Kakutani, S.

ON THE GROUPS $\boldsymbol{J}_{Z_{m, 9}}(*)$

Shin-ichiro KAKUTANI

(Received August 10, 1979)

1. Introduction

Let G be a compact topological group. If V is an orthogonal representation space of G, we denote by $S(V)$ its unit sphere with respect to some G invariant inner product. Two orthogonal representation spaces V and W of G are called J-equivalent if there exists an orthogonal representation space U such that $S(V \oplus U)$ and $S(W \oplus U)$ are G-homotopy equivalent. Let $R O(G)$ denote the real representation ring of G, and let $T_{G}(*) \subset R O(G)$ denote an additive subgroup consisting of all elements $V-W$ such that V and W are J-equivalent.

In [6] and [7], Kawakubo considered the quotient group $J_{G}(*)=R O(G) / T_{G}(*)$ and the natural epimorphism $J_{G}: R O(G) \rightarrow J_{G}(*)$, and determined the structure of $J_{G}(*)$ for compact abelian topological groups G.

The purpose of this paper is to determine $J_{G}(*)$ in case G is the metacyclic group

$$
Z_{m, q}=\left\{a, b \mid a^{m}=b^{q}=e, b a b^{-1}=a^{r}\right\},
$$

where m is a positive odd integer, q is an odd prime integer, $(r-1, m)=1$ and r is a primitive q-th root ol $1 \bmod m$. Our main results are Theorem 7.3 and Corollary 7.4.

The author wishes to express his hearty thanks to Professor K. Kawakubo for many invaluable advices.

2. The metacyclic group $Z_{m, q}$

In this section we recall some well-known results about the metacyclic group $Z_{m, q}$. The metacyclic group $Z_{m, q}$ is a non-abelian group of order $m q$ and every element of $Z_{m, q}$ is written in the form

$$
g=a^{i} b^{j}, \quad 0 \leqq i \leqq m-1, \quad 0 \leqq j \leqq q-1 .
$$

Let $m=p_{1}^{r(1)} p_{2}^{r(2)} \cdots p_{t}^{r(t)}$ be a prime decomposition of m. We can check easily from the definition of $Z_{m, q}$ the following:
(2.1) $(m, r)=1$,
(2.2) $q \mid\left(p_{i}-1\right)$ for $1 \leqq i \leqq t$ and $q \mid(m-1)$,
(2.3) $\quad(m, q)=1$.

The metacyclic group $Z_{m, q}$ has the following two subgroups:

```
Z
```

(2.5) $K_{q}=\langle b\rangle$.

The groups \boldsymbol{Z}_{m} and K_{q} are cyclic groups of order m and q respectively and we have

Lemma 2.6. The group Z_{m} is a normal subgroup of $Z_{m, q}$ and K_{q} is a subgroup satisfying $N\left(K_{q}\right)=K_{q}$ where $N\left(K_{q}\right)$ denotes the normalizer of K_{q} in $Z_{m, q}$.

Proof. Obviously \boldsymbol{Z}_{m} is a normal subgroup of $Z_{m, q}$. Let $g=a^{i} b^{j}$ be an arbitrary element of $N\left(K_{q}\right)$. Then we have $g^{-1} b g=b^{-1} a^{i(r-1)} b^{j+1} \in K_{q}$. Hence $a^{i(r-1)} \in \boldsymbol{Z}_{m} \cap K_{q}=\{e\}$. Therefore we obtain $m \mid i$ and $g=a^{i} b^{j}=b^{j} \in K_{q}$. Namely $N\left(K_{q}\right) \subset K_{q}$. q.e.d.

Lemma 2.7. Let $H(\neq\{e\})$ be a subgroup of $Z_{m, q}$. If H satisfies $H \cap Z_{m}=$ $\{e\}$, then H and K_{q} are conjugate.

Proof. By assumption, there exists an element $a^{i} b^{j} \in H$ which satisfies $j \neq 0 \bmod q$. Hence we obtain $\boldsymbol{Z}_{m} H=Z_{m, q}$. Thus there exists a canonical isomorphism

$$
Z_{m, q} / Z_{m} \simeq H / H \cap Z_{m}
$$

Therefore $q=\left|Z_{m, q}: \boldsymbol{Z}_{\boldsymbol{m}}\right|=\left|H: H \cap \boldsymbol{Z}_{m}\right|=|H|$. Since K_{q} is a Sylow q-subgroup of $Z_{m, q}, H$ and K_{q} are conjugate.

Remark 2.8. Let H be an arbitrary subgroup of $Z_{m, q}$. By Lemma 2.7, H satisfies one of the following:
(i) $H=\{e\}$,
(ii) H is conjugate to K_{q},
(iii) $H \cap \boldsymbol{Z}_{m} \neq\{e\}$.

Remark 2.9. In general the metacyclic group $Z_{m, q}$ depends on not only the integers m, q bui also the integer r. But the group $J_{z_{m, q}}(*)$ depends only on the integers m, q (see Theorem 7.3).

3. The real representation ring $\boldsymbol{R O}\left(Z_{m, q}\right)$

In this section we determine the additive generators of the real representation ring $R O\left(Z_{m, q}\right)$. First we recall the results, due to Curtis and Reiner [2;
§47], about the additive generators of the complex representation ring $R\left(Z_{m, q}\right)$.
The metacyclic group $Z_{m, q}$ has the following unitary representations:
(3.1) the trivial one-dimensional representation $1_{C^{1}}$,
(3.2) the complex q-dimensional representations $T_{h}(h \in Z)$ defined by

$$
T_{h}(a)=\left(\begin{array}{cccc}
L_{0} & & & \\
& L_{1} & & 0 \\
& & L_{2} & \\
\\
& 0 & & \ddots \\
& & & \\
& & L_{q-1}
\end{array}\right) \in U(q)
$$

and

$$
T_{h}(b)=\left(\begin{array}{ccccc}
0 \cdots \cdots \cdots \cdots & 1 \\
1 & 0 & & & \\
& 1 & 0 & & 0 \\
& & & \vdots \\
& & 1 & & \\
& 0 & & \ddots & \\
& & & \ddots & \vdots \\
& & & & 1
\end{array}\right) \quad 0 \quad \text {. }
$$

where $L_{j}==\exp \left(2 \pi h r^{j} \sqrt{-1} / m\right)$ for $0 \leqq j \leqq q-1$,
(3.3) the complex one-dimensional representations $\rho_{d}(d \in \boldsymbol{Z})$ defined by

$$
\rho_{d}(a)=1 \in U(1)
$$

and

$$
\rho_{d}(b)=\exp (2 \pi d \sqrt{-1} / q) \in U(1) .
$$

The representations $T_{h}(l, k \in Z)$ satisfy the following (see [2; §47]):
(3.4) If $(h, m)=1$, then T_{h} is irreducible.
(3.5) When T_{h} and T_{k} are irreducible, T_{h} and T_{k} are inequivalent if and only if $r^{j} h \neq k \bmod m$ for $0 \leqq j \leqq q-1$.

Denote by $F R\left(Z_{m, q}\right)$ the subgroup of $R\left(Z_{m, q}\right)$ generated by $\left\{T_{h} \mid(h, m)=1\right.$, $h \in \boldsymbol{Z}\}$. When n is an integer such that $n \mid m$ and $n>1$, we obtain the metacyclic group $Z_{n, q}=\left\{c, d \mid c^{n}=d^{q}=e, d c d^{-1}=c^{r}\right\}$ and define the natural epimorphism $\pi_{n}: Z_{m, q} \rightarrow Z_{n, q}$ by $\pi_{n}\left(a^{i} b^{j}\right)=c^{i} d^{j}$.

Theorem 3.6. There is an isomorphism (additively)

$$
R\left(Z_{m, q}\right) \cong A^{\prime} \oplus B^{\prime} \oplus \underset{n \mid m, n>1}{\oplus} F R\left(Z_{n, q}\right)
$$

where A^{\prime} is the subgroup of $R\left(Z_{m, q}\right)$ generated by $1_{c^{1}}$ and B^{\prime} is the subgroup of $R\left(Z_{m, q}\right)$ generated by $\left\{\rho_{d} \mid(d, q)=1, d \in \boldsymbol{Z}\right\}$.

Proof. It follows that

$$
R\left(Z_{m, q}\right)=A^{\prime} \oplus B^{\prime} \oplus \oplus_{n \mid m, n>1}^{\oplus} \pi_{n}^{*}\left(F R\left(Z_{n, q}\right)\right)
$$

(see [2; §47]). Since $\pi_{n}^{*} \mid F R\left(Z_{n, q}\right): F R\left(Z_{n, q}\right) \rightarrow R\left(Z_{m, q}\right)$ is injective, we obtain the result.

If χ is a complex representation, then the real representation $r(\chi)$ is defined to be the underlying real representation of χ, and $\bar{\chi}$ denotes the complex conjugate representation of χ.

Lemma 3.7. If $(h, m)=1$, then T_{h} and \bar{T}_{h} are inequivalent.
Proof. Suppose that T_{h} is equivalent to $\bar{T}_{h} \cong T_{-h}$. It follows from (3.5) that there exists an integer $j(0 \leqq j \leqq q-1)$ such that $r^{j} h \equiv-h \bmod m$. Since $(h, m)=1$, we have $r^{j} \equiv-1 \bmod m$. Thus we obtain $1 \equiv\left(r^{j}\right)^{q} \equiv(-1)^{q} \equiv-1 \bmod$ m. This is a contradiction. Therefore T_{h} is inequivalent to \bar{T}_{h}. q.e.d.

Denote by $F R O\left(Z_{m, q}\right)$ the subgroup of $R O\left(Z_{m, q}\right)$ generated by $\left\{r\left(T_{h}\right) \mid(h, m)=\right.$ $1, h \in Z\}$. Now we have

Theorem 3.8. There is an isomorphism (additively)

$$
R O\left(Z_{m, q}\right) \cong A \oplus B \oplus \oplus_{n \mid m, n>1}^{\oplus} F R O\left(Z_{n, q}\right)
$$

where A is the subgroup of $R O\left(Z_{m, q}\right)$ generated by the trivial one-dimensional representation $1_{R^{1}}$ and B is the subgroup of $R O\left(Z_{m, q}\right)$ generated by $\left\{r\left(\rho_{d}\right) \mid(d, q)=1\right.$, $d \in \boldsymbol{Z}\}$.

Proof. The result follows easily from Theorem 3.6 and Adams [1; Theorem 3.57].

In the following we write T_{h} and ρ_{d} instead of $r\left(T_{h}\right)$ and $r\left(\rho_{d}\right)$ respectively. We use the same symbol as a representation for its representation space.

Remark 3.9. The representation T_{h} is identified with the following unitary representation space:

$$
\left\{\begin{aligned}
& T_{h}(a) \circ\left(z_{0}, z_{1}, \cdots, z_{q-1}\right)=\left(\exp (2 \pi h \sqrt{-1} / m) z_{0}, \exp (2 \pi h r \sqrt{-1} / m) z_{1}, \cdots\right. \\
&\left.\exp \left(2 \pi h r^{q-1} \sqrt{-1} / m\right) z_{q-1}\right) \\
& T_{h}(b) \circ\left(z_{0}, z_{1}, \cdots, z_{q-1}\right)=\left(z_{q-1}, z_{0}, z_{1}, \cdots, z_{q-2}\right)
\end{aligned}\right.
$$

where $\left(z_{0}, z_{1}, \cdots, z_{q-1}\right) \in \boldsymbol{C}^{q}$. Moreover we regard \boldsymbol{R}^{1} as $1_{\boldsymbol{R}^{1}}$.

4. \boldsymbol{G}-homotopy equivalences of spheres of \boldsymbol{G}-representation spaces

We begin by fixing some notations. Let G be a finite group and X be a
G-space. We denote the isotropy group at $x \in X$ by G_{x}. For a subgroup H of $G,(H)$ denotes the conjugacy class of H in G and we set

$$
X^{H}=\left\{x \in X \mid G_{x} \supset H\right\}
$$

For a G-map $f: X_{1} \rightarrow X_{2}$, we denote by f^{H} the restriction $f \mid X_{1}^{H}: X_{1}^{H} \rightarrow X_{2}^{H}$. If V is a unitary G-representation space, then for a subgroup H of $G, S(V)^{H}$ has a canonical orientation defined by the complex structure of V^{H}. Let V, W be unitary G-representation spaces and $f: S(V) \rightarrow S(W)$ be a G-map. Then for a subgroup H of G satisfying $\operatorname{dim} S(V)^{H}=\operatorname{dim} S(W)^{H}$, we have the degree of the map $f^{H}: S(V)^{H} \rightarrow S(W)^{H}$. When $S(V)^{H}=S(W)^{H}=\phi$, we define $\operatorname{deg} f^{H}=1$. Since G is a finite group, there are only finite conjugacy classes of subgroups of G, say

$$
\left\{\left(H_{1}\right),\left(H_{2}\right), \cdots,\left(H_{n}\right)\right\}
$$

By Theorem 1.1 of James-Segal [5], we have
Theorem 4.1. Let V, W be unitary G-representation spaces which satisfy the condition $\operatorname{dim} S(V)^{H_{i}}=\operatorname{dim} S(W)^{H_{i}}$ for $1 \leqq i \leqq n$. If there exists a G-map $f: S(V) \rightarrow S(W)$ such that

$$
\left|\operatorname{deg} f^{H_{i}}\right|=1 \quad \text { for } \quad 1 \leqq i \leqq n
$$

then $S(V)$ and $S(W)$ are G-homotopy equivalent.

5. The group $\boldsymbol{J}_{Z_{m, q}}(\boldsymbol{B})$

Let $\rho_{a_{i}}(1 \leqq i \leqq n)$ and $\rho_{b_{j}}(1 \leqq j \leqq n)$ be non-trivial $Z_{m, q}$-representation spaces defined by (3.3). We set

$$
M=\rho_{a_{1}} \oplus \rho_{a_{2}} \oplus \cdots \oplus \rho_{a_{n}}, \quad M^{\prime}=\rho_{b_{1}} \oplus \rho_{b_{2}} \oplus \cdots \oplus \rho_{b_{n}}
$$

Theorem 5.1. The following three conditions are equivalent:
(i) $S(M)$ and $S\left(M^{\prime}\right)$ are $Z_{m, q}$-homotopy equivalent,
(ii) M and M^{\prime} are J-equivalent,
(iii) $\prod_{i=1}^{n} a_{i} \equiv \pm \prod_{j=1}^{n} b_{j} \bmod q$.

Proof. From the definition of $\rho_{d}(d \in \boldsymbol{Z})$, it suffices to consider the $K_{q}{ }^{-}$ actions instead of the $Z_{m, q}$-actions. The K_{q}-representation $\rho_{d} \mid K_{q}$ is defined by $\left(\rho_{d} \mid K_{q}\right)(b)=\exp (2 \pi d \sqrt{-1} / q)$. Since $\left(a_{i}, q\right)=\left(b_{j}, q\right)=1$ for $1 \leqq i, j \leqq n$, it follows from Kawakubo [7; Theorem 2.6] that (i), (ii) and (iii) are equivalent. q.e.d.

Corollary 5.2. There is an isomorphism

$$
J_{Z_{m, q}}(B) \cong \boldsymbol{Z} \oplus \boldsymbol{Z}_{(q-1) / 2}
$$

Proof. See Kawakubo [7; §2 and §3].

6. The group $\operatorname{Ker}\left(J_{Z_{m, q}} \mid \operatorname{FRO}\left(Z_{m, q}\right)\right)$

In this section we determine the group $\operatorname{Ker}\left(J_{Z_{m, q}} \mid F R O\left(Z_{m, q}\right)\right)$. Let T_{h} and T_{k} be $Z_{m, q}$-representation spaces defined by (3.9). If T_{h} is contained in $F R O\left(Z_{m, q}\right)$, then the integer h satisfies $(h, m)=1$. Thus there exists some integer \bar{h} such that $\bar{h} h \equiv 1 \bmod m$. We define a $Z_{m, q}$-map $f_{\bar{h} k}: S\left(T_{h}\right) \rightarrow S\left(T_{k}\right)$ by

$$
f_{\overline{h k}}\left(z_{0}, z_{1}, \cdots, z_{q-1}\right)=\frac{\left(z_{0}^{\bar{\hbar} k}, z_{1}^{\bar{\hbar} k}, \cdots, z_{q-1}^{\bar{k} k}\right)}{\left\|\left(z_{0}^{\bar{k} k}, z_{1}^{\bar{k} k}, \cdots, z_{q-1}^{\bar{k} k}\right)\right\|} .
$$

It is obvious that $f_{\vec{h} k}$ is a well-defined $Z_{m, q}$-map.
Let $T_{h_{i}}(1 \leqq i \leqq n)$ and $T_{k_{j}}(1 \leqq j \leqq n)$ be $Z_{m, q}$-representation spaces contained in $\operatorname{FRO}\left(Z_{m, q}\right)$. We set

$$
N=T_{h_{1}} \oplus T_{h_{2}} \oplus \cdots \oplus T_{h_{n}}, \quad N^{\prime}=T_{k_{1}} \oplus T_{k_{2}} \oplus \cdots \oplus T_{k_{n}}
$$

Let x_{0} (resp. y_{0}) be the point (0,1) of $S\left(\boldsymbol{R}^{2}\right) \subset S\left(N \oplus \boldsymbol{R}^{2}\right)$ (resp. $S\left(\boldsymbol{R}^{2}\right) \subset$ $S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$). Since \boldsymbol{C}^{1} is a complex vector space, the underlying real vector space \boldsymbol{R}^{2} has a canonical orientation.

Lemma 6.1. There exists a $Z_{m, q}-m a p ~ F: S\left(N \oplus \boldsymbol{R}^{2}\right) \rightarrow S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ such that (i) $F\left(x_{0}\right)=y_{0}$,
(ii) $\operatorname{deg} F=\prod_{i=1}^{n}\left(\bar{h}_{i} k_{i}\right)^{q}, \operatorname{deg} F^{K_{q}}=\prod_{i=1}^{n} \bar{h}_{i} k_{i}$ and $\operatorname{deg} F^{H}=1$, where H is an arbitrary subgroup of $Z_{m, q}$ satisfying $H \cap \boldsymbol{Z}_{m} \neq\{e\}$.

Proof. First we study the $Z_{m, q}$-map $f_{\bar{k} k}: S\left(T_{h}\right) \rightarrow S\left(T_{k}\right)$, where T_{h} and T_{k} are contained in $\operatorname{FRO}\left(Z_{m, q}\right)$. It follows from the definition of $f_{\bar{k} k}$ that $\operatorname{deg} f_{\bar{k} k}=$ $(\bar{h} k)^{q}$. For the subgroup K_{q}, we have

$$
\begin{aligned}
& S\left(T_{h}\right)^{K_{q}}=\left\{\left(z_{0}, z_{1}, \cdots, z_{q-1}\right) \in S\left(T_{h}\right) \mid z_{0}=z_{1}=\cdots=z_{q-1}\right\} \\
& S\left(T_{k}\right)^{K_{q}}=\left\{\left(w_{0}, w_{1}, \cdots, w_{q-1}\right) \in S\left(T_{k}\right) \mid w_{0}=w_{1}=\cdots=w_{q-1}\right\}
\end{aligned}
$$

Hence $\operatorname{deg}\left(f_{\bar{k} k}\right)^{K_{q}}=\bar{h} k$. Since $S\left(T_{h}\right)^{H}=S\left(T_{k}\right)^{H}=\phi$, we obtain $\operatorname{deg}\left(f_{\bar{h} k}\right)^{H}=1$. Then we put

$$
F=f_{{\overline{h_{1}}} k_{1}} * f_{\bar{h}_{2} k_{2}} * \cdots * f_{\overline{\bar{n}}_{n} k_{n}} * i d_{S\left(R^{2}\right)},
$$

where $*$ denotes the join. Now F is a $Z_{m, q}$-map from $S\left(N \oplus \boldsymbol{R}^{2}\right)$ to $S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ which satisfies the conditions (i) and (ii).
q.e.d.

The following lemma is due to Petrie [10].
Lemma 6.2. Let G be a finite group and V, W be unitary G-representation spaces. Let H be a subgroup of G whose conjugacy class is contained in $\operatorname{Iso}(V)=$
$\left\{\left(G_{v}\right) \mid v \in V\right\}$. Suppose that $f: S(V) \rightarrow S(W)$ is an H-map, then there exists a G-map $\tau(G, H ; f): S\left(V \oplus \boldsymbol{R}^{2}\right) \rightarrow S\left(W \oplus \boldsymbol{R}^{2}\right)$ which satisfies the following conditions:
(i) $\tau(G, H ; f)\left(x_{0}\right)=y_{0}$ where x_{0}, y_{0} are those in Lemma 6.1.
(ii) Let K be a subgroup of G such that $\operatorname{dim} V^{K}=\operatorname{dim} W^{K}$. If there exists some element g_{0} of G such that $g_{0}^{-1} K g_{0} \subset H$, we have

$$
\operatorname{deg} \tau(G, H ; f)^{K}=\left|(G / H)^{K}\right| \operatorname{deg} f^{g_{0}-1 K g_{0}} .
$$

On the other hand, if $g^{-1} K g \nsubseteq H$ for any element g of G, we have

$$
\operatorname{deg} \tau(G, H ; f)^{K}=0
$$

Proof. By Meyerhoff-Petrie [9; Theorem 2.2] and Petrie [10; Lemma 2.3], there exists a G-map $\tilde{f}: S\left(V \oplus \boldsymbol{R}^{1}\right) \rightarrow S\left(W \oplus \boldsymbol{R}^{1}\right)$ which satisfies the condition (ii). Then we obtain a G-map $\tau(G, H ; f)=\tilde{f} * i d_{s\left(\boldsymbol{R}^{1}\right)}: S\left(V \oplus \boldsymbol{R}^{2}\right) \rightarrow S\left(W \oplus \boldsymbol{R}^{2}\right)$. It is obvious that the G-map $\tau(G, H ; f)$ satisfies the conditions (i) and (ii).
q.e.d.

Lemma 6.3. There exist two $Z_{m, q}-m a p s \quad \theta, \psi: S\left(N \oplus \boldsymbol{R}^{2}\right) \rightarrow S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ which satisfy the following two conditions:
(i) $\theta\left(x_{0}\right)=\psi\left(x_{0}\right)=y_{0}$,
(ii) $\operatorname{deg} \theta=m q, \operatorname{deg} \theta^{K_{q}}=\operatorname{deg} \theta^{H}=0, \operatorname{deg} \psi=m, \operatorname{deg} \psi^{K_{q}}=1$ and $\operatorname{deg} \psi^{H}=0$, where H is an arbitrary subgroup of $Z_{m, q}$ satisfying $H \cap \boldsymbol{Z}_{m} \neq\{e\}$.

Proof. We recali that N, N^{\prime} are unitary $Z_{m, q}$-representacion spaces and remark that $\operatorname{Iso}(N)=\left\{(e),\left(K_{q}\right),\left(Z_{m, q}\right)\right\}$. Apply Lemma 6.2 to the identity map id: $S(N) \rightarrow S\left(N^{\prime}\right)$ which is an $\{e\}$-map, then we have a $Z_{m, q}$-map $\theta=$ $\tau\left(Z_{m, q},\{e\} ; i d\right): S\left(N \oplus \boldsymbol{R}^{2}\right) \rightarrow S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ such that $\theta\left(x_{0}\right)=y_{0}, \operatorname{deg} \theta=\left|z_{m, q}\right|=m q$ and $\operatorname{deg} \theta^{K_{q}}=\operatorname{deg} \theta^{H}=0$. Moreover the identity map is not only an $\{e\}$-map but also a K_{q}-map. We also have a $Z_{m, q}$-map $\psi=\tau\left(Z_{m, q}, K_{q} ; i d\right): S\left(N \oplus \boldsymbol{R}^{2}\right) \rightarrow$ $S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ such that $\psi\left(x_{0}\right)=y_{0}, \operatorname{deg} \psi=\left|Z_{m, q}\right| K_{q}\left|=m, \operatorname{deg} \psi^{K_{q}}=\left|\left(Z_{m, q} / K_{q}\right)^{K_{q}}\right|\right.$ $=\left|N\left(K_{q}\right) / K_{q}\right|=1$ and $\operatorname{deg} \psi^{H}=0$. q.e.d.

Now we have
Theorem 6.4. The following three conditions are equivalent:
(i) $S\left(N \oplus \boldsymbol{R}^{2}\right)$ and $S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ are $Z_{m, q}$-homotopy equivalent,
(ii) N and N^{\prime} are J-equivalent,
(iii) $\prod_{i=1}^{n} h_{i}^{q} \equiv \pm \prod_{j=1}^{n} k_{j}^{q} \bmod m$.

Proof. Obviously (i) implies (ii).
First we show that (ii) implies (iii). By assumption, there exists an orthogonal $Z_{m, q}$-representation space U such that $S(N \oplus U)$ and $S\left(N^{\prime} \oplus U\right)$
are $Z_{m, q}$-homotopy equivalent. Obviously $S(N \oplus U)$ and $S\left(N^{\prime} \oplus U\right)$ are also $\boldsymbol{Z}_{\boldsymbol{m}}$-homotopy equivalent. Let $\mu_{d}(d \in \boldsymbol{Z})$ be the complex one-dimensional \boldsymbol{Z}_{m}-representations defined by $\mu_{d}(a)=\exp (2 \pi d \sqrt{-1} / m)$. Then we have $T_{h} \mid Z_{m} \cong \mu_{h} \oplus \mu_{h r} \oplus \mu_{h r^{2}} \oplus \cdots \oplus \mu_{h r^{q-1}}$ as \boldsymbol{Z}_{m}-representations. The integers $h_{i} r^{s}$, $k_{j} r^{s}$ satisfy $\left(h_{i} r^{s}, m\right)=\left(k_{j} r^{s}, m\right)=1$ for $1 \leqq i, j \leqq n$ and $0 \leqq s \leqq q-1$. It follows from Kawakubo [7; Theorem 2.6] that $r^{q(q-1) n / 2} \prod_{i=1}^{n} h_{i}^{q} \equiv \pm r^{q(q-1) n / 2} \prod_{j=1}^{n} k_{j}^{q} \bmod m$. Since $r^{q} \equiv 1 \bmod m$, we obtain the condition (iii).

Next we show that (iii) implies (i). By Lemma 6.1, there exists a $Z_{m, q^{-}}$ map $F: S\left(N \oplus \boldsymbol{R}^{2}\right) \rightarrow S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ such that

$$
\left\{\begin{array}{l}
F\left(x_{0}\right)=y_{0} \tag{6.4.1}\\
\operatorname{deg} F=\prod_{i=1}^{n}\left(\bar{h}_{i} k_{i}\right)^{q}, \operatorname{deg} F^{K_{q}}=\prod_{i=1}^{n} \bar{h}_{i} k_{i} \\
\text { and } \operatorname{deg} F^{H}=1 \quad \text { where } H \cap Z_{m} \neq\{e\}
\end{array}\right.
$$

On the other hand, by Lemma 6.3, there exists a $Z_{m, q}$-map $\psi: S\left(N \oplus \boldsymbol{R}^{2}\right) \rightarrow$ $S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ such that

$$
\left\{\begin{array}{l}
\psi\left(x_{0}\right)=y_{0}, \tag{6.4.2}\\
\operatorname{deg} \psi=m, \operatorname{deg} \psi^{K_{q}}=1 \text { and } \operatorname{deg} \psi^{H}=0 \text { where } H \cap \boldsymbol{Z}_{m} \neq\{e\} .
\end{array}\right.
$$

We define $\varepsilon(= \pm 1)$ by $\prod_{i=1}^{n} h_{i}^{q} \equiv \varepsilon \prod_{j=1}^{n} k_{j}^{q} \bmod m$. The $Z_{m, q}$-homotopy classes of $Z_{m, q}$-maps from $S\left(N \oplus \boldsymbol{R}^{2}\right)$ to $S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ sending x_{0} to y_{0} form a group. Therefore by (6.4.1) and (6.4.2), we obtain a $Z_{m, q}$-map $F_{2}=F-\left(\prod_{i=1}^{n} \bar{h}_{i} k_{i}-\varepsilon\right) \psi$ which satisfies the following condition:

$$
\left\{\begin{array}{l}
F_{2}\left(x_{0}\right)=y_{0} \tag{6.4.3}\\
\operatorname{deg} F_{2}=\prod_{i=1}^{n}\left(\bar{h}_{i} k_{i}\right)^{q}-\left(\prod_{i=1}^{n} \bar{h}_{i} k_{i}-\varepsilon\right) m, \quad \operatorname{deg} F_{2}^{K}=\varepsilon \\
\text { and } \operatorname{deg} F_{2}^{H}=1 \quad \text { where } H \cap \boldsymbol{Z}_{m} \neq\{e\}
\end{array}\right.
$$

By Lemma 6.3, there exists a $Z_{m, q}$-map $\theta: S\left(N \oplus \boldsymbol{R}^{2}\right) \rightarrow S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ such that

$$
\left\{\begin{array}{l}
\theta\left(x_{0}\right)=y_{0} \tag{6.4.4}\\
\operatorname{deg} \theta=m q \text { and } \operatorname{deg} \theta^{K_{q}}=\operatorname{deg} \theta^{H}=0 \quad \text { where } H \cap \boldsymbol{Z}_{m} \neq\{e\} .
\end{array}\right.
$$

On the other hand, by the assumption (iii), we have

$$
\prod_{i=1}^{n}\left(\bar{h}_{i} k_{i}\right)^{q} \equiv \varepsilon \quad \bmod m
$$

Then we obtain

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\bar{h}_{i} k_{i}\right)^{q}-\left(\prod_{i=1}^{n} \bar{h}_{i} k_{i}-\varepsilon\right) m-\varepsilon \equiv 0 \quad \bmod m . \tag{6.4.5}
\end{equation*}
$$

Moreover it is well-known that

$$
\prod_{i=1}^{n}\left(\bar{h}_{i} k_{i}\right)^{q} \equiv \prod_{i=1}^{n} \bar{h}_{i} k_{i} \quad \bmod \psi
$$

Hence we obtain (see (2.2))

$$
\begin{align*}
\prod_{i=1}^{n}\left(\bar{h}_{i} k_{i}\right)^{q}-\left(\prod_{i=1}^{n} \bar{h}_{i} k_{i}-\varepsilon\right) m-\varepsilon & \equiv(1-m) \prod_{i=1}^{n} \bar{h}_{i} k_{i}+\varepsilon(m-1) \tag{6.4.6}\\
& \equiv 0 \quad \bmod q
\end{align*}
$$

Since m and q are relatively prime integers, by (6.4.5) and (6.4.6), we obtain

$$
\prod_{i=1}^{n}\left(\bar{h}_{i} k_{i}\right)^{q}-\left(\prod_{i=1}^{n} \bar{h}_{i} k_{i}-\varepsilon\right) m-\varepsilon \equiv 0 \quad \bmod m q
$$

Let n_{0} be an integer such that

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\bar{h}_{i} k_{i}\right)^{q}-\left(\prod_{i=1}^{n} \bar{h}_{i} k_{i}-\varepsilon\right) m-\varepsilon=n_{0} m q . \tag{6.4.7}
\end{equation*}
$$

By (6.4.3), (6.4.4) and (6.4.7), we obtain a $Z_{m, q}$-map $F_{3}=F_{2}-n_{0} \theta$ such that $\operatorname{deg} F_{3}=\operatorname{deg} F_{3}^{K_{q}}=\varepsilon \quad$ and $\quad \operatorname{deg} F_{3}^{H}=1 \quad$ where $H \cap Z_{m} \neq\{e\}$.

Therefore it follows from Remark 2.8 and Theorem 4.1 that $S\left(N \oplus \boldsymbol{R}^{2}\right)$ and $S\left(N^{\prime} \oplus \boldsymbol{R}^{2}\right)$ are $Z_{m, q}$-homotopy equivalent.

7. The group $J_{Z_{m, q}}(*)$

In this section we determine the group $J_{z_{m, q}}(*)$. For this purpose we follow the procedure due to Kawakubo [7; §3 and §4]. To determine the group

$$
C_{m}=J_{z_{m, q}}\left(F R O\left(Z_{m, q}\right)\right),
$$

we define another group C_{m}^{\prime} as follows. Let $m=p_{1}^{\gamma(1)} p_{2}^{r(2)} \cdots p_{t}^{p^{\prime(t)}}$ be a prime decomposition of \boldsymbol{m}. We set

$$
C_{m}^{\prime}=\boldsymbol{Z} \oplus\left\{\underset{i=1}{t} \boldsymbol{Z}_{\left.\left(p_{i}^{r}\right)-p_{i}^{r^{(i)-1}}\right) / q}\right\} / \boldsymbol{Z}_{2}
$$

where the inclusion of \boldsymbol{Z}_{2} into $\left.\underset{i=1}{\oplus} \boldsymbol{Z}_{\left(p_{i}^{r}\right.}{ }_{i}^{(i)}-p_{i}^{r(i)-1}\right) / q$ is given by $1 \rightarrow \underset{i=1}{\dagger}\left(p_{i}^{\gamma(i)}-p_{i}^{\gamma(i)-1}\right) /$ $2 q$. Remark that $2 q \mid\left(p_{i}-1\right)$ for $1 \leqq i \leqq t$ (see (2.2)).

We also define a homomorphism

$$
J_{m}^{\prime}: F R O\left(Z_{m, q}\right) \rightarrow C_{m}^{\prime}
$$

as follows. As is well-known, there exist integers $\alpha(i)$ for $1 \leqq i \leqq t$ such that $\alpha(i)$ is a primitive root $\bmod p_{i}^{r(i)}$ and $\alpha(i) \equiv 1 \bmod p_{j}^{r(j)}$ for every $j \neq i$. For every integer h with $(h, m)=1$ and for $1 \leqq i \leqq t$, there exists a unique $\mu(h, i) \in \boldsymbol{Z}_{p^{r}(i) p^{r(i)-1}}$ such that

$$
h \equiv \prod_{i=1}^{t} \alpha(i)^{\mu(h, i)} \quad \bmod m
$$

Let

$$
\omega: \oplus_{i=1}^{t} \boldsymbol{Z}_{p_{i}^{r(i)}-p_{i}^{r(i)-1}} \rightarrow\left\{\oplus_{i=1}^{t} \boldsymbol{Z}_{\left.\left(p_{i}^{r(i)}-p_{i}^{r(i)-1}\right) / q\right\} \mid \boldsymbol{Z}_{2}}\right.
$$

denote the natural projection. Let $\sum_{j=1}^{u} a\left(h_{j}\right) T_{h_{j}}$ be an arbitrary element of $F R O\left(Z_{m, q}\right)$, that is, $a\left(h_{j}\right) \in \boldsymbol{Z}$. We define

$$
J_{m}^{\prime}\left(\sum_{j=1}^{u} a\left(h_{j}\right) T_{h_{j}}\right)=\sum_{j=1}^{u} a\left(h_{j}\right) \oplus \omega\left(\oplus_{i=1}^{t} \sum_{j=1}^{u} a\left(h_{j}\right) \mu\left(h_{j}, i\right)\right) .
$$

Denote by J_{m} the restricted homomorphism $J_{z_{m, q}} \mid F R O\left(Z_{m, q}\right)$. We have
Lemma 7.1. J_{m}^{\prime} is an epimorphism and $\operatorname{Ker} J_{m}=\operatorname{Ker} J_{m}^{\prime}$. Hence there is an isomorphism

$$
C_{m} \cong C_{m}^{\prime}
$$

Proof. Let $a, a_{i}(1 \leqq i \leqq t)$ be arbitrary integers. Then we have

$$
\begin{aligned}
J_{m}^{\prime}\left(\left(a-\sum_{i=1}^{t} a_{i}\right) T_{1}+\sum_{i=1}^{t} a_{i} T_{a(i)}\right)=a \oplus \omega\left(\oplus_{i=1}^{t} a_{i}\right) \\
\in C_{m}^{\prime}=\boldsymbol{Z} \oplus_{i=1}\left\{\stackrel{t}{\oplus} \boldsymbol{Z}_{\left(p_{i}^{r^{(i)}}-p_{i}^{\left.f_{i}^{(i)-1}\right) / q}\right\}}\right\} / \boldsymbol{Z}_{2}
\end{aligned}
$$

This shows that J_{m}^{\prime} is surjective.
Next we show that $\operatorname{Ker} J_{m}=\operatorname{Ker} J_{m}^{\prime}$. Let $x=\sum_{\lambda=1}^{u} a\left(h_{\lambda}\right) T_{h_{\lambda}}-\sum_{\nu=1}^{v} b\left(k_{\nu}\right) T_{k_{\nu}}$ be an arbitrary element of $F R O\left(Z_{m, q}\right)$, where $a\left(h_{\lambda}\right)(1 \leqq \lambda \leqq u)$ and $b\left(k_{\nu}\right)(1 \leqq \nu \leqq v)$ are non-negative integers. The element x is contained in Ker J_{m}^{\prime} if and only if the following condition (7.1.1) is satisfied.

$$
\left\{\begin{array}{c}
\sum_{\lambda=1}^{u} a\left(h_{\lambda}\right)=\sum_{\nu=1}^{v} b\left(k_{\nu}\right), \tag{7.1.1}\\
\omega\left(\oplus_{i=1}^{t} \sum_{\lambda=1}^{u} a\left(h_{\lambda}\right) \mu\left(h_{\lambda}, i\right)\right)=\omega\left(\oplus_{i=1}^{t} \sum_{\nu=1}^{v} b\left(k_{v}\right) \mu\left(k_{\nu}, i\right)\right)
\end{array}\right.
$$

It is easy to see that the condition (7.1.1) is equivalent to the following condition (7.1.2):

$$
\left\{\begin{array}{l}
\sum_{\lambda=1}^{u} a\left(h_{\lambda}\right)=\sum_{\nu=1}^{v} b\left(k_{\nu}\right), \tag{7.1.2}\\
\prod_{\lambda=1}^{u} h_{\lambda}^{a\left(h_{\lambda}\right) q} \equiv \pm \prod_{\nu=1}^{v} k_{\nu}^{b\left(k_{\nu}\right) q} \quad \bmod m .
\end{array}\right.
$$

By Theorem 6.4, x satisfies the condition (7.1.2) if and only if x is contained in Ker J_{m}. Therefore we have $\operatorname{Ker} J_{m}=\operatorname{Ker} J_{m}^{\prime}$.
q.e.d.

We recall that there is an isomorphism (see Theorem 3.8)

$$
R O\left(Z_{m, q}\right) \cong A \oplus B \underset{n \mid m, n>1}{\oplus} F R O\left(Z_{n, q}\right) .
$$

Lemma 7.2. There is an isomorphism

$$
T_{Z_{m, q}}(*) \cong\{0\} \oplus \operatorname{Ker}\left(J_{z_{m, q}} \mid B\right) \oplus_{n \mid m, n>1} \oplus_{n} \operatorname{Ker} J_{n}
$$

Proof. The result is easily seen from tom Dieck [3; Proposition 4.1].
It follows from Corollary 5.2 and Lemma 7.2 that

$$
J_{z_{m, q}}(*) \cong \boldsymbol{Z} \oplus \boldsymbol{Z} \oplus \boldsymbol{Z}_{(q-1) / 2} \oplus \underset{n \mid m, n>1}{\oplus} C_{n} .
$$

Therefore we obtain, by Lemma 7.1, the following main theorem.
Theorem 7.3. There is an isomorphism

$$
J_{z_{m, q}}(*) \cong \boldsymbol{Z} \oplus \boldsymbol{Z} \oplus \boldsymbol{Z}_{(q-1) / 2} \oplus \oplus_{m \mid n, n>1} \oplus_{n}^{\prime}
$$

Corollary 7.4. Let V, W be orthogonal $Z_{m, q}-$ representation spaces. If V and W are J-equivalent, then $S\left(V \oplus \boldsymbol{R}^{2}\right)$ and $S\left(W \oplus \boldsymbol{R}^{2}\right)$ are $Z_{m, q}$-homotopy equivalent.

Proof. The result follows easily from Theorems 5.1, 6.5 and Lemma 7.2.
Remark 7.5. M. Morimoto has succeeded to omit \boldsymbol{R}^{2} in Corollary 7.4.

8. Appendix

In this section G will be a finite group. Denote by $R O_{0}(G)$ the additive subgroup of $R O(G)$

$$
\left\{V-W \mid \operatorname{dim} V^{H}=\operatorname{dim} W^{H} \quad \text { for every subgroup } H \text { of } G\right\}
$$

In [3] and [4], tom Dieck and Petrie defined the group $j O(G)$ to be $R O_{0}(G)$ /
$T_{G}(*)$. Since $T_{G}(*) \subset R O_{0}(G) \subset R O(G)$, there exists a short exact sequence

$$
0 \rightarrow j O(G) \rightarrow J_{G}(*) \rightarrow R O(G) / R O_{0}(G) \rightarrow 0
$$

Since $R O(G) / R O_{0}(G)$ is a free abelian group (see Lee-Wasserman [8; §3]), the above short exact sequence is split. Thus we have

Proposition 8.1. There is an isomorphism

$$
J_{G}(*) \cong j O(G) \oplus R O(G) / R O_{0}(G)
$$

References

[1] J.F. Adams: Lectures on Lie groups, Benjamin Inc., New York, 1969.
[2] C.R. Curtis and I. Reiner: Representation theory of finite groups and associative algebras, Interscience, 1962.
[3] T. tom Dieck: Homotopy-equivalent group representations, J. Reine Angew. Math. 298 (1978), 182-195.
[4] T. tom Dieck and T. Petrie: Geometric modules over the Burnside ring, Invent. Math. 47 (1978), 273-287.
[5] I.M. James and G.B. Segal: On equivariant homotopy type, Topology 17 (1978), 267-272.
[6] K. Kawakubo: The groups $J_{G}(*)$ for compact abelian topological groups G, Proc. Japan Acad. 54 (1978), 76-78.
[7] K. Kawakubo: Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan 32 (1980), 105-118.
[8] C.N. Lee and A.G. Wasserman: On the groups $J O(G)$, Memoirs of A.M.S. 159 (1975).
[9] A. Meyerhoff and T. Petrie: Quasi equivalence of G modules, Topology 15 (1976), 69-75.
[10] T. Petrie: Geometric modules over the Burnside ring, Aarhus Univ. preprint No. 26, (1976).

Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan

