PRIMITIVE SYMMETRIC SETS IN FINITE ORTHOGONAL GEOMETRY

Nobuo NOBUSAWA

(Received January 22, 1979)

Let V be a vector space over a finite field k of characteristic $\neq 2$, and $(x$, y) a non-degenerate symmetric bilinear form on V. For an element a in V with $(a, a) \neq 0$, we denote by σ_{a} the reflection in the hyperplane orthogonal to a. A subspace generated by a, b, \cdots, c is denoted by $\langle a, b, \cdots, c\rangle$. Especially $\langle a\rangle$ is denoted by \bar{a}. Let $A=\{\bar{a} \mid(a, a)=1\}$. We can define a symmetric structure on A by $\bar{a} \circ \bar{b}=\bar{c}$, where $c=a^{\sigma}{ }^{\sigma}$. The main object of this note is to show that if $\operatorname{dim} V>4$ or if $\operatorname{dim} V=4$ and $k \neq F_{3}$ (the field of three elements), then A is a primitive symmetric set. For the primitive symmetric set, see [3]. Group-theoretically this implies that the centralizer of the involution σ_{a} in the orthogonal group is a maximal subgroup.

Let $G(V)$ be the orthogonal group, and Ω its commutator subgroup. Let $H(A)$ be the group generated by $\sigma_{a} \sigma_{b}$ where $(a, a)=(b, b)=1$. Note that the restriction of $H(A)$ onto A is called the group of displacements and is denoted by $H(A)$ in the previous papers. We denote the latter by $\bar{H}(A)$.

Lemma 1. Suppose that dim $V \geq 4$. Let a and b be elements in V such that $(a, a)=(b, b) \neq 0$ and that $\langle a, b\rangle$ is a non-singular subspace of dim 2 . If x is an element in V such that $(x, x)=(a, a)$ and $\operatorname{dim}\langle a, x\rangle=2$, then there exist τ_{1} and τ_{2} in $G(V)$ and c in V such that $a^{\tau_{1}}=a, x^{\tau_{1}}=c, a^{\tau_{2}}=b$ and $x^{\tau_{2}}=c$.

Proof. First, we note that if y and z are elements in V such that $(y, y)=$ $(z, z) \neq 0$ and that $\operatorname{dim}\langle y, z\rangle=2$, then $\langle y, z\rangle$ is non-singular if and only if $(y, z) \neq \pm(y, y)$. For, let $z=\alpha y+t$ with α in k and t in V such that $(y, t)=0$ and $t \neq 0$. Then $\langle y, z\rangle$ is singular if and only if $(t, t)=0$, if and only if $\alpha=$ ± 1, if and only if $(y, z)= \pm(y, y)$. Now, put $c=\beta(a+b)+u$ with β in k and u in V such that $u \in\langle a, b\rangle^{\perp}$. We let $\beta=(a, x)((a, a)+(a, b))^{-1}$. This is possible since $(a, a) \neq-(a, b)$ as noted first. Then $(a, c)=(b, c)=(a, x)$. Next, select u suitably in $\langle a, b\rangle^{\perp}$ so that $(c, c)=(a, a)$. This is possible since $\langle a, b\rangle^{\perp}$ is universal, i.e., $k=\left\{(u, u) \mid u \in\langle a, b\rangle^{\perp}\right\}$. Note $\operatorname{dim} V \geq 4$ and hence $\operatorname{dim}\langle a, b\rangle^{\perp}$ ≥ 2. Thus, we have $\langle a, x\rangle \cong\langle a, c\rangle \cong\langle b, c\rangle$, the first elements corresponding to the first, and the second to the second by the isomorphisms. Then by Witt's theorem, we have the consequence stated in Lemma 1.

Lemma 2. In Lemma 1, τ_{1} and τ_{2} can be taken in Ω, if $\langle a, x\rangle$ is nonsingular.

Proof. Any isometry on $\langle a, x\rangle^{\perp}$ is extended to an isometry on V by letting it operate trivially on $\langle a, x\rangle$. So, by multiplying τ_{i} by an isometry on $\langle a, x\rangle^{\perp}$ if necessary, we may assume that τ_{i} is contained in $O^{+}(V)$, the group of rotations. Next we recall that $O^{+}(V) / \Omega \cong k^{*} / k^{* 2}$, where the isomorphism is induced by the spinorial norm θ. (See [1].) So, if necessary, choose ρ_{i} suitably on $\langle a, x\rangle \perp$ such that $\theta\left(\rho_{i} \tau_{i}\right)=1$, which implies that $\rho_{i} \tau_{i} \in \Omega$. Take $\rho_{i} \tau_{i}$ for τ_{i}, and the proof is completed.

Lemma 3. Suppose that $\operatorname{dim} V \geq 4$. Let a and b be elements in V such that $(a, a)=(b, b) \neq 0$ and that $\langle a, b\rangle$ is non-singular of dim 2. If τ is an element in $G(V)$ such that dim $\left\langle a, a^{\tau}\right\rangle=2$., then there exist τ_{1} and τ_{2} in $G(V)$ such that

$$
a^{\tau_{1}^{-1} \tau \tau_{1} \tau_{2}^{-1} \tau^{-1} \tau_{2}}=b
$$

Proof. Let $x=a^{\tau}$ in Lemma 1. The above identity follows easily.
Lemma 4. Suppose that either $\operatorname{dim} V>4$ or $\operatorname{dim} V=4$ and $k \neq F_{3}$. Let a and b be elements in V such that $(a, a)=(b, b) \neq 0$ and that $\langle a, b\rangle$ is singular of $\operatorname{dim} 2$. Then there exists c such that $(c, c)=(a, a)$ and that $\langle a, c\rangle$ and $\langle b, c\rangle$ are both non-singular.

Proof. Since $\langle a, b\rangle$ is singular, $b= \pm a+t$ with $(a, t)=0$ and $(t, t)=0$ as noted in the proof of Lemma 1. Without losing generality, we may assume that $b=a+t$. Then there exists t^{\prime} in $\langle a\rangle \perp$ such that $\left(t^{\prime}, t^{\prime}\right)=0$ and $\left(t, t^{\prime}\right)=$ $\frac{1}{2}(a, a)$. (See [1], p. 119.) When $\operatorname{dim} V>4$, we have $\operatorname{dim}\left\langle a, t, t^{\prime}\right\rangle^{\perp} \geq 2$ and hence there exists c in $\left\langle a, t, t^{\prime}\right\rangle^{\perp}$ such that $(c, c)=(a, a) . \quad c$ satisfies the conditions in Lemma 4. Suppose that $\operatorname{dim} V=4$ and that $k \neq F_{3}$. Put $c=\alpha a+$ $\beta t+\gamma t^{\prime}$. Then, $(c, c)=(a, a)$ if and only if $\alpha^{2}(a, a)+2 \beta \gamma\left(t, t^{\prime}\right)=(a, a)$, i.e., $\alpha^{2}+\beta \gamma=1$. Suppose that this is satisfied. Then, $(a, a)=(c, c)=(b, b)$, and so, $\langle a, c\rangle$ is non-singular if and only if $\alpha \neq \pm 1$ as we noted before. Also, $\langle b, c\rangle$ is non-singular if and only if $\alpha+\frac{1}{2} \gamma \neq \pm 1$. For, $\langle b, c\rangle$ is non-singular if and only if $(b, c) \neq \pm(c, c)$ which implies $\left(\alpha+\frac{1}{2} \gamma\right)(a, a) \neq \pm(a, a)$. If the characteristic of $k \neq 3$, let $\alpha=\frac{1}{2}, \beta=\frac{1}{4}$ and $\gamma=3$. If the characteristic $=3$ and $k \neq F_{3}$, let ε be an element in k such that $\varepsilon^{2}=-1$, and let $\alpha=1+\varepsilon, \beta=-2-\varepsilon$ and $\gamma=\varepsilon$. Then $\alpha^{2}+\beta \gamma=1, \alpha \neq \pm 1$ and $\alpha+\frac{1}{2} \gamma \neq \pm 1$, the proof being completed.

Theorem 1. Suppose that either $\operatorname{dim} V>4$ or $\operatorname{dim} V=4$ and $k \neq F_{3}$. Let a and b be elements in V such that $(a, a)=(b, b) \neq 0$ and that $\operatorname{dim}\langle a, b\rangle=2$. Let δ be any non-zero element in k. Then there exist $a_{i}(i=1, \cdots, 4)$ such that $\left(a_{i}, a_{i}\right)=\delta$ and that $a_{a_{1} \sigma_{2} \sigma_{a_{3}} \sigma_{a_{4}}}=b$. Especially, A is transitive symmetric set.

Proof. First suppose that $\langle a, b\rangle$ is non-singular. Let $d=a+u$, where $u \neq 0$ is chosen in $\langle a\rangle^{\perp}$ so that $(d, d)=\delta$. Clearly $\operatorname{dim}\left\langle a, a^{\sigma_{d}}\right\rangle=2$, and hence by Lemma 3 there exist τ_{1} and τ_{2} in $G(V)$ such that $a^{\tau_{1}^{-1} \sigma_{d} \tau_{1} \tau_{2}^{-1} \sigma_{d} \tau_{2}}=b$, i.e., $a^{\sigma_{a_{1}} \sigma_{a}}$ $=b$, where $a_{1}=d^{\tau_{1}}$ and $a_{2}=d^{\tau_{2}}$. Let $a_{3}=a_{4}=a_{1}$, and Theorem 1 holds in this case. If $\langle a, b\rangle$ is singular, we use Lemma 4. Let c be an element given in Lemma 4. Apply the above argument on $\langle a, c\rangle$ and $\langle c, b\rangle$. We can find a_{i} $(i=1, \cdots, 4)$ such that $a^{\sigma_{a_{1}}} \sigma_{a_{2}}=c$ and $c^{\sigma_{a_{3}} \sigma_{a_{4}}}=b$. The proof is completed.

Lemma 5. Suppose that dim $V \geq 3$. Let B be a block in A, i.e., a set of imprimitivity with respect to $\left\langle\sigma_{a} \mid \bar{a} \in A\right\rangle$. Suppose that B contains more than one element. Then B contains \bar{a}_{1} and a_{2} such that $\left(a_{1}, a_{1}\right)=\left(a_{2}, a_{2}\right)=1$ and that $\left\langle a_{1}, a_{2}\right\rangle$ is non-singular of dim 2.

Proof. Let \bar{a} and \bar{b} two different elements in B with $(a, a)=(b, b)=1$. If $\langle a, b\rangle$ is non-singular, we have nothing to prove. So, assume that $\langle a, b\rangle$ is singular. We may assume that $b=a+t$ with $(a, t)=0$ and $(t, t)=0$ as before. Let t^{\prime} be an element in $\langle a\rangle^{\perp}$ such that $\left(t^{\prime}, t^{\prime}\right)=0$ and $\left(t, t^{\prime}\right)=\frac{1}{2}$. Let $c=t+t^{\prime}$. Then $(c, c)=1, a^{\sigma_{c}}=a$ and $b^{\sigma_{c}}=b-2(b, c) c=a-t^{\prime}$. Therefore by the definition of a block, $\overline{a-t^{\prime}} \in B$. Let $a_{1}=b$ and $a_{2}=a-t^{\prime} . \quad a_{1}$ and $\bar{a}_{2} \in B$, and $\left\langle a_{1}, a_{2}\right\rangle$ is non-singular since $\left(a_{1}, a_{2}\right)=1-\frac{1}{2} \neq \pm 1$.

Corollary. Suppose that either $\operatorname{dim} V>4$ or $\operatorname{dim} V=4$ and $k \neq F_{3}$. Then $\Omega \subseteq H(A)$.

Proof. We must show $\sigma_{x} \sigma_{y} \sigma_{x} \sigma_{y} \in H(A)$, where $\sigma_{x} \neq \sigma_{y}$. By Theorem 1, there exists an element τ in $H(A)$ such that $y^{\sigma_{x}}=y^{\tau}$. Let $\rho=\tau \sigma_{x}^{-1}$. Since $y^{\rho}=y$, we have $\rho^{-1} \sigma_{y} \rho=\sigma_{y}$, or $\sigma_{y} \rho=\rho \sigma_{y}$. Then $\sigma_{x} \sigma_{y} \sigma_{x} \sigma_{y}=\left(\rho^{-1} \tau\right) \sigma_{y}\left(\rho^{-1} \tau\right)^{-1} \sigma_{y}=\rho^{-1}\left(\tau \sigma_{y}\right.$ $\left.\tau^{-1} \sigma_{y}\right) \rho$. Since $H(A)$ is normal in $G(V)$, we have $\Omega \subseteq H(A)$.

Theorem 2. Suppose that either $\operatorname{dim} V>4$ or $\operatorname{dim} V=4$ and $k \neq F_{3}$. Then A is a primitive symmetric set.

Proof. Let B be a block containing more than one element. By Lemma 5, we may assume that B contains a and \bar{b} such that $(a, a)=(b, b)=1$ and that $\langle a, b\rangle$ is non-singular of $\operatorname{dim} 2$. Let c be any element such that $(c, c)=1$ and that $\langle a, c\rangle$ is non-singular of $\operatorname{dim} 2$. By Lemma 2 and Corollary, there exist τ_{1} and τ_{2} in $H(A)$ and an element d in V such that $a^{\tau_{1}}=a, b^{\tau_{1}}=d, a^{\tau_{2}}=c$ and $b^{\tau_{2}}=d$. From the first two, we conclude that $\bar{d} \in B$, and from the last two, $\bar{c} \in B$. Next, let e by any element such that $(e, e)=1$ and that $\langle a, e\rangle$ is $\sin -$ gular. By Lemma 4, there exists an element f such that $(f, f)=1$ and that $\langle a$, $f\rangle$ and $\langle f, e\rangle$ are both non-singular. Then applying the previous discussion, we have $\tilde{f} \in B$ and then $\bar{e} \in B$. Thus $A=B$, and A is primitive.

Example 1. Let $\operatorname{dim} V=4$ and $k=F_{5}$. Let $(x, x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$.

Then A consists of 60 elements. We can show that A is isomorphic with the alternating group A_{5} considered as a symmetric set. In fact, A has generators: $\bar{a}_{1}, \bar{a}_{1}, \bar{a}_{3}$ and \bar{a}_{4}, where $a_{1}=(1,0,0,0), a_{2}=(1,2,1,0), a_{3}=(0,1,0,0)$ and $a_{4}=(0,2,1,1)$. If we denote $\sigma_{i}=\sigma_{a_{i}}$, then $\left(\sigma_{1} \sigma_{2}\right)^{5}=\left(\sigma_{2} \sigma_{3}\right)^{3}=\left(\sigma_{3} \sigma_{4}\right)^{3}=i d$, and otherwise $\left(\sigma_{i} \sigma_{j}\right)^{2}=i d$. We illustrate these in a diagram:

$$
\bar{a}_{1} \xrightarrow{5} \bar{a}_{2} \xrightarrow{3} \bar{a}_{3} \xrightarrow{3} \bar{a}_{4} .
$$

We have an isomorphism φ of A onto A_{5} given by $\varphi\left(\bar{a}_{1}\right)=i d, \varphi\left(\bar{a}_{2}\right)=(12345)$, $\varphi\left(\bar{a}_{3}\right)=(12)$ (34) and $\varphi\left(\bar{a}_{4}\right)=(12)$ (35). The group $\bar{H}\left(A_{5}\right)$ is isomorphic with $A_{5} \times A_{5}$. (See [5].) Thus $\bar{H}(A) \cong A_{5} \times A_{5}$. This result is also given from Theorem 5.22 of [1], p. 203.

Example 2. Let $\operatorname{dim} V=4$ and $k=F_{5}$. Let $(x, x)=2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} . \quad$ In this case, A consists of 65 elements. A has generators: $\bar{b}_{1}, \bar{b}_{2}, \bar{b}_{3}$ and \bar{b}_{4}, where $b_{1}=(0,1,0,0), b_{2}=(0,2,1,1), b_{3}=(0,0,1,0)$ and $b_{4}=(2,0,2,3)$. The diagram is

$$
\bar{b}_{1} \xrightarrow{3} \bar{b}_{2} \xlongequal{5} \bar{b}_{3} \xrightarrow{3} \bar{b}_{4} .
$$

This primitive set of order 65 is not found in [2], [4]. Note that in [2], [4], a primitive set is called simple. For this $A, \bar{H}(A)$ is isomorphic with $P S L_{2}\left(F_{25}\right)$ from Theorem 5.21 of [1], p. 202.

Example 3. Let $\operatorname{dim} V=4$ and $k=F_{3}$. Let $(x, x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} . \quad A$ consists of 12 elements and is isomorphic with A_{4}. It is not primitive.

Example 4. Let $\operatorname{dim} \quad V=3$ and $k=F_{5}$. Let $(x, x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2} . \quad A$ consists of 15 elements. We can show that A is isomorphic with the symmetric subset of A_{5} consisting of $(i j)(k l)$, where i, j, k and l are all distict. A is not primitive. $\{(1,0,0),(0,1,0),(0,0,1)\}$ is a non-trivial block.

References

[1] E. Artin: Geometric algebra, Interscience, New York, 1957.
[2] Y. Ikeda and N. Nobussawa: On symmetric sets of unimodular symmetric matrices, Osaka J. Math 14 (1977), 471-480.
[3] H. Nagao: A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349-352.
[4] N. Nobusawa: Simple symmetric sets and simple groups, Osaka J. Math. 14 (1977), 411-415.
[5] N. Umaya: On symmetric structure of a group, Proc. Japan Acad. 52 (1976), 174-176.

