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Let V be a -vector space over a finite field k of characteristic Φ2, and (x,
y) a non-degenerate symmetric bilinear form on V. For an element a in V

with (a, α)Φθ, we denote by σa the reflection in the hyperplane orthogonal to
a. A subspace generated by a, b, •••, c is denoted by <#, δ, —, c>. Especially

<X> is denoted by £. Let A={a\(a, a)=l}. We can define a symmetric

structure on A by a°b=c, where c—a**. The main object of this note is to

show that if dim F>4 or if dim V=\ and k^F3 (the field of three elements),
then A is a primitive symmetric set. For the primitive symmetric set, see

[3], Group-theoretically this implies that the centralizer of the involution σa

in the orthogonal group is a maximal subgroup.

Let G(V) be the orthogonal group, and Ω its commutator subgroup. Let
H(A) be the group generated by σaσb where (a, ά) = (b, b)=\. Note that
the restriction of H(A) onto A is called the group of displacements and is de-
noted by H(A) in the previous papeis. We denote the latter by H(A).

Lemma 1. Suppose that dim F>4. Let a and b be elements in V such

that (a, a)=(b, δ)φG and that (a, by is a non-singular subspace of dim 2. If x
is an element in V such that (x, x)=(a, a) and dim ζa, xy=2, then there exist rl

and τ2 in G(V) and c in V such that ατι=α, xrι=c, arz=b and xrz=c.

Proof. First, we note that if y and z are elements in V such that (y, y)=
(%9 #)ΦO and that dim <j>, #>=2, then <j>, #> is non-singular if and only if

(y^ z)^±(y, y). For, let z—ay+t with a in k and t in V such that (y, t)=0
and ίφO. Then <j, #)> is singular if and only if (t, t)=0, if and only if a=

±1, if and only if (y, z)=±(y,y). Now, put c=β(a+b)+u with β in k and

u in V such that tt<EΞ<α, έ)-1. We let β = (a, x)((a, a)+(a, b))'1. This is

possible since (a, ^)Φ— (a, b) as noted first. Then (α, c)=(b, c)=(a, x). Next,
select u suitably in <X ό)-1 so that (c, c)=(a, a). This is possible since <α, δ)-1

is universal, i.e., k= {(u, ιi)\u^(a3 έ)-1}. Note dim F>4 and hence dim <α, Vy^
>2. Thus, we have <X Λ:>^<Λ, c>^<£, c>, the first elements corresponding
to the first, and the second to the second by the isomorphisms. Then by Witt's

theorem, we have the consequence stated in Lemma 1.
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Lemma 2. In Lemma 1, τl and τ2 can be taken in Ω, if (a, x) is non-

singular.

Proof. Any isometry on <X x)-1- is extended to an isometry on V by lett-
ing it operate trivially on <(#, x)>. So, by multiplying τi by an isometry on
<\#, xy^- if necessary, we may assume that τ, is contained in O+(F), the group of

rotations. Next we recall that O+(V)/Ω^k*/k*2, where the isomorphism is
induced by the spinorial norm θ. (See [1].) So, if necessary, choose p, suitably
on <fl, xy *- such that θ(ρiτi)=ly which implies that ptτ,eΩ. Take p^r,. for

τ, , and the proof is completed.

Lemma 3. Suppose that dim F>4. Let a and b be elements in V such
that (a, a)=(b, δ)φO and that <X by is non-singular of dim 2. If r is an element

in G(V) such that dim <X aτy=2., then there exist τλ and τ2 in G(V) such that

Proof. Let x=ar in Lemma 1. The above identity follows easily.

Lemma 4. Suppose that either dim F>4 or dim V=4 and k^=F3. Let

a and b be elements in V such that (a, a)=(b, i)Φθ and that (a, by is singular of
dim 2. Then there exists c such that (cy £)—(#, a) and that (a, cy and <$, cy are
both non-singular.

Proof. Since <0, by is singular, b—±a-\-t with (a, t)=0 and (ί, t)=Q
as noted in the proof of Lemma 1. Without losing generality, we may assume
that b=a+t. Then there exists t' in <έz>L such that (*', t')=Q and (t, t')=
i(Λ, a). (See [1], p. 119.) When dim F>4, we have dim <Λ, t, t'y L>2 and
hence there exists c in <tf, /, t'y1- such that (c, c)=(a, a), c satisfies the con-
ditions in Lemma 4. Suppose that dim V=4 and that k^F3. Put c=aa-}-

βt+ytf. Then, (c, c)=(a, a) if and only if a\a, ά)+2βγ(t, t')=(ay a\ i.e.,
a2+βfY=l. Suppose that this is satisfied. Then, (α, a)=(c, c)=(b, ό), and
so, <0, cy is non-singular if and only if αφ±l as we noted before. Also,

<δ, c^ is non-singular if and only if α+iΎΦ±l For, <i, cy is non-singular
if and only if (ft, c)Φ±(^ c) which implies (α+^γ) (a, fl)Φ±(0, a). If the
characteristic of AΦ3, let α=£, /9=i and γ=3. If the characteristic's and
ΛΦF3, let 6 be an element in k such that £2= — 1, and let a=l+89 β=—2—£
and γ=£. Then α2+/?7=l, αφ±l and α+|γφ±l, the proof being com-
pleted.

Theorem 1. Suppose that either dim V>4 or dim V=4 and &ΦF3. Let
a and b be elements in V such that (a, ά)=(b, δ)φO and that dim <α, by=2.
Let 8 be any non-zero element in k. Then there exist β< (ί=l, ,4) such that
(ai,ai)=8 and that aσaισa2

σa3σ<n=b. Especially, A is transitive symmetric set.
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Proof. First suppose that <α, by is non-singular. Let d=a+u, where
is chosen in <Λ>-L so that (dyd)—S. Clearly dim <α, aσdy=2, and hence

by Lemma 3 there exist rλ and r2 in G(V) such that aτϊlσdτιτϊ1σdτ2=b) i.e., a°aioa2

=b, where a1=dr^ and a^^d^. Let d^α^^, and Theorem 1 holds in this
case. If <β, by is singular, we use Lemma 4. Let c be an element given in
Lemma 4. Apply the above argument on <#, r> and <V, i>. We can find αt

(ι=l, ,4) such that a°a1σβ2=c and cσ«3

σ«4— δ. The proof is completed.

Lemma 5. Suppose that dim F>3. Let B be a block in A, i.e., a set of
imprimitivity with respect to (σa\B^Ay. Suppose that B contains more than
one element. Then B contains aλ and a2 such that (aly a1)=(a2, a2) = l and that

<\aiι a2/> is non-singular of dim 2.

Proof. Let a and b two different elements in B with (a, a)=(b, δ)=l.
If <α, by is non-singular, we have nothing to prove. So, assume that <#, by
is singular. We may assume that b=a+t with (α, t)=0 and (ty t)=Q as before.
Let t' be an element in ^a^ such that (t'9 ί')=0 and (f, *')=£. Let c=ί+ί'.
Then (c, c) = l, aσc=a and b(Tc=b--2(bf c)c=a—tf. Therefore by the definition

of a block, a—t'^B. Let aλ=b and a2=a—t'. aγ and β2^B, and ̂ j, α2> is

non-singular since (tfj, «2)— 1 — iΦ±l

Corollary. Suppose that either dim F>4 or dim V=4- and k^F3. Then

Proof. We must show σxσyσxσy^H(A), where σΛΦσ r By Theorem 1,

there exists an element r in H(Λ) such that<y<Γ*=vτ. Let p=τσj1. Since yp=y>

we have p~1σyp=σy, or σyp=pσy. Then σΛσ.yσΛσ:y=(p~1τ)cr.y(ρ~1τ)~1σ:y=jθ~1(τcr:y

T~V,)p. Since ίί(̂ ) is normal in G(F), we have Ωe

Theorem 2. Suppose that either dim F>4 or ώw F=4 αwrf k+F3. Then
A is a primitive symmetric set.

Proof. Let B be a block containing more than one element. By Lemma

5, we may assume that B contains a and b such that (a, a)=(b, b)=l and that
<X by is non-singular of dim 2. Let c be any element such that (c, r)=l
and that (a, cy is non-singular of dim 2. By Lemma 2 and Corollary, there
exist τ: and τ2 in #(̂ 4) and an element d in F such that arι=a, brι=d, arz=c
and br2=d. From the first two, we conclude that d€ΞB, and from the last two,
c^B. Next, let e by any element such that (e, e)=l and that <α, e^ is sin-
gular. By Lemma 4, there exists an element /such that (/,/)=! and that <α,
/> and </, e> are both non-singular. Then applying the previous discussion,

we have f^B and then e^B. Thus A=B, and A is primitive.

EXAMPLE 1. Let dim F=4 and k=F5. Let (x, x)=xl+xl+xl+xl.
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Then A consists of 60 elements. We can show that A is isomorphic with the
alternating group A5 considered as a symmetric set. In fact, A has genera-
tors: aly aly a3 and £4, where ^=(1, 0, 0, 0), α2=(l, 2, 1, 0), α3=(0, 1, 0, 0) and
fl4=(0, 2, 1, 1). If we denote σt =σαί, then (σlσ^f^(σ2σ^f=(σ2σ^f=ίd, and
otherwise (σtσ; )

2—id. We illustrate these in a diagram:

_ 5 3 3
ΛI &2 ^3 ^4

We have an isomorphism φ of A onto A5 given by φ(a^)=idy φ(a2)=( 12345),
φ(a3)=(l2) (34) and φ(a4)=(l2) (35). The group H(A5) is isomorphic with
A5xA5. (See [5].) Thus /f(^4)^5x^5. This result is also given from
Theorem 5.22 of [1], p. 203.

EXAMPLE 2. Let dim F=4 and k=F5. Let (#, x)=2xl+xl+xl+xl. In
this case, A consists of 65 elements. A has generators: ίl9 b2, b3 and 64, where
^=(0, 1, 0, 0), 62=(0, 2, 1, 1), i3=(0, 0, 1, 0) and 64=(2, 0, 2, 3). The diagram is

b 3 b 5 b 3 501 02 03 04

This primitive set of order 65 is not found in [2], [4]. Note that in [2], [4], a
primitive set is called simple. For this A, H(A) is isomorphic with PSL2(F25)
from Theorem 5.21 of [1], p. 202.

EXAMPLE 3. Let dim F=4 and k=F3. Let (x, x)=xlj\-x2

2+xl+xl. A
consists of 12 elements and is isomorphic with A4. It is not primitive.

EXAMPLE 4. Let dim V=3 and k=F5. Let (x, x)=xl+x%+xl. A
consists of 15 elements. We can show that A is isomorphic with the sym-
metric subset of AS consisting of (ij) (k /), where i,j, k and / are all distict. A
is not primitive. {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a non-trivial block.
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