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1. Introduction

Let G be a compact topological group. If ¥ is an orthogonal representa-
tion space of G, we denote by S(V) its unit sphere with respect to some G-
invariant inner product. Two orthogonal representation spaces ¥V and W of
G are called J-equivalent if there exists an orthogonal representation space U
such that S(VU) and S(W @U) are G-homotopy equivalent. Let RO(G)
denote the real representation ring of G, and let T;(*x)C RO(G) denote an ad-
ditive subgroup consisting of all elements V— W such that V" and W are J-equi-
valent.

In [6] and [7], Kawakubo considered the quotient group J4(*)=RO(G)/T (%)
and the natural epimorphism J;: RO(G)— J;(*), and determined the structure
of J4(*) for compact abelian topological groups G.

The purpose of this paper is to determine J (%) in case G is the metacyclic

group
Z,,=1{a,bla" =b"=¢, bab™' =d'},

where m is a positive odd integer, ¢ is an odd prime integer, (r—1, m)=1and »
is a primitive g-th root o0 1 mod m. Our main results are Theorem 7.3 and
Corollary 7.4.

The author wishes to express his hearty thanks to Professor K. Kawakubo
for many invaluable advices.

2. The metacyclic group Z,, ,

In this section we recall some well-known results about the metacyclic
group Z,, ,. 'The metacyclic group Z, , is a non-abelian group of order mq and
every element of Z,, , is written in the form

g=2al, 0<i<m—1, 0=j=q¢—1.

Let m=pi®p;@--- pi® be a prime decomposition of m. We can check easily
from the definition of Z,, , the following:
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(2.1) (m,r)=1,
(2.2) ql(p;i—1) for 1=<i<t and q|(m—1),
(2.3) (m,q)=1.

The metacyclic group Z,, , has the following two subgroups:

(24) Z,=<a,

(2.5) K,=<b).

The groups Z,, and K, are cyclic groups of order m and g respectively and we
have

Lemma 2.6. The group Z,, is a normal subgroup of Z,, , and K, is a sub-
group satisfying N(K,)=K, where N(K,) denotes the normalizer of K, in Z, ,.

Proof. Obviously Z,, is a normal subgroup of Z, ,. Let g=a'b’ be an
arbitrary element of N(K,). Then we have g7'bg=b"'a’""Vp'"'€K,. Hence
@ veZ,NK,={e}. Therefore we obtainm|i and g=a’b’=b'€K,. Namely
N(K,)CK,. q.e.d.

Lemma 2.7. Let H (= {e}) be a subgroup of Z,, ,. If H satisfies H N Z,—
{¢}, then H and K, are conjugate.

Proof. By assumption, there exists an element a’b’&H which satisfies
j=0 modg. Hence we obtain Z,H=Z, , Thus there exists a canonical
isomorphism

Z,Z,~HHNZ,.

Therefore 9=12,,: Z,|=|H:HNZ,|=|H|. Since K, is a Sylow g-sub-
group of Z,, ,, H and K, are conjugate. q.e.d.

ReMARK 2.8. Let H be an arbitrary subgroup of Z, ,. By Lemma 2.7,
H satisfies one of the following:

(i) H={e},
(i1) H is conjugate to K,
(i) HNZ,#+ {e}.

REMARK 2.9. In general the metacyclic group Z, , depends on not only
the integers m, ¢ but also the integer . But the group J 2y o(*) depends only on
the integers m, ¢ (see Theorem 7.3).

3. The real representation ring RO(Z,, ,)

In this section we determine the additive generators of the real represen-
tation ring RO(Z,, ,). First we recall the results, due to Curtis and Reiner [2;
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§47], about the additive generators of the complex representation ring R(Z,_,).
The metacyclic group Z,, has the following unitary representations:

(3.1) the trivial one-dimensional representation 1,

(3.2) the complex g-dimensional representations T', (k& Z) defined by

L,
L, 0
_ L,
T,(a) = e U(g)
0
L,
and
Qeevvernernnanne 0 1
1 0 0
1 0 O :
Tyb) = 1. P |eU),
0 '
1 0

where L;=: exp (2zhr’/—1/m) for 0<j<¢—1,
(3.3) the complex one-dimensional representations p, (dZ) defined by

pia) = 1€T(1)
and

pib) = exp (2wdy/ Tl U(L).

The representations T, (k€ Z) satisfy the following (see [2; §47]):

(3.4) If (h,m)=1, then T, is irreducible.

(3.5) When T, and T, are irreducible, T, and T, are inequivalent if and only
if YhEk modm for 0<j<q—1.

Denote by FR(Z,, ) the subgroup of R(Z,, ) generated by {T,|(k, m)=1,
heZ}. When #nis an integer such that n|m and #>1, we obtain the metacyclic
group Z, ,={c,d|c"=d"=e, dcd”'=<"} and dcfine the natural epimorphism
ot Zom > Zon o DY 7 (ab)=c'd’.

Theorem 3.6. There is an iscmorphism (additively)
R(Zm,q)gAIEBBI@”I"@>1FR(Z",¢) ,

where A’ is the subgroup of R(Z, ) generated by 1¢t and B’ is the subgroup of
R(Z,,) generated by {p,|(d, q)=1, d€Z}.

Proof. It follows that
R(Zm’q) — A'@B'@mmggﬂn-f(FR(qu))
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(see [2; §47]). Since »¥|FR(Z, ,): FR(Z, )—>R(Z, ,) is injective, we obtain the
result. q.e.d.

If X is a complex representation, then the real representation 7(X) is
defined to be the underlying real representation of X, and X denotes the com-
plex conjugate representation of X.

Lemma 3.7. If (b, m)=1, then T, and T, are inequivalent.

Proof. Suppose that T, is equivalent to T,=T_,. It follows from (3.5)

that there exists an integer j(0<j=<g—1) such that 7A=—hmodm. Since
(h, m)=1, we have r’=—1mod m. Thus we obtain l—E(r")"Eﬁ—l)"E —1 mod
m. This is a contradiction. Therefore T, is inequivalent to T, q.e.d.

Denote by FRO(Z,, ,) the subgroup of RO(Z,, ,) generated by {r(T',)|(k, m)=
1, heZ}. Now we have

Theorem 3.8. There is an isomorphism (additively)

RO(Z, )=~A®B® & FRO(Z,,),

where A is the subgroup of RO(Z,, ) generated by the trivial one-dimensional re-
presentation 1z and B is the subgroup of RO(Z,, ) generated by {r(p,)|(d, 9)=1,
deZz}.

Proof. The result follows easily from Theorem 3.6 and Adams [1; The-
orem 3.57].

In the following we write T, and p, instead of 7(T,) and 7(p,) respec-

tively. We use the same symbol as a representation for its representation
space.

RemMaARrk 3.9. The representation T, is identified with the following uni-
tary representation space:

Ty(a)°(% 1y ***5 Rg-1) = (exp (2whv/ —1/m)zy, exp (2zhry/ —1/m)zy, -+,
exp (2zhr'™'\/ —1/m)z,_,),
Th(b)o(zo: 2yttt zq-l) = (zq—h oy Ry zq—Z) )

where (2, 2y, ***, 2,-;)EC?. Moreover we regard R' as 1.

4. G-homotopy equivalences of spheres of G-representation spaces

We begin by fixing some notations. Let G be a finite group and X be a
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G-space. We denote the isotropy group at x€X by G,. For a subgroup H
of G, (H) denotes the conjugacy class of H in G and we set

X" = {x€X|G,DH} .

For a G-map f: X,—X,, we denote by f# the restriction f | X¥: X¥—>X¥% IfV
is a unitary G-representation space, then for a subgroup H of G, S(V)¥ has
a canonical orientation defined by the complex structure of V#. Let V, W
be unitary G-representation spaces and f: S(V)—S(W) be a G-map. Then for
a subgroup H of G satisfying dim S(V)?=dim S(W)#, we have the degree of
the map f#: S(V)¥—-=S(W)?. When S(V)?=S(W)?=¢, we define deg f#=1.
Since G is a finite group, there are only finite conjugacy classes of subgroups of
G, say
{(Hl)’ (Hz)’ ) (Hn)} .
By Theorem 1.1 of James-Segal [5], we have

Theorem 4.1. Let V, W be unitary G-representation spaces which satisfy
the condition dim S(V)?i=dim S(W)¥: for 1=i=n. If there exists a G-map
f: S(V)—S(W) such that

|deg fHi|=1 for 1=i=<n,
then S(V') and S(W) are G-homotopy equivalent.

5. The group Jz, (B)

Let p,, (1=i{=mn) and p,; (1= j=<n) be non-trivial Z, -representation spaces
defined by (3.3). We set

M= p, Dp, D Dp,,, M=p,Dp), D Dps, -

Theorem 5.1. The following three conditions are equivalent:
(i) S(M) and S(M') are Z,, ,-homotopy equivalent,
(ii) M and M’ are J-equivalent,

(i) [ a=c [T6;modq.

Proof. From the definition of p, (d€Z), it suffices to consider the K -
actions instead of the Z, ,~-actions. The K -representation p,|K, is defined
by (ps|K,)(b)= exp(2zd\/—1/q). Since (a;, q)=(b;, q)=1 for 1=i, j<mn, it

follows from Kawakubo [7; Theorem 2.6] that (i), (ii) and (iii) are equivalent.
q.e.d.

Corollary 5.2. There is an isomorphism

]Zm,q(B)gZ®Z(q—l)/z .
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Proof. See Kawakubo [7; §2 and §3].

6. The group Ker (J,,|FRO(Z, )

In this section we determine the group Ker (/g ,[FRO(Z,,)). Let T,
and T, be Z, ,-representation spaces defined by (3.9). If T, is contained in
FRO(Z,, ,), then the integer & satisfies (k,m)=1. Thus there exists some in-
teger % such that Bh=1mod m. We define a Z,, ;-map fz: S(T,)—>S(T}) by

Sk SRk R
ka(zO) 2y -'-,zq_l) ( 0 ;31 , 2‘q 1
“(20 R Pl Rr zq 1)”

It is obvious that f3, is a well-defined Z,, ,-map.
Let T}, (1=i=n) and T}, (1=j=n) be Z, ,-representation spaces contained
in FRO(Z,, ). We set

N :Thl@ Thz@"'@Th,,; N’ = Tkl@ Tkz®"'@Tk, .
Let x, (resp. y,) be the point (0, 1) of S(R? c S(N®D R? (resp. S(R?C
S(N'@R?). Since C'is a complex vector space, the underlying real vector
space R? has a canonical orientation.

Lemma 6.1. There exists a Z,, -map F: S(ND R*)—S(N'D R?) such that

(1) F(x)=Yo

(il) degF = II (Bik)), deg F¥ = 11 hik; and deg F7=1,

i=1 i=1
where H is an arbitrary subgroup of Z, , satisfying H N Z,, = {e}.

Proof. First we study the Z, ~map fz,: S(T,)—S(T},), where T, and T,
are contained in FRO(Z,, ). It follows from the definition of f;; that deg f;,=
(kk)'. For the subgroup K,, we have

S(Th)Kq = {(2‘0, R zq—l)ES(Th)]zo =Ry == zq-l} ’

S(To) e = {(wo, wy, -+, W) ES(T4) | wy = wy =++-= w1} .
Hence deg (f;)¥e=hk. Since S(T,)’=S(T:)?=¢, we obtain deg (f;)7=1.
Then we put

F Zlekl *f;zkz *”‘*f;,,k,, * ids(Rz) )
where # denotes the join. Now Fis a Z,, ,-map from S(N® R?) to S(N'D R?)
which satisfies the conditions (i) and (ii). q.e.d.
The following lemma is due to Petrie [10].

Lemma 6.2. Let G be a finite group and V, W be unitary G-representation
spaces. Let H be a subgroup of G whose conjugacy class is contained in Iso(V)=
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{(G,))|lveV}. Suppose that f: S(V)—>S(W) is an H-map, then there exists a
G-map 7(G, H; f): S(VD R?)—S(WDR?) which satisfies the following conditions:
(1) 7(G, H; f)(x)=y, where x,, v, are those in Lemma 6.1.
(it) Let K be a subgroup of G such that dim V¥=dim WX. If there exists
some element g, of G such that g5'Kg,C H, we have

deg 7(G, H; f)¥ = |(G/H)¥|deg f& k%0 ,
On the other hand, if g 'Kgd- H for anv element g of G, we have
deg7(G, H; /)¥=0.

Proof. By Meyerhoff-Petrie [9; Theorem 2.2] and Petrie [10; Lemma
2.3], there exists a G-map f: S(V®R')—~S(W® R') which satisfies the condi-
tion (ii). Then we obtain a G-map 7(G, H; f)=f*idsz: S(VORY)—S(WD R?).
It is obvious that the G-map 7(G, H; f) satisfies the conditions (i) and (ii).

q.e.d.

Lemma 6.3. There exist two Z, ~maps 6, \r: SINOR?)— S(N'D R?)
which satisfy the following two conditions:

(1) O(xp)=r(x0)=Y0,

(if) deg@=mgq, deg 0¥1=deg §¥=0, deg+r=m, deg)¥+=1 and deg*=0,
where H is an arbitrary subgroup of Z,, , satisfying HN\ Z,, =+ {e}.

Proof. We recall that N, N’ are unitary Z, ,-representacion spaces and
remark that Iso(N)={(e), (K,), (Z,.,)}. Apply Lemma 6.2 to the identity
map id: S(N)—S(N’) which is an {e}-map, then we have a Z, -map 0=
T(Z oy, 1€};1d): SINGR*)—S(N'@ R?) such that 0(x,)=y,, degf=|z, ,|=mq
and deg §¥:=deg 0#=0. Moreover the identity map is not only an {e}-map
but also a K -map. We also have a Z, ,-map =7(Z, , K,;id): SI(NSR*)—
S(N'@ R?) such that Jr(x))=y,, deg=|Z, ,/K,|=m, degp*i=]|(Z, ,/K,)%*|
=|N(K,)/K,| =1 and deg *=0. q.e.d.

Now we have

Theorem 6.4. The following three conditions are equivalent:
(i) S(NDR?) and S(N'© R?) are Z,, -homotopy equivalent,
(ii) N and N' are J-equivalent,

(i) I1hf=4 Tk mod m.
i=1 j=1
Proof. Obviously (i) implies (ii).

First we show that (ii) implies (iii). By assumption, there exists an or-
thogonal Z,, ,-representation space U such that S(N@ U) and S(N'®D U)
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are Z, ,-homotopy equivalent. Obviously S(NPU) and S(N'PU) are also
Z,-homotopy equivalent. Let u,(dEZ) be the complex one-dimensional
Z,-representations defined by p,(a)=-exp (2zd/—1/m). Then we have
T\ Z,=p, D rsPrs>P:-DPuy-1 as Z,-representations. The integers k;°,
kjr* satisfy (hga®,m)=(kjp’,m)=1 for 1=i, j<n and 0=s=<3—1. It follows

from Kawakabo [7; Theorem 2.6] that 712 f[ hi= A-rea-tm? 1":[ k% mod m.

Since =1 mod m, we obtain the condition (iii).
Next we show that (iii) implies (i). By Lemma 6.1, there exists a Z,, ,-
map F: S(N® R?)—S(N'P R?) such that

F(x0)=y,,
(64.1) 4 degF=II (hk), deg F¥t = II ki,
and degF¥ =1 where HNZ,* {e}.

On the other hand, by Lemma 6.3, there exists a Z, ;-map +r: S(NS R?)—
S(N'@ R?) such that

(6 4 2) { 1#(“%) = 3%1
o degyr = m, deg s =1 and deg¥ = 0 where HNZ,, =+ {¢} .

We define & (=-+1) by fI hi=¢ f[ k! modm. The Z, ,-homotopy classes of
i=1 j=1
Z, ~maps from S(NBR? to S(N'@®R? sending x, to v, form a group.
Therefore by (6.4.1) and (6.4.2), we obtain a Z, ,-map F2=F—(1L:I hiki—ENr
which satisfies the following condition:
Fy(%0) = Yo,
(64.3) o deg F, = TI (hk)'—(I1 hik;—&)m , deg Ffe—=¢
i=1 i=1
and deg F¥ =1 where HNZ,+ {e} .
By Lemma 6.3, there exists a Z, -map 0: S(INPR?)—S(N'@ R?) such that

0(x0) = Yo »

6.4.4
( ) degd =mq and deg 0% = degf? =0 where HNZ,* {e}.

On the other hand, by the assumption (iii), we have
T (hk)'=¢ mod m.
i=1

Then we obtain
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(6.4.5) 11 (E,.k,.)“—(il’;Il hiki—&m—E=0  mod m.
Moreover it is well-known that
.I:Il (h:k;) = ﬂ hik; mod g.
Hence we obtain (see (2.2))
(6.4.6) .=ﬁl (E,-k,-)"——(ilil[l hk,—&m—& = (1—m) ili[} hik+E(m—1)
=0 mod g.

Since m and g are relatively prime integers, by (6.4.5) and (6.4.6), we obtain

E (Eiki)"—(iI:I1 hk—Em—& =0 mod myq.
Let n, be an integer such that
(6.4.7) n (E‘k‘)q_(,ﬁl Fik;—E)Ym—& = nymq .
By (6.4.3), (6.4.4) and (6.4.7), we obtain a Z, ,-map F;=F,—n# such that

deg F;=deg F{fs=¢ and deg F¥=1 where HNZ,+{e}.
Therefore it follows from Remark 2.8 and Theorem 4.1 that S(NPR?) and
S(N'®R?) are Z, ,homotopy equivalent. q.e.d.
7. The group J;, (¥)

In this section we determine the group J,, (¥). For this purpose we
follow the procedure due to Kawakubo [7; §3 and §4]. To determine the group

Con = Jz, (FRO(Zy,0)) »

we define another group C,, as follows. Let m=pi{®p;@..-pi® be a prime
decomposition of m. We set

t
Cn=Z6& {Egzo.f“’—p:“"‘)/q}/zz,

t . . t . i —
where the inclusion of Z, into @Z,1%>_,%-1,, is given by 1—>€Bl(p§<')——p§(" Y/
i=1 i=

2q. Remark that 2¢|(p,—1) for 1=<i<t (see (2.2)).
We also define a homomorphism
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Jn: FRO(Z, ) — C},

as follows. As is well-known, there exist integers a(z) for 1<i=<t such that
a(z) is a primitive root mod p!®) and a(i)=1 mod p}? for every j==i. For every
integer & with (k,m)=1 and for 1 <¢/=t, there exists a unique u(h,2) EZ -1
such that

h = fI a(g)HhH mod m .
i=1

Let

t

13
o @ Zy@_ oot {%Z(p?(')—p.’(”")/q} 12,

denote the natural projection. Let i a(h;)T,; be an arbitrary element of
7=1
FRO(Z,, ,), that is, a(h;)eZ. We define

T alh)Ty) = R alh) Dol S 3 alkulh, ) .

7=
Denote by [, the restricted homomorphism [,  |FRO(Z, ). We have

Lemma 7.1. ], is an epimorphism and Ker J,=XKer J;. Hence there is
an isomorphism

C,=C,

Proof. Let a, a; (1=<i{=t) be arbitrary integers. Then we have
t t t
Jh(a— B )Tt 3} aTwn) = a®ol D @)
t
eC = Z@j{ ) Z(p;(i)_p:(i)—l)/q} 1Z,.

This shows that [/, is surjective.
Next we show that Ker J,=Ker J;. Let x———f] a(hA)T,,)\——Z” b(k,)T,, be
A=1 V=1

an arbitrary element of FRO(Z,, ,), where a(h,) (1=A=u) and b(k,)) (1=v=v)
are non-negative integers. The element x is contained in Ker J7, if and only if
the following condition (7.1:1) is satisfied.

Sla(h) = 2b(k),
(7.1.1) . -

u

o & Y alhalhn, 0) = o (S 31 b(k)ulk, )

A=1
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It is easy to see that the condition (7.1.1) is equivalent to the following condi-

tion (7.1.2):

Sta(h) = 3 b(k),

(7.1.2) ” -
H hf(h)\)qE :t H kZ(kv)q mod m.
A=1 V=1

By Theorem 6.4, x satisfies the condition (7.1.2) if and only if x is contained in
Ker J,. Therefore we have Ker J,=Ker J;. q.e.d.

We recall that there is an isomorphism (see Theorem 3.8)

RO(Z, )~A®B @ FRO(Z,).

nim,n>1

Lemma 7.2. There is an isomorphism

Tzmo(¥)={0}® Ker (J,, ,|B)® @ Ker],.

Proof. The result is easily seen from tom Dieck [3; Proposition 4.1].
It follows from Corollary 5.2 and Lemma 7.2 that

J2y () =ZDBZDZ(;» D mg’BDlCn .
Therefore we obtain, by Lemma 7.1, the following main theorem.

Theorem 7.3. There is an isomorphism

sz,q(*)zZEBZ@Z(q_l),z@m["ggxc'/‘ .

Corollary 7.4. Let V, W be orthogonal Z, ,representation spaces. If V
and W are J-equivalent, then S(VP R?) and S(WDR?) are Z,, ,-homotopy equi-

valent.
Proof. The result follows easily from Theorems 5.1, 6.5 and Lemma 7.2.

REMARK 7.5. M. Morimoto has succeeded to omit R? in Corollary 7.4.

8. Appendix

In this section G will be a finite group. Denote by ROy(G) the additive
subgroup of RO(G)

{V—W|dim V¥ = dim W# for every subgroup H of G} .
In [3] and [4], tom Dieck and Petrie defined the group jO(G) to be RO(G)/
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Ts(*). Since Ty(x) CROW(G)CRO(G), there exists a short exact sequence

0 — jO(G) — J5(¥) = RO(G)/RO|(G) — 0.

Since RO(G)[ROy(G) is a free abelian group (see Lee-Wasserman [8; §3)),
the above short exact sequence is split. Thus we have

(1]
[2]

B3]
(4]
[3]
(6]
7]
(8]
91

[10]

Proposition 8.1. There is an isomorphism

Jo(¥)=jO(G)DRO(G)/RO(G) .

References

J.F. Adams: Lectures on Lie groups, Benjamin Inc., New York, 1969.

C.R. Curtis and I. Reiner: Representation theory of finite groups and asso-
ciative algebras, Interscience, 1962.

T. tom Dieck: Homotopy-equivalent group representations, J. Reine Angew. Math.
298 (1978), 182-195.

T. tom Dieck and T. Petrie: Geometric modules over the Burnside ring, Invent.
Math. 47 (1978), 273-287.

I.M. James and G.B. Segal: On equivariant homotopy type, Topology 17 (1978),
267-272.

K. Kawakubo: The groups Js(x) for compact abelian topological groups G, Proc.
Japan Acad. 54 (1978), 76-78.

K. Kawakubo: FEquivariant homotopy equivalence of group representations, J.
Math. Soc. Japan 32 (1980), 105-118.

C.N. Lee and A.G. Wasserman: On the groups JO(G), Memoirs of A.M.S.
159 (1975).

A. Meyerhoff and T. Petrie: Quasi equivalence of G modules, Topology 15 (1976),
69-75.

T. Petrie: Geometric modules over the Burnside ring, Aarhus Univ. preprint
No. 26, (1976).

Department of Mathematics
Osaka University
Toyonaka, Osaka

560 Japan





