions (1) and (2) in Theorem 1,
i.e. feH(b). We have

f(ut-g) = fuyir(g) exp [L(u, &)+=Hy(u, £)+ % Hyg, )] -

Since the decomposition (2) is orthogonal for H, we get

wH(u, £)+7 Hyg, g) = nH(p:(u), pu(g))+=Hpsw), 24N+ 7 Hilpi8), 2i(e))
+7 HypAe), pg)) and hence L(u, g)+nHyfu, &)+ 7 Hilz. &)
= n[Hy(pr(w), p1(8))—H(pA8), P(w))]+ % [Hi(p:(g) Pi(g))—H (P8)s PA8))] -

From Lemma at the end of §1 and from the orthogonality of the decomposition
(2) for H we see that the left hand side of the above equality is equal to #H(u, g)+

5 Hg g Hence we get flutg) =f(u)-¥(g) exp [xH(w, £)+7 Hlg, 8=

S() Ju»4(g, w) which shows that f is a differentiable theta function for the factor
]H,‘I"

Now let B be any privileged basis representing & and let (2, -+, 2,) be the
coordinates of V' determined by B. Then B is also an orthonormal basis of V,

for the Hermitian form H, and let (w,, -+, w,) be the coordinates of I'; deter-
mined by B. Then as functions on W we have

z;=w; for i€]l,s],
Zoyi =Wy, for i€l r].
Since @ is a holomorphic function on V', we have

66—;,,:0’ for ke]l, n)
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and hence

30 . a0
— =0, €[l,s]; —
oz, el 5

B

=0, ie[l, ],

If u= 31 22, then py(u)= 31,49, and hence Hy(p,(u), ps(w))= 3] |%,1:|* and

SO

by = €xp [_7"2;1 [25+i1%].

We see easily that we have gf_—=0 for i€[1, 5] and aaf +nZ.;f=0 and hence
Z

(] s+i

f belongs to H(b). Analogously we can see that if f is a function belonging to
H(b), then the function @ defined by 0(u)=f(u)-¢py(%)™" is a holomorphic theta
function on V, for the factor Jj, y and moreover the map f—6 defines a bijection
of H(b) onto the space HYE,, F(H,,)) of holomorphic theta functions on V,
for the factor J, 4. Since H(b) is canonically isomorphic to H'(E, F(H, )
by Theorem 1, we obtain the following theorem.

Theorem 2. Let H be a Riemann form of signature (s, r) for a complex torus
E and let F(H, ) be the holomorphic line bundle over E associated with the factor
Ju defined by (1). Let (E,, H,) and (F(H,, <)) be the family of polarized abelian
varieties and the family of line bundles over each E, parametrized by b=®B. Then
there exists a canonical isomorphism of H'(E, F(H,r)) onto H(E,, F(H,, ).

In particular, we have
dim H'(E, F(H, v)) = dim HYE,, F(H,, V)

and since the imaginary part of H, is equal to the imaginary part 4 of H, we
have dim HE,, F(H,, yr))=k¢,, -+, e,, Where e, :*-, e, are the elementary divisors
of the integral valued alternating form 4 on LX L. Thus we get also

dim H'(E, F(H, V")) = €, - e, .

Let N+1=dim H'(E, F(H, ) and let (fy, f;, **, fy) be a basis of the complex
vector space H(b) which is canonically isomorphic to H'(E, F(H, ). The map
u—>[fy(u): -+ : fy(w)] defines a differentiable map & from W into the complex
projective space PY. Since each f; is a differentiable theta function on W for
the factor J, y, the map & defines a map ® from E=V/L into P¥.

Let 6,=¢,- f; for i€[0, N]. Then we have:

[Oo(): Ou(w): ++- : On(w)] = [fo(w): fi(w): -+ : fa(u)] -
It follows from this that ®@ defines a holomorphic map from E;=V,/L to PY. We
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may assume without loss of generality that @ is a holomorphic imbedding
(this can be achieved by replacing H by 3H and 4 by ¥°). Then & defines
a differentiable imbedding of E into P¥. Let (2, -**, 2,) be the coordinates on
V corresponding to a privileged basis of V' for H. Then these coordinates de-
fine local coordinates of the complex torus E at each point of E. Since ® is
holomorphic as a map from E, into PV, we see that @ is holomorphic in
2y, ***, %, and anti-holomorphic in 2,4, **+, 2,. Thus we get the following
theorem.

Theorem 3. Let H be a Riemann form of signature (s, r) for a complex torus
E. Then the cohomology group H'(E, F(3H,\®)) of the holomorphic line bundle
F(3H, ®) defines a differentiable imbedding of E intc the complex projective space
PY with N+1=dim H'(E, F(3H, \/%)) which is holomorphic in 2, -+, 2, and anti-
holomorphic. in 2.y, -, 2,, where (2,, ++-, 2,) are the coordinates of the complex
vector space V determined by a privileged basis for H.

Appendix 1. We give here an example of a complex 2-torus which is
not an abelian variety and which admits a Riemann form or signature (1,1).

Let
@) @=() «=(v) «=(3)
w; = 0: ﬂ’z—(ly W3 = i\/—f’ Wy = —l\/? )

These vectors are linearly independent over R and they geneiate a lattice L
of C2.

The matrix J, of the complex structure of C? with respect to the basis
{w1, w,, w3, 0} of C? over R is of the form

2= (. 0)

where
J=(—\/7 —V?)
\-v3 VS
and
_1 —'5 —\/?) de T3
r=3 (005 V), 4= Vs,

Let A be an alternating R-bilinear form on C?XC? which is integral valued
on LXx L and let 4, be the matrix of 4 with respect to the basis {w;} and write

= ) 2= 0) 2=(, o)
—'P, Py —p 0 —q 0/,

where p and g are integers and P, is an integral 2X 2 matrix.
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The alternating form A is the imaginary part of a Riemann form if and
only if the R-bilinear form .S on C?xC? defined by S(u, v)=A(iu, v) is sym-
meiric and non-degenerate. Let S, be the matrix of S with respect to {o;}.
Then we have S;=*J,-4,. We see easily that the condition that S, is symmetric
is equivalent to the set of the following three conditions: (a) P,Ji=—"],Ps;
(b) P,J, is symmetric; (c) ‘P,J, is symmetric. The conditions (b) and (c)
are both equivalent to the single condition that P, is to be of the form

G o
P2= aEZ.
0 a

The condition (a) is equivalent to the condition pd=q, where d=—+/10—3 and
p and g are integers and so (a) is equivalent to the condition p=g=0.

Thus we reached the conclusion that S, is symmetric if and only if 4, is
the form

®) A= (—212 ‘:)12)

where a0 is an integer and 1, denote the 2X 2 unit matrix. Then S, takes

the form
()
0 af

and S, is a non-singular matrix. However S, is not definite because the sym-
metric matrix J, is not definite. Thus 4 can be the imaginary part of a Rie-
mann form if and only if 4, 1s of the form (*) and when this is the case, the
corresponding Riemann form 1s not definite but of signature (1,1). Hence
E=C"?|L provides an example of a complex torus which is not an abelian variety
and which admits a Riemann form of signature (1,1).

Appendix 2. Since the second assertion in Theorem 1 is an essential
part of this article we give a proof of Theorem 1 in this appendix.

Let H be a Riemann form of signature (s, 7) for a complex torus E=V/L
and Jy ¢ the factor defined by (1) and F(H, ) the holomorphic line bundle
associated with J;y. Let D? be the vector space of all F(H, yr)-valued differen-
tial forms of type (0, g) on E. Then the cohomology group H(E, F(H,+)) of
E with coefficient in the sheaf of germs of holomorphic sections of F(H, ) is

isomorphic to the cohomology group of the complex D=§,:D", where the

coboundary operator is given by d”(or d). On the other hand, there exists a
canonical identification of an F(H, +)-valued (0, g)-form o on E with a (0, g)-
form @ on V (of class C~) satisfying the condition that
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™ Tip =Jay(g )
for g€ L, where T, denotes the translation of ¥ by g. Then d” also satisfies the

same condition (*) and d”« is identified with d”@. Denote by 4 the vector
space of all (0, g)-form on V¥ (of class C*) satisfying the condition (*). Then
the cohomology group H(E, F(H,/)) is isomorphic to the cohomology group

of the complex A=§A", where the coboundary operator is given by d”. Notice

that A° is the vector space of all differentiable theta functions on V. Let
(1 **+, 2,) be coordinates on V. Then a (0, g)-form is expressed uniquely in
the form

1 =
¢)=—'2¢de1,
q 7

where J=(j,, +**,j,) is a multi-index and each ¢; is alternating in the indices
and dz;=dz; \+:-A\d%;,. Since dZ; is invariant by translation, ¢ satisfies
the condition (*) if and only if each component @, belongs to A°.

Lemma 1. Let f, g A° and let f, g> be defined by
<f, 8Xw) = flu)g(w) exp [—nH(u, u)]

for ucV. Then the function {f,g> is invariant by the translation T, for any
geL.

We can verify the lemma by a straightforward computation.
We may consider <f, g> as function on the torus E=V/L.

Corollary of Lemma 1. If f, g A°, then
| f(u)| 18(#)| <C exp xH(u, u)
for any uc V, where C is a positive constant.
Let us choose a positive definite Hermitian form G and let
G= ’2’} g%
Let
av = (%) det (g, )dmNdBN -+ Adz, A d7,

the volume element on V' determined by G. The volume element 4V is in-
variant by translation and so it defines a translation invariant volume element
dv on E such that z*dv=dV’, where z: V—E is the canonical projection. We
define the inner product (f, g), where f, g 4°, by
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(f, &) = [<r.oav,

P
where P is a fundamental paralleltop for the lattice L, or equivalently by

(.9) = [ <1, g>do

B

regarding {f, g> as function on E.
Let us write

and introduce covariant derivations D/, D}’ (i=1, -+, n) by the formula
, _of b3
Dif)(z) = é;(z)_n(g aZ)f(2) 5
0
©nE=YL@.
2;

We can show without difficulty that if f& A4° then we have D!f, D!'fe A° for
1=1, -=-,m. We have also the following formulas:

Dif, 41, Di'gy = 241>,

D¥'f, g>-+<f, Dig> = 6% o8>

Integralating both sides of the equalities and using the Green’s theorem we
obtain

(Dif, &)+(f, Di’g) =0,
(Dif, 8)+(f, Dig) =0,

where f, g A° and i<[1, n].

Denote by g% the (7, j)-entry of the inverse matrix of the Hermitian matrix
(g;;) and let

gU — giljl-ng'.qill

where I=(iy, *++,1,) and J=(jy, ***, J,)-
For @, Jr& A4°, we define the function {g, v, by

> = B

Then <@, ) is invariant by the translation T',(¢€L) and we define the inner
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product (g, ) by
(‘P, "l") =S <¢: "l">dV = S<¢: ":b'>d1) .

B

There exists the adjoint operator d for the operator d”: A*—>A4"! so that we
have

(@ P, ) = (@, DY)
for pe 4? andr= 47
We define the Laplacian (] by

=d" —}—bd”

Then [ is an operator from A4 to A? for all ¢ and a (0, ¢)-form p& A’ is said to
be harmonic if [(Jp=0. Each element of the cohomology group H*(A4) of the
complex 4 is represented by a unique harmonic form. In this sense we can say
that each element of the cohomology group HY(E, F(H,+r) is represented by
a unique harmonic form. Thus we may identify H'(E, F(H, +r)) with the vector
space of all harmonic forms in A°. We now introduce the following notation.
For I=(i, +,%,41), I, will denote the multi-index (7, -+, fu, ooy iqﬂ), where
the index 7, under A is omitted. We also introduce the operator D" by

D' = 519D
i

We can prove the following three formulas.
A) Let p=A’. Then the components (d”@);, I=(i, **+,1,41) of d"pEA™M
is given by the formula

(@"9); = 33 (—1)"Diig,,

B) Let = A4%'. Then the component (dy);, J=( ***»J,), of dyr is
given by the formula

(b9, = — 3Dy,

where jJ=(7,j1, ***, J,)-
C) Let p= A4’ Then the component ((Jp), of [(JpsA’ is given by the
formula

(Oe)r = —(‘Zl D'in')“Prf‘” "2=1(—1)“Jrl Z"x' (;.=1 &) Pir,
where il,=(3, i), ++, 4, **+, i,).
We omit the proof of these formulas. Similar formulas had been proved
in [1] in a somewhat different context, but the proof can be carried out quite
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similarly.
Up to this point the choices of the coordinates (z,, -+, 2,) and the positive
definite Hermitian form G= 3)g; 22, are arbitrary. From now on we choose
i

privileged coordinates (2, +:*, 2,) for the Hermitian form H so that we have
H= ;Izilz— Z;lzs+ilz

and hence we have &;;=0 for 7= j and H,;=¢; (the symbol &; being defined in
§1). We choose G such that

G= %(|2’1|2—|——|— |2, %)+ | 2gaa |22+ | 242,

where a>0 (cf. [4]). Then we have g7=0 for i=1 and
u a for i€]l,s]
£ = {1 for ic[s-+1, ).
Then we have
0, i=j
zb}g""h,,j= a, i=j and €[], s]
—1, i=j and ie[s+1,n].
Let
a for ie]l,s]
= {—1 for ic[s41,7].

Then we have 2’- (‘2 &, )pir,=(—1)"" ', ; and we get
i=1 k=1

(O¢) = — (R D"D)prta(Z i)
where
D" = giiD! (not summed).
From this we obtain
(D) #1) = 318 Di'er, Difp)+n(R ) (21 21) -

Since the first term of the right hand side is non-negative, we get

(Oe)s @) 2 7-a(l)(Pn ?1) -
where we put

a(l) = Z‘;la.-. :
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Let us denote by N (resp. M) the number of indices 7, such that 7, <s (resp.
,>>s). Then by the definition of «,, we have

a()=a-N—M.

For the multi-index I we may assume that these ¢ indices are distinct, otherwise
we get @,=0. Suppose ¢>r. Then at least one of the indices 7, must be less
than or equal to s and hence N=1. Then we get

a(l)za—r

Choose a such that a>7. Then we have a(I)>0 for ¢>r.
Suppose the [Jp=0, where o= A4’ with ¢>r. Then

0= ((Oe)), pr)zza(l):(er P1)

with @(I)>0. Hence we must have (¢;, ;)=0 and hence @,=0 for any I
and this means =0. This shows that H%(4)=0 and hence H*(E, F(H, ))=0
for g>r.

On the other hand, by the Serre duality, we have

HYE, F(H, y)=H"""(E, KQF¥),

where K is the canonical line bundle of £ and F* is the dual of F(H, ). Itis
easy to see that F*=F(—H, ¢™') and —H is of signature (7, s). Moreover since
E is a complex torus, K is a trivial bundle and so we get

HY(E, F(H, ))~H""%(E, F(—H, ™).

Since —H is of signature (, 5), we get from what we have already proved that
H*YE, F(—H, ~'))=0 whenever n—g>s or whenever n—s=7r>q. Thus we
get HY(E, F(H, r))=0 for g<r and these prove the first assertion in Theorem 1.

Consider now that case g=7, p= A" and [Jo=0. Even in this case we
get a(I)=a—r>0 except in the case where all of the 7 indices in I are greater
than s, namely except in the case where I is a permutation of (s+1, +--, 7). Then
we get @,=0 for each I which is not a permutation of (s+1, +--, #) and @ is of
the form

(**) ¢=fd§s+l/\"'/\d2n)

where f=@1, .. -
Conversely let @ be a (0, 7)-form on V of the type (**) belonging to 4.
Then f€ A4° and we have

o =02 —0 for i, s]
0z;

and



INTERMEDIATE COHOMOLOGY GROUP 631

(bp); = ~’Z=‘{g"'D£¢u

where I=(iy, ***,3,.,). If I¥(s+1, -, &, -+, n) for some u, (i, ) cannot be a
permutation of (s+1, --+,#) and @;,=0 and hence (bp),=0. If I=(s+1, -,
#, +--, n) for some u, then

(dp); = +g“Dif
Therefore we have

bp=0=2D/f=0 for u=s+1, -, n.

It follows from our definition of the operator D; and from the fact 4;;=3§;;-¢;,
we see that

Dif= 1azf.

0z,

We have thus proved that the space of harmonic (0, r)-form ¢ in 4" consists
of all the (0, 7)-form @ on V of the form

P =fd§s+l/\ ~-NdZ,,

where
1) fis a differentiable theta function for the factor Jy 4,
2) ¥ —oforieq,s
0z;
and

gi+nz,.f=0 for ic[s+1,1].

%

Then we can identify the cohomology group H’(4) with the vector space of
functions f satisfying the conditions 1) and 2) and this proves the second asser-
tion in Theorem 1.
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