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Introduction. In the study of submanifolds of a riemannian manifold,
as a generalization of a totally geodesic submanifold, the notion of an isotropic
submanifold has been introduced by B. O'Neill [10]. On the other hand, as
another generalization of a totally geodesic submanifold, there is the notion of a
submanifold with parallel second fundamental form. Among submanifolds
belonging to both classes, those which are not totally geodesic have the property
that every geodesic in the submanifold is a circle in the ambient riemannian
manifold (K. Nomizu [8]).

These submanifolds have been studied recently when the ambient rieman-
nian manifold is a riemannian symmetric space. Among them totally umbilical
submanifolds are called extrinsic spheres. It is known that an extrinsic
sphere is isometric to a Euclidean sphere, a Euclidean space, or a real hyperbolic
space (B.Y. Chen [2] and H. Naitoh [7]). If the ambient manifold is a Hermitian
symmetric space, a Kahler submanifold belonging to both classes is congruent
to the Veronese manifold of degree two (H. Naitoh [7]). Moreover K. Nomizu
[8] has shown that if the ambient manifold is a complex project!ve space with
the Fubini-Study metric, the Veronese manifold of degree two is characterized
by the property that every geodesic in the submanifold is a circle in the com-
plex projective space.

Now nonzero isotropic submanifolds with parallel second fundamental form
are closedly related to planer geodesic submanifolds. When the ambient mani-
fold is a Euclidean sphere, the submanifolds coincide with those which are
planer geodesic but not totally geodesic, and they have been classified by
K. Sakamoto [12]. When the ambient manifold is the complex projective
space, submanifolds which are planer geodesic but not totally geodesic are
nonzero isotropic and have parallel second fundamental forms. Moreover it
is known that these submanifolds are compact riemannian symmetric spaces of
rankone(J.S.Pak[ll]).

In this paper we study nonzero isotropic submanifolds with parallel second
fundamental form in a complex projective space with the Fubini-Study metric.
These submanifolds can be divided into the following three types Kahlerian,
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P(Λ)-totally real, or P(C)-totally real (Proposition 2.2 and 2.3). In the Kahlerian
case they are congruent to the Veronese manifolds of degree two as above. In
the P(.R)-totally real case they are planer geodesic but not totally geodesic in

some real projective space. Moreover, among nonzero isotropic submanifolds
with parallel second fundamental form, Kahlerian and P(Λ)-totally real sub-
manifolds exhaust all the planer geodesic submanifolds in the ambient complex

projective space (Theorem 3.8). In the P(C)-totally real case, nonzero isotropic
submanifolds with parallel second fundamental form are not planer geodesic

and locally isometric to the riemannian symmetric spaces; S1 X Sn(n ̂  1),

SC7(3)/SO(3), SC7(3), SC/(6)/Sp(3), E6jF4 (Theorem 4.13).
In the section 6 we shall construct a model of imbeddings for the case the

submanifold is locally isometric to the riemannian symmetric space S1xSn

(Theorem 6.5) and in the section 7 for the case the submanifold is locally
isometric to the riemannian symmetric space SU(3)/SO(3) (Theorem 7.2).

Moreover in the section 8 we shall show that these submanifolds have the
rigidity (Theorem 8.3 and 8.6).

The author wishes to express his hearty thanks to Professor M. Takeuchi
and Professor Y. Sakane for their useful comments during the preparation of

the present paper.

1. Preliminaries

Let Mm be an w-dimensional riemannian manifold with a riemannian metric

< , > and Mn an w-dimensional connected riemannian submanifold in Mm.

Denote by V (resp. V) the riemannian connection on M (resp. M) and by R

(resp. R) the riemannian curvature tensor for V (resp. V) Moreover we
denote by σ the second fundamental form of M, by D the normal connection on
the normal bundle N(M) of M and by 7?-1- the curvature tensor for D. For a

point p&M, the tangent space Tp(M) is orthogonally decomposed into the
direct sum of the tangent space Tp(M) and the normal space Np(M). For a

vector X e Tp(M), the normal component of X will be denote by X-1. Put

N],(M) = {σ(X, Y)eNt(M) X, Y^Tf(M)}R

where {*}Λ denotes the real vector space spanned by *. It is called the first

normal space at p. Then we have the orthogonal decomposition

NP(M) = N1

p(M)+(N1p(M)) L

where (Nl

p(M})^ denotes the orthogonal complement of N\(M) in Np(M). Let
S2(Tp(M)) be the set of all symmetric endomorphisms of Tp(M). Then we
define the linear mapping A: Np(M)^S2(Tp(M)) by
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where X, Y^Tp(M) and ζ^Np(M). The symmetric endomorphism Aζ is
called the shape operator defined by ζ. By the definition of A, the restriction
of A to Np(M) is injective.

Now we recall the following fundamental equations, which are called the
equations of Gauss, Codazzi-Mainardi, and Ricci respectively.

(1.1) <R(X, Y)Z, Wy = <R(X, Y)Z, W>+<σ(X, Z), σ(Y,

(1.2) {R(X, Y)Z}± = (Vίσ)(F, Z)-(V$σ)(X, Z)

(1.3) <R(X, Y)ξ, ,> = <R\X, Y)ζ, ιi>-

where X, Y,Z, W^TP(M), ζ, η^Nf(M) and V* denotes the covariant deriva-
tion associated to the submanifold M cΛf, defined by

(Vίσ)(F, Z) = Dχσ(Y, Z)-σ(VxY, Z)-σ(Y, VXZ)

for vector fields X, Y, Z of M. The second fundamental form σ is said to be
parallel if V*σ=0. Now for a point p^M, put

Ol

p(M) = Tp(M)+Nl

p(M)

which is called the first osculating space at p. Since the second fundamental
form σ is parallel, dimensions of Nl

p(M) and Ol

p(M) are constant on M, and
hence N1(M)=[)N1

P(M) and Ol(M)=\]Ol

p(M] are subbundles of T(St)\M,

the restriction to M of the tangent bundle T(M) of M. Moreover we have
the following

Lemma 1.1 (See [7, Lemmas 1, 13]). If σ is parallel and if M is a rίeman-
nίan locally symmetric space

a) R(X,Y)Z*ΞTP(M)
b) R(X, Y)σ(T, Z) ^Nl

p(M)

c) R^-(TίS)σ(Xί Y)=σ(R(T, S)X, Y)+σ(X, R(T, S)Y) __
d) σ(Γ, R(X, Y)Z)=R(σ(T,X), Y)Z+R(X, σ(T, Y)}Z+R(X} Y)σ(Γ, Z)
e) R(σ(T, X), Y)σ(S, Z)+R(X} σ(T, Y)}σ(S, Z)eOJ(AQ

where X, Y, Z, T, S^Tp(M).

For a given λ^O, a riemannian submanifold M in a riemannian manifold
M is called a \-isotropic submanifold if \σp(X, X)\= λ for each point p^M
and every unit tangent vector X ^Tp(M).

Now we recall the notion of circles in a riemannian manifold M. A curve

xt of M parametrized by arc length is called a circle, if there exists a field of
unit vectors Yt along the curve which satisfies, together with the unit tangent
vectors Xt=xty the differential equations

and VtYt =



430 H. NAITOH

where k is a positive constant, which is called the curvature of the circle xt.
Let p be an arbitrary point of M. For a pair of orthonormal vectors X, Y €Ξ
Tp(M) and for a given constant &>0, there exists a unique circle xty defined
for t near 0, such that

x0=p, X0 = X, and (VtXt}t=Q = kY.

If M is complete, #, can be defined for — oo<£<-f oo.

A nonzero isotropic submanifold with parallel second fundamental form
has the property as given in the following lemma.

Lemma 1.2 (K. Nomizu [8]). If M is a \(>ΰ)-isotropic submanifold with
parallel second fundamental form in Mt every geodesic in M is a circle with the
curvature λ in M.

2. Submanifolds with parallel second fundamental form in Pm(c)

Let Pm(c) be the w-dimensional complex protective space of constant
holomorphic sectional curvature £(>0) and Mn an n-dimensional connected
complete riemannian submanifold with parallel second fundamental form in
Pm(c). Then Mn is a riemannian locally symmetric space since Pm(c) is a
riemannian symmetric space.

From now on we put M=Pm(c). Let J be the almost complex structure
on Pm(c). Then we have the following

Lemma 2.1 (See B.Y. Chen and K. Ogiue [4]). // A, B, C are tangent

vectors of Pm(c\

R(A, B)C = ±(<B, C>A+<JB, C>JA-<A, C>B

-<JA, C>JB+2<A,JB>JC).

Proposition 2.2 (cf. [4]). If Mn is a riemannian submanifold with parallel
second fundamental form in Pm(c), it holds either

a) /(TP(M)) = TP(M) for every point p<=M
or

b) /(TP(M)) C Np(M) for every point p<=M.

Here we note that in the case a) M is a Kahler submanifold in Pm(c) and
in the case b) we call M a totally real submanifold in Pm(c). Moreover we
have the following

Proposition 2.3. If M" is an n(^2)-dimensional totally real submanifold
with parallel second fundamental form in Pm(c), it holds either

bO /(ΓXM^C^^M))-1- for every point
or
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b2) J(TP(M))C.N1

P(M) for every point p<=ΞM.

Proof. For a vector ξ&Np(M), we denote by ζa (resp. ζb) the Nl

p(M)-
component (resp. (Λ/'^(Λf))J--comρonent) of ζ. Let X} Y (resp. H) be vectors in
TP(M) (resp. in Nl

p(M)). Then we have

</r,
by Lemma 1.1, b) and Lemma 2.1, and thus

(2.1) <(JY)a, H>(JX)t = <(JX)a, H>(JY)t .

Assume that there exists a vector JX such that (JX)a φO. Then putting H=
(JX)a in (2.1), we have

(2.2)

where gχr=<C/g« ( ) « > Hence by (2.1) we have

= o .
If (JX)b*Q, (JY)β=cχγ(JX)a and thus together with (2.2), JY=cXYJX for any
vector Y&TP(M). This contradicts that dimM^2. Therefore we have
(JX)b=Q. By (2.2), (JY)t=0 for any vector Y^TP(M\ which shows
J(Tp(M))(^Np(M). Since M is connected, we get our claim by the routine
way. q.e.d.

In the case b^ (resp. b2)) we call the submanifold M of type P(R) (resp. of
typeP(C)).

Now we discribe the relation between the almost complex structure /
and the second fundamental form σ in the following

Lemma 2.4. If Mn is a totally real submanifold in Pm(c), we have

for vectors T,X,Y<= Tp(M).

Proof. For vector fields T, X, Y tangent to M,

- -<jvτx, Y*>
, y> = <jx, VTY>

= <σ(T, Y)JXy . q.e.d.

Now we recall the notion of Lie triple system. Fix a point pGPm(c). Let
Cr be the identity component of the group of isometrics of Pm(c), and set K =
{^eG; g(p)=p} Let g and ϊ be the Lie algebras of G and R respectively, and
let
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be the associated canonical decomposition. Then the tangent space Tp(Pm(c))
is identified with ^. A subspace m in £ is called a Lie triple system if
[[X, Y], Z]<Ξm for X3 Ύy Zem. Since

Rp(XίY)Z=-[[X)Y]ίZ]

for Xy Y, Zep under the above identification, we call a subspace Fin Tp(Pm(c))
a Lie triple system if Rp(X3 Y)Z e F for J*Γ, F, Z EΞ F. Then we know that for
a given Lie triple system V in Tp(Pm(c)), there exists a unique complete totally
geodesic submanifold N in P*(£) such that p<=N and TP(N)= V. If Λf is a
submanifold with parallel second fundamental form in Pm(c)y the subspace

TP(M) is a Lie triple system in Tp(Pm(c)) for every point p^M. Concerning
totally geodesic submanifolds in Pm(c) we get easily the following

Lemma 2.5. Let Mn be a complete totally geodesic snbmadifold in Pm(c).
If Mn is Ktihlerίan, the manifold Mn is isometric to the complex projective space
Pr(c) (2r=n) of constant holomorphίc sectional curvature c. If M* is totaly real,
the manifold Mn is isometric to the real projective space Pn(R) of constant sectional

curvature —.
4

3. Planer geodesic submanifolds in Pm(c)

In this section we consider the cases when M is Kahlerian or totally real of
type P(R) (cf. Proposition 2.2 and 2.3). In the former case we have

Proposition 3.1 (K. Nomizu [8]). If Mn is a complete nonzero isotropίc
Kάhler submanifold with parallel second fundamental form in Pm(c), Mn is the
full Veronese submanifold of degree 2 in some totally geodesic complex projective

space in Pm(c).

Note that the local version is also true by a result of Calabi [1].
In the rest of this section we exclusively study the latter case.

Lemma 3.2. If Mn is an n(^2)-dimensional P(R)-totally real submanifold
with parallel second fundamental form in Pm(c], the first osculating space OP(M) at
p^M is a Lie triple system in Tp(Pm(c}} and there exists a unique totally geodesic

submanifold in Pm(c) of constant sectional curvature — whose tangent space at p

is the space OP(M).

Proof. At first we shall show that Op(M) is a Lie triple system in Tp(Pm(c)).
Along the same line as in the proof of Lemma 13 in [7], it is sufficient to show
the folio wings;
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R(X, σ(Γ,

R(X, *(T,

for X, Y, Z, T, S<=Tt(M). By Lemma 2.1 and the condition that J(Tt(M)}c.
(Nl

p(M))\ we have

R(X,σ(T,Y))Z=-±-
4

Similarly we have

' R(X, σ(T, Y}}σ(S, Z) = ^«<r(T, Y), σ(S,

(3.1)

R(σ(T, X), Y)<r(S, Z) = ~«σ(T, X), σ(S,
4

τ, x), σ(s,

By Lemma l.l,e) and (3.1), we have

<Jσ(T, Y), σ(S, Z)yjX-<Jσ(T, X), <r(S,

For any vector X there exists a vector Y e Tp(M) such that X and Y are linearly
independent, since dimM^2. Hence by the condition that J(Tp(M))C

, we have

<Jσ(T, X), <r(S, Z)> = 0

and thus

(3.2) <J(N\(M)), N\(M)y = {0} .

Hence by (3.1) and (3.2), we get

R(X, σ(T, Y))σ(S, Z) = ^<<r(T, Y), σ(S,

Now noting that the first osculating space Op(M) is a totally real Lie triple
system in Tp(Pm(c}) by (3.2) and the condition that J(Tp(M)}c:(N\(M))\ we
have the second assertion by Lemma 2.5. q.e.d.

By Lemma 2.5, Lemma 1.2 and the uniqueness of circle, we have

Proposition 3.3. If Mn is an n(^2)-dimensional complete nonzero isotropic
P(R)-totally real submanifold with parallel second fnndamental form in Pm(c),
there exists a unique totally geodesic submanifold Pr(K) such that

1) Mn is a submanifold in Pr(R)
and
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2) O\(M) = Tq(Pr(R}) for any point q e M.

Proof. Aanalogous to the proof of Proposition 15 in [7].

Now we recall the notion of planer geodesic submanifolds. A submanifold
M in a riemannian symmetric space M is called a planer geodesic submanifold
if for any maximal geodesic γ in M, there exists a 2-dimensional totally geodesic
submanifold in M containing γ. K. Sakamoto [12] has studied the case that
M is of constant sectional curvature. We discribe two lemmas which we use
in this paper.

Lemma 3.4 (K. Sakamoto [12]). Let M be a riemannian submanifold in a
riemannian symmetric space M(c) of constant sectional curvature c. Then the
following three conditions are equivalent.

(P.G) The submanifold M is planer geodesic and not totally geodesic.
(I.P) The submanifold M is nonzero isotropic and has the parallel second

fundamental form.
(G.C) Every geodesic in M is a circle in M(c).

Moreover K. Sakamoto [12] has shown that a complete planer geodesic
and not totally geodesic submanifold M in the Euclidean sphere SM is one of
the followings;

(1) M is a totally umbilical and not totally geodesic submanifold in Sm.
(2) M is isometric to a real projective space, a complex projective space,

a quatanion projective space, or a Cayley projective space. And the imbeddings
are full and minimal ones constructed by S.S.Tai.

(3) M is a Tight imbedded submanifold in some totally umbilical sub-
manifold in Sm.

Here along his argument we also have the following

Lemma 3.5 (K. Sakamoto [12]). Without the assumption of completeness,
the planer geodesic and not totally geodesic submanifold M is locally isometric to

one of the compact riemannian symmetric spaces of rank one. Here the dimension
of the first normal spaces equals 1, (n— 1) (n+2)/2, (n— 1) (n+2)/2+l if M is

locally isometric to Sn\ (n—l) (2n+l) or (n—l) (2n+l)+l if M is locally iso-
metric to P"(H)\ n2—l or n2 if M is locally isometric to Pn(C); 9 or 10 if M is
locally isometric to P2(Cd).

Now we study complete nonzero isotropic submanifolds with parallel second

fundamental form in Pr(R).

Proposition 3.6. Let Mn be a complete nonzero isotropic submanifold with
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parallel second fundamental form in Pr(K) and let π: Sr^Pr(R) be the covering
map. Then there exists a complete nonzero isotropic submanifold M with parallel
second fundamental form in Sr such that π: M-*M is isometric.

Proof. The subset π~l(M) in Sr is a submanifold since π is a covering
map. Let M be a connected component of π~\M). Then M is a complete
nonzero isotropic submanifold with parallel second fundamental form in Sr.
We shall show that π: M->M is isometric. Suppose that π: M-+M is not in-
jective. Then there exist distinct points x and y in M such that π(x)—π(y).

Here we note that x and y are anti-podal in Sr. Let γ be a geodesic in M
joining x and y. By Lemma 3.4, 7 is a circle in S". This is a contradiction.

Hence π: M->M is injective. Since M is compact, we get our claim. q.e.d.

Now summing up some results of J.S.Pak [11], we have the following

Lemma 3.7 (J.S. Pak [11]). A planer geodesic and not totally geodesic
submanifold M in Pn(c) is either nonzero isotropic Kάhlerίan with parallel second
fundamental form or nonzero isotropic P(R)-totally real with parallel second
fundamental from. (Here we need not assume the completeness of the submanifold
M.)

The Veronese submanifold in Pm(c) of degree 2 is planer geodesic and not
totally geodesic (cf. J.S. Pak [11]), and by Lemma 3.4 so are the submanifolds
in Proposition 3.6. Hence together with Lemma 3.7 and Proposition 3.1, 3.6
we have the following

Theorem 3.8. Let Mn be an n(^2)-dίmensίonal complete nonzero isotropic
submanifold with parallel second fundamental form in Pm(c). Then the submanifold
M is planer geodesic if and only if M is Kahlerian or P(R)-totally real. Moreover

such submanifolds are those given in Proposition 3.1 and 3.6.

4. Non planer geodesic submanifolds in Pm(c)

In this section we study the case when M is totally real of type P(C) (cf.
Proposition 2.3).

Lemma 4.1. If Mn is an n(^2)-dimensίonal complete P(C)-totally real
submanifold with parallel second fundamental form in Pm(c}9 the first osculating
space Op(M) at p^M is a Lie triple system in Tp(Pm(c)) and there exists a

unique totally geodesic Kάhler submanifold Pr(c} in Pm(c) such that p^Pr(c) and
Tp(Pr(c))=Ol(M).

Proof. At first we shall show that Ol

p(M) is a Lie triple system in Tp(Pm(c)).

Along the same line as in the proof of Lemma 13 in [7], it is sufficient to show
the folio wings
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R(X, σ(T, Y))Z^O1

P(M) and R(X, σ(T, Y))σ(S,

for X, Y, Z,S,T<= TP(M). By Lemma 2.1 and the condition that J(TP(M))C.
Np(M), we have

R(x, σ(τ, γ))z = ±-«τ<τ(τ, Y), zyjx-<x, zyσ(τ,
4

+2<X,J<r(T, Y)yjZ)(ΞNl(M).

Similarly we have

R(X, σ(T, Y))<r(S, Z) = —«σ(T, Y), <r(S, Z)yX

+ <Jσ(T, Y), σ(S, Z)yjX-<JX, σ(S, Z)yjσ(T,
I O/ V 7 ίr

-f-Z<A. I fr( ί
(4.1)

' R(σ(T,
1r

-<<r(T, X), σ(S, Z)yY-<Jσ(T, X), σ(S,Z)yjY

+2<σ(T,X),JYyjσ(S,Z)).

By Lemma 1.1,e), (4.1), and Lemma 2.4, we have

(4.2) <JY, Hyjσ(T, X)-<JX,

for X, Y, T e TP(M) and H &Np(M). For any vector X there exists a nonzero
vector Y ^Tp(M) such that X and Y are orthogonal, since dim M^2. Since
J(Tp(M)}C.N},(M), we may substitute H for JY in (4.2). Hence we have

(4.3) /σ(Γ,-X)eO}(M) and thus JN\(M)c.O\(M) .

By (4.1), we have R(X, σ(T, Y))σ(S, Z)^O1

P(M).
Moreover (4.3) and the condition that J(TP(M)) C Np(M) imply that

JOp(M)c:Op(M). Hence the second assersion is proved. q.e.d.

In the same way as Proposition 3.3, we have the following

Proposition 4.2. If Mn is an n(^2)-dimeιuional complete nonzero isotropίc
P(C)-totally real submanifold with parallel second fundamental form in Pm(c\ there
exists a unique totally geodesic Kάhler submanifold Pr(c) such that

1) Mn is a submanifold in Pr(c)
and that

2) O\(M) = Tq(P'(c)) for every point q<=M.

Now we have the following fundamental
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Lemma 4,3. Let M be a totally real \(>ϋ)-isotropίc submanίfold with
parallel second fundamental forms in Pm(c) and let N be a totally geodesic submani-
fold in M. Then N is a totally real \-isotropic submanίfold with parallel second
fundamental form in Pm(c).

Proof. We claim that N is a submanifold with parallel second funda-
mental form in Pm(c). The second fundamental form for the imbedding N-*
Pm(c) is the restriction of σ to T(N) X T(N), so we use the same notation σ for
the imbedding N->Pm(c). Denote by DN (resp. V*^) the normal connection on
N (resp. the covariant derivation for normal bundle valued tensors on N). At
first we note that the Lie triple system Tp(M) in Tp(Pm(c)) defines a totally

geodesic submanifold of constant sectional curvature — . Thus TP(N) is a Lie

triple system in Tp(Pm(c)). So, by the equation of Codazzi-Mainardi, V*^σ is
a symmetric tensor on N. We shall show that

(V$»σ)(X, X) = 0 for any X e TP(N) .

Let Xt be the tangent vector field of the geodesic in N starting from p with
initial vector X. Then we have

, X)) = DΊσ(Xt, Xt) I ,=o

where (*)•*- denotes the normal component of * with respect to the decomposition
Tp(M)=Tp(N)+(Tp(N)) L. Since M is isotropic in Pm(c), we have

<Aσ(x^X, F> = -<σ(*, X), σ(Xy Y)> = 0

for any vector Y <=TP(M) orthogonal to X. Hence we have (V$Nσ)(X, X)=Ό.
Now the other assertions are easy to see. q.e.d.

For orthonormal vectors X, Y<=Tp(M)y denote by K(X, Y) (resp.
K(X,Y)) the sectional curvature of the plane spanned by X and Y for M (resp.
for M), and put ΔXY=K(X, Y) — K(X, Y). We call Δ the discriminant ztp(=M.
Then we have

Lemma 4.4 (B.O'Neill [10]). Let Mn be a \(>ϋ)-isotropic submanίfold
in a rίemannian manifold M. Assume that the discriminant Δ at p^M is con-
stant. Put mn = n(n+l)/2, and hn = (n+2)l2(n—l). Then we have — AM

Furthermore, if σp is the second fundamental form at p} then

( 1 ) Δ = λ2 <=> M is totally umbilical at p & dim N P(M) = 1
(2) Δ=— Awλ2<=>M is minimal at p^dim Np(M)=mn—l
(3) -hn\

2<Δ<\2**dim Nl

p(M)=mn.
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Now we need some propositions in order to get our reduction.

Lemma 4.5. Let Tn be an n(^2)-dimensional flat manifold. If Tn is a
nonzero ίsotropic submanίfold with parallel second fundamental form in Pm(c), then

Proof. Note that Tn is P(C)-totally real and that the discriminant equals

negative constant — — . Thus by Lemma 4.4, we have

(4.4)

On the other hand, by the equation of Ricci and Lemma 1.1, c), we have

for X, Y<=Tp(Tn) and H, HtΞNl

p(Tn). Noting that Tn is P(C7)-totally real, by
Lemma 2.1, we have

(4.5) [AH) AH\X = ± ,

where (*)τ denotes the Tp(Tn)~ component of *. Set

If H,H(Ξ(J(Tp(Tn)))\ [Aff,AH]=0 by (4.5). Let S\TP(Γ)) is the vector
space of all the symmetric endomorphisms on Tp(Tn) as in section 1. Then
we get

dim {(/(T^T")))-1} ̂ the dimension of a maximal abelian

subspace in S2(Tp(Tn))

— n

and thus

Together with (4.4), we see that n=2 or 3. q.e.d.

From now on a riemannian submanifold in a riemannian manifold is said
to be first full if the first normal space equals the normal space at any point.

Proposition 4.6. Let T2 be a 2-dimensional first full \-isotropic fiat submani-

V~c~
fold with parallel second fundamental form in P\c). Then r—2, λ=2 /"9~

Moreover T2 is a minimal submanifold in P2(c).
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Proof. Note that T2 is P(C7)-totally real. Since the discriminant Δ

equals negative constant , we have dimNp(T2)=2 or 3 by Lemma 4.4.

If dimNp(T2)=3, then dimPr(r)=:5, which is a contradiction. Hence

dimNp(T2)=2 and thus r=2. Again by Lemma 4.4, T2 is a minimal sub-

manifold in P2(c) and λ== /-==. q.e.d.

Proposition 4.7. Let T" be an n(^2)-dίmensίonal flat manifold. If T" is
a nonzero isotropic submanifold with parallel second fundamental form in Pm(c),

then n=2.

Proof. By Lemma 4.5 it is enough to see that «Φ3. Suppose that n=3.
Then by Proposition 4.2 and Lemma 4.4, T3 is a first full minimal submanifold

in P\c). Let T2 be a 2-dimensional totally geodesic flat submanifold in T3.
Then by Lemma 4.3 and Proposition 4.6, T2 is a minimal submanifold in P*(c).
For a point p^T2, let {elye2,e3} be an orthonormal basis in Tp(T3) such that

{eι> ^2} is an orthonormal basis in Tp(T2). By the minimality of imbeddings

T3-*P\c) and Γ2->P4(£)> we have

(el3 e1)+σ(e2y e2)+σ-(e3, e3) = 0

(elf e1)+σ(e2y e2) = 0

and thus σ(e3, ^3)=0, which contradicts the fact that T3 is a nonzero isotropic
submanifold in P\c). q.e.d.

Lemma 4.8 (B.Y. Chen and K. Ogiue [4]). Let Mn be a totally real minimal

submanifold immersed in Pn(c). If Mn is of constant sectional curvature and has
the parallel second fundamental form, then Mn is either totally geodesic or flat.

Proposition 4.9. Let Mn be an n(^2)-dimensίonal first full totally real
nonzero isotropic submanifold with parallel second fundamental form in Pr(c).
Then Mn is not of rank one.

Proof. Assume that Mn is of rank one. Let 7 be a geodesic in M. Since
M is of rank one, it is easy to see that there exists a 2-dimensional complete
totally geodesic submanifold N2 immersed in M which has nonzero constant
sectional curvature and which contains 7 (cf. [3]). By Lemma 4.3, N2 is a

nonzero isotropic totally real submanifold immersed in Pr(c) with parallel second
fundamental form. Suppose that the submanifold N2 immersed in Pr(c) is of

type P(C). Then by Lemma 4.4, N2 is a first full minimal totally real nonzero
isotropic submanifold with parallel second fundamental form in P2(c). This
contradicts Lemma 4.8. Hence the submanifold Λ^2 immersed in Pr(c) is of

type P(R) and thus planer geodesic. Therefore M is a planer geodesic sub-
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manifold in Pr(c). By Lemma 3.7, the imbedding M— >Pr(c) is of type P(R)
This is a contradiction. q.e.d.

Proposition 4.10. Under the assumption of Proposition 4.9, a riemannian

locally symmetric space Mn has not noncompact factors.

Proof. Assume that M has a noncompact factor. Then it is easy to see

that there exists a two dimensional totally geodesic submanifold N2 in M of

constant negative curvature [cf. [3]). By Lemma 4.3, N2 is a nonzero isotropic

submanifold with parallel second fundamental form in Pr(c). Since N2 is of
constant negative sectional curvature, we see that the discriminant Δ of the

imbedding N2^>Pr(c) is not more than — — . This contradicts Lemma 4.4,

since λ— ^-= by Proposition 4.6, 4.7. 4.9. q.e.d.

LetM" be an τί(^2)-dimensional complete nonzere isotropic P(C)-totally
real submanifold with parallel second fundamental form in Pm(c). Then by

Proposition 4.7, 4, 9, and 4.10, Mn is a riemannian locally symmetric space of
rank two and without noncompact factors. We shall consider the submanifold

M" in detail.

Proposition 4.11. Let N be a riemannian locally symmetric space locally

isometric to one of the following riemanniann symmetric spaces S1 X P2(C),

SlxP2(H), or SlxP2(Cά). Then N can not be locally imbedded in Pm(c) as a

nonzero isotropic P(C)-totally real submanifold with parallel second fundmental
form.

Proof. We consider the case when TV is locally isometric to SlxP2(C).
Suppose that N is locally imbedded in Pm(c) as a nonzeao isotropic P(C)-totally

real submanifold with parallel second fundamental form. Then we may assume
that the above imbedding is first full in Pr(c) by Proposition 4.2. Moreover by
Lemma 4.3, the local imbedding P2(C)-*S1xP2(C)-+Pr(c) is nonzero isotropic

totally real, and has parallel second fundamental forms. Since P2(C) is of

rank one, the local imbedding is planer geodesic and not totally geodesic by

Proposition 4.9. By Lemma 3.5, the dimension of the first normal space
Nlp\C) of P2(C) equals either 3 or 4. Suppose that

(4.7) dim JVp2(c) = 3 (resp. dim N1

P*(& = 4) .

Then the first osculating space of the imbedding P2(C)->Pr(c) is a Lie

triple system which defines the unique totally geodesic submanifold P7(R)

(resp. P8(Λ)), and hence we have 7^r (resp. 8^r). On the other hand we

have the local imbedding P2(C)-*S1xP2(C)->Pr(c), and thus by (4.7) we see

that dimOsixΛo^lS (resp. dim O^xΛo <ς 14) and thus r^β (resp. r<^
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This is a contradiction.

The other cases can be proved by the same way. q.e.d.

Proposition 4.12. Let N be a ήemannίan locally symmetric space locally
isometric to the rίemannίan symmetric space S2 X S2. Then N can not be locally
imbedded in Pm(c) as a nonzero isotropίc P(C)-totally real submanίfold with
parallel second fundmeutal from.

Proof. Assume that N is locally imbedded in Pm(c) as a nonzero isotropic
P(Cf)-totally real submanifold with parallel second funpamental form. Take
a point p&N and identify/) with a point (pl9 p2)^S2xS2. Then the tangent
space Tp(S2 X S2) is decomposed into two orthogonal subspaces Tp (S2) and
TP2(S2). Let X (resp. Y) be a unit vector in TPι(S2) (resp. TP2(S2)). Then the
Lie triple system {X, Y}R in Tp(S2xS2) defines a two dimensional flat totally
geodesic submanifold in N. Hence by Lemma 4.3 and Proposition 4.6, we have

(4.8) σ(X,X)+σ(Y,Y) = 0.

We may assume that the above imbedding is first full in Pr(c) since the
symmetric space S2xS2 is of rank two. Note that σ(X, X)=σ(Z, Z) for all
unit vectors X,Z(Ξ TP.(S2) (/= 1, 2) by (4.8). Then we have 2r=dim O\(S2X S2)
^9 and thus r^4. On the other hand since the Lie triple system Tp(S2xS2) in
Tp(Pr(c)) defines a unique totally geodesic submanifold P\K) in Pr(c), we have
4:Sr and thus r—4. Again by (4.8) there exists a nonzero vector H such that

{σ(X, X), σ(Y, Y); X<=TPl(S*)9 Y €ΞTP2(S2)}R = {H}R.

Since two totally geodesic submanifolds S2 in S2xS2 are planer geodesic and
not totally geodesic in P\c) by Proposition 4.9, we have J(TPι(S2))_i_H and
J(TP2(S2))A-H and thus J(Tp(S2xS2))_]_H. This is a contradiction to our
assumption that N is P(C)-totally real. q.e.d.

Now B.Y. Chen and T. Nagano [3] have classified the maximal totally geodesic
submanifolds in irreducible compact riemannian symmetric spaces of rank two.
Their classification make a mistake for the riemannian symmetric space SU(3).
(Table VIII in [3] shows that the space SU(2)xSU(2) is totally geodesic in
SU(3).) But along their arguments we can see that the riemannian symmetric
spaces 5xxP2(C), SlxP*(B), SlχP\Ca\ S2xS2 can not be locally imbedded
in SU(3) as totally geodesic submanifolds. Together with their classification
for the other spaces we see that every space except the following spaces
SZ7(3)/ιSO(3), SZ7(3), SU(6)/Sp(3), E6/F4 contains one of the above four spaces
immersed totally geodesic submanifolds. Then, by Lemma 4.3 and Proposi-
tion 4.7, 4.9, 4.10, 4.11, 4.12, we have the following

Theorem 4.13. Let Mn be an n(^2}-dimensίonal complete P(C)-totally real



442 H. NAITOH

λ( > G)-isotropίc submanίfold with parallel second fundamental from in Pm(c),
Tnen the submanίfold M is locally isometric to one of the nemannian symmetric
spaces-, SlxS*-\n^2\ SC/(3)/SO(3), St/(3), SU(6)/Sp(3), E6/F4. Moreover

1 V^the constant λ equals ^ /-*-•

Proof. The second statement follows from Proposition 4.6. q.e.d.

V~c~
5. P(C)-totally real 2~Λy-isotroρic flat submanifolds with parallel

second fundamental from in Pm(c)

Let M2 be a 2-dimensional complete first full P(C)-totally real ^ /-*--isotro-

pic flat submanifold with parallel second fundamental form in Pr(c) Then by

Proposition 4.6, r—2. In this section we shall construct such sumbanifolds.

At first we study isometric equivariant imbeddings of riemannian locally

symmetric spaces into a complex projective space Pm(c).
Let G=SU(m+l) be the special unitary group and set

QI
0

K~ A
0

SU(m+l)'9

Fix a G-invariant metric < , > on the homogeneous space G/K=Pm(C)

induced from a bi-invariant metric on G. Then the riemannian manifold

(PfW(C), <( , y) has constant positive holomorphic sectional curvature. Let
g (resp. ϊ) be the Lie algebra of G (resp. K) and Q=t+ip be the canonical de-

composition. Then we can identify the tangent space T-(G/J£) with the vector
space ϊ> canonically, where o=eR. Let G be a connected compact Lie group

and p an injective homomorphism of G into G. Then the imbedding/ of the
homogeneous space M=GIK into Pm(C) is induced as follows;

f(gK) = p(g)K for any g ^G

where K=p~1(K). Moreover when we take the metric on M induced from the
metric on Pm(C), the imbedding / is (7-equivariant and isometric. Let cj
(resp. ϊ) be the Lie algebra of G (resp. jK).

From now on we assume that g is an orthogonal symmetric Lie algebra
with the subalgebra ϊ as the fixed points of the involution. Then M is a
complete riemannian locally symmetric space, and we have the canonical decom-
position Q=ϊ+t> and identify the tangent space T0(M) ato=eK with the vector
space p canonically. Let nϊ be a subspace in p consisting of £-components of
elements in dρ(p) with respect to the decomposition g=!-j-p and let trr1 be the
orthogonal complement of m in p. Then we may regard the second funda-
mental form CTO at o of the imbedding/ as an element in S2(p*)(S)rπJ-.
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Proposition 5.1.

where (*)τ (resp. (*)«) denotes the t-component (resp. ^-component) of * with respect
to the decomposition 3=ϊ+ϊ>, and (*)^Λ- denotes the m^-component of * with
respectto the decomposition }j=m+m~'~.

Proof. Let A* (resp. J3*) be the Killing vector field of M (resp. of P*(C))
generated by ̂ 4ep (resp. 5 eg). For X, Fep and

+<[dp(X),dp(Y)]*,H* >}!>

since g is an orthogonal symmetric Lie algebra with the compactly imbedded
subalgebra ϊ. Thus we have

,F) = i

Noting that (a, ϊ) and (g, ϊ) are orthogonal symmetric Lie algebras such that
f, we have dρ([X, Y])<=t for any X, Y<=$ and hence

Thus

σJ(X9Y)=[dp(X)l9dp(Y)^.

q.e.d.

Proposition 5.2. The imbedding f of M into Pm(C) has the parallel second
fundamental form if and only if the following conditions are satisfied;

and

for any X, Y,

Proof. Since / is a G-equivariant, we may consider only at the point o.
By the equation of Codazzi-Mainardi, the first condition implies that (V*<τ)0EΞ
*S'3(t>*)®tπJ". Since the integral curve of X* through o for X ^$ is a geodesic
in M , we have
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= <Dx,(σ(X*, X*))-2σ(V^X*, X*),

= <Dx.(σ(X*, **)), H*\ = <ϊ7df{x)*Vis,(X)*dp(X)*, H*\

for B(=m\ Note that dp(X)* and R* are Killing vector fields of Pm(C). By
the same calculation as in Proposition 5.1, we have

and

Thus

the first term of the right hand

)ϊ]\, ffy

the second term of the right hand

X, X) = 2[dp(X)-v [dp(X)-v

So the second condition implies that (V*σ)0(-y, X, X)=0 for any X
converse follows by the same way.

Now we consider the case of P2(C). Set

The
q.e.d.

0 » 01

ί 0 0

0 0 OJ

(Ό 0 0

0 0 i

0 i 0

Ό 0 i

0 0 0

,ι 0 0
, #2 =

Ό 0 0>

0 0 - 1

.0 1 0,

, s =

Ό -1 0'

1 0 0

vO 0 0,

'* 0 0 '

0 * 0

,0 0 -2*,

#3 =

f=

Ό 0 -1

0 0 0

α o o
Ί 0 0

0 -ί 0

(0 0 OJ

Then l=Jβ,R,S, T}R and $= {X)Hj;j = 2, 3}R. Moreover the bracket
relation [A, B] is given by the following table 1.

#2

2Γ

Table 1.

-Q

S+T

R

#3 -2Π2

-3^3

S-T

3Q -0
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Note that the almost complex structure / on ^ is given by

and that

JX2 = H2 s JH2 = — X2 y ]XZ = H3 , JH3 = —X3 .

Now we define an inner product on g by

<2Ϊ,5> = — traced- 5*

for ^4, βeg. Then this inner product induces the metric of P2(C) of constant
holomorphic sectional curvature c.

Now we shall find out our examples in orbit spaces of maximal tori of
G=SU(3). Let A (resp. B) be a unit vector in g such that

Al = aS+/3T+7R+8Q (resp. B^ = &S+βf+<γR+$Q)

and

where α, /?, 7, δ, a, β, 7, δ<Ξ Λ. Set a(A, B)= {A, B}R. Then, by Table 1,
we have the following

Lemma 5.3. The followίngs are equivalent:

(1) The vector subspace a(A, B) is an abelian subalgebra in g.

(2) {

Let T(A, B) be the maximal torus in G with the abelian Lie algebra
a(Ά, B) and Γ(A, B) the discrete subgroup in T(Ά, B) defined by

Γ(A, B) = {t<= T(A} B); t o=o} .

Then the homogeneous space M(Ά, B)=T(A, B)/Γ(Ά, B) is an abelian Lie
group. Since the imbedding /ΰ^): M(Ά, B)->P\c) is T(A} β)-equivariant, the
induced metric < , >d^> on M(Ά, B) is flat. Moreover we have the following

Lemma 5.4. The imbedding f(ΆfS) of the compact flat manifold M(Ά, B)
into P2(c) is minimal if and only if the following conditions are satisfied',

β= -a, 7 — 0, S = 2a

β= -8, 7 = 0, δ = -2a and 8α2+8α2 = 1 .
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Proof. Since/(Λ £) is T(A, J3)-equivariant, it is enough to see our claim
at the point o=eT(A, B). Note that vectors A and B are orthogonal and

have the same length with respect to < , y&z), and that m={X2, %3}R and
ϊή L={ff29 H3}R. Hence by Proposition 5.1, the imbedding/(^ §) is minimal

if and only if the following condition is satisfied;

By Table 1, we see that this is equivalent to

(5.1) — δ+2β = Q and -δ+3a+β = Q.

Now our claim follows from (5.1) and Lemma 5.3, (2). q.e.d.

Now put a=—7=cost and a=——^=sinί, and for simplicity denote
F 2V 2 2V 2 ^ J

the vectors

A =
i —icost

0

—i sin t
2

0 —isint icost
2 2

B =

0 0 i

0 —isint icost
2 2

1 ——icost isint
2 2

by At, Bt respectively, the abelian subalgebra a(At B) by α f, the maximal
torus T(A, B) by Tt, the discrete subgroup Γ(Ά, B) by Γ,, the compact flat
manifold M(A, B) by Mt, the minimal imbedding f ( Ά n) by/^, and so on.

Lemma 5.5. The minimal imbedding ft: Mt->P2(c) has the parallel second
fundamental form σt.

Proof. Since ft is Γrequivariant, it is enough to see our claim at ot. By

Table 1, m={%2> ^S}Λ is a Lie triple system in ϊ> and hence the first con-
dition of Proposition 5.2 is satisfied. Again by Table 1, we have

e {R2, H3}Rt\l [(Bt\,

and

[(At)v ff2], [(At)-Γ H3],((Bt)-r H2], [(Bt)-v

Thus we get

[(\At+μBt)-v [(λAt+μB^, (λAt+μB

for λ, μ^R. by Proposition 5.2, σt is parallel.

2, X3}R .

q.e.d.
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Lemma 5.6. The minimal imbedding ft: Mt->P2(c) is totally real first full

c
2V 2

-isotropic.

Proof. Since/; is jΓrequivariant, it is enough to see our claim at ot. The
imbedding ft is totally real at ot since Jm=m-L.

Now by Proposition 5.1 and Table 1, we have

(5.2) σ,(cos ΘAt+sϊn ΘBt, cos ΘAt+sin ΘBt)

— =,

V ^

Thus/, is the first full imbedding. Moreover we have

I <τ,(cos ΘAt+sm ΘBt, cos ΘAt+sin ΘBt) \ = V —
T C

while

— — — 2
I cos ΘAt-{-sm ΘBt | / — I cos 0-SΓ2+sin ΘX3 \ — —7=.

V C

Thus the imbedding ft is ^ .—-isotropic. q.e.d.

Moreover, by (5.2), note that the second fundamental form σt at ot is

given by

(5.3)

<τt(At, At) = - 1 (cos ̂ 2+sin tH3)

σt(Bt, Bt) = =(

,, Άt) = — τ~=(cos tR2— sin tH3)

Lemma 5.7. The discrete subgroup I\ is given by

where E3 denotes the unit element in SU(3).

Proof. _ Take g^Γt. Since g^ Tty Ad(g) \ at=id \ at and thus Ad(g)At=At

and Ad(g)Bt=Bt. Also since g^R> A d(g)ϊdΐ and Ad(g)$c:$. Hence we
have

(5.4) Ad(g)X2=X2 and Ad(g)X3 = X3 .

By (5.4) and the condition that^e^, we have
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gζΞ{aE3;a<ΞC, a* = 1} .

Conversely, noting that the subgroup {aE%\ a^C, α3— 1} in R is the center in
SU(3), we have

{aE3; atΞC, a3 = 1} c^ Π Tt = Γt . q.e.d.

Summing up Lemma 5.3, 5.4, 5.5, 5.6, 5.7 and (5.3), we have the following

Theorem 5.8. For a real number t, the minimal imbedding ft of the compact

flat manifold Mt=Tt/Γt into P2(c) is first full v ' —-isotropic P(C)-totally real

and has the paralkl second fundamental form. Moreover the second fundamental
form σ, is given by (5.3) and the discrete subgroup Γ, is the center of SU(3).

Now we can write down the minimal imbedding /„: M0— *P\c) explicitly.
When ί=0, we have

Ό i

i f
v/2

0 0

0 v

0

1 ',•
v/TΊ

and BQ —

'0

0

i

0

0

1 .
v/Tf

I

1 .

0
/

Put

P =

Then we have

( 1

v/T

v/3

0

1
v/3

1
v/6"

1
v/T

1 )
v/3

1
v/6

1
v/Tj

0

0

0

v / 2 1

0

o -

0

1 i
V2Ί

t D D ~D
, JΓ JjrdL

ί°

0
\

0 0 '

v / 3 t 0

V 2

and thus

exp(\A0+μB0) = P 'P=P

o o

0s)

0 exi 0
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where x= 7
v

+^=^ and y= -- A^-^JLμ. Let π: S5->P2(c) be the
v ^ v 2ι v Z

Hopf fibring. Then we have

ίί-Lf -<•-
3^

(5.5)

6. P(C)-totally real -^yS=-isotropic submanifolds with parallel

second fuudamental form in Pm(c) which are locally isometric to the
riemannian symmetric space S1 x Sn

In this section we construct the model of (w+l)-dimensional complete

P(C)-totally real -isotropic submanifold with parallel second fundamental-

form in PH+1(c) which are locally isometric to the riemannian symmetric space
S'xS".

Let 8 be a Lie algebra of G=SU(n+2), ί be a Lie algebra of the Lie
subgroup ^=*S'(ί7(l)x U(n+ί)) in G and S=ϊ+P be the canonical decomposi-
tion. Then we have

0 al-\-ibl ••• an+2~}~ίbn

o

Moreover ^ is a direct sum of pR and J57, where

ί' 0 αj ••• αn+2'

£~ o

and

(0 bjί

0

Note that the metric on P*+2(c) is induced from a bi-invariant metric on SU(n+2).
Set
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ί g

0

o x

1

Ί,

e(r; g(ΞSU(3)

/

and

Then the submanifold P2(c)=G2/^2 is totally geodesic in Pn+\c). Set

fo o » o oi

ό

°
Then the set {X^ 2<> j^n+2} is a basis of £7.

Now the minimal submanifold f0(M0) in (5.5) is identified with the set

π

I
1

x . y .
- ~ ~ ~

3v/2
x,y<=R

0

0

By putting e"=eβi(ζ+i r}) and e>i=e»i(ς—ii)) (θ=?^Z), we have

MM,) = 9 β

^ .-«-«,—i ηe
V 6

,-3-'

0

0

θ, ζ,

Set
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(Ί 0 0 ».. Oϊ

0 1 0—0

0 0

0 0 '

forg&SO(n). Then the subset L"+1= U g(f0(M)) is given by
Ϊ&SOC")

π

U/6'""~

and thus putting ζ=aQ> ηΎj=aj ^j^n), we have

2 .

2 .

θ,aj€ΞR, Σ^

Now we define a mapping h: S1xSn-*Pn+1(c) as follows;

3
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for '̂'eS1 and (a0, •• an)<=S"c:Rn+1. By the easy calculation, we see that the

mapping h is well-defined. Let φ be a diffeomorphism of S1χSn defined by

Since φ has no fixed points on S^S", the quotient space S1xS"/φ is a di-

fferentiable manifold. Since hoφ=h, the mapping A induces the mapping

h: S1xS*lφ-+PΛ+l(c).

Now we shall show that h is an imbedding into PΛ+1(c), and that the

imbedded submanifold Ln+l is nonzero isotropic and has the parallel second
fundamental form. At first we recall the Hopf fibring π: S2n+3-^>Pn+1(c). Note

that the metric < , >s on S2n+3 is given by

<A9 J3>s = :L( , B)

where ( , ) is the canonical Euclidean metric. Then the fibring π: S2n+3-+

Pn+1(c) is a riemannian submersion. Denote by Vs (resp. v) the riemannian

connection on S2n+3 (resp. on Pn+1(c)). For a point p<=S2n+3> let Vp be the

subspace given by

Vp = *; (A, p) = (A, ip) = 0} .

Then Vp is the horizontal subspace of the connection of the principal ^-bundle

π: S2n+3^Pn+1(c) and π*\Vp: Vp-*TΛ(p)(Pn+1(c)) is isometric. Moreover we

have the following

Lemma 6.1 (K. Nomizu [8]). Let pt be a horizontal curve in S2tt+3 and

ut=π*(pt). If Zt is a horizontal vector field along pt and if Wt = π^(Zt)9 then

^tWt=π^(VfZt). Moreover vf Pt w horizontal.

Let %: RxS"-*S2n+3 be the diίferentiable map given by

h(θ, a0 an) =

/ -(e
3

V~2
3

2

--iane<

a0e

Then we have
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(6.1)

dθ

V2>
~ΓH

2 4-β.3

I 3V 6

r

3

2 .,

U/6

where f=(£,-) eT(S"), that is; Σ?jβ,=0. Hence by easy calculations, the
A J~

differential Λ^ is injective into Vί(θao...an).
Now we define the metric < , > on SlxSn as follows;

for A, B<=ΞT(&) and ,̂ η(=T(Sn), where < , >5ι (resp. < , >s») is the canonical
metric on Sl (resp. Sn). Since φ is an isometry of SlxSn with respect to
this metric, this metric induces the metric on SlxSn/φ. Then we have the
following

Lemma 6.2. The mapping h: S1 X S"lφ-*Pn+1(c) is an isometric imbedding.

Proof. We shall show that h is injective. Suppose that h(eiθ, a0 an)=

h(e*, <V#») Then there exists e'^eC such that %(θ, a^-a^=ei<Λh(θy a0 an).
Thus we have

=e

—aQe3 =e
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-θ3 =

~3~ „
ane

3 = ane

and moreover

Since aj9 fly are real numbers, we have e(θ '̂ = ±1. If e(θ β)l'=l, (eθt, a0 an)—

(<f*, tf0-a») If ^-?)l=-l, (eθi, aQ-an)=(-e^y -a0 aH). Hence the map-
ping h is injective.

The other assersions follow from the following diagram.
A

h .

π
Ol \s C«/JL D«-fl/^\5 X S / Φ ^P (0 q e d

Lemma 6.3. 7%£ isometric imbedding h is -- ,—--isotropic.

Proof. Note that ^4^^*
2v 2

(Ί.\ and ̂ *(f)fef?= are orthonormal
\oθ' \ 8

vectors and that the normal component of
vector space

in F is given by the

Then by Lemma 6.1 we have

(6.2)

for f, f, η^T(Sn). Hence by the easy computation σ is ^̂ --

q.e.d.
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Lemma 6.4. The isometric imbedding h has the parallel second fundamental
form.

Proof. Let X, Yy Zy W be either of (jλ and f (e T(Sn)). Then by the

ition

(6.3)

definition we have

= Φx(σ(Y, Z)), π*(ih*W)y-<σ(VxY, Z), π*(

Now the first term of (6.3) is calculated by Lemma 6.1 and (6.2) as follows:

<Dx(σ(Y, Z)), π*φι*W)y = <^<tχ>(σ(F, Z)), π*(&

, Z))), τ

where σH(T> S)=the horizontal lift of σ(T3 S) for T, StΞT(RχS"). Hence
the first term of (6.3) is calculated by (6.1), (6.2) and the above formula. Note
that

(6.4) V(9/d0) = 0, V(9/9fl)£ = Ve = 0, vrf =

where f, | are T(S")-valued vector field on RxS", and Vs" denotes the rie-
mannian connection on Sn. Then the second and the third terms are calculated
by (6.1), (6.2), (6.4) and Lemma 6.1. By the above explicit computation we
have V*σ=0. q.e.d.

Summing up our results in this section, we have the following

Theorem 6.5. The isometric imbedding h: SlxSnlφ->Pn+ί(c) is first full

P(C)-totally real ^ — -isotropic and has the parallel second fundamental form.

7. P(C)-totally real ^^--isotropic submanifolds with parallel

second fundamental form in Pm(e) which are locally isometric to the
riemannian symmetric space SU(3)/SO(3)

In this section we shall construct the model of the P(C)-totally real

^ f_-isotropic submanifold with parallel second fundamental form in P\c)

which is locally isometric to the riemannian symmetric space SU(3)/SO(3).
Let S3(C) (resp. S3(R)) be the complex (resp. real) vector space of all the

complex (resp. real) symmetric matrices of degree three, and Sn(l) be the
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unit spherte of S3(C) with respect to the canonical Euclidean metric (A, B)=
Re(TrAB*). Then we have the Hopf fibring π: Su(l)-+P\c). We retain
the same notations as in the section 6. Moreover giving a metric < , >5 on

A

Sll(l) by < , )>s= — ( , ), we have the riemannian submersion (5Π(1), < , >$)->

Now we construct the equivariant imbedding g of the homogeneous space
M5=St/(3)/SO(3) into 5"(1) as follows;

for AeSϊ7(3). Then we can check that g is a well-defined imbedding. And

since the St/(3)-action on M5 and the ^4ί/(5i7(3))-action on 5n(l) are com-
patible each other for the imbedding g, the homogeneous space M5 is a riemann-
ian symmetric space with respect to the metric induced from that on 5U(1).
Moreover we may check easily that g*(Tp(M5))c:V$(p) for any point p^M5,
using the fact that the Ad(SU(3))-action on *SU(1) is compatible with the com-
plex structure on S3(C).

Now we consider the isometric immersion g=πog: M5-*P\c). We can

show that the manifold M5 is the 3 -sheeted covering of g(M5). Then since the

tangent space g*(T,so<$(M5)) is totally real and the Ad(SU(3))-acύon on Su(l)
induces holomorphic isometrics on P5(c), the imbedding g is totally real. On
the other hand, along the discussion in [8] we have the following

Lemma 7.1. Let g: Mn-+Pm(c) be a totally real isometric imbedding. Then
the imbedding g is nonzero isotropίc and has the parallel second fundamental form
if and only if the imbedding g transfers geodesies in Mn into circles in Pm(c).

Now we have the following

Theorem 7.2. The isometric imbedding g: M5^P5(c) is ^-β=-ίsotropic

and has the parallel second fundamental form.

Proof. By the virture of Lemma 7.1, it is enough to see that geodesies in
M5 are circles in P5(c). Set

α =

(—x—y 0 C

0 x 0

0 0 y)

Then the subspace α is maximal abelian in J> = {£4; A^S\R), TrA = 0}.
Since g is an equivariant imbedding, it is enough to see that the geodesic para-
meterized by arc-length
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/e- (*+>)«•• 0 ϊ

0 e"' 0

1 0 0 eyl

SO(3)

is a circle, where #2+iey+j2=—. Then the curve g(7(t)) in P5(c) is given by
O ΔJ

fe-2(*+yVi 0 0

g(γ(t)) = —=τr 0 e2xtί 0
3 I 0 0 e2*

and the tangent vector field X(t) along g(y(i)) is given by

-2(*+j)« 0 0

0 2*ώ2*"' 0

0 0
Λo 6*

Then using Lemma 6.1, we have easily

and thus ^s a circle in P5(c).

8. The rigidity of P(C)-totally real
2V 2

q.e.d.

-isotropic submanifolds

with parallel second fundamental form in Pm(c)

At first let Mn+1 be an (w+l)-dimensional complete first full P(C)-totally

real /—-isotropic submanifold with parallel second fundamental form in
2\/2

Pr(c) which is locally isometric to the riemannian symmetric space S1xSn.
Then we have the following

Lemma 8.1. The integer r equals n+l.

Proof. Fix a point oeMΛ+1. Note that the tangent space TQ(M) is de-
composed into T^S1) and T0(S"). For unit vectors YfΞT^S1) and X<ΞT0(S"),
the Lie triple system {Y, X}R in T0(M) defines a unique totally geodesic flat
submanifold in M of 2-dimensional. By Lemma 4.3 and Proposition 4.6, we have

σ(Y,Y)+σ(X,X) = 0.

This implies that dim OJ(M)^2w+2, and hence r<*n+l by Proposition 4.2.
On the other hand a unique totally geodesic submanifold defined by the Lie
triple system T0(M) in TQ(Pr(c)) is Pn+1(R) and thus n+l^r. Hence we have
r=n+l. q.e.d.
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Since the group SU(n+2) acts transitively on the bundle of all the unitary
frames of Pn+l(c), we may assume that the submanifold MM+1 contains o=eK
&Pn+l(c) and identify the tangent space T-0(M) (resp. the first normal space
Nl(M)) with the subspace ί>7 (resp. £*). Moreover we may identify the sub-
space T-0(Sl) (resp. T-0(Sn)) in T-0(M) with the subspace {̂ 2}Λ (resp. {̂ /3 ̂

R). Set H=S(O(ί) X O(n+ 1)) cC Then we have the following

Lemma 8.2. There exists Ji^K such that

and that the second fundamental form σ* at o of the submanifold h(M) is given by

(8.1)

for any vector Ϋ<= {Xj(3^j^n+2)}R of length - = .

Proof. At first we consider the case when n=l. Then the submanifold

M2 is minimal and /— -isotropic in P\c).

Now we know the following

Lemma (B. O'Neill [10]). If a ήemannian manifold M is \-isotropic in
another riemannian manifold M, then

Λzw+3\σ(Z,

for orthonormal vectors Z, W of M.

Then, since M2 is flat minimal ̂  *L_-isotroρic in P\c\ together with the
*L\/ 2,

above lemma, we have

(8.2) ), σ(z, w)y = o
( σ(Z, Z)+σ(W, W)=Q

for orthonormal vectors Z, W of M. Setting Z=-Σ2 and W=

have
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/ 1/ •& -p \ i
σ\Λ2, Λ2) — —j= in ΘJX3)

for some ΘQ in R.
Now for Θ&R, put

1 0 0 ϊ

0 cos^ —sin θ

V0 sin θ cos θ j

Then we have

(8.3)
(cosθ — sinθ

I sin i cos

Since the second fundamental form σ

A(θ)(M2) at ό of the submanifold h(θ)(M2) is

given by

3 W) = Ad(h(θ))(σ(Ad(h(ΘΓ1)Zί Ad(h(ΘΓW))

for Z, we have

by (8,3). Hence, taking θ suitably, we may assume that

Now we get our claim by (8.2) and Lemma 2.4.

Next we consider the case when n^2. For any vector
2 — —

n+2)}R of length -~, the Lie triple system {X>, Y}R in T~0(M) defines a

unique flat totally geodesic submanifold in M. Hence we have

(̂ 2, Y\ σ(Ϋ, Y)e {JX2) JΫ}R. Since n^2, we have

n
and thus

Moreover we have σ(Xz, ^2)=±—γ=JX2 by (8.2). Now note that the in-
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volution Ji at ό is an element in K. Then, if nessesarily, taking the submanifold
h(M) for the submanifold M we may assume that

σ(X2) X2) = —-—JX2

Hence we have σ(X» Ϋ) = -±=JΫ and σ(F, Ϋ)=-^=jX2 by (8.2) and
"v ^ "v ^

Lemma 2.4. q.e.d.

Note that the conditions (8.1) determine the second fundamental form στ

uniquely. By the uniqueness of circle, we have the following

Theorem 8.3. Let Mn+1 be a complete P(C)-totally real x/ C—-isotropic

submanifold with parallel second fundamental form in Pn+1(c) which is locally

isometric to the riemannian symmetric space S1xS*. Then the submanifold Mn+1

is congruent to the model in Theorem 6.5 by some isometry of Pn+1(c).

Next let M5 be a complete first full P(C)-totally real ^^ -isotropic sub-

manifold with parallel second fundamental form in P\c) which is locally iso-

metric to the riemanian symmetric space SU(3)/SO(3). Set

and

= βu(3), I =

= [iX; X(ΞS3(R), Tr X = 0} .

Then we have the canonical decomposition g=ϊ+p and identify

tangent space T0(M
5)=Γ0(5ί7(3)/5O(3)) at o=eSO(3). Put

with the

/- 1 i
/~f\

I- l ί/5 V2l

n o
0 1

,00-

Ό 0 0'

0 0 1

,0 1 0,

0'
π\J

2,

Ί

T 1
/3 V 2

6 ~vτ z

-1

Ό
0

vl

-1
n\j

, 0

0 1>

0 0

0 0,

0 0 N

1 01 U

0 0,

!
/4 ~ V T'

Ό 1 O^j
1 Π Πi u u

, 0 0 0 ,

Then {/;(2^y^6)} is an orthogonal basis in T0(M5) of the same length,
that the subspace {/2, /3, I4}R is a Lie triple system in TQ(M5) which defines

the totally geodesic submanifold SlxS2 locally (cf. See [3]), we have

(8.4)
= 0
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by Proposition 4.6. Now put

'cos θ 0 —sin θ

0 1 0

,sin θ 0 cos θ,

(I 0

and R(θ) =

0

0 cos θ —sin θ

sin θ cos θ

Then we have

' Ad(Q(θ))I2 = (\ - A sin2

Ad(Q(θ))I3 = -̂2- sin2 0/
Zt

( Ad(Q(θ))Iί = cos 0/4-sin

s n cos

sin 0 cos ΘI,

Since the subspace {Ad(Q(θ)}I2, Ad(Q(θ))I3, Ad(Q(θ))QR is a Lie triple
system in Γ0(M

5) which also defines the totally geodesic submanifold S*xS2

locally, we have

(σ(Ad(Q(θ))I2, Ad(Q(θ)I2) = -σ(Ad(Q(θ))I3, Ad(Q(θ)}Iί)

(8.5) = -σ(Ad(Q(θ))I<, AdϊQ(θ))I,)

(σ(Ad(Q(θ))I3,Ad(Q(θ)I4) = Q

as (8.4). By the last equation in (8.5), we have

3cos θ sin2 θσ(I2, /4)+sin θ cos2 θ<r(I4, /6)-
 s n

/3) /5)_sin2 θ cos ̂ (τ(/5, /6) = 0_ s n _

and thus
/~Λ~

~- cos θ sin 0σ(/2, 74)+ cos2

, 75)-sin ^ cos = 0 .

Here putting θ=0 ( resp. = — J, we get

(8.6) σ(/3, /5) = σ(/4, /6) (resp. \/Tσ(/2,

Moreover by (8.6) the above equation implies

VT

= 0) .

cos θ sin 0σ(/2, /4)+ sin θ cosσ(I5, /6) = 0

and thus



462 H. NAITOH

Using the other equations in (8.5) and the equations for R(θ), we have the

following Table 2 by the same calculation as above.

Table 2 (σ(Tt S))

h

h

-A

-A

D E

Proposition 8.4. The integer r equals 5.

Proof. By the above Table 2, we have r^5. On the other hand the Lie
triple system TQ(M5) in To(Pr(c)) defines a totally geodesic submanifold
P5(R). Hence we have r^5 and thus r=5. q.e.d.

Now we may identify the point o in M5 with the point o=eK in P5(c) and
the tangent space T0(M5) with the totally real subspace p7 in f>. Moreover by
taking a suitable real number t, we may identify tXj with 7y for each 7 — 2 ••• 6.
Then we have the following

Lemma 8.5. There exists g^R such that

Ad(g)V = ψ

and that the second fundamental form σ8 at o of the submanifold g(Ms) is given by

- ' (j = 3, 4) ,

Proof. The Lie triple system {/2, 73, 74}Λ defines a totally geodesic

submanifold SlxS2 locally such that TQ(Sl)= {/2}Λ. Note in Lemma 8.2 that
the isometry h is the involution at o or identity map when n^2. Hence we

may assume that
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and σ(X2, X,) = J*j (J = 3, 4) .

By Table 2 and Lemma 2.4 we have

<σ(X2, Xs), JX>> = 0 (/ = 2, 3, 4, 6)

and

-- 7-̂£ "v ^

Thus σ(X2, Xs)= — JJH5. Similarly we have σ(X2, Xβ)= — /-

q.e.d.

Note that Lemma 8.5 and Table 2 determine the second fundamental

form σ* uniquely. By the uniqueness of circle, we have the following

Theorem 8.6. Let M5 be a complete P(C)-totally real v °—-isotropic sub-

manifoldt with parallel second fundamental form in P\c) which is locally isometric

to the riemannian symmetric space 5ί7(3)/*SΌ(3). Then the submanifold M* is

congruent to the model in Theorem 7.2 by some isometry of P\c).

REMARK 8.7. In the next paper we shall give examples of P(C)-totally real

.-— -isotropic isometric immersions with parallel second fundamenal form of
jώ\/ Δι

the other spaces; SU(3), SU(6)/Sp(3)y EJF<.
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