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1. Introduction

Let G be a compact topological group. If V is an orthogonal representa-
tion space of G, we denote by S(V) its unit sphere with respect to some G-
invariant inner product. Two orthogonal representation spaces V and W of
G are called J-equίvalent if there exists an orthogonal representation space U
such that S(V(&U) and S(W 0E7) are G-homotopy equivalent. Let RO(G)
denote the real representation ring of G, and let TG(*)dRO(G) denote an ad-
ditive subgroup consisting of all elements V— W such that V and W are /-equi-
valent.

In [6] and [7], Kawakubo considered the quotient group JG(*)=RO(G)/TG(*)
and the natural epimorphism JG: ΛO(G)->/G(*), and determined the structure
of /G(*) for compact abelian topological groups G.

The purpose of this paper is to determine /G(*) in case G is the metacyclic
group

Zβff - {*, b\am = bg = e, bab'1 = ar] ,

where m is a positive odd integer, q is an odd prime integer, (r— 1, m)=l and r
is a primitive q-th root 01 1 mod m. Our main results are Theorem 7.3 and
Corollary 7.4.

The author wishes to express his hearty thanks to Professor K. Kawakubo
for many invaluable advices.

2. The metacyclic group ZmΛ

In this section we recall some well-known results about the metacyclic
group ZmΛ. The metacyclic group ZmΛ is a non-abelian group of order mq and
every element oί Zm Λ is written in the form

g = afV , O^i^w— 1, O^j^g-1 .

Let m=prι(^p2(2) prt(t) be a prime decomposition of m. We can check easily
from the definition of ZmΛ the following:
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(2.1) («,r)=l,

(2.2) q\(pi-l) for l^i^t and ?!(»-!),
(2.3) («,g)=l.

The metacyclic group Zm A has the following two subgroups:

(2.4) Zm=<β>,
(2.5) *f=<6>.

The groups ^w and iΓff are cyclic groups of order m and # respectively and we

have

Lemma 2.6. The group Zm is a normal subgroup of Zm q and Kq is a sub-
group satisfying N(Kq)=Kq where N(Kq) denotes the normalizes of Kq in Zm>q.

Proof. Obviously Zm is a normal subgroup of Zm fβ. Let g=aibi be an
arbitrary element of N(Kq). Then we have g-1bg=b-1ai^-1Ψ+1^Kq. Hence
ai< r~l>&ZMΓ(Kq={e}. Therefore we obtsάnm\i^ndg=aibi=bj^Kq. Namely

q.e.d.

Lemma 2.7. Let H ( Φ {e} ) be a subgroup of Zm q. If H satisfies H (Ί Zm=
{e} , then H and Kq are conjugate.

Proof. By assumption, there exists an element a{V^H which satisfies
mod q. Hence we obtain ZmH=Zmq. Thus there exists a canonical

isomorphism

Therefore q = \ Zm>q : Zm \ = \ H: H Π Zm \ = | H \ . Since Kq is a Sylow #-sub-
group of ZmΛy H and Kq are conjugate. q.e.d.

REMARK 2.8. Let H be an arbitrary subgroup of Zm >q. By Lemma 2.7,
H satisfies one of the following:

(i) H={e},
(ii) //is conjugate to Kς,
(iϋ)

REMARK 2.9. In general the metacyclic group Zm Λ depends on not only
the integers m, q but also the integer r. But the group JZm (*) depends only on

the integers m, q (see Theorem 7.3).

3. The real representation ring RO(Zm q)

In this section we determine the additive generators of the real represen-
tation ring RO(ZMtq). First we recall the results, due to Curtis and Reiner [2;
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§47], about the additive generators of the complex representation ring R(Zm q).
The metacyclic group Zmtq has the following unitary representations:

(3.1) the trivial one-dimensional representation lcι,

(3.2) the complex g-dimensional representations Th (h^Z) defined by

0

•U(q)

and

\J

1 0
1

0
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0 0
1
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0

ό

Th(b) =

where L~ exp(2πhrj\/—l/m) for Q^j^ς— 1,
(3.3) the complex one-dimensional representations pd (d^Z) defined by

and

Pd(b) = exp

The representations Th(h^Z] satisfy the following (see [2; §47]):
(3 .4) If (h, w) = 1 , then Th is irreducible.
(3.5) When Th and Tk are irreducible, Th and Tk are ίnequίvalent if and only

ίfr'hlpk mod m for O^j^q—ί.
Denote by FR(Zmtq) the subgroup of R(Zm>q) generated by {Tk\(h,m) = l,

hGiZ}. When n is an integer such that n \ m and n > 1, we obtain the metacyclic
group Zn q= {c, d\cn=dq = e, dcd~1=cr} and define the natural epimorphism

Theorem 3.6. There is an isomorphism (additίvely)

0

where A' is ihe subgroup of K(Zm_q) generated by lcι and B' is the subgroup of

R(ZmJ generated by {Pd\(d, q)=\,'dtΞZ}.

Proof. It follows that

R(Zm ,) = A'@B'® 0 **(FR(Z.Λ))
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(see [2; §47]). Since r* | FR(Zn>q): FR(ZMt9)-*R(ZmJ is injective, we obtain the
result. q.e.d.

If % is a complex representation, then the real representation r(X) is
defined to be the underlying real representation of %, and % denotes the com-

plex conjugate representation of %.

Lemma 3.7. If (h, m)=l9 then Th and Th are ίnequivalent.

Proof. Suppose that Th is equivalent to Th^T_h. It follows from (3.5)
that there exists an integer j(0^j^q — 1) such that r*h= — hmodm. Since
(h, m)=l, we have rj = — \ modm. Thus we obtain \ = (rj)q = (— 1)9= — 1 mod
m. This is a contradiction. Therefore Th is inequivalent to Th. q.e.d.

Denote by FRO(Zmtq) the subgroup ofRO(ZMtt) generated by {r(Tk)\(h, m)=
1, h^Z} . Now we have

Theorem 3.8. There is an isomorphism (additively)

RO(Zmq)^A@B® 0 FRO(Znq),
n\m,n>l

where A is the subgroup of RO(Zm q) generated by the trivial one-dimensional re-
presentation lΛι and B is the subgroup of RO(Zm q) generated by {r(pd)\(dί q)=ly

Proof. The result follows easily from Theorem 3.6 and Adams [1 The-

orem 3.57].

In the following we write Th and pd instead of r(Th) and r(pd) respec-

tively. We use the same symbol as a representation for its representation

space.

REMARK 3.9. The representation Th is identified with the following uni-

tary representation space:

Tk(a)°(Zto *!, — , ̂ _0 = (exp (2πh^/^ΐ/m)z0, exp (

exp (2πhrq-l^^\lm)zq_λ) ,

• •* h(b)°(Zθ> %lι " " > Zq-l) = \%q-l9 ^0> Zl9 " " > Zq-2J >

where (#0, zl9 •••, zq_^G.Cq. Moreover we regard Rl as lΛι.

4. Cr-homotopy equivalences of spheres of ^-representation spaces

We begin by fixing some notations. Let G be a finite group and X be a
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G-space. We denote the isotropy group at x^X by Gx. For a subgroup H
of G, (H) denotes the conjugacy class of H in G and we set

Xs = {xtΞX\Gx^H} .

For a G-map /: ̂ -̂  we denote by f* the restriction f\X?: Xf-+Xξ. If F
is a unitary G-representation space, then for a subgroup # of G, S(F)* has
a canonical orientation defined by the complex structure of VH. Let F, W
be unitary G-representation spaces and/: 5(F)->5(PF) be a G-map. Then for
a subgroup H of G satisfying dim *S(F)^=dim S(W)H, we have the degree of

the map/*: S(V)*-»S(W)a. When S(F)*=S(ίF)*=φ, we define deg/*=l.
Since G is a finite group, there are only finite conjugacy classes of subgroups of
G, say

0, (#2), -, (H.)} .

By Theorem 1.1 of James-Segal [5], we have

Theorem 4.1. Let V ', W be unitary G-representation spaces which satisfy
the condition dim S(V)Hί=dimS(W)Hi for l<*i^n. If there exists a G-map

f: S(V)-+S(W) such that

|deg/* |= l for l^i^i

then S(V) and S(W) are G-homotopy equivalent.

5. The group JZm q(B)

Let pa{ (l^ί^n) and pbj (l^j^n) be non-trivial Zm ^-representation spaces

defined by (3.3). We set

Theorem 5.1. The following three conditions are equivalent:
( i ) S(M) and S(M') are Zm q-homotopy equivalent,

( ii ) M and M' are J -equivalent y

(iϋ) Π Λ, = ± Π bj mod q.

Proof. From the definition of ρd(d^Z), it suffices to consider the Kq-

actions instead of the Zm ^-actions. The ^-representation pd\Kq is defined

by (ρd\Kq)(b) = exp(2πdv'^ϊlq). Since (ai9q) = (bj9q)=l for l^ί, j^n, it
follows from Kawakubo [7; Theorem 2.6] that (i), (ii) and (iii) are equivalent.

q.e.d.

Corollary 5.2. There is an isomorphism



518 S. KAKUTANI

Proof. See Kawakubo [7; §2 and §3].

6. The group Ker (JZntfq\FRO(Zm>q))

In this section we determine the group Ker (JZm q \FRO(Zm q)). Let Th

and Tk be Zm ^-representation spaces defined by (3.9). If Th is contained in
FRO(Zm>q)ί then the integer h satisfies (h,m)=l. Thus there exists some in-
teger h such that hh=lmodm. We define a Zmq-mapflik:S(Th)-+S(Tk) by

It is obvious that/^ is a well-defined ZW(ί-map.

Let TA. (l^i^Λ) and TΛy (l^j^w) be Zw ̂ -representation spaces contained
. We set

Let Λ:O (resp. jo) be the point (0, 1) of S(R2) C S(N 0 R2) (resp. S(R2)d
S(N'@)R2)). Since C1 is a complex vector space, the underlying real vector
space R2 has a canonical orientation.

Lemma 6.1. There exists a Zm>q-map F: S(N®R2)->S(N'®R2) such that

(i) F(Xt)=y0,

(ii) degί i=Π(» lΛ ί)
f, degί I J Γt=Π»Λ««ίdegί i | r=l,

ι=l i-l

H is an arbitrary subgroup of Zm>q satisfying H Π ZWΦ {e} .

Proof. First we study the Z^-map /ΪA: S(Th)-+S(Tk), where ΓA and
are contained in FRO(Zm q). It follows from the definition of flk that

For the subgroup KqJ we have

Hence deg(/,A)JΓ*=Sft. Since S(Th)
H=S(Tk)

H=φ, we obtain deg (/„)*=!.
Then we put

F=fhlkl *fk2k2 *-*/!.*. * ϋ

where * denotes the join. Now F is a Zw>9-map from S(Nξ&R2) to S(N'(&R2)
which satisfies the conditions (i) and (ii). q.e.d.

The following lemma is due to Petrie [10].

Lemma 6.2. Let G be a finite group and V, W be unitary G-representation
spaces. Let H be a subgroup of G whose conjugacy class is contained in
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{(Gϋ)\v<=V}. Suppose that f : S(V)-*S(W) is an H-map, then there exists a

G-map τ(G, H\f)ι S(V®R2)-*S(W@R2} which satisfies the following conditions:

(i) τ(G, H\ f)(χ0)=yQ where #0, y0 are those in Lemma 6.1.

(ii) Let K be a subgroup of G such that ά\mVκ=ά\mWκ. If there exists

some element g0 of G such that g^Kg^CLH, we have

deg τ(G, HI f)κ = I (G/H)

On the other hand, if g~lKg^H for any element g of Gy we have

Proof. By Meyerhoff-Petrie [9; Theorem 2.2] and Petrie [10; Lemma

2.3], there exists a G-map/: S(V@Rl)-*S(W@Rl) which satisfies the condi-

tion (ii). Then we obtain a G-map τ(G, H\ /)=/*ttW) : S(V®R2)-*S(W®R2).

It is obvious that the G-map τ(G, H\f) satisfies the conditions (i) and (ii).

q.e.d.

Lemma 6.3. There exist two Zmq-maps <9, ψ : S(N®R2)-+S(N'®R2)

which satisfy the following two conditions:

(i) 0(*0)=Ψ(*o)=:Voι
(ii) degθ=mq, degθκι=degθff=Q9 degψ=m, degψ^=l and

where H is an arbitrary subgroup of Zm q satisfying

Proof. We recall that N, N' are unitary Zm ^-representaaon spaces and

remark that Iso(N)={(e),(Kq),(Zmtq)}. Apply Lemma 6.2 to the identity

map id: S(N)-*S(N') which is an {e}-map, then we have a ZWfί-map θ =

τ(Zm>q, {e}]id):S(N®R2)-*S(N'®R2) such that Θ(x0)=yθ9 d^θ=\zmtq\=mq

and deg 5^= deg 5^=0. Moreover the identity map is not only an {e} -map

but also a ^?-map. We also have a Zm fί-map ^=τ(ZMtV Kq\ id}: S(N®R2}-*

S(N'®R2} such that ΛH*0)=j0, degψ=|Z ί l l i f f/ί:j=ifi, degψ'*= \(Zm.qIK<Y Ί

- I N(Kq)IKq I = 1 and deg .ψf=0. q.e.d.

Now we have

Theorem 6.4. The following three conditions are equivalent:

( i ) S(N®R2) and S(N'®R2) are ZmΛ-homotopy equivalent,

( ii ) ΛΓ β/zrf N' are J -equivalent,

(iii) Π A j Ξ ± Π Λ J modm.
ι=l j=l

Proof. Obviously (i) implies (ii).

First we show that (ii) implies (iii). By assumption, there exists an or-

thogonal Z^-representation space U such that S(N®U) and S(N'ξ&U)
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are Zm 9-homotopy equivalent. Obviously S(Nξ&U) and S(N'($U) are also
^-homotopy equivalent. Let μd (d e Z) be the complex one-dimensional
^-representations defined by μd(ά) = txp (2πd\/^ϊ/m). Then we have
Th\Zm^μh($μhr(&μhr2ξ& (l)μhr4-ι as ^-representations. The integers h rs

y

kjTs satisfy (hir
3,m)=(kjr

s,m)=l for l^i, j^n and O^s^q— 1. It follows

from Kawakubo [7; Theorem 2.61 that r^'1™2 Π h9

i = ±r«'-1>*/2 Π £? mod m.
ί=ι y=ι

Since r*=l mod m, we obtain the condition (iii).
Next we show that (iii) implies (i). By Lemma 6.1, there exists a ZmΛ-

map F: S(N®R2)-»S(N'®R2) such that

(6.4.1) deg ί = Π («Λ)β, deg F' = Π «Λ
f = l ί=l

and deg FH = 1 where Hf}Zm^

On the other hand, by Lemma 6.3, there exists a Zm >9-map ψ: S(N(&R2)
S(N'®R2) such that

(642) ί ψ^ = Λ '
1 degψ = m, degi/r^ — 1 and degi/r^ — 0 where HΓ\Zm^ {e} .

We define 8 (=±1) by Π &? = £ Π ΛJ mod m. The Zw .-homotopy classes of
, = ι y=ι

Zw>i-maps from S(N(&R2) to S(N'(&R2) sending Λ:O to v0 form a group.

Therefore by (6.4.1) and (6.4.2), we obtain a Z^-map F2=F— (Π ̂ —

which satisfies the following condition:

(6.4.3) degF2 =
1=1 » = 1

and deg Fξ = 1 where H Π Zm Φ {e} .

By Lemma 6.3, there exists a Z^-map θ: S(Nξ&R2)-*S(N'ξ&R2) such that

^ ' ' ^ i deg (9 = mq and deg (9^ = deg ΘH = 0 where HΓ(Zm* {e}.

On the other hand, by the assumption (iii), we have

Π (%&)'=£ mod m.
ί = l

Then we obtain
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(6.4.5) Π (AA )9-(Π SΛ-£)w-£ΞΞθ mod m.
ί=l ί=l

Moreover it is well-known that

Π ( W= Π ΛA mod 4.
» - 1 » = 1

Hence we obtain (see (2.2))

(6.4.6) Π (AΛ)'-(Π h^-β^-ε = (l-m) Π /^,+φz-l)
»-ι ί=ι i=ι

= 0 mod q.

Since m and g are relatively prime integers, by (6.4.5) and (6.4.6), we obtain

Π (KikiY—Cii hiki-S^m-e ΞΞ 0 mod mq.
ί = l ι = l

Let n0 be an integer such that

(6.4.7) Π (W-(Π *Λ-e)«-e = n0mq .
ί=l ί=l

By (6.4.3), (6.4.4) and (6.4.7), we obtain a Zm ,^-map F3 = F2—n0θ such that

deg F3 = deg Fξ* = 8 and deg Fξ = 1 where H Π ̂ w Φ M .

Therefore it follows from Remark 2.8 and Theorem 4.1 that S(N®R2) and

S(N'(&R2) are Z^-homotopy equivalent. q.e.d.

7. The group JZfn ?(*)

In this section we determine the group JZm ?(*). For this purpose we

follow the procedure due to Kawakubo [7; §3 and §4]. To determine the group

Cm=JZmq(FRO(Zmιt)),

we define another group C'm as follows. Let w=/>ί(1)^(2) #(0 be a prime

decomposition of m. We set

Cί = Z

where the inclusion of Z2 into ®Z(p^.p^-^lq is given by l->0(pί(ί)— ί^0"1)
i=l 1=1

2q. Remark that ^[(p,-!) for l^i^t (see (2.2)).
We also define a homomorphism
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J'.:FRQ(Zmιt)^C'm

as follows. As is well-known, there exist integers a(ΐ) for l^ί^t such that

a(ί) is a primitive root mod pj(ί) and α(/)= 1 mod/>y(;) for every j^pi. For every
integer A with (h,m)=l and for 1^/^ί, there exists a unique
such that

A = Π a(0*M) mod in .
»=1

Let

ω: 0
ί = l

u

denote the natural projection. Let 2 a(hj)Th. be an arbitrary element of

FRO(Zmq\ that is, α(Ay)eZ. We define

7i( Σ *(A,)Z\y) - Σ Λ(Ay)0ω( θ Σ Λ(*y)MA» 0)
y=ι j=ι »=ι j=ι

Denote by Jm the restricted homomorphism JZm q \ FRO(Zm q). We have

Lemma 7.1. /£, ά αw epίmorphism and Ker/w=Ker/4. Hence there is
an isomorphism

Proof. Let a, a{ (ί^i^t) be arbitrary integers. Then we have

7i ((a- Σ fl O^+έ flfTe(l.)) - a®ω( ® aέ)
1=1 i=l 1=1

0 Z(^o_,}<o-vf} /^2 -

This shows ihatjm is surjective.

Next we show that Ker/^Ker/ί,. Let oc=^a(h^T^-^b(kv)T^ be

an arbitrary element of FRO(Zm 9), where β(Aλ) (l^λ^z/) and
are non-negative integers. The element x is contained in Ker ]'m if and only if
the following condition (7.1.1) is satisfied.

(7.1.1)
ω( Φ Σ a(h\)μ(h\> ϊ)) = ω (0 2 b(k v)μ(kv, i))

* = ι λ=ι » = ι v = ι
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It is easy to see that the condition (7.1.1) is equivalent to the following condi-

tion (7.1.2):

(7.1.2)
H V

mod m.

By Theorem 6.4, x satisfies the condition (7.1.2) if and only if oc is contained in
Ker/w. Therefore we have Ker/^^Ker/^. q.e.d.

We recall that there is an isomorphism (see Theorem 3.8)

FRO(ZΛΛ).
n\m,n>l

Lemma 7.2. There is an isomorphism

2W*)«{0}ΘKer(Λ.,.|β)θ Θ KerJ..
' n\tntn*z>\

Proof. The result is easily seen from torn Dieck [3; Proposition 4.1].

It follows from Corollary 5.2 and Lemma 7.2 that

Therefore we obtain, by Lemma 7.1, the following main theorem.

Theorem 7.3. There is an isomorphism

θ C'n.m\n,n>l

Corollary 7.4. Let V, W be orthogonal Zm ^-representation spaces. If V
and W are ] -equivalent, then S(VφR2) and S(W®R2) are Zm>q-homotopy equi-

valent.

Proof. The result follows easily from Theorems 5.1, 6.5 and Lemma 7.2.

REMARK 7.5. M. Morimoto has succeeded to omit R2 in Corollary 7.4.

8. Appendix

In this section G will be a finite group. Denote by ROQ(G) the additive

subgroup of RO(G)

{V— W I dim VH = dim WH for every subgroup H of G} .

In [3] and [4], torn Dieck and Petrie defined the group JO(G) to be ROQ(G)/
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ΓG(*). Since TG(*)dRO0(G)c:RO(G)y there exists a short exact sequence

0 -+JO(G) ->/G(*) -> RO(G)/ROQ(G) - 0 .

Since RO(G)IRO0(G) is a free abelian group (see Lee-Wasserman [8; §3]),
the above short exact sequence is split. Thus we have

Proposition 8.1. There is an isomorphism

JG(*)^jO(G)®RO(G)/ROQ(G).
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