LOCALIZATION OF DIFFERENTIAL OPERATORS AND THE UNIQUNESS OF THE CAUCHY PROBLEM

Yoshimichi TSUNO

(Received June 18, 1979)

1. Introduction

Let $P\left(x, \partial_{x}\right)$ be a differential operator of order m with analytic coefficients in an open set U in \boldsymbol{R}^{n} and Ω be an open subset of U with C^{1} boundary $\partial \Omega$. Then the uniqueness theorem of Holmgren which is extended for distribution solutions ([3]) states that a distribution solution $u(x)$ of the equation $P u=0$ in U vanishing in Ω must vanish in a neiborhood of $\partial \Omega$ if $\partial \Omega$ is non-characteristic. The extension of this theorem to the case near a characteristic point has been made by many authors relating to the problem of deciding the P-convexity domains. Among others Hörmander [3] showed that when the principal part is real the uniquness theorem holds if $\partial \Omega \in C^{2}$ and the characteristic points are simple and some convexity conditions are satisfied at these points. The refinements of this Hörmander's result are made by Treves [8], Zachmanoglou [10], [11] and Hörmander [5]. Recently Bony [2] introduced the notion of strongly characteristic and proved the uniquness theorem for degenerate equations. Bony's result is extended by Hörmander [6]. In this note we deal with a differential operator which is highly degenerated at some point p on $\partial \Omega$ and obtain the suffcient conditions to get the uniquness theorem. Though the uniquness theorem is invariant under the analytic change of coordinates, we here employ the weighted local coordinates at p such that the normal direction x_{1} of $\partial \Omega$ at p is assigned the weight 2 , while the tangential directions x_{2}, \cdots, x_{n} are each assigned the weight 1 . The motivation of this employment is that the boundary $\partial \Omega$ can be approximated by the quadratic hypersurface of the form

$$
\begin{equation*}
x_{1}=\sum_{i, j \geq 2} a_{i j} x_{i} x_{j} \tag{1.1}
\end{equation*}
$$

The transformations of the coordinates in this note are limited to the ones which preserve the weights $(2,1, \cdots, 1)$ (see the section 2 for the precise definition). In the section 3, the basic theorem is proved under some fixed local coordinates. The idea of the proof is due to Hörmander [3] and extensively used by Treves [8], Zachmanoglou [10], [11] and others. That is to construct the family of surfaces
which are non-characteristic with respect to $P\left(x, \partial_{x}\right)$ and cover a neighborhood of p. This basic theorem is a generalization of Hörmander's theorem [3] of the simple characteristic case. In the last section, §4, we study the geometric conditions on $P\left(x, \partial_{x}\right)$ and $\partial \Omega$ to insure the existence of the local coordinates in the third section. The assumptions are made in relation to the localization of $P\left(x, \partial_{x}\right)$ at (p, N), where N is the normal direction of $\partial \Omega$ at p. The localization of an operator is also due to Hörmander [4] to research the location of the singularities of the solutions of $P u=0$. Our method in this note is also used to show the holomorphic continuation of the solutions of $P\left(z, \partial_{z}\right) u=f$ in the complex n dimensional space, which is to appear in [9].

2. Weighted coordinates

As in the introduction, we shall approximate $\partial \Omega$ by the quadratic hypersurface of the form (1.1). For this sake we here introduce the weighted coordinates. Weighted coordinates are also used by T. Bloom and I. Graham [1] to determine the type of the real submanifold in \boldsymbol{C}^{n} which is firstly introduced by Kohn in relation to the boundary regularity for the $\bar{\partial}$-Neumann problem. In this note we use the simplest weighted coordinates.

Let $\left(x_{1}, \cdots, x_{n}\right)$ be a local coordinates in U of \boldsymbol{R}^{n}. Then we say that $\left(x_{1}, \cdots, x_{n}\right)$ is the weighted coordinates system of the weights $(2,1, \cdots, 1)$ if the coordinate function x_{1} has the weight 2 and $x_{j}(j=2, \cdots, n)$ has the weight 1 . The weight of a monomial x^{ω} is determined by $2 \alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$. An analytic function $f(x)$ at 0 has the weight l if l is the lowest weight among the monomials in the Taylor expansion of $f(x)$ at 0 . For convenience, the weight of $f=0$ is assigned $+\infty$. The weight of a differential operator is defined by the corresponding negative weight. For a differential monomial $(\partial / \partial x)^{\infty}$, its weight is defined by $-2 \alpha_{1}-\alpha_{2}-\cdots-\alpha_{n}$. The weight of $a(x)(\partial / \partial x)^{\infty}$ is equal to weight $(a(x))+$ weight $\left((\partial / \partial x)^{\alpha}\right)$ and the weight of a linear partial differential operator $P\left(x, \partial_{x}\right)=\sum a_{\alpha}(x)(\partial / \partial x)^{\omega}$ is determined by min weight $\left(a_{a}(x)(\partial / \partial x)^{\omega}\right)$.

Let $\left(x_{1}, \cdots, x_{n}\right)$ and $\left(u_{1}, \cdots, u_{n}\right)$ be two local coordinates with the same origin. We say that these coordinates are equivalent as the weighted coordinates if u_{j} has the same weight as x_{j} as an analytic function of x_{j}, and the converse is also true. In this note the weights are always equal to $(2,1, \cdots, 1)$. Therefore $\left(x_{1}, \cdots, x_{n}\right)$ and (u_{1}, \cdots, u_{n}) are equivalent if and only if

$$
\frac{\partial\left(u_{1}, \cdots, u_{n}\right)}{\partial\left(x_{1}, \cdots, x_{n}\right)}(0)=\left|\begin{array}{cccc}
c & 0 & \cdots & 0 \\
a_{2} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n} & c_{n 2} & \cdots & c_{n n}
\end{array}\right| \neq 0 .
$$

It is easily derived that the weights of functions or differential operators are invariant under the equivalent transformation of the weighted coordinates.

We also remark that if the weights of covectors $\left(\xi_{1}, \cdots, \xi_{n}\right)$ are each assigned the $(-2,-1, \cdots,-1)$, then the weight of $P_{m}(x, \xi)$, the principal part of P, is invariant.

3. The basic theorem

The differential operator studied in this section is the following one:

$$
\begin{equation*}
P\left(x, \partial_{x}\right)=\left(\frac{\partial}{\partial x_{1}}\right)^{m-l}\left(\frac{\partial}{\partial x_{2}}\right)^{l}+\sum a_{w}(x)\left(\frac{\partial}{\partial x}\right)^{\infty} \tag{3.1}
\end{equation*}
$$

where $a_{\infty}(x)$ are analytic in some neighborhood U of 0 and the summation is taken over the multi-indices α such that $|\alpha| \leqq m$. The domain Ω is given by

$$
\begin{equation*}
\Omega=\{x \in U \mid \rho(x)<0\} \tag{3.2}
\end{equation*}
$$

where ρ is a real-valued C^{2} function such that

$$
\rho(0)=0, \quad \frac{\partial \rho}{\partial x_{1}}(0)=1, \quad \frac{\partial \rho}{\partial x_{j}}(0)=0 \quad j=2, \cdots, n .
$$

We consider this local coordinates as the weighted coordinates with the weights $(2,1, \cdots, 1)$. Then we make the following conditions on the principal part $P_{m}\left(x, \partial_{x}\right)$ of the operator (3.1).
(P.1) Every weight of $a_{o}(x)(\partial / \partial x)^{\infty}$ in $P_{m}\left(x, \partial_{x}\right)$ is larger than or equal to $l-2 m=$ the weight of $\left(\partial / \partial x_{1}\right)^{m-1}\left(\partial / \partial x_{2}\right)^{l}$.
(P.2) For the term in P_{m} with the weight $l-2 m$, its coefficient does not vanish at 0 , that is

$$
\text { weight }\left[\left(a_{w}(x)-a_{\alpha}(0)\right)(\partial / \partial x)^{\alpha}\right] \geqq l-2 m+1
$$

when $|\alpha|=m$ and especially $a_{\omega}(0)=0$ if $\alpha=(m-l, l, 0, \cdots, 0)$ in the second terms of the right hand side of (3.1).
(P.3) There exists an integer $\mu(2 \leqq \mu \leqq n)$ such that the term in P_{m} with the weight $l-2 m$ is generated only by $\partial / \partial x_{1}, \cdots, \partial / \partial x_{\mu}$.

Remark 3.1 If P is simple characteristic at $(0, N)$ with $N=(1,0, \cdots, 0)$, then it is possible to choose the local coordinates such that P is in the form (3.1) with $l=1$ and $\alpha_{1}<m-1$ in the sum of the second terms. In this case all conditions (P.1,2,3) with $\mu=2$ are automatically fulfilled.

Remark 3.2 In P_{m} the condition (P.1) is only restrictive on the terms of the order larger than $m-l$ with respect to $\partial / \partial x_{1}$. Because by (P.1),

$$
\text { weight }\left(a_{\infty}(x)\right) \geqq \max \left\{0, l-2 m+2 \alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=l-m+\alpha_{1}\right\}
$$

Remark 3.3 The conditions (P.1) and (P.2) imply that the term of the weight $l-2 m$ in P_{m} is essentially of the form $a_{\alpha}(0)(\partial / \partial x)^{\omega}$ with $\alpha_{1}=m-l$.

Concerning the boundary function $\rho(x)$ of $\partial \Omega$, we set

$$
H=\left(\frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}(0)\right) \quad(2 \leqq i, j \leqq n)
$$

which is the tangential Hessian of ρ at 0 . Then the following conditions are made in addition to ($\Omega .1$).
($\Omega .2$) H can be written as

where A is strictly negative definite $(0<\lambda \leqq \mu-1)$.
We remark that if $\mu=2$ in (P.3), then ($\Omega .2$) means only that $\partial^{2} \rho / \partial x_{2}^{2}(0)<0$. Such a case is happened when P is simple characteristic at $(0, N)$.

Remark 3.4 It is easy to show that this condition ($\Omega .2$) is independent of the choice of the defining function $\rho(x)$.

Now the basic theorem is as follows:
Theorem 3.1 Let $P\left(x, \partial_{x}\right)$ be a differential operator of the form (3.1) which satisfies the conditions (P. 1, 2, 3), and Ω be an open set given by (3.2) with the conditions ($\Omega .1,2$). If $u(x)$ is a distribution solution of $P u=0$ in U vanishing in Ω, then $u(x)$ must vanish in a neiborhood of 0 .

For the rest of this section, we devote ourselves to prove this theorem.
Lemma 3.1 Let $\rho(x)$ be an defining function of Ω with the conditions ($\Omega .1,2$). Then by changing the defining function $\rho(x)$ if necessarily we may assume that

$$
\frac{\partial^{2} \rho}{\partial x_{1} \partial x_{j}}(0)=0 \quad j=1,2, \cdots, n
$$

in addition to ($\Omega .1,2$).
Proof. If we expand $\rho(x)$ to the second order, we have

$$
\rho(x)=x_{1}+\left(\sum_{j=1}^{n} a_{j} x_{j}\right) x_{1}+\sum_{i, j \geq 2} a_{i j} x_{i} x_{j}+o\left(|x|^{2}\right)
$$

where $\left(a_{i j}\right)=\frac{1}{2} H$. Then $r(x)=\rho(x) \exp \left[-\sum_{j=1}^{n} a_{j} x_{j}\right]$ becomes the desired boundary function, which completes the proof.

Lemma 3.2 If a real-valued C^{2} function ρ satisfies the conditions ($\Omega .1,2$ and 3), then there exist positive constants α and M such that for any $\varepsilon>0$ the following inequality holds in a sufficiently small neiborhood V of 0 .

$$
\begin{equation*}
\rho(x) \leqq x_{1}-\alpha x_{2}^{2}+\varepsilon\left(x_{1}^{2}+x_{3}^{2}+\cdots+x_{\mu}^{2}\right)+M\left(x_{\mu+1}^{2}+\cdots+x_{n}^{2}\right) . \tag{3.3}
\end{equation*}
$$

Proof. We expand ρ in the Taylor series up to the second order. Then by ($\Omega .1$ and 3),

$$
\rho(x)=x_{1}+\sum_{i, j \geq 2} a_{i j} x_{i} x_{j}+o\left(|x|^{2}\right)
$$

where $\left(a_{i j}\right)=\frac{1}{2} H$ satisfies ($\Omega .2$). From ($\Omega .2$), it is easy to derive the inequality (3.3). The details are omitted.

Set $\psi(x)$ as

$$
\begin{equation*}
\psi(x)=x_{1}-\alpha x_{2}^{2}+\varepsilon\left(x_{1}^{2}+x_{3}^{2}+\cdots+x_{\mu}^{2}\right)+M\left(x_{\mu+1}^{2}+\cdots+x_{n}^{2}\right) . \tag{3.4}
\end{equation*}
$$

Then the above lemma showes that in some neiborhood V of 0 , the open set $\{\psi(x)<0\}$ is contained in Ω. Thus it is sufficient for the proof of the theorem 3.1 to obtain the uniqueness theorem across the surface $\psi(x)=0$. For this purpose we construct the family of surfaces. Define $\phi(x)$ as

$$
\begin{equation*}
\phi(x)=x_{1}-\frac{1}{2} \alpha r x_{2}+2 \varepsilon\left(x_{1}^{2}+x_{3}^{2}+\cdots+x_{\mu}^{2}\right)+2 M\left(x_{\mu+1}^{2}+\cdots+x_{n}^{2}\right), \tag{3.5}
\end{equation*}
$$

where $r>0$ is a parameter and determined later.
Lemma 3.3 If s is real and $s \leqq \alpha r^{2}$, then the set $\{\psi(x) \geqq 0\} \cap\{\phi(x) \leqq s\}$ is compact and contained in $U(r)$, where

$$
\begin{aligned}
& U(r)=\left\{x | | x _ { 1 } \left|<2 \alpha r^{2},\left|x_{2}\right|<2 r\right.\right. \\
& \quad\left|x_{j}\right|<(2 \alpha / \varepsilon)^{1 / 2} r \quad j=3, \cdots, \mu \\
& \left.\quad\left|x_{k}\right|<(2 \alpha / M)^{1 / 2} r \quad k=\mu+1, \cdots, n\right\}
\end{aligned}
$$

Proof. Set $R_{\mu}^{2}=x_{1}^{2}+x_{3}^{2}+\cdots+x_{\mu}^{2}$ and $R_{n}^{2}=x_{\mu+1}^{2}+\cdots+x_{n}^{2} . \quad$ For any $x \in$ $\{\psi(x) \geqq 0\} \cap\{\phi(x) \leqq s\}$ we have

$$
2 \alpha x_{2}^{2}-2 x_{1} \leqq 2 \varepsilon R_{\mu}^{2}+2 M R_{n}^{2} \leqq s+\frac{1}{2} \alpha r x_{2}-x_{1}
$$

which imply the next two inequalities:

$$
\begin{aligned}
& x_{1} \geqq 2 \alpha x_{2}^{2}-\frac{1}{2} \alpha r x_{2}-s \\
& s+\frac{1}{2} \alpha r x_{2}-x_{1} \geqq 0 .
\end{aligned}
$$

Then it easily derived that $\left|x_{1}\right|<2 \alpha r^{2}$ and $\left|x_{2}\right|<2 r$ provided that $s \leqq \alpha r^{2}$. Using these estimates we have

$$
0 \leqq \varepsilon R_{\mu}^{2}+M R_{n}^{2}<2 \alpha r^{2}
$$

Thus the lemma is proved.
Now we determine the parameters ε and r so that the surface $\phi(x)=s$ is non-characteristic with respect to $P\left(x, \partial_{x}\right)$ in some neiborhood of 0 . Let $Q\left(\partial_{x}\right)$ be the sum of the terms in P_{m} with the weight exactly $l-2 m$. By the remark 3.3 and the condition (P.3), $Q\left(\partial_{\dot{x}}\right)$ is expressed as followes:

$$
\begin{equation*}
Q\left(\partial_{x}\right)=\left(\frac{\partial}{\partial x_{1}}\right)^{m-l}\left(\frac{\partial}{\partial x_{2}}\right)^{l}+\sum a_{\infty}\left(\frac{\partial}{\partial x}\right)^{\infty} \tag{3.6}
\end{equation*}
$$

where the summation is taken over the multi-indices α such that $\alpha_{1}=m-l$, $\alpha_{2}+\cdots \alpha_{\mu}=l, \alpha_{2}<l$ and $\alpha_{\mu_{+1}}=\cdots=\alpha_{n}=0$. In (3.6) every a_{α} is a constant. If we set $\xi_{j}=\partial \phi / \partial x_{j}(j=1, \cdots, n)$, then we have

$$
\begin{array}{ll}
\xi_{1}=1+4 \varepsilon x_{1} & \\
\xi_{2}=-\frac{1}{2} \alpha r & \\
\xi_{j}=4 \varepsilon x_{j} & j=3, \cdots, \mu \\
\xi_{k}=4 M x_{k} \quad & k=\mu+1, \cdots, n .
\end{array}
$$

Therefore we have the next estimates on $U(r)$:

$$
\begin{cases}\frac{1}{2} \leqq\left|\xi_{1}\right| \leqq 2 & \text { if } \varepsilon \alpha r^{2} \leqq 4^{-2} \tag{3.7}\\ \left|\xi_{2}\right|=\frac{1}{2} \alpha r & \\ \left|\xi_{j}\right| \leqq 4(2 \alpha \varepsilon)^{1 / 2} r & j=3, \cdots, \mu \\ \left|\xi_{k}\right| \leqq 4(2 \alpha M)^{1 / 2} r & k=\mu+1, \cdots, n .\end{cases}
$$

Lemma 3.4 If we take ε sufficiently small $\left(\varepsilon \alpha r^{2} \leqq 4^{-2}\right)$, then $Q(\xi)$ does not vanish on $U(r)$.

Proof. We use the notation $C(\alpha)$ which is a different constant in each position depending only on α. By (3.7),

$$
\begin{aligned}
& \left|\xi_{1}^{m-l} \xi_{2}^{l}\right| \geqq\left(\frac{1}{2}\right)^{m} \alpha^{l} r^{l} \\
& \left|a_{\infty} \xi^{\omega}\right| \leqq C(\alpha) \varepsilon^{(1 / 2)\left(\omega_{3}+\cdots+\omega_{\mu}\right)} r^{l}
\end{aligned}
$$

for $|\alpha|=m, \alpha_{1}=m-l$ and $\alpha_{\mu+1}=\cdots=\alpha_{n}=0$. If we put these estimates into the corresponding terms in $(3,6)$, we have that

$$
|Q(\xi)| \geqq\left\{\left(\frac{1}{2}\right)^{m} \alpha^{l}-C(\alpha) \varepsilon^{(1 / 2)\left(\alpha_{3}+\cdots+\alpha_{\mu}\right)}\right\} r^{l}
$$

Since $\alpha_{3}+\cdots+\alpha_{\mu} \neq 0,|Q(\xi)| \geqq C(\alpha) r^{r}$ with $C(\alpha)>0$ for a sufficiently small ε. This proves the lemma.

From now on, the constant ε is taken as in this lemma and always fixed. For the determination of the parameter r, we have the next lemma.

Lemma 3.5 If we take r sufficiently small, then $P_{m}(x, \xi)$ does not vanish on $U(r)$.

Proof. If the weight of an analytic function $a(x)$ is equal to k, then the inequality

$$
\sup _{U(r)}|a(x)| \leqq \text { const. } r^{k}
$$

holds for a sufficiently small r. Thus for a term $a(x)(\partial / \partial x)^{\omega}$ in P_{m} with the weight larger than $l-2 m$, the inequality

$$
\text { weight } \begin{aligned}
a(x) & \geqq l-2 m+1+2 \alpha_{1}+\alpha_{2}+\cdots+\alpha_{n} \\
& =l-m+\alpha_{1}+1
\end{aligned}
$$

implies

$$
\begin{aligned}
\left|a(x) \xi^{\omega}\right| & \leqq \text { const. } r^{l-m+\alpha_{1}+1} \text { const. } r^{\alpha_{2}+\cdots+\alpha_{n}} \\
& =\text { const. } r^{l+1}
\end{aligned}
$$

While $|Q(\xi)| \geqq C(\alpha) r^{r}$ on $U(r)$. Since P_{m} is the sum of Q and the terms of the weight larger than $l-2 m$, we can choose r sufficiently small so that P_{m} does not vanish on $U(r)$. This proves the lemma.

Under these preparations we now prove the basic theorem. The key lemma of this proof is the following one which is due to Hörmander [3].

Lemma 3.6 Suppose that there exist a real-valued C^{1} function $\phi(x)$ and constants s_{0}, s_{1} such that in some neighborhood V of 0 ,

$$
\begin{equation*}
P_{m}(x, \operatorname{grad} \phi(x)) \neq 0 \tag{i}
\end{equation*}
$$

(ii) $s_{0}<\phi(0)<s_{1}$
(iii) $\left\{x \in V \mid \phi(x) \leqq s_{1}\right\} \cap \overline{\Omega^{c}}$ is compact,
(iv) $\left\{x \in V \mid \phi(x) \leqq s_{0}\right\} \cap \overline{\Omega^{c}}$ is empty,
(v) $\left\{x \in V \mid \phi(x) \leqq s_{0}\right\}$ is not empty.

Then every distribution solution $u(x)$ in V of the equation $P u=0$ vanishing in Ω must vanish in $\left\{x \in V \mid \phi(x)<s_{1}\right\}$.

Proof of the Theorem 3.1 By the lemma 3.2 we may take Ω as the set $\{x \in V \mid \psi(x)<0\}$. Now take $U(r)$ in the lemma 3.5 as the neighborhood V of 0 in the lemma 3.6. Then the condition (i) is fulfilled. Set $s_{0}=-\alpha r^{2}$ and $s_{1}=\alpha r^{2}$. Then (ii) becomes trivial and (iii) is derived from the lemma 3.3. The other conditions (iv) and (v) are easily derived from the expression of $\phi(x)$ and $\psi(x)$, so we omitt their prooves. This ends the proof of the theorem 3.1.

4. Choice of the local coordinates in the basic theorem

Let $\left(x_{1}, \cdots, x_{n}\right)$ be the local coordinates such that the surface $x_{1}=0$ is tangent to $\partial \Omega$ at $x=0$. We consider this coordinates as the weighted coordinates with the weights $(2,1, \cdots, 1)$. The other local coordinates with the same property become equivalent to this coordinates as the weighted coordinates.

Let $P\left(x, \partial_{x}\right)$ be a linear differential operator of order m with analytic coefficients which is characteristic at 0 in the cotangential direction $N=$ $(1,0, \cdots, 0)$. We set l the multiplicity of P at $(0, N)$. That is, for a cotangent vector $\zeta=\left(\zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}\right)$,

$$
\begin{equation*}
P_{m}(0, N+t \zeta)=L(\zeta) t^{l}+\text { higher order terms of } t \tag{4.1}
\end{equation*}
$$

where P_{m} is the principal part of P and $L(\zeta)$ is a non-zero polynomial of ζ. This polynomial $L(\zeta)$ is called the localization of P_{m} at $(0, N)$, which is originally introduced by Hörmander [4]. When $N=(1,0, \cdots, 0),(4.1)$ means that in $P_{m}\left(0, \partial_{x}\right)$ there is none of the terms of order larger than $m-l$ with respect to $\partial / \partial x_{1}$ and the sum of the coefficients of $\left(\partial / \partial x_{1}\right)^{m-l}$ is equal to $L\left(\partial / \partial x_{2}, \cdots, \partial / \partial x_{n}\right)$. Therefore $L(\zeta)$ is a homogeneous polynomial of degree l in the variables $\left(\zeta_{2}, \cdots, \zeta_{n}\right)$. Since the weight of $L\left(\partial / \partial x_{2}, \cdots, \partial / \partial x_{n}\right)\left(\partial / \partial x_{1}\right)^{m-l}$ is equal to $l-2 m$, we make the assumption:
(P.I) the weight of $P_{m}(x, \xi)$ is equal to $l-2 m$, if the weight of ξ are assigned by $(-2,-1, \cdots,-1)$.

Relating to the localization $L(\zeta)$ of P_{m}, we introduce some linear spaces in the tangent space T_{0} and the cotangent space T_{0}^{*} of the surface $\partial \Omega$ at 0 . For the polynomial $L(\zeta)$, we set

$$
\begin{equation*}
\Lambda^{*}(L)=\left\{\eta \in T_{0}^{*} \mid L(\xi+\eta t)=L(\xi) \quad \text { for all } t \text { and } \xi\right\} \tag{4.2}
\end{equation*}
$$

which is a linear subspace, and we introduce the annihilator

$$
\begin{equation*}
\Lambda(L)=\left\{v \in T_{0} \mid\langle v, \eta\rangle=0 \quad \text { for any } \eta \in \Lambda^{*}(L)\right\} \tag{4.3}
\end{equation*}
$$

where \langle,$\rangle denotes the contraction between cotangent vectors and tangent$
vectors. $\Lambda(L)$ is the smallest subspace along which $L(\partial / \partial x)$ operates and is called the bicharacteristic space of P at $(0, N)$. These subspaces are introduced by Hörmander [4].

Definition 4.1 An analytic function $\phi(x)$ with $\operatorname{grad} \phi(0)=N$ is said to be a weighted characteristic function of $P\left(x, \partial_{x}\right)$ if it satisfies the following condition:

$$
\begin{equation*}
\text { weight } P_{m}(x, t \operatorname{grad} \phi(x)) \geqq l-2 m+1 \tag{4.4}
\end{equation*}
$$

where the parameter t is assigned the weight -2 .
To find such a weighted characteristic function $\phi(x)$, it is sufficient that ϕ is in the form

$$
\phi(x)=x_{1}+\sum_{i, j \geq 2} a_{i j} x_{i} x_{j} .
$$

Assume that

(P.II) there exists a weighted characteristic function $\phi(x)$.

By the suitable equivalent change of the weighted coordinates we can assume that $\phi(x)=x_{1}$. Then the following proposition is easy to prove.

Proposition 4.1 If $\phi(x)=x_{1}$, then (4.4) is equivalent to that there is none of the differential monomials of the weight $l-2 m$ in $P_{m}\left(x, \partial_{x}\right)$ which is generated only by $\partial / \partial x_{1}$.

We now fix some weighted characteristic function $\phi(x)$ and consider the local coordinates $\left(x_{1}, \cdots, x_{n}\right)$ as $\phi(x)=x_{1}(\bmod$ weight 3$)$ and each $x_{j}(j=2$, \cdots, n) has the weight 1 . This means that the coordinates transformation considered from now on is in the following form:

$$
\left\{\begin{array}{c}
u_{1}=x_{1}+\text { an analytic function of the weight } \geqq 3, \tag{4.5}\\
u_{j}=\sum_{k=2}^{n} c_{j k} x_{k}+\text { an analytic function of the weight } \geqq 2 \\
j=2, \ldots, n .
\end{array}\right.
$$

Then we make the last assumption on P_{m} such that

$$
\begin{equation*}
\text { weigh }\left[P_{m}(x, \xi)-P_{m}(0, \xi)\right] \geqq l-2 m+1 \tag{P.III}
\end{equation*}
$$

Proposition 4.2 This assumption (P.III) is invariant under the change of variables of form (4.5).

Proof. If we remark that by (4.5),

$$
\frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial u_{1}}+\text { terms of the weight larger than }-2
$$

$$
\begin{gathered}
\frac{\partial}{\partial x_{j}}=\sum_{k=1}^{n} c_{k j} \frac{\partial}{\partial u_{k}}+\text { terms of the weight larger than }-1, \\
j=2, \cdots, n
\end{gathered}
$$

the invariance of (P.III) is easy to prove.
Assumption (P.III) means that the terms with the lowest weight in P_{m} do not degenerate at 0 .

Now we proceed to examine the conditions on Ω under the assumptions (P. I, II, III).

If Ω is given by $\{\rho(x)<0\}$ with a real-valued C^{2} function ρ, we denote by H_{ρ} the tangential Hessian of ρ at 0 . That is

$$
H_{\mathrm{\rho}}=\left(\frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}(0)\right) \quad 2 \leqq i, j \leqq n
$$

Then it easily derived that the symmetric bilinear form $\sum_{i, j \geq 2} \frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}(0) d x_{i} \otimes d x_{j}$ on $T_{0} \times T_{0}$ is invariant under the transformation of the coordinates of the form (4.5). We set N_{ρ} as the kernel of the linear map $H_{\rho}: T_{0} \rightarrow T_{0}^{*}$ defined by

$$
H_{\rho}(v)=\sum \frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}(0)\left\langle d x_{i}, v\right\rangle d x_{j}
$$

Then H_{ρ} is derived to the bilinear form on the space $T_{0} / N_{\rho} \times T_{0} / N_{\rho}$. Similary if we set

$$
\tilde{\Lambda}(L)=\Lambda(L) / N_{\rho} \cap \Lambda(L)
$$

where $\Lambda(L)$ is the bicharacteristic space of P, H_{ρ} is also derived to the bilinear form on $\widetilde{\Lambda}(L) \times \widetilde{\Lambda}(L)$.

The first assumption on $\partial \Omega$ is as follows:
($\Omega . \mathrm{I}) \quad \widetilde{\Lambda}(L) \neq 0$ and H_{ρ} is strictly negative definite on $\widetilde{\Lambda}(L) \times \widetilde{\Lambda}(L)$.
This condition means that Ω is concave in the direction of the bicharacteristic space at 0 .

Lastly we demand that $L(\zeta)$, the localization of P, is non-characteristic at some covector ξ_{0} for which Ω is strictly concave at 0 . For this sake we introduce N_{ρ}^{*} the annihilator of N_{ρ},

$$
N_{\rho}^{*}=\left\{\xi \in T_{0}^{*} \mid\langle\xi, v\rangle=0 \quad \forall v \in N_{p}\right\}
$$

Then we assume
($\Omega . \mathrm{II}$) there exists a covector ξ_{0} in N_{p}^{*} such that $L\left(\xi_{0}\right) \neq 0$.
Now we construct the local coordinates $\left(x_{1}, \cdots, x_{n}\right)$ so that the operator
$P\left(x, \partial_{x}\right)$ is reduced to the form (3.1) and all assumptions in the basic theorem are satisfied.

First we fix the weighted characteristic function $\phi(x)$ in (P.II) and set $\phi(x)=x_{1}$.

Secondly we choose the tangential coordinates $\left(x_{2}, \cdots, x_{n}\right)$ such that the vectors $\partial / \partial x_{2}, \cdots, \partial / \partial x_{\mu}$ span the bicharacteristic space $\Lambda(L)$ at 0 . Since $L(\zeta)$ does not vanish identically, the dimension of $\Lambda(L)$ is $\mu-1$ which becomes positive (i.e. $\mu \geqq 2$).

Thirdly under the suitable linear change of variables (x_{2}, \cdots, x_{μ}), we may assume that for some $\lambda(2<\lambda \leqq \mu), \partial / \partial x_{\lambda+1}, \cdots, \partial / \partial x_{\mu}$ span the subspace $N_{\rho} \cap \Lambda(L)$. At this moment, the condition ($\Omega .1$) means that the matrix

$$
\left(\frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}(0)\right) \quad 2 \leqq i, j \leqq \lambda
$$

is strictly negative definite and

$$
\frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}(0)=0 \quad \text { if } \lambda+1 \leqq i \text { or } j \leqq \mu
$$

Lastly we shall prove that $L(\zeta)$ can be non-characteristic at $d x_{2}$ by the linear change of variables $\left(x_{2}, \cdots, x_{\lambda}\right)$.

Proposition 4.3 By the suitable linear change of variables $\left(x_{2}, \cdots, x_{\lambda}\right)$, $L(\zeta)$ is non-characteristic at the covector $d x_{2}$.

Proof. Let $\xi_{0} \in T_{0}^{*}$ be the covector in the condition (Ω.II). Since $\left\langle\xi_{0}, \partial / \partial x_{j}\right\rangle=0(j=\lambda+1, \cdots, \mu), \xi_{0}$ is written as

$$
\begin{aligned}
\xi_{0} & =c_{2} d x_{2}+\cdots+c_{\lambda} d x_{\lambda}+c_{\mu_{+1}} d x_{\mu_{+1}}+\cdots+c_{n} d x_{n} \\
& =c_{2} d x_{2}+\cdots+c_{\lambda} d x_{\lambda}+\xi_{0}^{\prime}
\end{aligned}
$$

where $\xi_{0}^{\prime} \in \Lambda^{*}(L)$ which is generated by $d x_{\mu_{+1}}, \cdots, d x_{n}$. Then

$$
\begin{aligned}
0 \neq L\left(\xi_{0}\right) & =L\left(c_{2} d x_{2}+\cdots+c_{\lambda} d x_{\lambda}+\xi_{0}^{\prime}\right) \\
& =L\left(c_{2} d x_{2}+\cdots+c_{\lambda} d x_{\lambda}\right) .
\end{aligned}
$$

Therefore this proposition is easily derived from this relation.
From this proposition, $L(\partial / \partial x)$ is written as

$$
L\left(\partial_{x}\right)=a\left(\frac{\partial}{\partial x_{2}}\right)^{l}+\sum a_{\infty}\left(\frac{\partial}{\partial x}\right)^{\infty}
$$

where $a \neq 0$ and the summation is taken over the multi-indices $|\alpha|=l, \alpha_{2}<l$, $\alpha_{1}=\alpha_{\mu_{+1}}=\cdots=\alpha_{n}=0$.
Thus the operator $P\left(x, \partial_{x}\right)$ is expressed in the form (3.1) under this coordi-
nates. Since (P.I) implies (P.1), (P.III) implies (P.2), (P.3) follows from the fact that $\partial / \partial x_{2}, \cdots, \partial / \partial x_{\mu}$ span $\Lambda(L),(\Omega .1)$ is trivial from the choice of x_{1} and ($\Omega .2$) is derived from ($\Omega . \mathrm{I}$), all conditions in the theorem 3.1 are satisfied under this coordinates. Summing up these results we have the final theorem:

Theorem 4.1 Let $P\left(x, \partial_{x}\right)$ be a differential operator of order m with analytic coefficients in a neighborhood V of p and Ω be an open set with C^{2} boundary $\partial \Omega \in p$. We suppose that P and Ω satisfy the conditions ($P . I, I I, I I I$) and (Ω. I, II). Then every distribution solution $u(x)$ of $P u=0$ in V vanishing in Ω must vanish in a neighborhood of p.

References

[1] T. Bloom and I. Graham: On 'Type' conditions for generic real submanifolds of C^{n}, Invent. Math. 40 (1977), 217-243.
[2] J.M. Bony: Une extension du théorè̀me de Holmgren sur l'unicité du problème de Cauchy, C.R.Acad. Sci. Paris 268 (1969), 1103-1106.
[3] L. Hörmander: Linear partial differential operators, Springer-Verlag, 1963.
[4] L. Hörmander: On the singularities of solutions of partial differential equations, Comm. Pure Appl. Math. 23 (1970), 329-358.
[5] L. Hörmander: Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math. 24 (1971), 671-704.
[6] L. Hörmander: A remark on Holmgren's uniqueness theorem, J. Differential Geom. 6 (1971), 129-134.
[7] J. Perrson: On uniqueness cones, velocity cones and P-convexity, Ann. Mat. Pura Appl. 96 (1973), 69-87.
[8] F. Trèves: Linear partial differential equations with constant coefficients, Gordon and Breach, New York, 1966.
[9] Y. Tsuno: Localization of differential operators and holomorphic continuation of the solutions, Hiroshima Math. J. 10 (1980), to appear.
[10] E.C. Zachmanoglou: Uniqueness of the Cauchy problem when the initial surface containes characteristic points, Arch. Rational Mech. Anal. 23 (1966), 317-326.
[11] E. C. Zachmanoglou: Uniqueness of the Cauchy problem for linear partial dierential eqnations with valiable coefficients, Trans. Amer. Math. Soc. 136 (1969), 517-526.

[^0]
[^0]: Department of Mathematics Okayama University
 Tsushima, Okayama, 700
 Japan

