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ON A THEOREM OF A. SAKAI

BARNET M. WEINSTOCK1)

(Received May 7, 1979)

Let K be a compact subset of Cn. Let Ru •••, Rs, 0<s<n, be continuous,
complex-valued functions on K, each of which can be extended to a neighbor-
hood U of K so as to be holomorphic in zs+u •••, zn. Let A denote the algebra
of continuous functions on K which can be approximated uniformly on K by
polynomials in zu •••,#„, z1+Rli --->zs-{~Rs. Clearly A is a subalgebra of the
algebra B of continuous functions on K which can be approximated uniformly
on K by functions which can be extended to some neighborhood of K so as to
be holomorphic in zs+1, •••, zn. The goal of this paper is the following theorem
which gives sufficient conditions for the equality of these two algebras.

Theorem. Assume that Ru •••, Rs satisfy

(*) Σ I Rj(z+to)-Rj{z) 12<k Σ I toj 12

for all a^U and all w such that z-\-w^U and ws+1=' '=wn=0, with 0<&<l .
Assume further that for each z'^C5 the set Kz,= {z"<=Cn~s\ {z'y z")<=K) is
polynomially convex. Then A—B.

This theorem was formulated and proved by A. Sakai [4] undei the fur-
ther assumption that Rl9 •••, RS^C°°(U). The special case when s—n—\ and
Rly •• ,i?n_1 vanish identically was established much earlier by W. Rudin [3],

SakaΓs proof is based on the method used by L. Hϋrmander and J. Wermer
[2] who considered the case s=n (where, of course, the sets K/ play no role)
under the assumption that the functions Ru •••, Rn are differentiable of sufficiently
high order. Our proof depends instead on the Cauchy-Fantappie integral
techniques used by the author [5, 6] to prove the Hϋrmander-Wermer theorem
with minimal smoothness hypotheses, and also on Rudin's argument for the
special case cited in the previous paragraph. More specifically, we use an
argument due to Rudin to reduce the proof of the theorem to the assertion that
if A G C J ( C S ) , and h(z'y z")=h(z') then h\K(ΞA. The assertion is then proved
using the Cauchy-Fantappie formula as in the Appendix of [6].

1) This research was partialy supported by a grant from the National Science Foundation.
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We begin with the following lemma, which is implicit in Rudin [3, theorem

4]
(If E is a set of functions on K and z'^Cs we will use Ezr to denote the

set {/(*', ) : / e £ } of functions on K/.)

Lemma 1. Let Kbea compact subset of Cn and let s be an integer, 0<s<n.
Let A and B be closed subalgebras of C(K) such that

(i) AczB;
(ii) A contains a subalgebra A of functions which depend only on # s + 1, •••, zn

such that, for each z'^C\ A/ is dense in Vzry

(iii) if h^CΪ{Cs)and h{z\ * ")=*(* ' ) then h\K^A.
Then A=B,

Proof. Let M denote the projection of K on C\ F i x / e U and £>0.
For each zf^M there exists, by (ii), a functiongz'^A such that, for all z"

Since K and M are compact, and / is uniformly continuous on K, there exist
finitely many functions gu "-ygr^A and open sets Nly * ,iVr which cover M
such that, for all sr'eiV,- ΠM, and all zf'

\gi(z")-f(z',z")\<S.

Let {hi} be a C1 partition of unity subordinate to the covering {JV,} of M
Then

for all / and all (z\ z")^K. Since Σ ^ ̂ l o n M we have

for all (*', z")eK. By (iii), 2 hi(z')gi(z") belongs to A. Hencef<=A, since
A is closed and S was arbitrary.

REMARK. A more abstract version of the proof of Lemma 1 can be obtained
by using Bishop's generalized Stone-Weierstrass theorem [1] since each set
of antisymmetry lies in one of the sets K/.

If A and B now denote the algebras of the Theorem, then by the Oka-
Weil theorem we have (ii) of the Lemma if we take for A the polynomials in
zs+u ••-,#„. Thus we have reduced the Theorem to the following proposition.

Proposition. If h^C\(Cs) and %{w\ w")=h(w') then h\K(ΞA.

Proof. By the Hahn-Banach theorem it suffices to show that if μ is a
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complex Borel measure on K which is orthogonal to the algebra A then

j h(w')dμ(w', w") = 0

for all h^Cl(W)> where W is the projection onto Cs of some neighborhood
oϊK.

By convolution with an appropriate approximate identity we can obtain,
for eachj, \<j<s, a sequence {R)} of C1 functions defined on a neighborhood
V of K such that

(a) R)(z)->Rj(z) for each ZEΞV

(b) the functions R\y-~yR) satisfy (*) with the same constant k<l,
(independent of vy)

(c) each R) is holomorphic in zs+ly •••,#„.
Let

G\z, w) = l i (ZJ-

Ω)(z, w) = G(z, W)

Q)(z) = (s-l)\(2πiy* A dzk+dR\

d'z = dz1Λ~ Λdzs.

Define Ωv(#, w) by

Ω?(z, w) = Σi (-ly^ΩKar, w)Q)(z)Λd'z

It follows easily from (*) that for each v>
(d) \G\z,w)\>{l-k)\z'-w'\2

(e)
(f)
If we fix a;", w"eC*"' it follows from the Corollary to Lemma 4 of [5] that

h{u') = [ CΓ(z', z", w', w")Λ5A(»')

where Wis the projection of Fonto C and the support of h lies in fF. Con-
sequently,

h{w')dμ{w) = ( Σ (-ly-'t ( nK*'» z"> w'y to")dμ(a)]Q)Ad'gAdh
JW JKW

We can write Q)(z)/\d'z/\dh as σ)(z')dms where ms denotes Lebsegue
measure on C,5 and σ) is a function. Moreover, the functions σ) are uniformly
bounded because (b) implies that dR)jdzk are uniformly bounded.

Define G and ίl, using Rly --,RS in the same way that Gv and Ω} were
defined using R\y •••, ϋ^.
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(g) For almost all ^ G F , and each j> l<j<s,

Furthermore, there exists L^L\dms(z'))y independent of v such that

\\ζϊ)(z,w)dμ(w)\<L(z').

Indeed, let L(z') be defined by

Since, for any compact set AdC\

— — <oo,
Z'-W'\2*-1

(g) follows from (f) together with Fubini's theorem.
Now Ωj->Ωy pointwise. By (g), for almost all

j ΩX», w)dμ(w) -

Consequently,

I J h(w')dμ(w) I = I J Σ ( - l ) ' - 1 [J Λ5(*,

< C Σ JIJ Λ/(*> w)rf/*(w) I ίfo»,(ar')

Letting j;—>oo,

I j AίtβV/tCw) I <:C Σ j I j Λy(*. «>//»(«) I *«.(*')

By Lemma 1 of [7] there exist holomorphic functions Pv on {i?eλ>0}
such that

( 1 ) P v ( λ ) - > — ifλφO
λ

( 2 ) I P v ( λ ) | ^

By Runge's theorem, each P v is the uniform limit on compact subsets of
{Re λ>0} of a sequence of polynomials in λ.
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Since ReG{z, w)>0 if z'+w' and since G(z, )^A for each ^ G F , there
exist Q^A such that

( 3 ) Qy(to) -* G(zy w)-1 on

2
(4) \QΛ™)\<

\G(zyw)\

But (3) and (4) together with (g) imply that each Ωy(#, •) is the pointwise limit
ax, — d\μ\ of a sequence of elements of A, and that for all z except perhaps
a set of Lebesgue measure zero, this convergence is dominated with respect to

d\μ\. By the dominated convergence theorem, then, I Ω/#, w)dμ(w)=0 each

j . Hence 1 h(w')dμ(w)=0 which is what we set out to prove.
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