ON THE MIXED PROBLEMS FOR THE WAVE EQUATION IN AN INTERIOR DOMAIN. II

Mitsuru IKAWA*)

(Received February 16, 1979)

1. Introduction. Let Γ be a simple closed curve in $\boldsymbol{R}^{2}=\left\{\left(x_{1}, x_{2}\right)\right.$; $\left.x_{j} \in \boldsymbol{R}, j=1,2\right\}$ and Ω be its interior domain. Consider a mixed problem

$$
\begin{cases}\square u=\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{2}^{2}}=0 & \text { in } \Omega \times(0, \infty) \tag{P}\\ B u=b_{1}(x) \frac{\partial u}{\partial x_{1}}+b_{2}(x) \frac{\partial u}{\partial x_{2}}+d(x) u(x)=0 & \text { on } \Gamma \times(0, \infty) \\ u(x, 0)=u_{0}(x) & \\ \frac{\partial u}{\partial t}(x, 0)=u_{1}(x) & \end{cases}
$$

where $b_{j}(x), j=1,2$ and $d(x)$ are C^{∞}-functions defined in a neighborhood of Γ. We suppose that $b_{j}(x), j=1,2$, are real valued and satisfy

$$
\begin{equation*}
b_{1}(x) n_{1}(x)+b_{2}(x) n_{2}(x)=1 \quad \text { on } \Gamma \tag{1.1}
\end{equation*}
$$

where $n(x)=\left(n_{1}(x), n_{2}(x)\right)$ denotes the unit inner normal of Γ at x.
Let $x(s), 0 \leqslant s \leqslant L$ be a representation of Γ by the arc length s. Set

$$
\tau(s)=\left[b_{1}(x) n_{2}(x)-b_{2}(x) n_{1}(x)\right]_{x=x(s)} .
$$

The result we want to show is the following
Theorem. Suppose that the curvature of Γ never vanishes. In the case of $\tau(s) \equiv 0$ in order that (P) is well posed in the sense of C^{∞} it must holds that

$$
\begin{equation*}
|\tau(s)|+\left|\frac{d \tau(s)}{d s}\right| \neq 0 \quad \text { for all } s \tag{1.2}
\end{equation*}
$$

We should like to give some remarks on the theorem. If $\tau(s) \equiv 0$ the boundary condition is nothing but the Neumann condition or the boundary condition of the third kind. Then it is well known that (P) is well posed in the sense of L^{2}. And when $\tau(s) \neq 0$ for all s the mixed problem (P) is also well posed in the sense of C^{∞}, that is shown in [1]. In both cases the results are

[^0]still valid without the assumption of the convexity of Ω.
In the preceding paper [5] we gave a necessary condition for the well posedness of (P). There we introduced an index $I_{B}\left(p_{0}, \xi_{0}: T\right)$ of a broken ray according to the geometrical optics with respect to the coefficients of the boundary operator and it is proved that the condition
$$
I_{B}\left(p_{0}, \xi_{0}: T\right)<C_{T}, \quad \forall p_{0}=\left(x_{0}, t_{0}\right) \in \Gamma \times(0, T), \xi_{0} \in \Sigma_{x_{0}}
$$
is necessary for the well posedness. It is easy to verify that the supposition
$$
\sup _{p_{0}, 5_{0}} I_{B}\left(p_{0}, \xi_{0}: T\right)=\infty
$$
implies that $\tau(s) \equiv 0$ and $\tau(s)$ has at least a zero of infinite order. Therefore the theorem of this paper is an improvement of the result of [5].

2. Asymptotic solutions with a caustic

From now on, we suppose that the curvature of Γ never vanishes. Then there exist functions $\theta(x, \alpha)$ and $\rho(x, \alpha)$ with the following properties: ${ }^{1)}$
(i) θ and ρ are real valued C^{∞} function defined in $\left\{(x, \alpha) ; x \in \boldsymbol{R}^{2}\right.$, $\left.\alpha \in\left[-\alpha_{0}, \alpha_{0}\right]\right\}$ where α_{0} is a positive constant.

$$
\begin{equation*}
\frac{\partial \rho}{\partial n} \geqslant c>0^{2)} \quad \text { for } x \in \Gamma \tag{ii}
\end{equation*}
$$

where $\frac{\partial}{\partial n}=\sum_{j=1}^{2} n_{j}(x) \frac{\partial}{\partial x_{j}}$.
(iii) Let us set

$$
\begin{aligned}
& \Gamma_{\infty}=\{x ; \rho(x, \alpha)=\alpha\} \\
& \omega_{\alpha}=\{x ; \rho(x, \alpha)>0\}
\end{aligned}
$$

Then for all α it holds that

$$
\begin{cases}(\nabla \theta)^{2}+\rho(\nabla \rho)^{2}=1 & \text { in } \bar{\omega}_{a} \tag{2.1}\\ \nabla \theta \cdot \nabla \rho=0 & \text { in } \bar{\omega}_{\infty}\end{cases}
$$

and

$$
\begin{equation*}
\rho(x, \alpha) \equiv \alpha\left(\bmod \alpha^{\infty}\right) \quad \text { on } \Gamma \tag{2.2}
\end{equation*}
$$

For $u(x, t) \in C^{\infty}\left(\boldsymbol{R}^{2} \times \boldsymbol{R}\right)$ we set

$$
\|u\|_{(a), a, b}=\sum_{\substack{p+r \leqslant s \\ g<b}} \sup _{\tilde{\Omega}_{\times R}}\left|\partial_{t}^{r} \partial_{\theta}^{p} \partial_{\rho}^{q} u(x, t)\right|
$$

[^1]$$
\langle u\rangle_{(a), a}=\sum_{p+q<a} \sup _{\Gamma_{a} \times \boldsymbol{R}}\left|\partial_{t}^{\partial} \partial_{\theta}^{p} u(x, t)\right|,
$$
where $\widetilde{\Omega}$ is a bounded open set in \boldsymbol{R}^{2} containg $\bar{\Omega}$ and
$$
\partial_{t}^{r}=\frac{\partial^{r}}{\partial t^{r}}, \quad \partial_{\theta}^{p}=\left(\sum_{j=1}^{2} \frac{\partial \theta}{\partial x_{j}} \frac{\partial}{\partial x_{j}}\right)^{p} \quad \text { and } \quad \partial_{\rho}^{q}=\left(\sum_{j=1}^{2} \frac{\partial \rho}{\partial x_{j}} \frac{\partial}{\partial x_{j}}\right)^{q} .
$$

Let us denote

$$
\begin{aligned}
|u|_{\Omega, a} & =\sum_{|\beta|<a} \sup _{\Omega \times R}\left|D_{x, t}^{\beta} u(x, t)\right| \\
|u|_{\Gamma, a} & =\sum_{p+q<a} \sup _{[0,11 \times R}\left|\partial_{s}^{p} \partial_{t}^{\partial} u(x(s), t)\right| .
\end{aligned}
$$

Taking account of

$$
\left|\frac{D(\theta, \rho)}{D\left(x_{1}, x_{2}\right)}\right| \geqslant c>0 \quad \text { for all } \alpha
$$

it holds that for all $u \in C^{\infty}\left(\boldsymbol{R}^{2} \times \boldsymbol{R}^{1}\right)$ and α

$$
\begin{equation*}
|u|_{\Omega, 2 a} \leqslant C_{a}\|u\|_{(\alpha), a, a} \tag{2.3}
\end{equation*}
$$

where C_{a} is independent of α.
Define

$$
\varphi^{ \pm}(x, \alpha)=\theta(x, \alpha) \pm 2 / 3 \rho(x, \alpha)^{3 / 2}
$$

Let $v(x, t) \in C_{0}^{\infty}\left(\Gamma_{\infty} \times \boldsymbol{R}\right)$ and set for $\alpha>0$

$$
m(x, t ; \alpha, k)=e^{i k\left(\varphi^{-}(x, \omega)-t\right)} v(x, t)
$$

We construct a function $u(x, t ; \alpha, k)$ in the form

$$
\begin{align*}
u(x, t ; \alpha, k)= & e^{i k(\theta(x, \alpha)-t)}\left\{V\left(k^{2 / 3} \rho(x, \alpha)\right) g_{0}(x, t ; \alpha, k)\right. \tag{2.4}\\
& \left.+\frac{1}{i k^{1 / 3}} V^{\prime}\left(k^{2 / 3} \rho(x, \alpha)\right) g_{1}(x, t ; \alpha, k)\right\}
\end{align*}
$$

so that it may verify

$$
\begin{cases}\square u=0 & \text { in } \Omega \times \boldsymbol{R} \tag{2.5}\\ \left.B u\right|_{\Gamma x}=m(x, t ; \alpha, k) & \text { on the support of } v\end{cases}
$$

asymptotically as $k \rightarrow \infty$, where $V(z)=\operatorname{Ai}(-z)$ with the Airy function $\operatorname{Ai}(z)$. Apply \square for $u(x, t ; \alpha, k)$ of (2.4) and use $V^{\prime \prime}(z)+z V(z)=0, V^{\prime \prime \prime}(z)+z V^{\prime}(z)+$ $V(z)=0$. Then we have

$$
\begin{align*}
\square u= & -e^{i k(\theta-t)}\left[V (k ^ { 2 / 3 } \rho) \left\{(i k)^{2}\left((\nabla \theta)^{2}+\rho(\nabla \rho)^{2}-1\right) g_{0}\right.\right. \tag{2.6}\\
& +2(i k)^{2} \rho \nabla \rho \cdot \nabla \theta g_{1}+i k\left(2 \frac{\partial g_{0}}{\partial t}+2 \nabla \theta \cdot \nabla g_{0}+\Delta \theta \cdot g_{0}\right. \\
& \left.\left.+2 \rho \nabla \rho \cdot \nabla g_{1}+(\nabla \rho)^{2} g_{1}+\rho \Delta \rho \cdot g_{1}\right)-\square g_{0}\right\} \\
& +\frac{1}{i k^{1 / 3}} V^{\prime}\left(k^{2 / 3} \rho\right)\left\{(i k)^{2}\left((\nabla \theta)^{2}+\rho(\nabla \rho)^{2}-1\right) g_{1}+2(i k)^{2} \nabla \theta \cdot \nabla \rho \cdot g_{0}\right. \\
& \left.\left.+i k\left(2 \frac{\partial g_{1}}{\partial t}+2 \nabla \theta \cdot \nabla g_{1}+\Delta \theta g_{1}+2 \nabla \rho \cdot \nabla g_{0}+\Delta \rho g_{0}\right)-\square g_{1}\right\}\right] .
\end{align*}
$$

Note that $V(z)$ and $V^{\prime}(z)$ have the following asymptotic expansions for $z \rightarrow+\infty$

$$
\begin{aligned}
& V(z)=\frac{1}{2} \pi^{-1 / 2} z^{-1 / 4}\left\{e^{i(\xi-\pi / 4)}\left(1+\xi^{-1} P_{1}(\xi)\right)+e^{-i(\xi-\pi / 4)}\left(1+\xi^{-1} P_{2}(\xi)\right)\right\} \\
& V^{\prime}(z)=\frac{1}{2} i \pi^{-1 / 2} z^{1 / 4}\left\{e^{i(\xi-\pi / 4)}\left(1+\xi^{-1} P_{3}(\xi)\right)-e^{-i(\xi-\pi / 4)}\left(1+\xi^{-1} P_{4}(\xi)\right)\right\}
\end{aligned}
$$

where $\xi=\frac{2}{3} z^{3 / 2}$ and

$$
P_{j}(\xi) \sim \sum_{l=0}^{\infty} p_{j l} \xi^{-l}, \quad p_{j l} \in \boldsymbol{C} .^{3)}
$$

Therefore the function u in the form (2.4) may be represented for large $k^{2 / 3} \rho$ as follows

$$
\begin{align*}
u(x, t ; \alpha, k) & =e^{i k\left(\varphi^{+}-t\right)}\left(G^{+}+\frac{1}{i k} \widetilde{G}^{+}\right)+e^{i k\left(\varphi^{-}-t\right)}\left(G^{-}+\frac{1}{i k} \widetilde{G}^{-}\right) \tag{2.7}\\
& =u^{+}+u^{-}
\end{align*}
$$

where

$$
\begin{aligned}
& G^{ \pm}=\frac{1}{2 \sqrt{\pi}} \rho^{-1 / 4} k^{-1 / 6} e^{\mp \pi i / 4}\left(g_{0} \pm \sqrt{\rho} g_{1}\right) \\
& \tilde{G}^{+}=\frac{3}{4} \pi^{-1 / 2} k^{-1 / 6} \rho^{-7 / 4} e^{-\pi i / 4}\left(P_{1} g_{0}+\sqrt{\rho} P_{3} g_{1}\right) \\
& \widetilde{G}^{-}=\frac{3}{4} \pi^{-1 / 2} k^{-1 / 6} \rho^{-7 / 4} e^{\pi / 4}\left(P_{2} g_{0}-\sqrt{\rho} P_{4} g_{1}\right) .
\end{aligned}
$$

From the form of $\tilde{G}^{ \pm}$it holds that

$$
\begin{equation*}
\left|\partial_{\theta}^{a} \partial_{\rho} \tilde{G}^{ \pm}\right| \leqslant C_{a} k^{-1 / 6} \sum_{l=0}^{1}\left\{\rho^{-7 / 4}\left\|g_{l}\right\|_{(\alpha), a, 1}+\rho^{-11 / 4}\left\|g_{l}\right\|_{(\alpha), a, 0}\right\} \tag{2.8}
\end{equation*}
$$

[^2]when $k^{2 / 3} \rho>C$.
Applying the operator B to u of (2.7) we have
\[

$$
\begin{align*}
B u= & e^{i k\left(\varphi^{+}-t\right)}\left\{i k \Phi^{+}\left(G^{+}+\frac{1}{i k} \widetilde{G}^{+}\right)+B G^{+}+\frac{1}{i k} B G^{+}\right\} \tag{2.9}\\
& +e^{i k\left(\varphi^{-}-t\right)}\left\{i k \Phi^{-}\left(G^{-}+\frac{1}{i k} \widetilde{G}^{-}\right)+B G^{-}+\frac{1}{i k} B \tilde{G}^{-}\right\}
\end{align*}
$$
\]

where $\Phi^{ \pm}=\sum_{j=1}^{2} b_{j}(x) \frac{\partial \varphi^{ \pm}}{\partial x_{j}}$.
Suppose that g_{0} and g_{1} have the following asymptotic expansion with respect to k^{-1} when $k \rightarrow \infty$

$$
\begin{equation*}
g_{l}(x, t ; \alpha, k) \sim \sum_{j=0}^{\infty} g_{l j}(x, t ; \alpha, k) k^{1 / 6-1-j}, \quad l=0,1 \tag{2.10}
\end{equation*}
$$

Denote by \mathcal{L}_{a} a differential operator from $\left(C^{\infty}\left(\boldsymbol{R}^{2} \times \boldsymbol{R}\right)\right)^{2}$ into itself defined by for $\left\{a_{1}, a_{2}\right\}$

$$
\begin{aligned}
\mathcal{L}_{a}\left\{a_{1}, a_{2}\right\}= & \left\{2 \frac{\partial a_{1}}{\partial t}+2 \nabla \theta \cdot \nabla a_{1}+\Delta \theta a_{1}+2 \rho \nabla \rho \cdot \nabla a_{2}+(\nabla \rho)^{2} a_{2}\right. \\
& \left.+\rho \Delta \rho a_{2}, 2 \frac{\partial a_{2}}{\partial t}+2 \nabla \theta \cdot \nabla a_{2}+\Delta \theta a_{2}+2 \nabla \rho \cdot \nabla a_{1}+\Delta \rho a_{1}\right\} .
\end{aligned}
$$

Substituting g_{0}, g_{1} of (2.10) into (2.6) and (2.9) we claim that all the coefficients of k^{-j} of (2.6) are equal to zero and those of $B u-m$ are also equal to zero on the support of v. Then it must hold that

$$
\begin{align*}
& \mathcal{L}_{\alpha}\left\{g_{00}, g_{10}\right\}=0 \tag{2.11}\\
& i \Phi^{-}\left(g_{00}-\sqrt{\rho} g_{10}\right)=2 \pi \alpha^{1 / 4} e^{\pi i / 4} v \quad \text { on } \Gamma_{\alpha} \times \boldsymbol{R}
\end{align*}
$$

and for $j \geqslant 1$

$$
\begin{equation*}
\mathcal{L}_{a}\left\{g_{0 j}, g_{1 j}\right\}=\frac{1}{i}\left\{\square g_{0 j-1}, \square g_{1 j-1}\right\} \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
i \Phi^{-}\left(g_{0 j}-\sqrt{\rho} g_{1 j}\right)=i \Phi^{-\widetilde{G}_{i-1}^{-}}+B G_{i-1}^{-}+\frac{1}{i k} B \widetilde{G}_{i-1}^{-} \quad \text { on } \Gamma_{a} \times \boldsymbol{R} \tag{2.12}
\end{equation*}
$$

where $G_{j}^{ \pm}$and $\widetilde{G}_{j}^{ \pm}$denote the $G^{ \pm}$and $\widetilde{G}^{ \pm}$corresponding to the pair of $k^{1 / 6} g_{0 j}$ and $k^{1 / 6} g_{1 j}$.

To obtain the existence and the estimates of $g_{0 j}, g_{1 j}$ satisfying (2.11) and (2.12), admit the following Lemma, whose proof will be given in the appendix.

Lemma 2.1. For $\left\{h_{0}, h_{1}\right\} \in\left(C^{\infty}\left(\boldsymbol{R}^{2} \times \boldsymbol{R}\right)\right)^{2}$ and $f \in C^{\infty}\left(\Gamma_{a} \times \boldsymbol{R}\right)$ there exists $\left\{a_{1}, a_{2}\right\} \in\left(C^{\infty}\left(\boldsymbol{R}^{2} \times \boldsymbol{R}\right)\right)^{2}$ satisfying

$$
\begin{cases}\mathcal{L}_{a}\left\{a_{1}, a_{2}\right\}=\left\{h_{0}, h_{1}\right\} & \\ \text { in } \omega_{a} \times \boldsymbol{R} \\ a_{1}-\sqrt{\rho} a_{2}=f & \\ \text { on } \Gamma_{a} \times \boldsymbol{R}\end{cases}
$$

and having the following froperties:
(i) $\left\|a_{j}\right\|_{(\alpha), a, b} \leqslant C_{a, b}\left\{\langle f\rangle_{(\alpha), a+2 b+j}+\sum_{l=0}^{1} \sum_{q=0}^{b}\left\|h_{l}\right\|_{(a), a+2(b-q), q}\right\}$
(ii) When $\bigcup_{l=0,1} \operatorname{supp} h_{l} \cap \omega_{\alpha} \subset\left\{L_{\alpha}^{-}(x, t) ;(x, t) \in \operatorname{supp} f\right\}$, it holds that

$$
\bigcup_{l=0}^{1} \operatorname{supp} a_{l} \cap \bar{\omega}_{\infty} \subset\left\{L_{\alpha}^{-}(x, t) ;(x, t) \in \operatorname{supp} f\right\}
$$

(iii) When $\left\{h_{0}, h_{1}\right\} \equiv 0$, for $(x, t) \in \Gamma_{a} \times \boldsymbol{R}$

$$
\left(a_{1}+\sqrt{\rho} a_{2}\right)(x, t)=\gamma(x, t ; \alpha) f\left(P_{a}(x, t)\right)
$$

where $\gamma(x, t ; \alpha)$ is a C^{∞} function on $\boldsymbol{R}^{2} \times \boldsymbol{R} \times\left[-\alpha_{0}, \alpha_{0}\right]$ such that

$$
\gamma(x, t ; \alpha) \geqslant C>0
$$

and $P_{a}(x, t)$ denotes the point

$$
L_{a}^{+}(x, t) \cap\left(\Gamma_{a} \times \boldsymbol{R}\right)-\{(x, t)\},
$$

where $L_{a}^{ \pm}(x, t)$ denotes a line passing (x, t) defined by

$$
L^{ \pm}(x, t)=\left\{\left(x+l \nabla \varphi^{ \pm}(x, \alpha), t+l\right) ; l \in \boldsymbol{R}\right\}
$$

Let Λ_{0} be an open set in $\Gamma_{\infty} \times \boldsymbol{R}$ such that $\Lambda_{0} \supset \operatorname{supp} v$. Set

$$
\Lambda_{1}=\left\{L_{\alpha}^{-}(x, t) \cap\left(\Gamma_{a} \times \boldsymbol{R}\right)-\{(x, t)\} ;(x, t) \in \Lambda_{0}\right\}
$$

Suppose that

$$
\begin{equation*}
\Lambda_{0} \cap \Lambda_{1}=\phi \tag{2.13}
\end{equation*}
$$

Let us set

$$
\beta=\inf _{(x, t) \in \Lambda_{0}}\left|\Phi^{-}\right|
$$

Using the above lemma we have g_{00} and g_{10} verifying

$$
\begin{cases}\mathcal{L}_{a}\left\{g_{00}, g_{10}\right\}=0 & \text { in } \bar{\omega}_{\infty} \times \boldsymbol{R} \\ g_{00}-\sqrt{\rho g_{10}}=\frac{2 \pi \alpha^{1 / 4} e^{\pi i / 4} v}{i \Phi^{-}} & \text {on } \Gamma_{a} \times \boldsymbol{R}\end{cases}
$$

and the estimate

$$
\sum_{i=0}^{1}\left\|g_{l 0}\right\|_{(\alpha), a, b} \leqslant C_{a, b}\left\langle\frac{2 \pi \alpha^{1 / 4} e^{\pi i / 4} v}{i \Phi^{-}}\right\rangle_{(\alpha), a+2 b+1} .
$$

Taking account of $\left\langle\Phi^{-}\right\rangle_{(\alpha), a} \leqslant C_{a}$ for all $\alpha>0$, we have

$$
\left\langle\left(\Phi^{-}\right)^{-1}\right\rangle_{(a), a} \leqslant C_{a} \beta^{-(a+1)} .
$$

Then it holds that

$$
\begin{align*}
\sum_{l=0}^{1}\left\|g_{l 0}\right\|_{(\alpha), a, b} & \leqslant C \alpha^{1 / 4} \sum_{p+l \leqslant a+2 b+1}\langle v\rangle(\alpha), l \tag{2.14}\\
& \left.\leqslant C_{a, b} \alpha^{1 / 4} \sum_{p+l \leqslant a+2 b+1} \sum^{-1}\right\rangle(\alpha), p \\
& \sum_{(\alpha), l} \beta^{-(p+1)}
\end{align*}
$$

Let us set

$$
E_{\infty}(v, \beta ; j)=\sum_{p+l \leqslant 0}\langle v\rangle(\alpha), l \beta^{-(p+1)}
$$

Remark that the constant $C_{a, b}$ depends on a and b but independent of α.
Next consider g_{01} and g_{11}. Applying (2.8) to $k^{1 / 6} g_{l 0}$ and using (2.14) we have

$$
\left|\partial_{\theta}^{a} \partial_{\rho} \widetilde{G}_{0}^{ \pm}\right| \leqslant C_{a}\left\{\rho^{-7 / 4} \alpha^{1 / 4} E_{a}(v, \beta ; a+3)+\rho^{-11 / 4} \alpha^{1 / 4} E_{a}(v, \beta ; a+1)\right\}
$$

for $\rho k^{2 / 3}>C$. Then, noting (2.2), it follows that

$$
\left\langle\Phi^{-} \widetilde{G}_{0}^{-}+B G_{0}^{-}+\frac{1}{i k} B \widetilde{G}_{0}^{-}\right\rangle_{(\infty), a} \leqslant C_{a} \alpha^{-5 / 2} E_{a}(v, \beta ; a+3)
$$

Therefore

$$
\begin{align*}
& \left\langle\left(\Phi^{-} \bar{G}_{0}^{-}+B G_{0}^{-}+\frac{1}{i k} B \widetilde{G}_{0}^{-}\right)\left(\Phi^{-}\right)^{-1}\right\rangle_{(\alpha), a} \tag{2.15}\\
\leqslant & C_{a}^{\prime} \sum_{l+p \leqslant a} \alpha^{-5 / 2} E_{\alpha}(v, \beta ; l+3) \cdot \beta^{-(p+1)} \\
\leqslant & C_{a}^{\prime} \alpha^{-5 / 2} E_{a}(v, \beta ; a+4) .
\end{align*}
$$

From (2.14) we have

$$
\left\|g_{l 0}\right\|_{(\alpha), a, b} \leqslant C_{a, b} \alpha^{1 / 4} E_{\alpha}(v, \beta ; a+2 b+4+1)
$$

With the aid of (2.15) and the above estimate Lemma 2.1 assures the existence g_{01} and g_{11} satisfying $(2.11)_{1}$ in $\bar{\omega}_{a}$ and $(2.12)_{1}$ such that

$$
\begin{aligned}
\sum_{l=0}^{1}\left\|g_{l l}\right\|_{(\alpha), a, b} \leqslant & C_{a, b}\left\{C_{a+2 b+1}^{\prime} \alpha^{-5 / 2} E_{\alpha}(v, \beta ; a+2 b+5)\right. \\
& \left.+\sum_{g=0}^{b} \alpha^{1 / 4} E_{a}(v, \beta ; a+2(b-q)+2 q+5)\right\} \\
\leqslant & C_{a, b}^{\prime} \alpha^{-5 / 2} E_{a}(v, \beta ; a+2 b+5)
\end{aligned}
$$

Now suppose that

$$
\sum_{l=0}^{1}\left\|g_{l j}\right\|_{(\alpha), a, b} \leqslant C_{j, a, b} \alpha^{-11 j / 4} E_{a}(v, \beta ; a+2 b+4 j+1)
$$

Applying (2.8) to $k^{1 / 6} g_{l j}, l=0,1$ we have

$$
\begin{aligned}
& \left\langle\left(\Phi^{-} \tilde{G}_{j}^{-}+B G_{j}^{-}+\frac{1}{i k} B \tilde{G}_{j}^{-}\right)\left(\Phi^{-}\right)^{-1}\right\rangle_{(\alpha), a} \\
\leqslant & C_{a} \sum_{p+l \leqslant a}\left(\alpha^{-7 / 4} \sum_{l=0}^{1}\left\|g_{l j}\right\|_{(\alpha), p, 1}+\alpha^{-11 / 4} \sum_{l=0}^{1}\left\|g_{l j}\right\|_{(\alpha), p, 0}\right) \cdot \beta^{-(l+1)} \\
\leqslant & C_{a} \cdot \sum_{p+l<a} C_{j, p, 1} \alpha^{-11 / 4} \alpha^{-11 j / 4} E_{a \alpha}(v, \beta ; p+2+4 j+1) \beta^{-l-1} \\
\leqslant & C_{j+1, a} \alpha^{-11(j+1) / 4} E_{a}(v, \beta ; a+4 j+1) .
\end{aligned}
$$

And

$$
\left\|\square g_{l j}\right\|_{(a), a b} \leqslant C_{j, a, b} \alpha^{-11 j / 4} E_{a}(v, \beta ; a+2 b+4 j+5) .
$$

Then by using Lemma 2.1 we have $g_{l j+1}, l=0,1$ verifying (2.11) $)_{j+1}$ in $\bar{\omega}_{\alpha}$ and (2.12) ${ }_{j+1}$ such that

$$
\begin{aligned}
& \sum_{l=0}^{1}\left\|g_{l j+1}\right\|_{(a) a, b} \\
\leqslant & C_{a, b}\left\{C_{j+1, a+2 b+1} \alpha^{-11(j+1) / 4} E_{\alpha}(v, \beta ; a+2 b+1+4 j+4)\right. \\
& \left.+\sum_{q=0}^{b} C_{j, a, b} \alpha^{-11 j / 4} E_{\alpha}(v, \beta ; a+2(b-q)+2 q+4 j+5)\right\} \\
\leqslant & C_{j+1, a, b} \alpha^{-11(j+1) / 4} E_{\alpha}(v, \beta ; a+2 b+4(j+1)+1) .
\end{aligned}
$$

Thus by the method of induction we obtain
Lemma 2.2. For given $v(x, t) \in C_{0}^{\infty}\left(\Gamma_{a} \times \boldsymbol{R}\right)$ there exist $g_{0 j}, g_{1 j}, j=0,1$, $2, \cdots$ verifying $(2.11)_{j}$ in ${ }_{\omega}^{\alpha},(2.12)_{j}$ on $\Gamma_{a} \times \boldsymbol{R}$ and the estimate

$$
\begin{equation*}
\sum_{l=0}^{1}\left\|g_{l j}\right\|_{(\alpha), a, b} \leqslant C_{j, a, b} \alpha^{-11 j / 4} E_{a}(v, \beta ; a+2 b+4 j+1) \tag{2.16}
\end{equation*}
$$

where $C_{j, a, b}$ depends on j and a, b but independent of α.
Let N be a positive integer. For $g_{l j}$ of the above lemma we define $g_{l}^{(N)}, u^{(N)}$ by

$$
\begin{aligned}
& g_{l}^{(N)}(x, t ; \alpha, k)=\sum_{j=0}^{N} g_{l j}(x, t ; \alpha, k) k^{1 / 6-1-j}, \quad l=0,1 \\
& u^{(N)}(x, t ; \alpha, k)=e^{i k(\theta-t)}\left\{V\left(k^{2 / 3} \rho\right) g_{0}^{(N)}+\frac{1}{i k^{1 / 3}} V^{\prime}\left(k^{2 / 3} \rho\right) g_{1}^{(N)}\right\} .
\end{aligned}
$$

Since

$$
\begin{equation*}
\left\|e^{i k(\theta-t)} V\left(k^{2 / 3} \rho\right)\right\|_{(a), a, b} \leqslant C_{a b} k^{a+b} \tag{2.17}
\end{equation*}
$$

it holds that

$$
\begin{align*}
& \left\|u^{(N)}\right\|_{(\alpha), a, b} \tag{2.18}\\
\leqslant & C_{N, a, b} \sum_{p+l / a+b} k^{p} \sum_{j=0}^{N} k^{-j-1+1 / 6} E_{a}(v, \beta ; 2 l+4 j+1) \\
\leqslant & C_{N, a, b} \sum_{j=0}^{N+a+b} k^{a+b-j-1 / 5} E_{\alpha}(v, \beta ; 4 j+1) .
\end{align*}
$$

Let us consider the estimates of $\square u^{(N)}$. In $\bar{\omega}_{\boldsymbol{\alpha}}=\{x ; \rho \geqslant 0\}$ it follows from (2.6) and the relations $(2.11)_{j}, j=0,1, \cdots, N$ that

$$
\square u^{(N)}=k^{-N-5 / 6} e^{i k(\theta-t)}\left\{V\left(k^{2 / 3} \rho\right) \square g_{0 N}+\frac{1}{i k^{1 / 3}} V^{\prime}\left(k^{2 / 3} \rho\right) \square g_{1 N}\right\} .
$$

Using (2.16) and (2.17) we have in ω_{ω}

$$
\begin{align*}
& \mid \partial_{t}^{b^{\prime}} \partial_{\rho}^{b} \partial_{\theta}^{a} \tag{2.19}\\
& \square \square u^{(N)} \mid \leqslant C_{N, a, b} k^{-N-5 / 6} \sum_{\substack{p+i \leqslant a \\
r+q \leqslant b+b^{\prime}}} k^{p+q} \sum_{h=0}^{1}\left\|\square g_{h N}\right\|_{(\alpha), l, r} \\
& \leqslant C_{N, a, b} k^{-N-5 / 6} \alpha^{-11 N / 4} \sum_{\substack{p+l<a \\
q+r \leqslant b+b^{\prime}}} k^{p+q} E_{\alpha}(v, \beta ; l+2 r+4 N+1) \\
& \leqslant C_{N, a, b}\left(k \alpha^{11 / 4}\right)^{-N^{a}} \sum_{p=0}^{a+b+b^{\prime}} k^{p} E_{a}\left(v, \beta ; 2\left(a+b+b^{\prime}-p\right)+4 N+1\right) .
\end{align*}
$$

Next consider $\square u^{(N)}$ in $\{x ; \rho<0\}$. Note that

$$
\begin{aligned}
& D_{x, t}^{\gamma}\left(e^{i k(\theta-t)} V\left(k^{2 / 3} \rho\right)\left((\nabla \theta)^{2}+\rho(\nabla \rho)^{2}-1\right) g_{0 j} k^{-j}\right) \\
= & k^{-j} \sum_{\gamma_{1}+\cdots \gamma_{4}=\gamma}\binom{\gamma}{\gamma_{1} \cdots \gamma_{4}} D^{\gamma_{1}} e^{i k(\theta-t)} D^{\gamma_{2}} V\left(k^{2 / 3} \rho\right) \cdot D^{\gamma_{3}}\left((\nabla \theta)^{2}+\rho(\nabla \rho)^{2}-1\right) D^{\gamma_{4}} g_{0 j} .
\end{aligned}
$$

Since $(\nabla \theta)^{2}+\rho(\nabla \rho)^{2}-1=0$ in $\{x ; \rho \geqslant 0\}$ we have for any $M .>0$ a constant $C_{M \gamma_{3}}$ such that

$$
\begin{equation*}
\left.\left|D^{\gamma_{3}}\left((\nabla \theta)^{2}+\rho(\nabla \rho)^{2}-1\right)\right| \leqslant C_{M, \gamma_{3}}(-\rho)^{3 M / 2}\right) \tag{2.20}
\end{equation*}
$$

for $\rho \leqslant 0$. On the other hand, since $V(z)$ satisfies

$$
\left|(-z)^{3 M / 2} D^{\gamma_{2}} V(z)\right| \leqslant C_{\gamma_{2}, M} \quad \text { for all } z<0
$$

it follows that for all $k \geqslant 1$ and $\rho \leqslant 0$

$$
\left|(-\rho)^{3 M / 2} D^{\gamma_{2}} V\left(k^{2 / 3} \rho\right)\right| \leqslant C_{\gamma_{2}, M} k^{-M} .
$$

By using (2.20)

$$
\begin{align*}
& \left\|e^{i k(\theta-t)} V\left(k^{2 / 3} \rho\right)\left((\nabla \theta)^{2}+\rho(\nabla \rho)^{2}-1\right) g_{0 j} k^{-j}\right\|_{(\alpha), a, b} \tag{2.21}\\
\leqslant & C_{M, a, b} k^{a+b} k^{-M} k^{-j-5 / 6}\left\|g_{0 j}\right\|_{(\alpha), a, b} \\
\leqslant & C_{M, a, b} k^{a+b-M-j-5 / 6} \alpha^{-11 j / 4} E_{\alpha}(v, \beta ; 2 a+b+4 j+1)
\end{align*}
$$

About $e^{i k(\theta-t)} V\left(k^{2 / 3} \rho\right) \nabla \theta \cdot \nabla \rho g_{1 j} k^{-j}$ we can obtain the same estimate as (2.21) by taking account of the fact $\nabla \theta \cdot \nabla \rho=0$ in $\{x ; \rho \geqslant 0\}$. Next consider termes of the type

$$
I_{j}=e^{i k(\theta-t)} V\left(k^{2 / 3} \rho\right) J_{j} k^{-j+1-5 / 6}
$$

$$
\begin{aligned}
J_{j}= & 2 \frac{\partial g_{0 j}}{\partial t}+2 \nabla \theta \cdot \nabla g_{0 j}+\Delta \theta g_{0 j}+2 \rho \nabla \rho \cdot \nabla g_{1 j} \\
& +(\nabla \rho)^{2} g_{1 j}+\rho \nabla \rho g_{1 j}+\frac{1}{i} \square g_{0 j-1} .
\end{aligned}
$$

Since $\left\{g_{0 j}, g_{1 j}\right\}$ verifyies $(2.11)_{j}$ in $\bar{\omega}_{a}$ we have for $\rho<0$

$$
\begin{aligned}
\left|\partial_{t}^{b^{\prime}} \partial_{\rho}^{b} \partial_{\theta}^{a} J_{j}\right| \leqslant & C_{M}(-\rho)^{3 M / 2}\left\{\left\|g_{0 j}\right\|_{(\alpha), a+b^{\prime}, b+3 M / 2+1}\right. \\
& \left.+\left\|g_{1 j}\right\|_{(\alpha), a+b^{\prime}, b+3 M / 2+1}+\left\|g_{0 j-1}\right\|_{(\alpha), a+b^{\prime}, b+3 M / 2+2}\right\} .
\end{aligned}
$$

Therefore

$$
\left.\begin{array}{rl}
\left\|I_{j}\right\|_{(\alpha), a, b} \leqslant & C_{j, a, b} k^{-M} k^{-j+1+5 / 6} \sum_{l+p \leqslant a+b} k^{p} \\
& \cdot\left\{\alpha^{-11 j / 4} \sum_{h=0} \sum_{r+q \leqslant l}\left\|g_{h j}\right\|_{(\alpha), r, q+3 M / 2+1}+\alpha^{-11(j-1) / 4} \sum_{r+q \leqslant l}\left\|g_{0 j}\right\|_{(\alpha)} r, q+3 M / 2+1\right.
\end{array}\right\}
$$

and setting $M=N-(j-1)$ it follows that

$$
\begin{equation*}
\left\|I_{j}\right\|_{(\alpha), a, b} \leqslant C_{j, a, b} k^{-N} \alpha^{-11(j-1) / 4} \sum_{l+p \leqslant a+b} k^{p} E_{a}(v, \beta ; 2 l+4 N+3) . \tag{2.22}
\end{equation*}
$$

Note that we have an estimate same as (2.22) for the other terms of $\square u^{(N)}$. From (2.19), (2.21) and (2.22) we have an estimate

$$
\begin{equation*}
\left\|\square u^{(N)}\right\|_{(\alpha), a, b} \leqslant C_{N, a, b}\left(k \alpha^{11 / 4}\right)^{-N} \sum_{p+l \leqslant a+b} k^{p} E_{a}(v, \beta ; 2 l+4 N+3) . \tag{2.23}
\end{equation*}
$$

We set about considering $\left.B u^{(N)}\right|_{\Gamma \propto \times R}$. Remark that from (ii) of Lemma 2.1

$$
\left.\operatorname{supp} B u^{(N)}\right|_{\Gamma a \times R} \subset \Lambda_{0} \cup \Lambda_{1} .
$$

On $\Gamma_{a} \times \boldsymbol{R}$

$$
B u^{(N)-}-e^{i k\left(\varphi^{-}-t\right)} v=e^{i k\left(\varphi^{-}-t\right)} k^{-N}\left\{\Phi^{-} \widetilde{G}_{\bar{N}}+B G_{\bar{N}}^{-}+\frac{1}{i k} B \tilde{G}_{\bar{N}}\right\},
$$

from which it follows that

$$
\begin{align*}
& \left\langle B u^{(N)-}-e^{i k\left(\varphi^{-}-t\right)} v\right\rangle_{(\alpha), a} \tag{2.24}\\
\leqslant & C_{N, a} k^{-N} \sum_{p+l<a} k^{p} \alpha^{-11(N+1) / 4} E_{\alpha}(v, \beta ; l+4 N+3) .
\end{align*}
$$

Since in ω_{ω}

$$
\square u^{(N)}=e^{i k(\theta-t)}\left\{V\left(k^{2 / 3} \rho\right) \square g_{0 N}+\frac{1}{i k^{1 / 3}} V^{\prime}\left(k^{2 / 3} \rho\right) \square g_{1_{N}}\right\} k^{-N-5 / 6},
$$

by applying the expansion of the type (2.7) to the right hand side of the above equality we may write near $\Gamma_{a} \times \boldsymbol{R}$

$$
\square u^{(N)}=e^{i k\left(\varphi^{-}-t\right)} H^{-} k^{-N}+e^{i k\left(\varphi^{+}-t\right)} H^{+} k^{-N}
$$

with $H^{ \pm}$satisfying

$$
\left|\partial_{t}^{a^{\prime}} \partial_{\theta}^{a} \partial_{\rho}^{b} H^{ \pm}\right| \leqslant C_{N, a, b} \alpha^{-11 N / 4} E_{\alpha}\left(v, \beta ; a+a^{\prime}+2 b+4 N+1\right)
$$

On the other hand applying \square to $u^{(N)}$ of (2.7) we have in ω_{a}

$$
\begin{aligned}
\square u^{(N)} & =e^{i k\left(\varphi^{-}-t\right)}\left\{i k\left(2 \frac{\partial}{\partial t}+2 \nabla \varphi^{-} \cdot \nabla+\Delta \varphi^{-}\right)+\square\right\}\left(G^{(N)-}+\frac{1}{i k} \widetilde{G}^{(N)-}\right) \\
& +e^{i k\left(\varphi^{+}-t\right)}\left\{i k\left(2 \frac{\partial}{\partial t}+2 \nabla \varphi^{+} \cdot \nabla+\Delta \varphi^{+}\right)+\square\right\}\left(G^{(N)+}+\frac{1}{i k} \widetilde{G}^{(N)+}\right),
\end{aligned}
$$

where $G^{(N) \pm}, \tilde{G}^{(N) \pm}$ denote the terms corresponding to $G^{ \pm}, \tilde{G}^{ \pm}$of (2.7) when we substitute $g_{1}^{(N)}$ and $g_{1}^{(N)}$ into the places of g_{0} and g_{1} of (2.4). In the same meaning we will write the decomposition of (2.7) for $u^{(N)}$ as $u^{(N)}=u^{(N)+}+u^{(N)-}$. Since $\nabla \varphi^{+}$and $\nabla \varphi^{-}$are linearly independent it follows that

$$
\left\{i k\left(2 \frac{\partial}{\partial t}+2 \nabla \varphi^{ \pm} \cdot \nabla+\Delta \varphi^{ \pm}\right)+\square\right\}\left(G^{(N) \pm}+\frac{1}{i k} \tilde{G}^{(N) \pm}\right)=k^{-N} H^{ \pm},
$$

from which we can derive an estimate in a neighborhood of Λ_{0}

$$
\begin{aligned}
& \left|\partial_{t}^{a} \partial_{\theta}^{a^{\prime}} \partial_{\rho}^{b}\left(G^{(N)+}+\frac{1}{i k} \widetilde{G}^{(N)+}\right)\right| \\
\leqslant & C_{N, a, b} k^{-N+a+a^{\prime}+b} \alpha^{-11 N / 4} E_{\alpha}\left(v, \beta ; 4 N+a+a^{\prime}+2 b+1\right),
\end{aligned}
$$

by taking account of the location of the support of $G^{(N)+}+\frac{1}{i k} \tilde{\boldsymbol{G}}^{(N)+}$ and the equation $G^{(N)+}+\frac{1}{i k} \tilde{G}^{(N)+}$ must satisfy. Then we have

$$
\left\langle\left. B u^{(N)+}\right|_{\Lambda_{0}}\right\rangle_{(\alpha), a} \leqslant C_{N, a}\left(k \alpha^{11 / 4}\right)^{-N} \sum_{p+l \leqslant a} k^{p} E_{a}(v, \beta ; 4 N+l+3) .
$$

Combining the above estimate with (2.24) it holds that

$$
\begin{equation*}
\left\langle\left. B u^{(N)}\right|_{\Lambda_{0}}-e^{i k\left(\varphi^{-}-t\right)} v\right\rangle_{(\alpha), a} \leqslant C_{N, a}\left(k \alpha^{11 / 4}\right)^{-N} \sum_{p+l \leqslant a} k^{p} E_{\alpha}(v, \beta ; 4 N+l+3) . \tag{2.25}
\end{equation*}
$$

Next consider $B u^{(N)}$ on Λ_{1}.

$$
\left.B u^{(N)+}\right|_{\Lambda_{1}}=e^{i k\left(\varphi^{+}-t\right)}\left\{i k \Phi^{+}\left(G^{(N)+}+\frac{1}{i k} \widetilde{G}^{(N)+}\right)+B G^{(N)+}+\frac{1}{i k} B \widetilde{G}^{(N)+}\right\}
$$

where

$$
G^{(N)+}=\sum_{j=0}^{N} \pi^{-1 / 2} \alpha^{-1 / 4} e^{\pi i / 4}\left(g_{0 j}+\sqrt{\rho} g_{1 j}\right) k^{-j-1}
$$

Let us us set

$$
w_{1}(x, t)=i \Phi^{+}\left(g_{00}+\sqrt{\rho} g_{10}\right)
$$

Applying (iii) of Lemma 2.1 we have

$$
w_{1}(x, t)=\gamma_{a}(x) \Phi^{+}\left(\frac{v}{\Phi^{-}}\right)\left(P_{\alpha}(x, t)\right)
$$

Then it holds that

$$
\begin{align*}
& \sup \left|w_{1}\right| \geqslant \frac{1}{2}\left(\inf _{(x, t) \in \Lambda_{1}}\left|\Phi^{+}\right| / \sup _{(x, t) \in \Lambda_{0}}\left|\Phi^{-}\right|\right) \text {sup }|v| \tag{2.26}\\
& \left\langle w_{1}\right\rangle_{(\alpha), a} \leqslant C_{a}\left\{\sup _{(x, t) \in \Lambda_{1}}\left|\Phi^{+}\right| E_{a}(v, \beta ; a)+E_{a}(v, \beta ; a-1)\right\} \tag{2.27}
\end{align*}
$$

Set

$$
w_{2}(x, t)=i \Phi^{+} \sum_{j=1}^{N}\left(g_{0 j}+\sqrt{\rho} g_{1 j}\right) k^{-j}+i \Phi^{+} \widetilde{G}^{(N)+}+B G^{(N)+}+\frac{1}{i k} B \widetilde{G}^{(N)+} .
$$

Then

$$
\left\langle w_{2}\right\rangle_{(\alpha), a} \leqslant C_{N, a} \sum_{j=1}^{N}\left(k \alpha^{11 / 4}\right)^{-j} E_{a}(v, \beta ; 4 j+a)
$$

By the same consideration as $u^{(N)+}$ in Λ_{0} we have

$$
\left\langle\left. B u^{(N)-}\right|_{\Lambda_{0}}\right\rangle_{(\alpha), a} \leqslant C_{N, a}\left(k \alpha^{11 / 4}\right)^{-N} \sum_{p+l \leqslant a} k^{p} E_{w}(v, \beta ; 4 N+l+3) .
$$

Summarizing the considerations in this section we have
Proposition 2.3. Let $\alpha>0$ and $v(x, t) \in C_{0}^{\infty}\left(\Gamma_{a} \times \boldsymbol{R}\right)$ such that $\Lambda_{0} \cap \Lambda_{1}=\phi$. For every positive integer N there exists a function $u^{(N)}(x, t ; \alpha, k) \in C^{\infty}\left(\boldsymbol{R}^{2} \times \boldsymbol{R}\right)$ satisfying

$$
\begin{aligned}
& \operatorname{supp} u^{(N)} \cap\left(\bar{\omega}_{a} \times \boldsymbol{R}\right) \subset\left\{L_{a}^{-}(x, t) ;(x, t) \in \operatorname{supp} v\right\} \\
& \left.\operatorname{supp} B u^{(N)}\right|_{\Gamma a \times \boldsymbol{R}} \subset \Lambda_{0} \cup \Lambda_{1}
\end{aligned}
$$

and the estimates (2.18), (2.23) and (2.25). And

$$
\begin{aligned}
& \left\langle\left. B u^{(N)}\right|_{\Lambda_{1}}-e^{i k(\varphi+-t)} w\right\rangle_{(a), a} \\
\leqslant & C_{N, a}\left(k \alpha^{1 / 4}\right)^{-N} \sum_{p+l \leqslant a} k^{p} E_{a}(v, \beta ; 4 N+l+3)
\end{aligned}
$$

where w has the following properties

$$
\begin{aligned}
\sup |w| \geqslant & \frac{1}{2}\left(\inf _{(x, t) \in \Lambda_{1}}\left|\Phi^{+}\right| \sup _{(x, t) \in \Lambda_{0}}\left|\Phi^{-}\right|\right) \cdot \sup |v| \\
& -C \sum_{j=1}^{N}\left(k \alpha^{11 / 4}\right)^{-j} E_{\alpha}(v, \beta ; 4 j) \\
\langle w\rangle_{(a) a} \leqslant & C_{a}\left\{\left(\sup _{\Lambda_{1}}\left|\Phi^{+}\right|+\beta\right) E_{a}(v, \beta ; a)\right. \\
& \left.+C_{N, a} \sum_{j=1}^{N}\left(k \alpha^{11 / 4}\right)^{-j} E_{a}(v, \beta ; 4 j+a)\right\},
\end{aligned}
$$

where all the constants are independent of α.

3. Asymptotic solutions reflected K-time at Γ_{a}

Let $v(x, t) \in C_{0}^{\infty}\left(\Gamma_{a} \times \boldsymbol{R}\right)$ and $\operatorname{supp} v \subset \Lambda_{0}$. Define $\Lambda_{1}, \Lambda_{2}, \cdots, \Lambda_{K}$ successively by

$$
\Lambda_{j+1}=\left\{L^{-}(x, t) \cap\left(\Gamma_{\infty} \times \boldsymbol{R}\right)-\{(x, t)\} ;(x, t) \in \Lambda_{j}\right\}
$$

Suppose that

$$
\begin{equation*}
\bar{\Lambda}_{j} \subset \Gamma_{a} \times\left(t_{j}, t_{j+1}\right), t_{0}<t_{1}<\cdots<t_{K+1} \tag{3.1}
\end{equation*}
$$

Set

$$
\begin{aligned}
& \beta=\inf _{(x, t) \in \mathcal{N}_{j=0}^{K} \Lambda_{j}}\left|B \varphi^{-}\right|, \\
& \nu=\inf _{\substack{(x, t) \in{\underset{j}{j}}_{K}^{K} \Lambda_{j}}}\left|B \varphi^{+}\right|\left|\sup _{(x, t) \in \cup \cup \Lambda_{j}}\right| B \varphi^{-} \mid .
\end{aligned}
$$

We assume for some constant C_{K}

$$
\begin{equation*}
\sup _{(x, t) \in \cup \wedge_{j}}\left|B \varphi^{+}\right| / \beta \leqslant C_{K} \nu . \tag{3.2}
\end{equation*}
$$

Apply Proposition 2.3 for

$$
m_{0}(x, t ; \alpha, k)=e^{i k\left(\varphi^{-}(x, \alpha)-t\right)} v(x, t)
$$

and have $u_{0}^{(N)}(x, t ; \alpha, k)$ with the properties

$$
\begin{align*}
& \left\|u_{0}^{(N)}\right\|_{(\alpha), a, b} \leqslant C_{N, a, b} \sum_{j=0}^{N+a+b} k^{a+b-j-1 / 5} E_{\alpha}(v, \beta ; 4 j+1) \tag{3.3}\\
& \left\|\square u_{0}^{(N)}\right\|_{(\alpha), a, b} \tag{3.4}\\
\leqslant & C_{N, a, b}\left(k \alpha^{3}\right)^{-N} \sum_{p+\sum_{k+b}} k^{p} E_{a}(v, \beta ; 2 l+4 N+3), \\
& \left\langle\left. B u_{0}^{(N)}\right|_{\Lambda_{0}}-m_{0}\right\rangle_{(a), a}+\left\langle\left. B u_{0}^{(N)}\right|_{\Lambda_{1}}-m_{1}\right\rangle(a), a \tag{3.5}\\
\leqslant & C_{N, a}\left(k \alpha^{4}\right)^{-N} \sum_{p+l \leqslant a} k^{p} E_{\alpha}(v, \beta ; 4 N+l+3),
\end{align*}
$$

where

$$
\begin{gather*}
m_{1}=e^{i k\left(\varphi^{+}-t\right)} v_{1}, \\
\operatorname{supp}_{1} v \subset \Lambda_{1} \tag{3.6}\\
\sup \left|v_{1}\right| \geqslant \frac{\nu}{2} \sup |v|-C \sum_{j=1}^{N}\left(k \alpha^{3}\right)^{-N} E_{a}(v, \beta ; 4 j) \tag{3.7}\\
\left\langle v_{1}\right\rangle_{(\alpha), a} \leqslant C_{a}\left(\sup \left|\Phi^{+}\right|+\beta\right) E_{\alpha}(v, \beta ; a) \tag{3.8}\\
+C_{N, a} \sum_{j=1}^{N}\left(k \alpha^{3}\right)^{-j} E_{a}(v, \beta ; 4 j+a) .
\end{gather*}
$$

Since $\rho=\alpha$ on Γ_{a} we have

$$
\begin{aligned}
\varphi^{+}=\theta+\frac{2}{3} \rho^{3 / 2} & =\theta-\frac{2}{3} \rho^{3 / 2}+\frac{4}{3} \alpha^{3 / 2} \\
& =\varphi^{-}+\frac{4}{3} \alpha^{3 / 2} \quad \text { on } \Gamma_{a}
\end{aligned}
$$

from which follows

$$
m_{1}=e^{i k\left(\varphi^{-}-t\right)} \tilde{v}_{1}, \quad \tilde{v}_{1}=e^{i 4 / 3 k^{3 / 2} / 2} v_{1}
$$

Then \tilde{v}_{1} verifies the properties (3.6) $\sim(3.8)_{1}$.
Now the application of Proposition 2.3 to m_{1} gives the existence of a function $u_{1}^{(N)}(x, t ; \alpha, k)$ with the properties

$$
\begin{align*}
& \left\|u_{1}^{(N)}\right\|_{(\alpha), a, b} \leqslant C_{N, a, b} \sum_{j=0}^{N+a+b} k^{a+b-j-1 / 5} E_{\alpha}\left(v_{1}, \beta ; 4 j+1\right) \tag{3.3}\\
& \left\|\square u_{1}^{(N)}\right\|_{(\alpha), a, b} \leqslant C_{N, a, b}\left(k \alpha^{3}\right)^{-N} \sum_{p+l \leqslant a+b} k^{p} E_{a}\left(v_{1}, \beta ; 2 l+4 N+3\right) \tag{3.4}\\
& \left.\left\langle\left. B u_{1}^{(N)}\right|_{\Lambda_{1}}-m_{1}\right\rangle\right\rangle_{(\alpha), a}+\left\langle\left. B u_{1}^{(N)}\right|_{\Lambda_{2}}-m_{2}\right\rangle(\alpha), a \tag{3.5}\\
& \leqslant C_{N, a}\left(k \alpha^{3}\right)^{-N} \sum_{p+l \leqslant a} k^{p} E_{\alpha}\left(v_{1}, \beta ; 4 N+l+3\right) .
\end{align*}
$$

From (3.8) $)_{1}$ and the definition of $E_{\alpha}\left(v_{1}, \beta ; a\right)$ it follows

$$
\begin{aligned}
& E_{a}\left(v_{1}, \beta ; a\right)=\sum_{p+l \leqslant a}\left\langle v_{1}\right\rangle(\alpha), p \\
\leqslant & \beta^{-l-1} \\
\leqslant & \sum_{p+l \leqslant a}\left\{C_{p}\left(\sup \left|\Phi^{+}\right|+\beta\right) E_{\alpha}(v, \beta ; p)\right. \\
& \left.+C_{N, a} \sum_{j=1}^{N}\left(k \alpha^{3}\right)^{-j} E_{\alpha}(v, \beta ; 4 j+p)\right\} \beta^{-l-1} \\
\leqslant & C_{a}\left(\sup \left|\Phi^{+}\right|+\beta\right) \sum_{p+l \leqslant a} E_{\alpha}(v, \beta ; p) \beta^{-l-1} \\
& +C_{N, a} \sum_{j=1}^{N}\left(k \alpha^{3}\right)^{-j} \sum_{p+l \leqslant a} E_{\alpha}(v, \beta ; 4 j+p) \beta^{-l-1} .
\end{aligned}
$$

By using $E_{\alpha}(v, \beta ; p) \beta^{-l} \leqslant E_{\alpha}(v, \beta ; p+l)$, we have

$$
\begin{align*}
E_{a}\left(v_{1}, \beta ; a\right) \leqslant & C_{a}\left(\sup \left|\Phi^{+}\right|+\beta\right) / \beta E_{\alpha}(v, \beta ; a) \tag{3.9}\\
& +C_{N, a} \beta^{-1} \sum_{j=1}^{N}\left(k \alpha^{3}\right)^{-j} E_{\alpha}(v, \beta ; 4 j+a)
\end{align*}
$$

From the second part of Proposition $2.3 m_{2}$ can be represented as

$$
\begin{aligned}
m_{2}(x, t ; \alpha, k) & =e^{i k\left(\varphi^{+}-t\right)} v_{2}(x, t ; \alpha, k) \\
& =e^{i k\left(\varphi^{-}-t\right)} e^{i k(4 / 3) a^{3 / 2}} v_{2}=e^{i k\left(\varphi^{-}-t\right)} \tilde{v}_{2}
\end{aligned}
$$

and \tilde{v}_{2} verifies from (2.7) and the above estimate (3.9) ${ }_{1}$

$$
\begin{align*}
\sup \left|\tilde{v}_{2}\right| \geqslant & \frac{1}{2} \nu\left(\frac{1}{2} \nu \sup |v|-C_{N} \sum_{j=1}^{N}(k \alpha)^{3-j} E_{a}(v, \beta ; 4 j)\right) \tag{3.7}\\
& -C \sum_{j=0}^{N}\left(k \alpha^{3}\right)^{-j}\left\{C_{a}\left(\sup \left|\Phi^{+}\right|+\beta\right) / \beta E_{a}(v, \beta ; 4 j)\right. \\
& \left.+C_{N, a} \beta^{-1} \sum_{h=1}^{N}\left(k \alpha^{3}\right)^{-h} E_{a}(v, \beta ; 4 j+4 h)\right\} \\
\geqslant & \left(\frac{1}{2} \nu\right)^{2} \sup |v|-C \nu \sum_{j=1}^{N}\left(k \alpha^{3}\right)^{-j} E_{a}(v, \beta ; 4 j) \\
& -C_{N, a} \beta^{-1} \sum_{j=2}^{2 N}\left(k \alpha^{3}\right)^{-j} E_{a}(v, \beta ; 4 j) \\
\left\langle\tilde{v}_{2}\right\rangle(a), a \leqslant & C_{a}\left(\sup \left|\Phi^{+}\right|+\beta\right) E_{a}\left(v_{1}, \beta ; a\right) \tag{3.8}\\
& +C_{N, a} \sum_{j=1}^{N}\left(k \alpha^{3}\right)^{-j} E_{a}\left(v_{1}, \beta ; 4 j+a\right) \\
\leqslant & C_{a}\left(\sup \left|\Phi^{+}\right|+\beta\right)\left\{C_{a} C \nu E_{a}(v, \beta ; a)\right. \\
& \left.+C_{N, a} \beta^{-1} \sum_{j=2}^{N}\left(k \alpha^{3}\right)^{-j} E_{a}(v, \beta ; 4 j+a)\right\} \\
& +C_{N, a} \sum_{j=1}^{N}\left(k \alpha^{3}\right)^{-j}\left\{C_{a} \cdot C \nu E_{a}(v, \beta ; 4 j+a)\right. \\
& \left.+\beta^{-1} C_{N, a} \sum_{n=2}^{N}\left(k \alpha^{3}\right)^{-h} E_{a}(v, \beta ; 4 h+4 j+a)\right\} \\
\leqslant & C_{a}^{\prime}\left(\sup \left|\Phi^{+}\right|+\beta\right) \cdot \nu \cdot E_{a}(v, \beta ; a) \\
& +C_{N, a}^{\prime} \nu \sum_{j=1}^{N}\left(k \alpha^{3}\right)^{-j} E_{a}(v, \beta ; 4 j+a) \\
& +C_{N, a}^{\prime} \beta^{-1} \sum_{j=2}^{2 N}\left(k \alpha^{3}\right)^{-j} E_{a}(v, \beta ; 4 j+a)
\end{align*}
$$

Repeating this process we obtain $u_{j}^{(N)}(x, t ; \alpha, k), j=0,1,2, \cdots, K$ verifying

$$
\begin{align*}
& \left\|u_{j}^{(N)}\right\|_{(a), a, b} \leqslant C_{N, a, b} \sum_{h=0}^{N+a+b} k^{a+b-h-1 / 5} E_{a}\left(v_{j}, \beta ; 4 h+1\right) \tag{3.3}\\
& \left\|\square u_{j}^{(N)}\right\|_{(\alpha), a, b} \leqslant C_{N, a, b}\left(k \alpha^{3}\right)^{-N} \sum_{p+l \leqslant a+b} k^{p} E_{a}\left(v_{j}, \beta ; 2 l+4 N+3\right) \\
& \left\langle\left. B u_{j}^{(N)}\right|_{\Lambda_{j}}-m_{j}\right\rangle_{(a), a}+\left\langle\left. B u_{j}^{(N)}\right|_{\Lambda_{j+1}}-m_{j+1}\right\rangle(a), a \\
& \leqslant C_{N, a}\left(k \alpha^{3}\right)^{-N} \sum_{p+l \leqslant a} k^{p} E_{a}\left(v_{j}, \beta ; 4 N+l+3\right), \\
& m_{j}=e^{i k\left(\varphi^{-}-t\right)} \tilde{v}_{j} \\
& \operatorname{supp} \tilde{v}_{j} \subset \Lambda_{j} \\
& \sup \left|\tilde{v}_{j}\right| \geqslant\left(\frac{1}{2} \nu\right)^{j} \sup |v| \tag{3.7}\\
& \quad-C_{N}^{(j)} \sum_{l=1}^{j-1} \nu^{j-l} \sum_{h=l}^{l N}\left(k \alpha^{3}\right)^{-h} E_{a}(v, \beta ; 4 h)
\end{align*}
$$

$$
\begin{align*}
& -C_{N}^{(j)} \beta^{-1} \sum_{h=j}^{j N}\left(k \alpha^{3}\right)^{-h} E_{a}(v, \beta ; 4 h), \\
\left\langle\tilde{v}_{j}\right\rangle_{(\alpha), a} \leqslant & C_{a}^{(j)}\left(\sup \left|\Phi^{+}\right|+\beta\right) \cdot \nu^{j-1} E_{a}(v, \beta ; a) \tag{3.8}\\
& +C_{N, a}^{(j)} \sum_{l=1}^{j-1} \nu^{j-l} \sum_{h=l}^{l N}\left(k \alpha^{3}\right)^{-h} E_{\alpha}(v, \beta ; 4 h+a) \\
& +C_{N, a}^{(j)} \beta^{-1} \sum_{h=j}^{j N}\left(k \alpha^{3}\right)^{-h} E_{\alpha}(v, \beta ; 4 h+a) .
\end{align*}
$$

By using $\nu \leqslant C \beta^{-1}$ it follows from (3.8) ${ }_{j}$ that

$$
\begin{align*}
\left\langle\tilde{v}_{j}\right\rangle_{(a), a} & \leqslant C_{N, a}^{(j)} \sum_{l=0}^{j} \beta^{-(j-l)} \sum_{h=l}^{i N}\left(k \alpha^{3}\right)^{-h} E_{\alpha}(v, \beta ; 4 h+a) \tag{3.10}\\
& \leqslant C_{N, a}^{(j)} \sum_{l=0}^{j} \sum_{h=l}^{l N}\left(k \alpha^{3}\right)^{-h} E_{a}(v, \beta ; 4 h+j-l+a) .
\end{align*}
$$

Set

$$
U_{K}^{(N)}(x, t ; \alpha, k)=\sum_{j=0}^{N}(-1)^{j} u_{j}^{(N)}(x, t ; \alpha, k) .
$$

Then we have from (3.3) ${ }_{j} \sim(3.10)_{j}$
Proposition 3.1. Let $v(x, t) \in C_{0}^{\infty}\left(\Gamma_{a} \times \boldsymbol{R}\right)$ such that

$$
\operatorname{supp} v \subset \Lambda_{0} .
$$

Suppose that (3.1) and (3.2). Then there exists a function $U_{K}^{(N)}(x, t ; \alpha, k)$ with the following properties:

$$
\begin{align*}
& \operatorname{supp} U_{K}^{(N)} \cap(\bar{\Omega} \times \boldsymbol{R}) \subset \bar{\Omega} \times\left(t_{0}, \infty\right) \tag{3.11}\\
& \left\|U_{K}^{(N)}\right\|_{(\alpha), a, b} \leqslant C_{N, K, a, b} \sum_{j=0}^{N+a+b} k^{a+b-j-1 / 5} \tag{3.12}\\
& \quad \cdot \sum_{l=0}^{K} \sum_{h=l}^{l N}\left(k \alpha^{3}\right)^{-h} E_{\alpha}(v, \beta ; 4 h+K-l+4 j+2) \\
& \left\|\square U_{K}^{(N)}\right\|_{(\alpha), a, b} \tag{3.13}\\
& \leqslant C_{N, K, a, b}\left(k \alpha^{3}\right)^{-N} \sum_{p+l \leqslant a+b} k^{p} \sum_{q=0}^{K} \sum_{h=q}^{q N}\left(k \alpha^{3}\right)^{-h} E_{\alpha}(v, \beta ; 4 h+K-q+2 l+4 N+3) \\
& \left\langle\left. B U_{K}^{(N)}\right|_{\Gamma \alpha \times\left(t_{0}, t_{K}\right)}-m_{0}\right\rangle(\alpha), a \tag{3.14}\\
& \leqslant C_{N, K, a}\left(k \alpha^{3}\right)^{-N} \sum_{p+l<a+b} k^{p} \sum_{q=0}^{K} \sum_{h=q}^{q N}\left(k \alpha^{3}\right)^{-h} E_{\alpha}(v, \beta ; 4 h+K-q+2 l+4 N+3) \\
& \sup _{\Gamma_{\alpha} \times\left(t_{0}, t_{k}\right)}\left|U_{K}^{(N)}\right| \geqslant\left(\frac{1}{2} \nu\right)^{K} \sup ^{l}|v| \tag{3.15}\\
& \quad-C_{N} \sum_{l=1}^{K-1} \nu^{j-l} \sum_{h=l}^{l N}\left(k \alpha^{3}\right)^{-h} E_{\alpha}(v, \beta ; 4 h) \\
& \quad-C_{N} \beta^{-1} \sum_{h=K}^{K N}\left(k \alpha^{3}\right)^{-h} E_{a}(v, \beta ; 4 h),
\end{align*}
$$

where the constants $C_{N, K, a, b}$ and $C_{N, K, a}$ are independent of α.

4. Proof of the theorem

Lemma 4.1. Suppose that $\tau(0)=\tau^{\prime}(0)=0$ and

$$
\sup _{0<s<\varepsilon} \tau(s)>0
$$

for any $\varepsilon>0$. Then there exist a constant $\delta \geqslant 1 / 2$ and a sequence

$$
s_{1}>s_{2}>\cdots>s_{n}>s_{n+1}>\cdots>0
$$

with the following properties:

$$
\left\{\begin{array}{l}
s_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.1}\\
\beta_{n}=\tau\left(s_{n}\right)>0
\end{array}\right.
$$

and for any positive integer K there exists a constant C_{K} such that

$$
\begin{equation*}
\sup _{n} \sup _{0 \leq t \leqslant K} \frac{\left|\tau\left(s_{n}+t \beta_{n}\right)-\beta_{n}\right|}{\beta_{n}^{1+\delta}} \leqslant C_{K} . \tag{4.2}
\end{equation*}
$$

Proof. When $s=0$ is a zero of finite order, namely for some $q \geqslant 1$

$$
\tau(0)=\tau^{\prime}(0)=\cdots=\tau^{(q)}(0)=0, \quad \tau^{(q+1)}(0)>0
$$

it holds that for some $s_{0}>0$

$$
\left|\tau^{\prime}(s)\right| \leqslant C \tau(s)^{q /(q+1)} \quad \text { for } 0<s<s_{0} .
$$

Since for $s>0, t>0$,

$$
\begin{aligned}
|\tau(s+t \tau(s))-\tau(s)| & \leqslant t \tau(s)\left|\tau^{\prime}(s+\eta t \tau(s))\right| \quad(0<\eta<1) \\
& \leqslant t \tau(s)\left\{\left|\tau^{\prime}(s)\right|+\operatorname{t\eta \tau }(s)\left(\sup \tau^{\prime \prime}\right)\right\} \\
& \leqslant C_{K} \tau(s)^{1+q /(q+1)} \quad(0<t \leqslant K),
\end{aligned}
$$

$\delta=q /(q+1)$ and the sequence $s_{n}=1 / n$ are the desired one.
Next consider the case that $s=0$ is a zero of infinite order.
Case 1. $\tau(s)$ is monotonically increasing in $0<s<\varepsilon_{0}$ for some $\varepsilon_{0}>0$. Suppose that for some $1>\delta>0$ there is no sequence with property (4.1) verifying

$$
\begin{equation*}
\tau^{\prime}\left(s_{n}\right)<\tau\left(s_{n}\right)^{\delta}, \quad \forall n \tag{4.3}
\end{equation*}
$$

This assumption implies that it holds that for some $\varepsilon_{1}>0$

$$
\tau^{\prime}(s) \geqslant \tau(s)^{\delta} \quad \text { for } 0<s<\varepsilon_{1},
$$

from which it follows

$$
\frac{d}{d s} \boldsymbol{\tau}(s)^{1-\delta}=(1-\delta) \tau(s)^{-\delta} \tau^{\prime}(s) \geqslant(1-\delta) \quad \text { for } 0<s<\varepsilon_{1}
$$

Then we have

$$
\tau(s)^{1-\delta} \geqslant(1-\delta) s \quad \text { for } 0<s<\varepsilon_{1}
$$

namely $\tau(s) \geqslant(1-\delta) s^{1 /(1-\delta)}$. This is contradict with the assumption that $\tau(s)$ has a zero of infinite order at $s=0$. Then we see that for any $1>\delta>0$ there exists $\left\{s_{n}\right\}$ verifying (4.1) and (4.3). By using (4.3) and

$$
\begin{aligned}
& \tau\left(s_{n}+t \beta_{n}\right)-\beta_{n}=t \beta_{n} \tau^{\prime}\left(s_{n}+\eta t \beta_{n}\right), \quad 0<\eta<1 \\
& \left|\tau^{\prime}\left(s_{n}+\eta t \beta_{n}\right)-\tau^{\prime}\left(s_{n}\right)\right| \leqslant t \beta_{n} \sup \left|\tau^{\prime \prime}(s)\right|
\end{aligned}
$$

we have for all $0 \leqslant t \leqslant K$

$$
\left|\tau\left(s_{n}+t \beta_{n}\right)-\beta_{n}\right| \leqslant K \beta_{n}\left(\tau^{\prime}\left(s_{n}\right)+C K \beta_{n}\right) \leqslant C_{K} \beta_{n}^{1+\delta} .
$$

Thus (4.2) is proved.
Case 2. For some $\varepsilon_{0}>0$

$$
\tau(s)>0 \quad \text { for } 0<s<\varepsilon_{0}
$$

and $\tau(s)$ is not monotonically increasing in $0<s<\varepsilon$ for any $\varepsilon>0$. From the assumption for any $\varepsilon>0$ there exists s such that $0<s<\varepsilon$ and $\tau^{\prime}(s)=0$. Then we can choose $s_{n}>0$ with the propertiy (4.1) such that $\tau^{\prime}\left(s_{n}\right)=0$. Then

$$
\begin{aligned}
\left|\tau\left(s_{n}+t \beta_{n}\right)-\beta_{n}\right| & \leqslant\left|\tau^{\prime}\left(s_{n}+\eta t \beta_{n}\right)\right| \cdot t \beta_{n} \\
& \leqslant C K^{2} \cdot \beta_{n}^{2} \quad \forall n .
\end{aligned}
$$

Thus $\left\{s_{n}\right\}_{n=0}^{\infty}$ is the desired one.
Case 3. $\tau(s)$ does not verify the properties of the case 1 nor 2 . Then there exists a sequence $\theta_{n}>\theta_{n+1}>\cdots \rightarrow 0$ such that $\tau\left(\theta_{n}\right)=0$ and $\sup _{s \in\left[\theta_{n+1}, \theta_{n}\right]} \tau(s)>0$, since for any $\varepsilon>0$ there exists $0<s<\varepsilon$ such that $\tau(s)>0$. If we choose s_{n} as

$$
\tau\left(s_{n}\right)=\max _{s \in\left[\theta_{n+1}, \theta_{n}\right]} \tau(s)
$$

it holds that $\tau\left(s_{n}\right)>0$ and $\tau^{\prime}\left(s_{n}\right)=0$. Evidently $s_{n} \rightarrow 0$. As case 2 we see that this $\left\{s_{n}\right\}$ verifies (4.2).
Q.E.D.

Since $n(x)=\left(n_{1}(x), n_{2}(x)\right)$ may be considered as a C^{∞}-vector defined in a neighborhood of Γ

$$
\eta(x)=b_{1}(x) n_{2}(x)-b_{2}(x) n_{1}(x)
$$

is also a C^{∞}-function defined in a neighborhood of Γ. We show that (P) is not well posed in the sense of C^{∞} when $\tau(s)$ of the introduction, i.e., $\tau(s)=$
$\eta(x(s))$ verifies the condition on $\tau(s)$ of Lemma 4.1. Note that

$$
\left\{\begin{array}{l}
\nabla \varphi^{ \pm}= \pm \sqrt{\rho}\left(\nabla \rho_{0}+\alpha \nabla \rho_{1}+\cdots\right)+\nabla \theta_{0}+\alpha \nabla \theta_{1}+\cdots \tag{4.4}\\
\text { and } n(x) \cdot \nabla \rho_{0}=\left|\nabla \rho_{0}\right|, n(x) \cdot \nabla \theta_{0}=0 \quad \text { on } \Gamma^{4)} .
\end{array}\right.
$$

Then we have

$$
\begin{array}{ll}
n(x) \cdot \nabla \varphi^{-}(x, \alpha)=\alpha^{1 / 2} \frac{\partial \rho}{\partial n}+O(\alpha) & \text { on } \Gamma \\
\nabla \theta(x, 0) \cdot \nabla \varphi^{-}(x, \alpha)=1+O(\alpha) & \text { on } \Gamma .
\end{array}
$$

Therefore $n(x) \cdot \nabla \varphi^{-}(x, \alpha) / \nabla \theta(x, \alpha) \cdot \nabla \varphi^{-}(x, \alpha)$ decreases monotonically to zero uniformly in $x \in \Gamma$ when $\alpha \rightarrow+0$. Let $\left\{s_{n}\right\}$ be the sequence with the property (4.1) for the above $\tau(s)$

For every n set $y_{n}=x\left(s_{n}\right)$. Then $\alpha_{n}>0$ is determined uniquely for large n by the relation

$$
\begin{equation*}
\frac{n\left(y_{n}\right) \cdot \nabla \varphi^{-}\left(y_{n}, \alpha_{n}\right)}{\nabla \theta\left(y_{n}, 0\right) \cdot \nabla \varphi^{-}\left(y_{n}, \alpha_{n}\right)}=\beta_{n}+\beta_{n}^{1+\delta / 2} \tag{4.5}
\end{equation*}
$$

From the above relations we have

$$
\begin{equation*}
c_{1} \beta_{n} \leqslant \alpha_{1}^{1 / 2} \leqslant c_{2} \beta_{n}, \quad \forall n, \tag{4.6}
\end{equation*}
$$

where c_{1}, c_{2} are positive constants.
Note that for $\alpha=0$

$$
\nabla \theta \cdot \nabla \rho=0, \quad|\nabla \theta|=1 \quad \text { on } \Gamma
$$

On the other hand $x(s) \in \Gamma$ and $\left|\frac{d x}{d s}\right|=1$. Then it follows that

$$
\theta(x(s), 0)=s+\text { constant }
$$

Without loss of generality we may pose the constant $=0$. Since we have from (2.1) and the property (ii) of ρ

$$
\operatorname{rank}\left(\begin{array}{ll}
\frac{\partial \theta}{\partial x_{1}} & \frac{\partial \theta}{\partial x_{2}} \\
\frac{\partial \rho}{\partial x_{1}} & \frac{\partial \rho}{\partial x_{2}}
\end{array}\right)_{\substack{x=0 \\
x=x(0)}}=2
$$

there exists uniquely $x_{a}(s)$ verifying $x_{\infty}(s) \rightarrow x(s)$ as $\alpha \rightarrow 0$ and

$$
\left\{\begin{array}{l}
\theta\left(x_{a}(s), 0\right)=s \\
\rho_{a}\left(x_{\alpha}(s), \alpha\right)=\alpha
\end{array}\right.
$$

[^3]for small s and α. Moreover we have
\[

$$
\begin{aligned}
\left|x_{\alpha}(s)-x(s)\right| & \leqslant C\left\{\left|\rho\left(x_{\alpha}(s), \alpha\right)-\rho(x(s), \alpha)\right|+\left|\theta\left(x_{\alpha}(s), 0\right)-\theta(x(s), 0)\right|\right\} \\
& \leqslant C|\alpha-\rho(x(s), \alpha)| .
\end{aligned}
$$
\]

Using (2.2) and $x(s) \in \Gamma$, we obtain for any $P>0$

$$
\left|x_{\omega}(s)-x(s)\right| \leqslant C_{P} \alpha^{P} .
$$

Then we have

$$
\begin{equation*}
\left|\left(B \varphi^{ \pm}\right)\left(x_{\omega}(s), \alpha\right)-\left(B \varphi^{ \pm}\right)(x(s), \alpha)\right| \leqslant C_{P} \alpha^{P} \tag{4.7}
\end{equation*}
$$

for all $\alpha>0$ and s. Note that

$$
\left(B \varphi^{ \pm}\right)(x, \alpha)=n(x) \cdot \nabla \varphi^{ \pm}(x, \alpha)-\eta(x) \nabla \theta_{0}(x) \cdot \nabla \varphi^{ \pm}(x, \alpha) .
$$

Then we have

$$
\begin{align*}
\left(B \varphi^{-}\right)\left(y_{n}, \alpha_{n}\right) & =\left(\beta_{n}+\beta_{n}^{1+\delta / 2}-\tau\left(s_{n}\right)\right) \nabla \theta_{0}\left(y_{n}\right) \cdot \nabla \varphi^{-}\left(y_{n}, \alpha_{n}\right) \tag{4.8}\\
& =\beta_{n}^{1+\delta / 2} \nabla \theta_{0}\left(y_{n}\right) \cdot \nabla \varphi^{-}\left(y_{n}, \alpha_{n}\right) \\
& =\beta_{n}^{1+\delta / 2}\left(1+O\left(\beta_{n}\right)\right)
\end{align*}
$$

Taking account of (4.4) it holds that

$$
\begin{aligned}
& n(x(t+s)) \cdot \nabla \varphi^{ \pm}(x(s+t))-n(x(s)) \cdot \nabla \varphi^{ \pm}(x(s)) \\
= & \pm \sqrt{\alpha}\left(\left|\nabla \rho_{0}(x(s+t))\right|-\mid \nabla \rho_{0}(x(s) \mid)+O(\alpha) .\right.
\end{aligned}
$$

Since $\left|\nabla \rho_{0}(x)\right|$ is C^{∞} we have

$$
\begin{aligned}
& \left|n\left(x\left(s_{n}+t \beta_{n}\right)\right) \cdot \nabla \varphi^{ \pm}\left(x\left(s_{n}+t \beta_{n}\right), \alpha_{n}\right)-n\left(x\left(s_{n}\right)\right) \cdot \nabla \varphi^{ \pm}\left(x\left(s_{n}\right), \alpha_{n}\right)\right| \\
\leqslant & C t \beta_{n}^{2} \quad \forall n .
\end{aligned}
$$

By the same consideration it holds that

$$
\begin{aligned}
& \left|\nabla \theta_{0}\left(x\left(s_{n}+t \beta_{n}\right)\right) \cdot \nabla \varphi^{ \pm}\left(x\left(s_{n}+t \beta_{n}\right), \alpha_{n}\right)-\nabla \theta_{0}\left(x\left(s_{n}\right)\right) \cdot \nabla \varphi^{ \pm}\left(x\left(s_{n}\right), \alpha_{n}\right)\right| \\
\leqslant & C t \alpha_{n} \leqslant C t \beta_{n}^{2}, \quad \forall n .
\end{aligned}
$$

Therefore we have for $0 \leqslant t \leqslant K$

$$
\begin{aligned}
& \left|\left(B \varphi^{-}\right)\left(x\left(s_{n}+t \beta_{n}\right), \alpha_{n}\right)-\left(B \varphi^{-}\right)\left(x\left(s_{n}\right), \alpha_{n}\right)\right| \\
\leqslant & \left|\tau\left(s_{n}+t \beta_{n}\right)-\tau\left(s_{n}\right)\right|+C K \beta_{n}^{2} .
\end{aligned}
$$

Combinig (4.2) and (4.7) it follows that

$$
\begin{equation*}
\left|\left(B \varphi^{-}\right)\left(x\left(s_{n}+t \beta_{n}\right), \alpha_{n}\right)-\beta_{n}^{1+\delta / 2}\right| \leqslant C_{K} \beta_{n}^{1+\delta} \tag{4.9}
\end{equation*}
$$

for all $0 \leqslant t \leqslant K$ and n. By the same consideration we have

$$
\begin{equation*}
\left|\left(B \varphi^{+}\right)\left(x\left(s_{n}+t \beta_{n}\right), \alpha_{n}\right)-2 \beta_{n}\right| \leqslant G_{K} \beta_{n}^{1+\delta / 2} \tag{4.10}
\end{equation*}
$$

for all $0 \leqslant t \leqslant K$ and n. Then by using (4.6), (4.7) and (4.9) or (4.10) we have
Lemma 4.2. Suppose that $\tau(s)$ is equipped with the properties of Lemma 4.1. Then for any $K>0$ there exists a constant C_{K} such that

$$
\begin{align*}
& \left|\left(B \varphi^{-}\right)\left(x_{\alpha_{n}}\left(s_{n}+t \beta_{n}\right), \alpha_{n}\right)-\beta_{n}^{1+\delta / 2}\right| \leqslant C_{K} \beta_{n}^{1+\delta} \tag{4.11}\\
& \left|\left(B \varphi^{+}\right)\left(x_{a_{n}}\left(s_{n}+t \beta_{n}\right), \alpha_{n}\right)-2 \beta_{n}\right| \leqslant C_{K} \beta_{n}^{1+\delta / 2} \tag{4.12}
\end{align*}
$$

for all $0 \leqslant t \leqslant K$ and n.
Suppose that the problem (P) is well posed in the sense of C^{∞}. Then for any T there exist q and C_{T} such that for all $t \leqslant T$

$$
\begin{equation*}
|u|_{0, \Omega \times(-\infty, t)} \leqslant C_{T}\left\{|\square u|_{q, \Omega \times(-\infty, t)}+|B u|_{q, \Gamma \times(-\infty, t)}\right\} \tag{4.13}
\end{equation*}
$$

for all $u(x, t) \in C^{\infty}(\bar{\Omega} \times(-\infty, T))$ verifying $u=0$ for $t \leqslant 0$, where

$$
\begin{aligned}
|v|_{q, \Omega \times(-\infty, t)} & =\sum_{|\gamma|<q} \sup _{\Omega \times(\infty, t)}\left|D_{x, t}^{\gamma} v\right| \\
|v|_{q, \Gamma \times(-\infty)}= & =\sum_{p+r \leqslant q} \sup _{\Gamma \times(-\infty, t)}\left|D_{t}^{p}\left(\nabla \theta_{0}(x) \cdot \nabla\right)^{r} v\right| .
\end{aligned}
$$

On the supposition on $\tau(s)$ of Lemma 4.1 we will show the existence of a sequence of functions which violates (4.13).

Let $h(s, t) \in C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right)$ such that

$$
\sup |h|=1, \quad \operatorname{supp} h \subset[0,1] \times[0,1]
$$

For each n define $v_{n}(x, t) \in C_{0}^{\infty}\left(\Gamma_{a_{n}} \times \boldsymbol{R}\right)$ by

$$
v_{n}\left(x_{\alpha_{n}}(s), t\right)=h\left(\frac{s-s_{n}}{\alpha_{n}}, \frac{t}{\alpha_{n}}\right)
$$

Put

$$
\Lambda_{n 0}=\left\{\left(x_{\alpha_{n}}(s), t\right) ;\left|s-s_{n}\right| \leqslant \alpha_{n}, 0 \leqslant t \leqslant \alpha_{n}\right\}
$$

and define $\Lambda_{n j}, j=1,2, \cdots, K$ according to the description in the beginning of $\S 3$. Since $c_{2} \sqrt{\alpha_{n}} \leqslant\left|P_{\alpha_{n}}(x, t)-(x, t)\right| \leqslant c_{1} \sqrt{ } \overline{\alpha_{n}}$ it holds that

$$
\begin{gathered}
\Lambda_{n j} \subset \Gamma_{a_{n}} \times\left(t_{n j}, t_{n j+1}\right) \\
0=t_{n 0}<t_{n 1}<\cdots<t_{n K}<c_{1} K \sqrt{\alpha_{n}} .
\end{gathered}
$$

From Lemma 4.2 we have

$$
\inf _{\substack{(x, t) \in \in_{j=0}^{K} \Lambda_{n j}}}\left|B \varphi^{-}\right| \geqslant C_{K} \beta_{n}^{1+8 / 2} \geqslant C_{K} \alpha_{n},
$$

$$
\inf _{(x, t) \in{\underset{j}{j=0}}_{K}^{\Lambda_{n_{j}}}}\left|B \varphi^{+}\right| / \sup _{(x, t) \in \in_{j=0}^{K}}^{\sum_{n_{j}}}\left|B \varphi^{-}\right| \geqslant C_{K} \beta_{n}^{\delta / 2}
$$

and

$$
\sup _{(x, t) \in \bigcup_{j=0}^{K} \Lambda_{n_{j}}}\left|B \varphi^{+}\right|\left|\inf _{(x, t) \in \bigcup_{j=0}^{K} \Lambda_{j}}\right| B \varphi^{-} \mid \leqslant C_{K}^{\prime} \beta_{n}^{8 / 2},
$$

where C_{K} and C_{K}^{\prime} are independent of n.
Let us fix K as

$$
\begin{equation*}
\frac{1}{2} K \delta \geqslant 20 q+1 \tag{4.14}
\end{equation*}
$$

and N as

$$
\begin{equation*}
6 N>2 K+6 . \tag{4.15}
\end{equation*}
$$

For each n we apply Proposition 3.1 and obtain $U_{n K}^{(N)}(x, t ; \alpha, k)$. Note that it holds that

$$
\left\langle v_{n}\right\rangle_{\left(\alpha_{n}\right), a} \leqslant C_{a} \alpha_{n}^{-a}
$$

where C_{a} is a constant independent of n. Then

$$
E_{\alpha_{n}}\left(v_{n}, \alpha_{n} ; a\right) \leqslant C_{a} \alpha_{n}^{-(a+1)} .
$$

Setting $k=\beta_{n}^{-20}$ we have

$$
\begin{align*}
& \left\|U_{n K}^{(N)}\right\|_{\left(a_{n}\right), a, b} \leqslant C_{N, K, a, b} \sum_{j=0}^{N+a+b} \beta_{n}^{-20(a+b-j)} \tag{4.16}\\
& \cdot \sum_{l=0}^{K} \sum_{n=1}^{l N}\left(\beta_{n}^{-20} \alpha_{n}^{3}\right)^{-h} \alpha_{n}^{-4 h-K+l-4 j-2-1} \\
& \leqslant C_{N, K, a, b} \beta_{n}^{-20(a+b)} \text {. } \\
& \left\|\square U_{n K}^{(N)}\right\|_{\left(\alpha_{n}\right), a, b} \leqslant C_{N, a, b}\left(\beta_{n}^{-20} \alpha_{n}^{3}\right)^{-N} \tag{4.17}\\
& \cdot \sum_{p+l \leqslant a+b} \beta_{n}^{-20 p} \sum_{r=0}^{K} \sum_{h=r}^{r N}\left(\beta_{n}^{-20} \alpha_{n}^{3}\right)^{-h} \alpha_{n}^{-4 h-K+r-2 l-4 N-3} \\
& \leqslant C_{N, a, b} \beta_{n}^{6 N} \beta_{n}^{-2 K-6} \leqslant C_{N, a, b} \\
& \left\langle\left. B U_{n N}^{(N)}\right|_{\Gamma_{\omega_{n}} \times\left(t_{n 0,}, t_{n K}\right)}-m_{0}\right\rangle_{\left(a_{n}\right), a} \leqslant C_{N, a, b} \tag{4.18}\\
& \sup _{\mathbf{Q} \times\left(t_{n 0}, t_{n K}\right)}\left|U_{n K}^{(N)}\right| \geqslant\left(\frac{1}{2}\right)^{K} \beta_{n}^{-K \delta / 2} \\
& -C_{N} \sum_{l=0}^{K-1} \beta_{n}^{-(K-j) \delta} \sum_{h=l}^{l N}\left(\beta_{n}^{-20} \alpha_{n}^{3}\right)^{-h} \alpha_{n}^{-4 h-1} \\
& -C_{N} \beta_{n}^{-1} \sum_{n=K}^{K N}\left(\beta_{n}^{-20} \alpha_{n}^{3}\right)^{-h} \alpha_{n}^{-4 h-1} \\
& \geqslant\left(\frac{1}{2}\right)^{K} \beta_{n}^{-K \delta / 2}-C_{N, K} \beta_{n}^{-(K-1) \delta / 2} .
\end{align*}
$$

Since

$$
\left\langle m_{0}\right\rangle_{\left(a_{n}\right), a} \leqslant C_{a} \beta_{n}^{-20 a}
$$

we obtain by using (4.16), (4.18) and (2.2)

$$
\begin{equation*}
\left|B U_{n K}^{(N)}\right|_{q, \Gamma \times\left(-\infty, t_{n K}\right)} \leqslant C_{q} \beta_{n}^{-20 q} . \tag{4.20}
\end{equation*}
$$

Taking acount of (2.3) the substitution of (4.17), (4.19) and (4.20) into (4.13) gives

$$
\left(\frac{1}{2}\right)^{K} \beta_{n}^{-K \delta / 2}-C_{N, K} \beta_{n}^{-(K-1) \delta / 2} \leqslant C_{q} \beta_{n}^{-20 q},
$$

which shows a contradiction, because K verifies (4.14) and $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus the theorem is proved.

Appendix

By a change of variavhles

$$
\left\{\begin{array}{l}
\theta(x)=y \\
\rho(x)=\sigma
\end{array}\right.
$$

the equation $\mathcal{L}_{\alpha}\left\{a_{1}, a_{2}\right\}=\left\{h_{0}, h_{1}\right\}$ turns to
(A.1) $\quad\left\{\begin{array}{l}2 \frac{\partial a_{0}}{\partial t}+2(\nabla \theta)^{2} \frac{\partial a_{0}}{\partial y}+\Delta \theta \cdot a_{0}+2 \sigma(\nabla \rho)^{2} \frac{\partial a_{1}}{\partial \sigma}+(\nabla \rho)^{2} a_{1} \\ \quad+\sigma \Delta \rho a_{1}=h_{0} \quad \text { in } \sigma \geqslant 0 \\ 2 \frac{\partial a_{1}}{\partial t}+2(\nabla \theta)^{2} \frac{\partial a_{1}}{\partial y}+\Delta \theta \cdot a_{1}+2(\nabla \rho)^{2} \frac{\partial a_{0}}{\partial \sigma}+\Delta \rho \cdot a_{0}=h_{1} \quad \text { in } \sigma \geqslant 0\end{array}\right.$

First consider how $a_{l j}(y, t)=\left(\frac{\partial a_{l}}{\partial \sigma_{j}}\right)(0, y, t)$ is determined. Let us set

$$
\begin{array}{ll}
h_{l}(\sigma, y, t) \sim \sum_{j=0}^{\infty} h_{l j}(y, t) \sigma^{j}, & l=0,1 \\
(\nabla \theta)^{2}(\sigma, y) \sim \sum_{j=0}^{\infty} A_{j}(y) \sigma^{j}, & (\Delta \theta)(\sigma, y) \sim \sum_{j=0}^{\infty} C_{j}(y) \sigma^{j} \\
(\nabla \rho)^{2}(\sigma, y) \sim \sum_{j=0}^{\infty} B_{j}(y) \sigma^{j}, & (\Delta \rho)(\sigma, y) \sim \sum_{j=0}^{\infty} D_{j}(y) \sigma^{j}
\end{array}
$$

and

$$
a_{l}(\sigma, y, t) \sim \sum_{j=0}^{\infty} a_{l j}(y, t) \sigma^{j}
$$

Note that the facts $A_{0}(y) \geqslant c>0$ and $B_{0}(y) \geqslant c>0$ follow from the the proper
of θ and ρ. Substitute the above expansions into (A.1) and set equal the coefficients of σ^{j} of the both sides of the equations. Then we have

$$
\begin{equation*}
2 \frac{\partial a_{00}}{\partial t}+2 A_{0} \frac{\partial a_{00}}{\partial y}+C_{0} a_{00}+B_{0} a_{10}=h_{00} \tag{A.2}
\end{equation*}
$$

$$
\begin{equation*}
2 \frac{\partial a_{10}}{\partial t}+2 A_{0} \frac{\partial a_{10}}{\partial y}+C_{0} a_{10}+B_{0} a_{01}+D_{0} a_{00}=h_{10} \tag{A.3}
\end{equation*}
$$

and for $j \geqslant 1$

$$
\begin{align*}
& 2 \frac{\partial a_{0 j}}{\partial t}+2 \sum_{l=0}^{j} A_{l} \frac{\partial a_{0 j-l}}{\partial y}+\sum_{l=0}^{j} C_{l} a_{0 j-l}+2 \sum_{l=0}^{j-1}(j-l) B_{l} a_{1 j-l} \tag{A.2}\\
& \quad+\sum_{l=1}^{j} B_{l} a_{1 j-l}+(2 j+1) B_{0} a_{1 j}+\sum_{l=0}^{j-1} D_{l} a_{1 j-1-l}=h_{0 j}
\end{align*}
$$

(A.3);

$$
\begin{aligned}
& 2 \frac{\partial a_{1 j}}{\partial t}+2 \sum_{l=0}^{j} A_{l} \frac{\partial a_{1 j-l}}{\partial y}+\sum_{l=0}^{j} C_{l} a_{1 j-l}+2 \sum_{l=0}^{j} B_{l}(j+1-l) a_{0 j+1-l} \\
& \quad+\sum_{l=0}^{j} D_{l} a_{0 j-l}=h_{1 j} .
\end{aligned}
$$

Then if we set $a_{00}(y, t)=0$, (A.2) ${ }_{0}$ determines a_{10} and subsequently (A.3) $)_{0}$ determines a_{01}. In (A.2) ${ }_{1}$ besides a_{11} all terms are determined, therefore a_{11} is determined, and next (A.3) ${ }_{1}$ determines a_{02}. Continuing this process we obtain successively $a_{l j}, j=0,1, \cdots$. By the manner of determing $a_{l j}$ it holds that

$$
\begin{align*}
& \sum_{|y| \leqslant a}\left\{\sup \left|D_{y, t}^{\gamma} a_{0 j+1}(y, t)\right|+\sup \left|D_{y, t}^{\gamma} a_{1 j}(y, t)\right|\right\} \tag{A.4}\\
\leqslant & C_{a} \sum_{k=0}^{j} \sum_{l=0}^{1} \sum_{|\gamma| \leqslant a+2(j-k)} \sup \left|D_{y, t}^{\gamma} h_{l k}(y, t)\right| .
\end{align*}
$$

If we set $\tilde{a}_{l}(\sigma, y, t)=\sum_{j=0}^{b} a_{l j}(y, t) \sigma^{j}$, the estimate (A.4) gives
Lemma A.1. For any b positive integer there exists $\left\{a_{0}, a_{1}\right\}$ such that $a_{0}(0, y, t)=0$ and

$$
\begin{align*}
& \sum_{k=0}^{b} \sum_{|\gamma| \leqslant a+2(b-k)} \sup \left|D_{y, t}^{\gamma} D^{k} \tilde{a}_{l}\right| \leqslant C_{a, b} \sum_{l=0}^{1} \sum_{k=0}^{b} \sum_{|\gamma| \leqslant a+2(b-k)} \sup \left|D_{y, t}^{\gamma} D_{\sigma}^{k} h_{l}\right|, \tag{A.5}\\
& \sum_{|\gamma| \leqslant a} \sup \left|D_{y, t}^{\gamma}\left(\mathcal{L}_{a}\left\{a_{0}, a_{1}\right\}-\left\{h_{0}, h_{1}\right\}\right)\right| \tag{A.6}\\
& \leqslant|\sigma|^{b+1} C_{a, b} \sum_{l=0}^{1} \sum_{k=0}^{b} \sum_{|\gamma| \leqslant a+2(b-k)} \sup \left|D_{y, t}^{\gamma} D_{\sigma}^{k} h_{l}(\sigma, y, t)\right|
\end{align*}
$$

Next consider that case

$$
\begin{equation*}
D_{\sigma}^{p} h_{l}(0, y, t)=0 \quad \text { for } p=0,1,2, \cdots, b . \tag{A.7}
\end{equation*}
$$

If we claim $a_{0}=0$ on $\{\sigma=0\}$ the solution of (A.1) is given for $\sigma>0$ by

$$
\begin{aligned}
& a_{0}(\sigma, y, t)=\frac{1}{2}\left\{G^{+}(\sqrt{ } \bar{\sigma}, y, t)+G^{+}(-\sqrt{ } \bar{\sigma}, y, t)\right\} \\
& a_{1}(\sigma, y, t)=\frac{1}{2 \sqrt{ } \bar{\sigma}}\left\{G^{+}(\sqrt{ } \bar{\sigma}, y, t)-G^{+}(-\sqrt{ } \bar{\sigma}, y, t)\right\}
\end{aligned}
$$

where $G^{+}(z, y, t)$ is the solution of

$$
\begin{aligned}
& \mathcal{L}^{+} G^{+}=\left(2 \frac{\partial}{\partial t}+2(\nabla \theta)^{2}\left(y, z^{2}\right) \frac{\partial}{\partial y}+2(\nabla \rho)^{2}\left(y, z^{2}\right) \frac{\partial}{\partial z}\right. \\
&+\left.(\Delta \theta)\left(y, z^{2}\right)+z(\Delta \tau)\left(y, z^{2}\right)\right) G^{+}(z, y, t)=H^{+}(z, y, t) \\
& G^{+}(0, y, t)=0 \\
& H^{+}(z, y, t)=h_{0}\left(z^{2}, y, t\right)+z h_{1}\left(z^{2}, y, t\right) .{ }^{5}
\end{aligned}
$$

The assumption (A.7) implies that for $r \leqslant b,|\gamma| \leqslant a$

$$
\begin{aligned}
& \left|D_{z}^{r} D_{y, t}^{\gamma} H^{+}(z, y, t)\right| \leqslant C_{a, b} K_{a, b}|z|^{2 b+2-r} \\
& K_{a, b}=\sum_{l=0}^{1} \sum_{|y| \leqslant a} \sup \left|D_{y, t}^{\gamma} D_{\sigma}^{b} h_{l}(\sigma, y, t)\right|
\end{aligned}
$$

Therefore it holds that

$$
\sum_{||| | \leqslant a}\left|D_{z}^{r} D_{y, t}^{\gamma} G^{+}(z, y, t)\right| \leqslant C_{a, b} K_{a, b}|z|^{2 b+3-r},
$$

from which it follows immediately that

$$
\sum_{r=0}^{b+1} \sum_{i \gamma \mid \leqslant a+2(b+1-r)} \sup \left|D_{\sigma}^{r} D_{y, t}^{\gamma} a_{l}(\sigma, y, t)\right| \leqslant C_{a, b} K_{a, b}, \sigma>0 .
$$

Using $\left(a_{0}-\sqrt{\rho} a_{1}\right)(\alpha, y, t)=G^{+}(y, t,-\sqrt{\alpha})$ we have
Lemma A.2. On the supposition (A.7) there exists a solution of (A.1) veriying $a_{0}(0, y, t)=0$ and it holds that

$$
\begin{align*}
& \sum_{r=0}^{b} \sum_{|y| \leqslant a+2(d-r)} \sup \left|D_{\sigma}^{r} D_{y, t}^{\gamma} a_{l}(\sigma, y, t)\right| \tag{A.9}\\
\leqslant & C_{a, b} \sum_{l=0}^{1} \sum_{|y| \leqslant a} \sup \left|D_{y, t}^{\gamma} D_{\sigma}^{b} h_{l}(\sigma, y, t)\right|
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{|\gamma| \leqslant a+2 b+2} \sup \left|D_{y, t}^{\gamma}\left(a_{0}-\sqrt{\rho} a_{1}\right)(\alpha, y, t)\right| \tag{A.10}\\
\leqslant & C_{a, b} \sum_{i=0}^{1} \sum_{|\gamma| \leqslant a+2 b+1} \sup \left|D_{y, t}^{\gamma} h_{l}(\sigma, y, t)\right| .
\end{align*}
$$

[^4]When $h_{l} \equiv 0$, the solution of (A.1) verifying

$$
a_{0}-\left.\sqrt{\rho} a_{1}\right|_{\sigma=\infty}=f(y, t)
$$

is given by (A.8) where G^{+}is the solution of

$$
\left\{\begin{array}{l}
\mathcal{L}^{+} G^{+}=0 \\
G^{+}(-\sqrt{\alpha}, y, t)=f(y, t) .
\end{array}\right.
$$

Evidently

$$
\begin{aligned}
& \sum_{|\gamma| \leqslant a}\left|D_{\sigma}^{j} D_{y, t}^{\gamma} a_{0}\right| \leqslant \sum_{|p| \leqslant 2 j} \sum_{|y| \leqslant a} \sup \left|D_{y, t}^{\gamma} D_{z}^{p} G^{+}(z, y, t)\right| \\
& \sum_{|\gamma| \leqslant a}\left|D_{\sigma}^{j} D_{y, t}^{\gamma} a_{1}\right| \leqslant \sum_{|p| \leqslant 2 j+1} \sum_{|\gamma| \leqslant a} \sup \left|D_{y, t}^{\gamma} D_{z}^{p} G^{+}(z, y, t)\right| .
\end{aligned}
$$

And we see easily that

$$
\sum_{|y| \leqslant a} \sup \left|D_{z, y, t}^{\gamma} G^{+}(z, y, t)\right| \leqslant C_{a} \sum_{|\gamma| \leqslant a} \sup \left|D_{y, t}^{\gamma} f(y, t)\right| .
$$

Thus we have
Lemma A.3. When $h_{0}, h_{1} \equiv 0$, the solution of (A.1) verifying $a_{0}-\left.\sqrt{\rho} a_{1}\right|_{\sigma=a}$ $=f$ has the estimate

$$
\begin{align*}
& \sum_{l=0}^{1} \sum_{j=0}^{b} \sum_{|| | \leqslant a+2(b-j)} \sup \left|D_{\sigma}^{r} D_{y, t}^{\gamma} a_{l}(\sigma, y, t)\right| \tag{A.11}\\
\leqslant & C_{a, b} \sum_{j=0} \sum_{|\gamma| \leqslant 2^{a}+b+1} \sup \left|D_{y, t}^{\gamma} f(y, t)\right| .
\end{align*}
$$

To show (i) of Lemma 2.1 for fixed integer b first apply Lemma A. 1 and we obtain $\left\{\tilde{a}_{0}, \tilde{a}_{1}\right\}$ satisfying (A.6), and next apply Lemma A. 2 to $\mathcal{L}_{\alpha}\left\{\tilde{a}_{0}, \tilde{a}_{1}\right\}-$ $\left\{h_{0}, h_{1}\right\}$ then we have $\left\{b_{0}, b_{1}\right\}$ verifying

$$
\mathcal{L}_{a}\left\{b_{0}, b_{1}\right\}=\left\{h_{0}, h_{1}\right\}-\mathcal{L}_{\infty}\left\{\tilde{a}_{0}, \tilde{a}_{1}\right\} .
$$

By using (A.5), (A.6) and (A.9) we have

$$
\begin{aligned}
& \sum_{j=0}^{b} \sum_{||p| \leqslant \alpha+2(b-j)}\left\{\left|D_{y, t}^{\gamma} D_{\sigma}^{j} \tilde{a}_{l}(\sigma, y, t)\right|+\left|D_{y, t}^{\gamma} D_{\sigma}^{j}(\sigma, y, t)\right|\right\} \\
\leqslant & C_{a, b} \sum_{j=0}^{b} \sum_{l=0}^{1} \sum_{|\gamma| \leqslant a+2(b-j)} \sup \left|D_{\sigma}^{j} D_{y, t}^{\gamma} h_{l}(\sigma, y, t)\right|
\end{aligned}
$$

Moreover it follows form (A.5) and (A.10) that

$$
\begin{aligned}
& \sum_{|\gamma| \leqslant a+2 b} \sup \left|D_{y, t}^{\gamma}\left(\left(\tilde{a}_{0}+b_{0}\right)-\sqrt{\rho}\left(\tilde{a}_{1}+b_{1}\right)\right)\right|_{\rho=a} \mid \\
& \leqslant C_{a, b} \sum_{l=0}^{1} \sum_{j=0}^{b} \sum_{|\gamma| \leqslant a+2(b-j)} \sum_{j} \sup \left|D_{\sigma}^{j} D_{y, t}^{\gamma} h_{l}(\sigma, y, t)\right|
\end{aligned}
$$

Then using Lemma A. 3 we have $\left\{c_{0}, c_{1}\right\}$ verifying

$$
\left\{\begin{array}{l}
\mathcal{L}_{\alpha}\left\{c_{0}, c_{1}\right\}=0 \quad \text { in } \rho \geqslant 0 \\
c_{0}-\left.\sqrt{\rho} c_{1}\right|_{\rho=\alpha}=f-\left.\left(\left(\tilde{a}_{0}+b_{0}\right)-\sqrt{\rho}\left(\tilde{a}_{1}+b_{1}\right)\right)\right|_{\rho=\alpha}
\end{array}\right.
$$

Then we see immediately that $a_{l}=\tilde{a}_{l}+b_{l}+c_{l}, l=0,1$ are solutions of the problem (A.1) verifying the boundary condition and they satisfy the estimate of (i) of Lemma 2.1.

References

[1] M. Ikawa: Mixed problem for the wave equation with an oblique derivative boundary condition, Osaka J. Math. 7 (1970), 495-525.
[2] -: Remarques sur les problèmes mixtes pour l'équation des ondes, Colloque international du C.N.R.S., astérisque 2 et 3, 217-221.
[3] -: Sur les problèmes mixtes pour l'équation des ondes, Publ. Res. Inst. Math. Sci. Kyoto Univ. 10 (1975), 669-690.
[4] -: Problèmes mixtes pour l'équation des ondes, Publ. Res. Inst. Math. Sci. Kyoto Univ. 12 (1976), 55-122.
[5] -: On the mixed problems for the wave equation in an interior domain, Comm. Partial Differential Equation 3 (1978), 249-295.
[6] D. Ludwig: Uniform asymptotic expansion at a caustic, Comm. Pure Appl. Math. 19 (1966), 215-250.
[7] -: Uniform asymptotic expansion of the field scattered by a convex object at high frequencies, Comm. Pure Appl. Math. 20 (1967), 103-138.
[8] J.C.P. Miller: Airy integral, Cambridge, 1946.

[^0]: *) Supported by Grant-in-Aid for Scientific Research

[^1]: 1) See, for example, Appendix C of Ludwig [7], $\S 5$ of Ikawa [4].
 2) Hereafter, we will use c for various constants independent of α and k.
[^2]: 3) See Miller [8], page B 17.
[^3]: 4) See, for example, pages 70 and 71 of [4].
[^4]: 5) See, $\S 1$ of Ludwig [6] and Lemma 5.2 of Ikawa [4].
