A NOTE ON HEIGHT OF EXCEPTIONAL CHARACTER DEGREES

Yoko USAMI

(Received July 13, 1979)

1. Introduction

We assume

(*) \(G \) is a finite group with a Sylow \(p \)-group \(P \) satisfying

\[
C_G(x) = C_G(P), \quad \text{all } x \in P^t.
\]

Hypothesis (*) implies that \(P \) is an abelian trivial intersection subgroup and \(C_G(P) = P \times V \), for some \(p' \)-group \(V \). In fact, \(S = (P \times V) - V \) is a T.I. set. Furthermore, \(N_G(P)/V \) is a Frobenius group with Frobenius kernel \(PV/V \). We set \(|P| = q, s = |N_G(P); C_G(P)| \) and \(st = q - 1 \), where \(t \) is the number of \(p \)-classes of \(G \). We set \(N = N_G(P) \).

Under this hypothesis (*) R. Brauer and H.S. Leonard, Jr. [1,3] have shown the following results.

(a) There is a one to one correspondence from the \(p \)-blocks of \(G \) of full defect onto the \(N \)-classes of irreducible characters of \(V \). (See (1D) [3] for details.)

(b) A \(p \)-block \(B \) of \(G \) of full defect associated with an \(N \)-class \(\Phi \) of irreducible characters of \(V \) contains a family of exceptional characters \(\{ \Lambda_i \} (1 \leq i \leq |\Phi|) \), if \(|\Phi| > 1 \).

(c) Let \(\varphi \in \Phi \), and let \(W(\varphi) \) be the inertia group of \(\varphi \) in \(N \). If \(f = |\Phi| \) and \(|W(\varphi)| = e |C_G(P)| \), then \(ef = s \). Let \(\Lambda \) be any member of \(\{ \Lambda_i \} \). Then

\[
\Lambda_{ij} = \delta \lambda + e \sum_{\varphi \in \Phi} 1_{\varphi},
\]

\[
\Lambda(1) = \delta \varphi(1) + cf \varphi(1) \equiv (\delta e + c)f \varphi(1) \pmod{q},
\]

where \(\delta = \pm 1, \varphi \in \Phi, c \in \mathbb{Z} \), and \(\lambda \) is an appropriately chosen exceptional character of \(N \). In particular, the \(p \)-block \(b \) of \(\lambda \) in \(N \) lifts to the \(p \)-block \(B \) of \(\Lambda \) in \(G \). In addition \(\lambda = (\mu \varphi)^N \), where \(\mu \) is some nonprincipal irreducible character of \(P \).

(d) Moreover it follows from (3.10) in [1] that

\[
\Lambda_{11} \equiv \delta \lambda_1 + e \sum_{\varphi \in \Phi} \varphi \equiv (\delta e + c) \sum_{\varphi \in \Phi} \varphi \pmod{q},
\]
in the ring of all algebraic integers.

Using (a),(b) and (c), D.A. Sibley has proved the following two theorems.

Theorem 1 (Sibley [4]). *Suppose (*) holds and G has at least three classes of p-elements. Then c=0. In particular Λ(1)≡δλ(1) (mod q).*

Theorem 2 (Sibley [5]). *Suppose

(♯) G is a finite group with a Sylow p-group P satisfying

\[C_G(x) = P, \quad \text{all } x \in P^\dagger. \]

Under this hypothesis (♯), \(p \not| \Lambda(1) \) if G has at least two classes of p-elements.

We remark that instead of hypothesis (♯), Sibley has proved Theorem 2 under the following hypothesis:

(♯') A Sylow p-group P of G is an abelian T.I. set, and \(N_G(P) \) is a Frobenius group with Frobenius kernel P.

It is easily seen that hypothesis (♯) is equivalent to hypothesis (♯').

In this paper we shall prove the following theorem, which has been conjectured by Sibley [5].

Main Theorem. *Suppose (*) holds and G has at least two classes of p-elements. Then \(p \not| \Lambda(1) \).*

Example. Let \(G=SL(2,q) \), where \(q \) is a power of an odd prime \(p \) and \(\frac{q-1}{2} \) is odd. Then \(G \) satisfies (*) with \(|V|=2\) and has two classes of p-elements. \(N_G(P) \) has two families of exceptional characters and both degrees are \(\frac{q-1}{2} \).

On the other hand \(G \) has two families of exceptional characters and their degrees are \(\frac{q-1}{2} \) and \(\frac{q+1}{2} \), which are prime to \(p \). Moreover if we choose \(\delta \) appropriately, we can take \(c=0 \) in both families.

2. Proof of Main Theorem

The main theorem can be proved by similar way to Theorem 2 with the addition of block calculations as the proof of Theorem 1.

Suppose by way of contradiction that \(p \not| \Lambda(1). \) Then first of all we claim also \(p \not| \Lambda(x) \) for any p-regular element \(x \) which is not conjugate to an element of \(V \) in \(G \). Let \(g_i \in P^\dagger \) and \(K_i \) be the class of \(G \) containing \(g_i \) and \(K \) be the class of \(G \) containing \(x \). We define a class function \(\theta_{ix} \) by

\[
\theta_{ix}(a) = |\{(g'_i, x')| g'_i \in K_i, x' \in K, g'_i x' = a\}|.
\]
We have the well-known formula
\[\theta_{is} = \frac{|G|}{|C_G(g_i)| |C_G(x)|} \sum_{\chi} \chi(g_i) \chi(x), \]
where the sum is over all irreducible characters \(\chi \) of \(G \). We now define another class function \(\theta_{is}' \) by
\[\theta_{is}'(a) = \begin{cases} \theta_{is}(a), & \text{if } a \text{ is } p\text{-singular,} \\ 0, & \text{otherwise.} \end{cases} \]
We may write
\[\theta_{is}' = \sum_{a} \frac{\theta_{is}(a)}{|C_G(a)|} \sum_{\chi} \chi(a) \chi, \]
where the sum is over a complete set of representatives \(a \) of the \(p\)-singular classes \(a^G \) of \(G \). By \(\theta_{is}', \) we mean
\[\theta_{is}', \text{ with the sum over } a \text{ for } \theta_{is}, \]
and by \(\theta_{is} \) we mean
\[\theta_{is} = \frac{|G|}{|C_G(g_i)| |C_G(x)|} \sum_{\chi \in B} \chi(g_i) \chi(x). \]

Lemma 1. \(\theta_{is}(g_kv) \equiv 0 \pmod{q} \) for \(g_k \in P^4 \) and \(v \in V \).

Proof. The lemma follows easily, because \(P \) acts by conjugation fixed-point-free on the set of the pairs \((g', x')\), where \(g', x' \in K, x' \in K \) and \(g'x' = g_kv \).

Let \(m \) be \(\{ \frac{z}{y} | y \text{ is a rational integer which is prime to } p, \text{ and } z \text{ is an algebraic integer} \} \).

Lemma 2. \(\theta_{is}B(g_k) \) is in \(m \) and \(\theta_{is}'B(g_k) \equiv 0 \pmod{qm} \).

Proof. Since \(\theta_{is} - \theta_{is}' \) vanishes on \(p\)-singular elements, the "Truncation of Relations" theorem (see [2] (IV.6.3)) shows that \(\theta_{is}B - \theta_{is}'B \) vanishes on \(p\)-singular elements. In particular
\[\theta_{is}B(g_k) = \theta_{is}'B(g_k) = \sum_{a} \frac{\theta_{is}(a)}{|C_G(a)|} \sum_{\chi \in B} \chi(a) \chi(g_k). \]
We can calculate \(\sum_{\chi \in B} \chi(a) \chi(g_k) \) by (5)[4] and it becomes

\[\sum_{\chi \in B} \chi(a) \chi(g_k) \]
\[\theta_{ix'}(g_k) = \sum_{v} \theta_{ix}(v) \sum_{v \in \mathcal{S}} \varphi(v) \varphi(1), \]

where the sum is over a complete set of representatives of \(p \)-singular classes in which \(g_k \) can be chosen as \(p \)-part. Since \(\theta_{ix}(g_k v) \equiv 0 \pmod{q} \) by Lemma 1, the result follows.

(q.e.d.)

Lemma 3. If \(p \mid \Lambda(1) \), then \(p \mid \Lambda(x) \) in \(m \) for any \(p \)-regular element \(x \in V^c \).

Proof. We can compute the difference between \(\theta_{ix'}(g_k) \) and \(\theta_{ix}(g_k) \) for \(g_i, g_j \in P^x \), as Sibley did in [5]:

\[\theta_{ix}(g_k) - \theta_{ix'}(g_k) = \frac{|G|}{|PV||C_{G}(x)|} \sum_{\Lambda} \left\{ \overline{\Lambda}(g_i) \Lambda(x) \Lambda(g_k) - \overline{\Lambda}(g_j) \Lambda(x) \Lambda(g_k) \right\} \frac{\Lambda(1)}{\Lambda(1)} \]

\[= \frac{|G|}{q |V||C_{G}(x)|} \sum_{\Lambda} \left\{ \overline{\Lambda}(g_i) \Lambda(g_k) - \overline{\Lambda}(g_j) \Lambda(g_k) \right\}, \]

where \(\{\Lambda\} \) are the exceptional characters in \(B \). (These equalities follow from the facts that \(X(g_i) = X(g_j) \) for any nonexceptional character \(X \) in \(B \)((1D) \) [3]), and that \(\Lambda(x) \) and \(\Lambda(1) \) are independent of the choice of \(\Lambda((2B) \) [1]).

On the other hand,

\[\sum_{\Lambda} \left\{ \overline{\Lambda}(g_i) \Lambda(g_k) - \overline{\Lambda}(g_j) \Lambda(g_k) \right\} = \sum_{x \in B} \left\{ \overline{\mathbb{R}}(g_i) \mathbb{R}(g_k) - \overline{\mathbb{R}}(g_j) \mathbb{R}(g_k) \right\} \]

\[= qf \varphi(1)^2 (\delta_{g_i g_k} - \delta_{g_j g_k}), \]

where \(\delta_{g h} \) is defined for \(g, h \in P^x \) by

\[\delta_{g h} = \begin{cases} 1 & g \sim h, \\ 0 & \text{otherwise}. \end{cases} \]

The last equality holds by (5) [4]. As \(G \) has at least two classes of \(p \)-elements, we can choose \(g_i = g_k \) and \(g_j \not\sim g_k \). Then by Lemma 2

\[0 \equiv \theta_{ix}(g_k) - \theta_{ix'}(g_k) = \frac{|G| \overline{\Lambda}(x) f \varphi(1)^2}{|V||C_{G}(x)||\Lambda(1)|} \pmod{q m}. \]

Then \(p \mid \Lambda(x) \).

(q.e.d.)

We now calculate \(||\Lambda||^2 \). This gives

\[1 = ||\Lambda||^2 = \frac{1}{|G|} \sum_{g \in \mathbb{G}} \frac{|G| \Lambda(g) \overline{\Lambda}(g)}{|C_{G}(g)|} + \frac{1}{|G|} \sum_{v \in \mathbb{V}} \frac{|G| \Lambda(v) \overline{\Lambda}(v)}{|C_{G}(v)|} \]

\[+ \frac{1}{|G|} \sum_{x \in \mathbb{W}} \frac{|G| \Lambda(x) \overline{\Lambda}(x)}{|C_{G}(x)|}, \]

(4)

where the first and the second sums are over complete sets of representatives of
G-conjugacy classes and the third sum is over that of G-conjugacy classes of \(p \)-regular elements which are not in \(V^c \). Then by Lemma 3 we may write the third sum as \(p^3R \) where \(R = \frac{\pi}{y} \) for some algebraic integer \(\pi \) and some rational integer \(y \) which is prime to \(p \).

Lemma 4. Let \(T_1 \) be the first term of (4). Then

\[
T_1 = 1 + \frac{|V| \cdot f}{|N|} \{- (\delta e + c)^2 + c^2 \}.
\]

Proof. By (1),

\[
T_1 = \frac{1}{|G|} \sum_{\ell \in s} \frac{|G|}{|C_\ell(g)|} (\delta \lambda(g) + c \sum_{\varphi \in \Phi} \varphi(p(g))) (\delta \bar{\lambda}(g) + c \sum_{\varphi \in \Phi} \varphi(p(g)));
\]

where the sum is over a complete set of representatives of G-conjugacy classes. Since \(S \) is a T.I. set, the representatives of G-conjugacy classes of \(S \) coincide with those of N-conjugacy classes of \(S \) and \(|C_\ell(g)| = |C_N(g)| \). Then

\[
T_1 = \frac{|G : N|}{|G|} \sum_{\ell \in s} \frac{|N|}{|C_N(g)|} (\delta \lambda(g) + c \sum_{\varphi \in \Phi} \varphi(p(g))) (\delta \bar{\lambda}(g) + c \sum_{\varphi \in \Phi} \varphi(p(g)));
\]

where the sum is over a complete set of representatives of N-conjugacy classes. Since \(\lambda \) is a character of \(N \) and \(\sum_{\varphi \in \Phi} \varphi(p(g)) \) is an N-invariant character of \(PV \),

\[
T_1 = \frac{1}{|N|} \sum_{\ell \in s} \lambda(g) \bar{\lambda}(g) + \delta c \sum_{\ell \in s} [\lambda(g) (\sum_{\varphi \in \Phi} \varphi(p(g))) + \bar{\lambda}(g) (\sum_{\varphi \in \Phi} \varphi(p(g)))]
\]

\[
+ c^2 \sum_{\ell \in s} (\sum_{\varphi \in \Phi} \varphi(p(g))) (\sum_{\varphi \in \Phi} \varphi(p(g)));
\]

where the sums \(\sum_{\ell \in s} \) are over all elements of \(S \). We can express \(\lambda_{1_{P \times V}} \) as follows:

\[
\lambda_{1_{P \times V}} = \sum_n (\mu_1 + \mu_2 + \cdots + \mu_e)^n \varphi^n,
\]

where \(n \) ranges over a cross section of \(W(\varphi) \) in \(N \), and \(\mu_1, \mu_2, \cdots, \mu_e \) are distinct irreducible nonprincipal characters of \(P \). Note that

\[
\sum_n \varphi^n = \sum_{\varphi \in \Phi} \varphi.
\]

From the orthogonality relations we get

\[
\sum_{\ell \in s} \lambda(g) \bar{\lambda}(g) = |N| - \sum_{\ell \in s} |\lambda(\ell)|^2
\]

\[
= |N| - \sum_{\ell \in s} |c \sum_{\varphi \in \Phi} \varphi(\ell)|^2
\]

\[
= |N| - e^2 |V| f,
\]
\[
\sum_{g \in G} \lambda(g) (\sum_{\varphi \in \Phi} 1 \rho(\varphi(g))) = \sum_{g \in G} \left(\sum_{*} (\mu_1 + \mu_2 + \cdots + \mu_s)^n \varphi^n(g) \right) (\sum_{\varphi \in \Phi} 1 \rho(\varphi(g))) \\
= -\sum_{v \in V} (\sum_{*} e \varphi^*(v)) (\sum_{\varphi \in \Phi} \varphi(v)) \\
= -e \sum_{v \in V} (\sum_{\varphi \in \Phi} \varphi(v)) (\sum_{\varphi \in \Phi} \varphi(v)) \\
= -e |V| f,
\]

and
\[
\sum_{g \in G} \overline{\lambda}(g) (\sum_{\varphi \in \Phi} 1 \rho(\varphi(g))) = -e |V| f,
\]

and
\[
\sum_{g \in G} | \sum_{\varphi \in \Phi} 1 \rho(\varphi(g))|^2 = (q-1) \sum_{\varphi \in \Phi} | \varphi(v) |^2 = (q-1) |V| f.
\]

Then
\[
T_1 = \frac{1}{|N|} \{ |N| - e^2 |V| f - 2\delta c e |V| f + c^2 (q-1) |V| f \} \\
= 1 + \frac{|V| f}{|N|} \{ -(\delta e + c)^2 + c^2 q \} .
\]

(q.c.d.)

Multiplying (4) by \(q |V| \) we get
\[
\frac{|V| f}{s} \{ -(\delta e + c)^2 + c^2 q \} + T_2 + p^2 q R |V| = 0 ,
\]
where
\[
T_2 = \frac{1}{|G : PV|} \sum_{v \in V} |G| \Lambda(v) \overline{\Lambda}(v).
\]

Then
\[
\frac{|V| f}{s} \{ -(\delta e + c)^2 + c^2 q \} + T_2 \equiv 0 \pmod{pqm} . \tag{5}
\]

Lemma 5.
\[
T_2 \equiv \frac{|V| f (\delta e + c)^2}{s} \pmod{pqm} .
\]

Proof. Let \(\{v_j\} (1 \leq j \leq u) \) be the representatives of \(G \)-conjugacy classes of \(V \). Then these are also the representatives of \(N \)-conjugacy classes, because \(N_G(P) \) controls fusion of \(C_G(P) \). Note that \(p | (\delta e + c) \) from (2), because we have assumed that \(p | \Lambda(1) \). By (3),
\[
T_2 = \frac{1}{|G : PV|} \sum_{j=1}^{u} \frac{|G|}{|C_G(v_j)|} \Lambda(v_j) \overline{\Lambda}(v_j) \\
= \frac{1}{|G : PV|} \sum_{j=1}^{u} \frac{|G|}{|C_G(v_j)|} (\delta e + c)^2 \{ (\sum_{\varphi \in \Phi} \varphi(v_j)) (\sum_{\varphi \in \Phi} \varphi(v_j)) \} \pmod{pqm} .
\]

We now set \(\zeta = \sum_{\varphi \in \Phi} \varphi \). Since \(\zeta \) is an \(N \)-invariant character of \(V \) and \(\{v_j\} \) are also the representatives of \(N \)-conjugacy classes,
Then

\[T_2 \equiv \frac{(\delta e+c)^2}{s} \sum_{v \in P} |C(v)|^2 \equiv \frac{|G|}{|G:PV|} \sum_{i=1}^s \left\{ \frac{|G| |C_N(v_j)|}{|C_G(v_j)|} \sum_{v \in P} |\zeta(v)|^2 \right\} \equiv \frac{(\delta e+c)^2}{s} \sum_{v \in P} \left| \frac{|\zeta(v)|^2}{|C_G(v):C_N(v)|} \right| \equiv 0 \pmod{pqm}. \]

Since \(P \subseteq C_G(v) \) and \(P \) is a T.I. Sylow \(p \)-group of \(C_G(v) \),

\[|C_G(v):C_N(v)| \equiv |C_G(v):N_G(P) \cap C_G(v)| \equiv 1 \pmod{q}. \]

Thus

\[T_2 \equiv \frac{(\delta e+c)^2}{s} \sum_{v \in P} |\zeta(v)|^2 \equiv \frac{|V| f(\delta e+c)^2}{s} \equiv 0 \pmod{pqm}. \]

(q.e.d.)

Then by (5) we get the congruence

\[\frac{|V| f^2 q}{s} \equiv 0 \pmod{pqm}. \]

Hence we get \(p | c^2 \). This contradicts \(p | \Lambda(1) \). This completes the proof of the main theorem.

Acknowledgment. The author would like to express her hearty thanks to Professor Yukio Tsushima for his helpful advices.

References
