ON GROUPS WITH A STANDARD COMPONENT OF KNOWN TYPE, II

Michael ASCHBACHER* and Gary M. SEITZ**

(Received November 21, 1979)
(Revised December 23, 1980)

In [3] we considered those finite groups G having a standard subgroup A, such that $m_{2}\left(C_{G}(A)\right)>1$ and $A / Z(A)$ is of known type. The goal of this paper is to settle certain ambiguities that were not dealt with in [3]. In the case $A \cong G_{2}(4)$ we showed that G was "of Conway type", although we did not actually prove that $G \cong C o_{1}$. For the case $A / Z(A) \cong L_{3}(4)$ we appealed to the results of Nah [7] to conclude that $\left\langle A^{G}\right\rangle \cong S u z$ or He. However, there were errors in [7] which put the results in question. Our main result is the following:

Theorem. Let A be a standard subgroup of the finite group G. Suppose that $m_{2}\left(C_{G}(A)\right)>1$ and $A / Z(A) \cong L_{3}(4)$ or $G_{2}(4)$. Then one of the following holds:
i) $A \unlhd G$;
ii) $A \cong G_{2}(4)$ and $\left\langle A^{G}\right\rangle \cong C o_{1}$;
iii) $A \cong L_{3}(4)$ or $S L_{3}(4)$ and $\left\langle A^{G}\right\rangle \cong S u z$ or $S u z / Z_{3}$; or
iv) $A \mid Z(A) \cong L_{3}(4), Z(A) \cong Z_{2} \times Z_{2}$, aand $\left\langle A^{G}\right\rangle \cong H e$.

The method of proof is to choose certain 2-groups in $A C_{G}(A)$ and push-up their normalizers. Eventually, we determine the structure of the centralizer of a central involution at which point we can quote an appropriate recognition theorem.

Throughout the paper we use the following notation. A is a standard subgroup of $G, R \in S y l_{2}\left(C_{G}(A)\right)$ and $m(R)>1$. We assume $A \nsubseteq G$ and that G is a minimal counterexample to this theorem.

Much of the mathematics in this paper was completed at the 1979 Summer Institute on Finite Simple Groups in Santa Cruz, sponsored by the American Mathematical Society and funded by the National Science Foundation. We began the project as a result of conversations at the conference with various colleagues. Moreover our four weeks in Santa Cruz provided a good opportunity

[^0]for collaboration.

1. Pushing-up and cores

We have $A / Z(A) \cong L_{3}(4)$ or $G_{2}(4)$. In the first case let E, F be 2-subgroups of $A R$ such that $R \leq E \cap F$ and such that $Z(A) E / R Z(A)$ and $Z(A) F / R Z(A)$ are the two E_{16} subgroups in a Sylow 2-subgroup of $R A / R Z(A)$. If $A / Z(A) \cong G_{2}(4)$, let $A_{1} \mid Z(A)$ be the subgroup generated by all long root subgroups in a fixed system of root subgroups of $G_{2}(4)$. Then $A_{1} / Z(A) \cong S L_{3}(4)$ and we may choose corresponding subgroups E and F of $A_{1} R$.

The first stage of the development of the 2-local structure of G is concerned with the groups $N_{G}(E)$ and $N_{G}(F)$. In this section we study these groups and make certain other observations that apply to each of the possible configurations. In later sections we look at individual cases.
(i) R is elementary abelian.
(ii) There exists $g \in G-N(A)$ with $R^{g} \leq C(R)$. For any such $g, R^{g} \leq A R$.

Proof. The second assertion in (ii) follows from (20.1) of [2]. The rest of (ii) then follows from (3.3) of [3]. Also, (3.2) of [3] gives (i).
(1.2) Let X be a quasisimple group with $Z(X)$ an elementary abelian 2-group and $X / Z(X) \cong L_{3}(4)$. Let $H / Z(X)$ and $K / Z(X)$ be the E_{16} subgroups in a Sylow 2-subgroup of $X \mid Z(X)$. Then
(i) H and K are elementary abelian;
(ii) $H \cap K=Z(H K)$; and
(iii) $N_{X}(H)\left(\right.$ resp. $\left.N_{X}(K)\right)$ is the split extension of H (resp. K) by $L_{2}(4)$.

Proof. $\quad N_{X}(H) / Z(X)$ is the split extension of $H / Z(X)$ by $L_{2}(4)$, and $H / Z(X)$ is the natural module for $L_{2}(4)$. In particular, $N_{X}(H)$ is transitive on $(H / Z(X))^{*}$. Thus, each coset of $Z(X)$ in H consists of involutions. This proves (i). (ii) follows from (i) and the fact that $(H \cap K) / Z(X)=Z(H K / Z(X))$. (iii) holds since a Sylow 2-subgroup of a complement to $H / Z(X)$ in $N_{X}(H) / Z(X)$ is conjugate to $(H \cap K) / Z(X)$.
(i) $R \cong E_{4}$.
(ii) $R^{g} R Z(A) / R Z(A)$ is a root subgroup of $R A / R Z(A)$, and for suitable choice of g, it is a long root subgroup.
(iii) If $A / Z(A) \cong G_{2}(4)$, then $Z(A)=1$.
(iv) If $|Z(A)|$ is odd, then $R^{g} \cap A=1$ provided R^{g} projects to a long root subgroup of $A / Z(A)$.

Proof. (i) follows from (ii). Suppose $A / Z(A) \cong L_{3}(4)$. Choose $g \in G-N(A)$ with $R^{g} \leq A R$, and let $1 \neq x \in R^{g}$. By (1.2) we have x central in a Sylow 2-
subgroup, say D, of $A R$. Then $D \leq N\left(C\left(A^{g}\right)\right)$. As D is generated by elementary subgroups of order $2^{4}|R|$, we conclude that $D \leq A^{g} R^{g} \leq C\left(R^{g}\right)$. (ii) follows. Suppose that $|Z(A)|$ is odd. Then $D \in \operatorname{Syl}_{2}(A R) \cap \operatorname{Syl}_{2}\left(A^{g} R^{g}\right)$ and $D^{\prime}=Z(D) \cap A=Z(D) \cap A^{g}$. Consequently, (iv) holds.

Suppose $A / Z(A) \cong G_{2}(4)$. Then (iii), (ii), and (iv) follow from (8.3), (8.9), and (8.6) of [3], respectively.
(1.4) Notation. If $A / Z(A) \cong L_{3}(4)$, let $A_{1}=A$. If $A / Z(A) \cong G_{2}(4)$, then $Z(A)=1$ and we let A_{1} be the group generated by all long root subgroups in a fixed system of root subgroups of A. In either case A_{1} is quasisimple and $A_{1} / Z\left(A_{1}\right) \cong L_{3}(4)$. In the second case $A_{1} \cong S L_{3}(4)$. Choose a fixed Sylow 2-subgroup of $A_{1} R$ and let E / R and F / R be the corresponding E_{16} subgroups. By (1.2) and (1.3) $E \cong F \cong E_{64}$ and $E \cap F=Z(E F)$. Moreover, we may take $g \in G$ such that $E \cap F=R \times R^{g}$.

Let $\Omega=E^{G} \cup F^{G}$. We will refer to elements of Ω as planes, elements of R^{G} as points, and elements of $(E \cap F)^{G}$ as lines.
(1.5) Suppose that $|Z(A)|$ is odd. Then
(i) $E-A$ is partitioned by its 16 points.
(ii) $N(E)=P_{0}(N(E) \cap N(R))$, with $P_{0} \unlhd N(E)$ and $P_{0} / C_{P_{0}}(E) \cong E_{16}$, regular on the 16 points of $E . \quad P_{0}=O\left(C_{G}(E)\right) \times O_{2}\left(P_{0}\right)$.

Proof. By (1.3) (iv) and (3.6) of [3], $E \cap F$ contains 4 points and the nonidentity elements of these points partition $(E \cap F)-A$. Now E contains 5 lines that contain R, these being conjugate under $N_{A_{1}}(E)$. This proves (i).

Since $R^{g} \cap A_{1}=1, N_{A_{1}}(E)$ is transitive on the 15 points of E, other than R. Since $E \cong E_{64}, E \leq A^{g} R^{g}$ and $N_{A^{g}}(E)$ is transitive on the 15 points of E other than R^{g}. Thus, $N(E)$ is 2-transitive on the 16 points in E. The 16 points and 20 lines in E form an affine plane, so all but the last sentence of (ii) follows from Theorem 1 of [8]. $P_{0}=\left[N_{A}(E), P_{0}\right] C_{P_{0}}(E)$ and $C_{P_{0}}(E)=E O\left(C_{G}(E)\right)$ with $\left[O\left(C_{G}(E)\right), N_{A}(E)\right] \leq\left[O\left(N_{G}(R)\right), N_{A}(E)\right]=1$, so $P_{0}=O(C(E)) \times O_{2}\left(P_{0}\right)$.
(1.6) Suppose $|Z(A)|$ is even. Then
(i) $R \leq A$.
(ii) E contains 6 points.
(iii) $N(E) / C(E)$ contains \hat{A}_{6}, the 3-fold cover of A_{6}, as a normal subgroup.
(iv) There is a 3-element acting as an outer diagonal automorphism of A and transitive on R^{\ddagger}.

Proof. By (3.6) of [3] $E \cap F$ contains either 4 points or 2 points. In the first case we argue as in (1.5) to conclude that $N(E)$ is 2 -transitive on the 16 points of E and there exists $D \unlhd N(E)$ with D inducing a regular normal subgroup on $R^{G} \cap E$. Then $[D, E] \unlhd N_{G}(E)$ and one checks that $E=[D, E] \times R$. But then $E F$
splits over R, contradicting $|Z(A)|$ even. Therefore, $E \cap F$ contains exactly 2 points, E contains exactly 6 points, and (ii) holds.

Let $L \in \operatorname{Syl}_{3}\left(N_{A}(E F)\right)$. Then $L \leq N_{G}(E \cap F)$, so L stabilizes each of the two points in $E \cap F$. Therefore, $R^{g}=[L, E \cap F]$. By symmetry (iv) holds, and since $|Z(A)|$ is even, $R \leq A$, proving (i). Now $N(E) \cap N(R)$ contains a subgroup inducing $A_{5} \times Z_{3}$ on E, where the Z_{3} factor stabilizes each point in E. Since $N_{A^{g}}(E)$ moves R, we conclude that $N(E)$ induces S_{6} or A_{6} on the points of E. Since $O^{2}(N(E))$ acts irreducibly on E as an \boldsymbol{F}_{2}-space, and since $N(E) / C(E)$ contains a normal subgroup of order 3, we see that E may be regarded as 3dimensional \boldsymbol{F}_{4}-space for either $3 \cdot \mathrm{~A}_{6}$ or $A_{6} \times Z_{3}$. But $S L_{3}(4) \ngtr A_{6} \times Z_{3}$, so the latter case is not possible. This proves (iii).
(1.7) Let $X \in N_{G}^{*}\left(E, 2^{\prime}\right)$ and $Y=\left\langle A^{N(X)}\right\rangle$. Then either
(i) $X=1$; or
(ii) $Y / Z(Y) \cong S u z, H e$, or $C o_{1}$, and $X=O\left(C_{G}(A)\right)$.

Proof. Suppose $X \neq 1$. Then $X=\Gamma_{1, R}(X) \leq N(A)$, and since $H_{N(A)}^{*}\left(E, 2^{\prime}\right)=$ $\{O(C(A))\}, X=O(C(A))$. Similary, $X=O\left(C\left(A^{g}\right)\right)$ for each $g \in N(E)$. As $N_{G}(E) \nleftarrow N(A)$, (ii) holds by minimality of $|G|$.
(1.8) Suppose G contains a 2-central involution, z, such that $\left.\left(C_{G}(z) / O C_{G}(z)\right)\right)^{(\infty)}$ is isomorphic to the centralizer of a 2 -central involution in one of the groups $S u z, H e$, or $C o_{1}$. Then $O\left(C_{G}(z)\right)=1$.

Proof. We may assume that $z \in E$ is a 2 -central involution in $N(A)$, and as $C_{G}(z)^{(\infty)}$ is 2-constrained, z is not conjugate to an involution in R. As $E \leq$ $N\left(O_{G}(C(z))\right.$, (1.7) imples that $O\left(C_{G}(z)\right) \leq O\left(C_{G}(\boldsymbol{L})\right)$. Suppose $O\left(C_{G}(z)\right) \neq 1$, let $X=O\left(C_{G}(A)\right)$ and $Y=\left\langle A^{N(X)}\right\rangle$. Then $[X, Y]=1$.

Suppose $R \leq N\left(Y^{g}\right)$. As $\left|\operatorname{Aut}\left(Y^{g}\right): Y^{g}\right| \leq 2, R \cap Y^{g}$ contains an involution, r. Then $E\left(C_{Y}(r)\right) \cong A$, so that $X^{g} \leq C(A R)$. Thus $X=X^{g}$ and $Y=Y^{g}$. That is, R fixes precisely one point in Y^{G}. Now suppose $z \in N\left(Y^{g}\right)$. Then z centralizes a Y^{g}-conjugate of R^{g}, and it follows from Gleason's lemma that $\left\langle R^{c^{G^{(z)}}}\right\rangle$ is transitive on the elements of Y^{G} fixed by z. But $\left\langle R^{c_{G}(2)}\right\rangle \leq Y$. So z fixes a unique element of Y^{G} and the result follows from Holt's Theorem [6].

For the remainder of this section we operate under the following hypotheses:
(1.9) (i) z is a 2 -central involution in G;
(ii) There is an extraspecial subgroup $X \leq C_{G}(z)$ such that $|X|=2^{7}$ or 2^{9} and $\langle z\rangle \in \operatorname{Syl}_{2}(C(X))$;
(iii) X is weakly closed in a Sylow 2 -subgroup of $C_{G}(z)$, with respect $C_{G}(z)$; and
(iv) If $g \in C_{G}(z)$ and $m\left(X \cap X^{g}\right)>1$, then $X=X^{g}$.
(1.10) Assume Hypothesis (1.9). Then X is strongly closed with respect to $C_{G}(z)$ in a Sylow 2 -subgroup of $C_{G}(z)$.

The proof of (1.10) will be carried out in a series of steps. Assume the result to be false.
(1.11) There exists $g \in C_{G}(z)$ such that setting $Y=\left\langle X, X^{g}\right\rangle, B=N_{X}\left(X^{g}\right), D=$ $N_{X^{g}}(X)$, and $I=X \cap X^{g}$, the following hold:
(i) $Y \mid B D \cong L_{2}\left(2^{n}\right), S z\left(2^{u}\right)$, or $D_{2 n}$ for n odd;
(ii) $B D / I$ is the sum of natural modules for $Y / B D$; and
(iii) $I<D$.

Proof. Use (2.4) of [12].

$$
\begin{equation*}
I \cong Z_{2}, Z_{4} \text {, or } Q_{8} \tag{1.12}
\end{equation*}
$$

Proof. This is (iv) of Hypotheses (1.9).
(1.13) $I \neq Z_{2}$.

Proof. Suppose otherwise and let bars denote images in $C(z) /\langle z\rangle$. We have $m(\bar{X})=m(\bar{B})+m(\bar{X} / \bar{B})=m(\bar{D})+m\left(\bar{X} / C_{\bar{X}}(\bar{D})\right.$. Also, $m(\bar{D}) \geq m(\bar{X} / \bar{B})=$ $m\left(\bar{X} / C_{\bar{X}}(\bar{D})\right)$. For $\bar{d} \in \bar{D}^{\ddagger},[\bar{X}, \bar{D}]=\bar{B}=C_{\bar{X}}(\bar{d})$, so by (7.6) of [2], B is abelian. We conclude from these facts that either $|X|=2^{7}$ with $m(\bar{D})=3$, or $|X|=2^{9}$ with $m(\bar{D})=4$. The first case is out since this would force each $1 \neq \bar{d} \in \bar{D}$ to act on \bar{X} as a b_{3} involution of $O_{\overline{6}}^{ \pm}(2)$, whereas $\Omega_{\overline{6}}^{ \pm}(2)$ contains no such involutions. Hence $|X|=2^{9}$.

Now $Y \mid B D \cong L_{2}\left(2^{4}\right)$ and $B D / I$ is the natural module, so there exists a subgroup $J \leq Y$ such that J induces Z_{15} on each of \bar{B}, \bar{D}, and \bar{X} / \bar{B}. Viewing $J \leq \operatorname{Aut}(X)$, we see that $\operatorname{Aut}(X) / \operatorname{Inn}(X) \cong O_{8}^{+}(2), \bar{B}$ is a singular 4 -space of \bar{X}, and \bar{D} is contained in the unipotent radical of the stabilizer in $O_{8}^{+}(2)$ of \bar{B}. Let T be this unipotent radical. Then $T^{\#}$ consists of $28 a_{4}$ involutions and 35 remaining involutions of type a_{2}. Also, $T=D \times D_{1}$, where $D_{1} \cong E_{4}$ and J induce Z_{3} on D_{1}. Therefore, D_{1}^{\ddagger} consists of the $3 a_{4}$ involutions fixed by $O_{5}(J)$ and J acts semiregularly on the a_{2} involutions in T. This is numerically impossible.
(1.14) (i) $Y=C_{Y}(I) \circ I$ if and only if $I \cong Q_{8}$.
(ii) $O^{2}(Y) \leq C(I)$.
(iii) If $Y=O^{2}(Y) I$, then $I \cong Q_{8}$.

Proof. If $Y=C_{Y}(I) I$ and $I \cong Z_{4}$, then $X \leq Y \leq C(I)$, a contradiction. On the otherhand, if $I \cong Q_{8}$, then $Q=C_{Q}(I) I$, so $Y=C_{Y}(I) I$. Thus (i) holds. (iii) follows from (i) and (ii), and (ii) follows from the fact that Y centralizes
both \bar{I} and $\langle z\rangle$.

$$
\begin{equation*}
|X: B|=2 \tag{1.15}
\end{equation*}
$$

Proof. Suppose false. Then $Y / B D$ is a Bender group and $Y=O^{2}(Y) I$. By (1.14) (iii) $I \cong Q_{8}$, and by (1.14) (i) $Y=C_{Y}(I) I$. Set $W=C_{Y}(I)$ and $V=W \cap X$. Then $m(\bar{V})=4$ or 6 , and one of the following holds:
(a) $|\bar{X}|=2^{6}, W / O_{2}(W) \cong L_{2}(4)$, and $O_{2}(\bar{W})$ the natural module; or
(b) $|\bar{X}|=2^{8}, W / O_{2}(W) \cong L_{2}(8)$, and $O_{2}(\bar{W})$ is the natural module; or
(c) $|\bar{X}|=2^{8}, W / O_{2}(W) \cong L_{2}(4)$, and $O_{2}(\bar{W})$ is the sum of two copies of the natural module.

Set $E=D \cap W$ and consider the action of \bar{E} on \bar{X}. Since $E \leq C(I)$, either $\bar{E} \leq O_{4}^{ \pm}(2)$ or $\bar{E} \leq O_{\overline{5}}^{ \pm}(2)$, according to $|\bar{X}|=2^{6}$ or 2^{8}. If (b) holds, then \bar{E} consists of b_{3} involutions in $O_{\overline{4}}^{ \pm}(2)$, whereas $\Omega_{4}^{ \pm}(2)$ contains no b_{3} involutions. If (c) holds then $\bar{E} \cong E_{16}$ and $\bar{E} \leq C(\bar{B})$. Since \bar{B} is a 4 -space in the 6 -space \bar{V}, \bar{E} centralize a proper non-degenerate subspace of \bar{V}. However, $m\left(O^{ \pm}(l, 2)\right)<4$ for $l<6$. Therefore, (c) does not hold. Suppose (a) holds. Then $O_{2}(W) \cong E_{32}$, $B \cap W \cong E_{8}$, and we may regard $\bar{E} \leq O_{4}^{+}(2)$. Then each $\bar{e} \in \bar{E}^{\ddagger}$ is an a_{2} involution in $O_{4}^{+}(2)$, and so $\bar{E} \leq \Omega_{4}^{+}(2) \cong S_{3} \times S_{3}$. But then \bar{E} is a Sylow 2 -subgroup of $\Omega_{4}^{+}(2)$, whereas $\Omega_{4}^{+}(2)$ contains c_{2} involutions. This is a contradiotion.
(1.16) $I \cong Z_{4}$.

Proof. Otherwise $I \cong Q_{8}$ and by (1.15) $m(D \bar{X} / \bar{X})=3$ or 5 , according to whether $|\bar{X}|=2^{6}$ or 2^{8}. By (1.14) (i), \bar{D} centralize \bar{I}, so $\bar{D} \leq O_{4}^{ \pm}(2)$, or $O_{6}^{ \pm}(2)$, respectively. But $m\left(\mathrm{O}_{\frac{ \pm}{4}}^{ \pm}(2)\right)=2$ and $m\left(O_{\overline{6}}^{ \pm}(2)\right)=4$. This is impossible.
(1.17) $I \neq Z_{4}$.

Proof. Suppose $I \cong Z_{4}$. Then by (1.15), $m(D / I)=m-2, m=m(\bar{X})$ while by $(1.11), B / I=C_{X / I}(D)$. This is impossible as $(\operatorname{Aut}(X) \cap N(I)) / C(X / I) \cong S p_{m-2}(2)$ is of 2 -rank $m-3$.

In view of (1.16) and (1.17), the proof of (1.10) is now complete.

2. Suz

In this section we assume that $|Z(A)|$ is odd and $A / Z(A) \cong L_{3}(4)$. That is $A \cong L_{3}(4)$ or $S L_{3}(4)$. We maintain the notation of $\S 1$. In addition, we set $P=O_{2}\left(P_{0}\right)$, where P_{0} is as in (1.5). Set $Z=A \cap Z(E F)$ and $S=F C_{P}(R Z \mid Z)$.
(2.1) (i) $E=C_{P F}(E)$;
(ii) $P / E=O_{2}\left(N_{G}(E) / E\right) \cong E_{16}$ and $P_{0}=P \times O\left(C_{G}(E)\right)$, so $P=O_{2}\left(N_{G}(E)\right)$.
(iii) $(S \cap P) / E \cong E_{4}$; and
(iv) $S / E \cong E_{16}$

Proof. These are all clear, given 1.5.
(i) $S=N_{P S}(F)$;
(ii) $\left|F^{P}\right|=4$.
(iii) S is a Sylow 2-subgroup of $C(Z) \cap C(R Z \mid Z) \cap N(E) \cap N(F)$.
(iv) $\left|\left\langle(F \cap A)^{P}\right\rangle\right| \geq 4^{4}$.

Proof. Since $S / E \cong E_{16}, E F \unlhd S$. The groups E and F are the unique subgroups of $E F$ isomorphic to E_{64}, and $S \leq N(E)$. Therefore, $S \leq N(F)$. (i) follows from this and the fact that $S / E=N_{P S / E}(F E / E)$. (ii) follows from (i). Let $S \leq T$, with T Sylow in $C(Z) \cap C(R Z \mid Z) \cap N(E) \cap N(F)$. As S is transitive on the points in $R Z, T \leq S N_{T}(R)$. But $N_{T}(R)=E F$, so (iii) holds.

To obtain (iv) let $T=\left\langle(F \cap A)^{P}\right\rangle$. Since $T E / E=S / E \cong E_{16}$, it will suffice to show that $E \cap A \leq T$. Suppose otherwise and let $W=[P, I]$, where $I \in$ $\operatorname{Syl}_{3}\left(N_{A}(E F)\right)$. $P /(E \cap A)$ is abelian since $N_{A}(E)$ is transitive on $(P / E)^{*}$. Thus $|W|=4^{4}$ and $W \cap R=1$. As $Z \leq T$ and T is I-invariant, $T \cap(E \cap A)=Z$ and $T=(F \cap A) W_{1}$, where $W_{1}=T \cap W$. As I acts irreducibly on W_{1} / Z and on Z, W_{1} is abelian. Also $W_{1}=T \cap W \leq W$. Choosing an appropriate conjugate of F we obtain $W_{2} \in W_{1}^{N(E)}$ with $W_{2} \unlhd W$ and $W_{1} \cap W_{2}=1$. Therefore, W is abelian.

We show W is elementary abelian as follows. Let $f \in(F \cap A)-Z$. Let $g \in P$ such that $f^{g}=f w_{1}$, with $w_{1} \in W_{1}-Z$. As f^{g} is an involution, f inverts w_{1}. If W is not elementary, then $\left|w_{1}\right|=4$ an Z letting g vary, f inverts W_{1}. Now let f vary and obtain a contradiction.

Consider $N=N(W)$ and let bars denote images in N / W. The involutions in $W R$ are in $W \cup E$, so $R^{G} \cap W R=R^{W}$. We conclude that \bar{N} has a standard subgroup $L \cong L_{2}(4)$ with $\bar{R} \in \operatorname{Syl}_{2}\left(C_{\bar{N}}(\bar{L})\right)$. By [1], $E(\bar{N}) \cong L_{2}(4), A_{9}, H J$, or M_{12}. As $|W|=2^{8}$ and 11 does not divide $|G L(8,2)|, E(\bar{N}) \nsubseteq M_{12}$. Suppose $E(\bar{N}) \cong A_{9}$. Then $\bar{R} \sim \bar{F}$ in $\overline{N(W)}$ and it follows that $R^{G} \cap A \neq \emptyset$, which is not the case. Next, suppose $E(\bar{N}) \cong H J$. For $f \in(F \cap A)-Z$, we have $[f, W]=$ $W_{1}=C_{W}(f)$, and \bar{f} is a 2-central involution of $E(\bar{N})$. Viewing $\bar{N} \leq \operatorname{Aut}(W)$ we then have $E(\bar{N})=\left\langle C_{\bar{N}}(\bar{f}) \mid f \in(F \cap L)-Z\right\rangle \leq N\left(W_{1}\right)$. This is impossible.

We are left with the case $E(\bar{N}) \cong L_{2}(4)$. Clearly, W is weakly closed in a Sylow 2-subgroup of $N(W)$, and applying Theorem 4 of [5] we conclude that W is strongly closed in a Sylow 2-subgroup of C. The main theorem of [5] gives a contradiction.

Define $P(F)=O_{2}\left(N_{G}(F)\right)$, so that (P, E) is symmetric to $(P(F), F) . \quad$ By 2.2 (i) and (iii), $S=F C_{P}(R Z \mid Z)=E C_{P(F)}(R Z \mid Z)$.
(2.3) Let $x \in P(F)-S, F_{0}=(E \cap A)\left(E^{x} \cap P\right)$, and $H=\langle P, P(F)\rangle$. Then
(i) $E^{x} \cap E=Z$ and $S=E E^{x}$
(ii) $P \cap S=E F_{0}$ and E and F_{0} are the maximal elementary abelian 2subgroups of $P \cap S$. Also $E \cong F_{0}$.
(iii) $F^{H}=\left\{F_{0}, F^{P}\right\}$ and $E^{H}=\left\{E,\left(E^{x}\right)^{P}\right\}$.
(iv) $\Omega \cap S=F^{H} \cup E^{H}$ and $N_{G}(S)$ act on $\left\{F^{H}, E^{H}\right\}$.
(v) H induces A_{5} on E^{H}.

Proof. Let $h \in P-S$. $F \cap F^{h} \cap E=Z$ and $F \cap F^{h} \leq E$, so $F \cap F^{h}=Z$. Then $|S|=\left|F F^{h}\right|$, so $S=F F^{h}$. So (i) follows from (2.2) (iii) which guarantees symmetry between E and F. (i) implies (ii).

If $U \cap P \neq 1$ for some point U in E^{x}, then $U \cap F_{0} \neq 1$, so as $m\left(F_{0}\right)=6, U \leq F_{0}$ and F_{0} is a plane. On the otherhand if $U \cap P=1$ for each point U in E^{x} and each $x \in P(F)-S$, then $\left\langle(E \cap A)^{P(F)}\right\rangle=F_{0}$ is of order 64, contradicting 2.2 (iii) and (iv).

So F_{0} is a plane. By (1.3) $E \cap A$ intersects each point of G trivially, and so $F_{0}-(E \cap A)$ is partitioned by its points and $E \cap A=F_{0} \cap A^{y}$ for each point $R^{y} \leq F_{0} . \quad F_{0} E \unlhd P$ so by (ii), $F_{0} \unlhd P$. Then $P \leq O^{2^{\prime}}\left(C\left(F_{0} \cap A^{y}\right) \cap N\left(F_{0}\right)\right)=P\left(F_{0}\right)$, so $P=P\left(F_{0}\right)$.

Let V be a plane in S. If $V \leq P$, then $V=E$ or F_{0} by (ii). Suppose $V \nsubseteq P$. $V=O^{2^{\prime}}\left(C_{G}(V)\right)$, so $Z \leq V$. As $V \nsubseteq P$ and $P=C_{S P}(e)$ for $e \in(E \cap A)-Z, V \cap(E \cap A)$ $=Z$. If $V \cap E \neq Z$, then V contains some point R^{j} of E, for $j \in P$. Then $R Z \leq V^{j^{-1}}$, so $V \in F^{P}$. This leaves the case $V \cap E=Z$. The involutions in $S \cap P$ are $F_{0}^{\sharp} \cup E^{\sharp}$. Hence $\left|F_{0}: V \cap F_{0}\right|=4$, and as $F_{0}-E$ is partitioned by its points, $V \cap F_{0}$ is a line. However, P is transitive on the lines in F_{0}, through Z, so $V \cap F_{0} \in\left(E^{x} \cup F_{0}\right)^{P}$. It follows that $V \in\left(E^{x}\right)^{P}$. It has now been shown that

$$
\Omega \cap S=\left\{E, F_{0}\right\} \cup F^{P} \cup\left(E^{x}\right)^{P} .
$$

Notice that $\left(E^{x}\right)^{P}$ is precisely the set of $V \in S \cap \Omega$ such that $V \cap E=Z$, while $F_{0} \cap F=Z$. By symmetry between E and $F,\left\{F_{0}\right\} \cup F^{P}=(F) \cup\left(F^{h}\right)^{P(F)}$, for $h \in P-S$. Therefore, $\left\{F_{0}\right\} \cup F^{P}=F^{H}$. By symmetry, $E^{H}=\{E\} \cup\left(E^{x}\right)^{P}$, and so (iii) and (iv) hold. (v) follows from (iii).
(2.4) S is special with $Z(S)=Z$.

Proof. $E / Z \leq Z(S / Z)$, so by (2.3) (i), $[S, S] \leq Z .[R, S]=Z$ so $[S, S]=$ $\Phi(S)=Z . \quad Z(S) \leq C_{S}(R)=E F$ with $C_{E}(S)=Z$, so the lemma holds.

$$
\begin{equation*}
Z(S P / Z)=(E \cap A) / Z \tag{2.5}
\end{equation*}
$$

Proof. Set $S P / Z=\overline{S P}$. Then $Z(S P / E)=(S \cap P) / E$ so $Z(\overline{S P}) \leq(S \cap P) / Z$. $C_{\bar{E}}(P)=C_{\bar{F}_{0}}(P)=(E \cap A) / Z$, since P is transitive on the lines through Z on E and F_{0}. On the otherhand if $x \in N_{A}(E)$ is of order 3 then $C_{S \cap P}(x)=R$ and $[S \cap P, x]=F_{0}$, so as $C_{\bar{R}}(\overline{S P})=1, Z(\overline{S P})=[Z(\overline{S P}), x] \leq \bar{F}_{0}$. Therefore $Z(\overline{S P})=$
$C_{\bar{F}_{0}}(\bar{P})=(E \cap A) / Z$.
(2.6) Choose notation as in (2.3) and set $\bar{S}=S / Z$ and $A(S)=\operatorname{Aut}(S) / C_{\text {Aut }(S)}(\bar{S})$. Then
(i) S is the central product of two copies of the Sylow 2-group of $L_{3}(4)$.
(ii) \bar{S} is an orthogonal space over $G F(4)$ with $(\bar{s}, \bar{t})=0$ if and only if $[s, t]=1$ and \bar{s} singular if and only if $s^{2}=1$. Aut $(S) \cap C(Z)$ preserves this structure and $C_{A(S)}(Z) \cong O_{4}^{+}(4) . \quad A(S)$ is $Z_{3} \times C_{A(S)}(Z)$ extended by a field automorphism of order 2, with $O_{3}(A(S))$ inducing scalar action on \bar{S} corresponding to a generator of $G F(4)^{*} . \quad C_{\text {Aut }(s)}(\bar{S})=V=\bar{S} \times U$, where $\bar{S} \cong U=$ $C_{V}\left(O_{3}(A(S)) \unlhd \operatorname{Aut}(S)\right.$ and for $z \in Z^{*}$, the map $\bar{s} \rightarrow C_{U}(s\langle z\rangle)$ is a $C_{A(s)}(Z)$-isomorphism of \bar{S} with the dual of \dot{U}.
(iii) $H / S \cong A_{5}$ and $C_{H}(S)=Z \in \operatorname{Syl}_{2}\left(C_{G}(S)\right)$ and $S \in \operatorname{Syl}_{2}\left(C_{G}(\bar{S})\right)$.
(iv) H is irreducible on \bar{S} as a $G F(4)$-module.
(v) \bar{S} is the sum of two natural modules for $S / H \cong A_{5}$, as a $G F(2)$-module.
(vi) $H \unlhd N_{G}(S)$.

Proof. Let $S_{0}=\langle E \cap A, F \cap A\rangle$ and $S_{1}=\langle I, R\rangle$, where I is $F_{0} \cap C(F \cap A)$. Clearly S_{0} is isomorphic to a Sylow 2-subgroup of $L_{3}(4)$ and this also holds for S_{1} as $S_{1}=I R$ and $[i, R]=Z=Z\left(S_{1}\right)$ for $i \in I-Z$. Moreover, S is the central product of S_{0} and S_{1}, proving (i). (i) implies (ii); the first two sentences of (ii) are reasonably clear; we supply a proof of the rest. Let $S=T_{1} * T_{2}$ with, $T_{i} \simeq S_{0}$. Let $E_{16} \cong X_{i j} \leq T_{i}, i, j \in\{1,2\}$. Each $v \in V^{*}$ acts faithfully on some $X_{i j}$, say X. As $[v, S] \leq Z, v \in C(Z)$. This determines $V / C_{V}(X)$ in $G L(X) \cong L_{4}(2)$, and we find $V / C_{V}(X) \leq E_{16}$, and hence $|V| \leq 2^{16}$. On the otherhand in the split extension of $X_{i j}$ by $L_{4}(2)$ there is $U_{i j}$ with $\left[U_{i j}, X_{i 3-j}\right]=1=U_{i j} \cap T_{i}=\left[U_{i j}, y_{i j}\right]$, $\left[U_{i j}, T_{i}\right] \leq Z$, and $U_{i j} \cong E_{4}$, where $y_{i j}$ is of order 3 with $C_{T_{i}}\left(y_{i j}\right)=1$. Embed $U_{i j}$ in $\operatorname{Aut}(S)$ by taking $\left[U_{i j}, T_{3-i}\right]=1$; set $U=\left\langle U_{i j}: i, j\right\rangle . \quad\left[U_{i j}, U_{r s}\right] \leq C\left(T_{1}\right) \cap$ $C\left(T_{2}\right)=1$ for $(i, j) \neq(r, s)$, so U is elementary abelian. Similarly $U \cong E_{2}{ }^{8}$ and $U \cap \bar{S}=1$. So $U \bar{S} \cong E_{2^{16}}$ and as $|V| \leq 2^{16}, V=U \bar{S}$. Let y of order 3 with $\langle y\rangle V / V=O_{3}(A(S))$. Then $\langle y\rangle V / C_{V}\left(X_{i j}\right)=\left\langle y_{i j}\right\rangle V / C_{V}\left(X_{i j}\right)$, so $[y, U]=1$ and hence $U=C_{V}(y) \unlhd \operatorname{Aut}(S)$. Finally let $z \in Z^{\sharp}$. If $s \in S$ with $[U, s] \leq\langle z\rangle$, then as $C_{\mathrm{Aut}(s)}(z)$ is irreducible on $\bar{S},[U, S] \leq\langle z\rangle$, a contradiction. Thus $\left|U: C_{U}(s\langle z\rangle)\right|=2$, completing the proof of (ii).

Since $E \in \operatorname{Syl}_{2}\left(C_{G}(E)\right), \quad Z \in \operatorname{Syl}_{2}\left(C_{G}(S)\right) . \quad C_{G}(\bar{S}) \leq N_{G}(R) S$ and $N_{S}(R)=$ $E F \in \operatorname{Syl}_{2}\left(C_{G}(E F / Z) \cap N(R)\right)$ so $S \in \operatorname{Syl}_{2}\left(C_{G}(\bar{S})\right)$. Thus $C_{H}(S)=X Z$, where $X=O\left(C_{H}(S)\right) . \quad$ By (1.7) $X \leq Z(H)$. We have $|P S / S|=4$ and $P S / S=[P S / S, u]$, when u is a 3-element in $N_{A}(S)$. So by (ii) together with (2.3) (v) and $H=O^{2^{\prime}}(H)$, we have $H / S \cong A_{5}$. Therefore, (iii) holds.

By (ii) one of the following holds: H / S stabilizes a nonsingular 1 -space of $\bar{S}, H / S$ stabilizes a pair of complementary totally singular 2-spaces of \bar{S}, or H / S is irreducible on \bar{S}. The first two cases do not occur because of (2.5). There-
fore, (iv) holds, and (iv) implies (v). Finally, (vi) follows from (2.3) (iv) and (1.7).
(2.7) Choose $u \in N_{A}(S)$ with $|u|=3$ and $[E, u] \neq 1$, and let $y \in N_{H}(R) \cap C(u)$ with $|y|=3$. Then $u=x y^{ \pm 1}$, where $|x|=3, x$ induces scalar action on S / Z as an \boldsymbol{F}_{4}-module, and $Z=[Z, x]$.

Proof. $Z=[Z, u]$ and $y \in C(Z)$, so $u \neq y$. Also, u acts on H and acts nontrivially on $P S / S$. Hence $u=x y^{i}$ w th x of order 3 in $C(H / S)$ and $i= \pm 1$. By (2.6) (v) $H\langle x\rangle$ acts irreducibly on S / Z as an F_{2}-module, so Schur's lemma shows that x induces an \boldsymbol{F}_{4} scalar on S / Z.
(2.8) Let $T_{0} \in \operatorname{Syl}_{2}\left(N_{G}(S)\right)$ and $\bar{T}_{0}=T_{0} / Z$. Then
(i) $\bar{S}=J\left(\bar{T}_{0}\right)$;
(ii) $T_{0} \in \operatorname{Syl}_{2}(G)$; and
(iii) $Z \unlhd N_{G}\left(T_{0}\right)$.

Proof. By 2.6. iii, $S=C_{T_{0}}(\bar{S})$. Thus if (i) fails there is a nontrivial elementary abelian 2-subgroup U of $\operatorname{Aut}_{G}(\bar{S})$ with $|U| \geq\left|\bar{S}: C_{\bar{S}}(U)\right|$, which is impossible from the structure of $\operatorname{Aut}(S)$ described in 2.6. ii.

Let $g \in N_{G}\left(T_{0}\right)$. We claim $Z^{g}=Z$. Either $Z=Z\left(T_{0}\right)$, in which case the claim is clear, or $\left|Z: Z\left(T_{0}\right)\right|=2$.

In the latter case, $Z\left(T_{0}\right) \leq Z^{g}$ and $Z^{g} / Z\left(T_{0}\right) \leq Z\left(T_{0} / Z\left(T_{0}\right)\right)$. But using (i) and 2.6 (i), we see that $Z \mid Z\left(T_{0}\right)=Z\left(T_{0} \mid Z\left(T_{0}\right)\right)$. This proves the claim, and so (ii) follows from (i).
(i) $P \cap \Omega=\left\{E, F_{0}^{N(E) \cap N(P)}\right\}$ has order 6 .
(ii) $P \in \operatorname{Syl}_{2}\left(C_{G}(E \cap A)\right)$.
(iii) $\quad N_{G}(P)$ is transitive on $P \cap \Omega$.

Proof. Let $V \in P \cap \Omega$ and B a point of V. Conjugating by $N(E) \cap N(P)$ we may take $B \cap S \neq 1$. Then $B \cap S \leq E$ or $B \cap S \leq F_{0}$ by (2.3) (ii). As each elementary subgroup of $N(R)$ of rank 6 is a plane through $R, B \leq E$ or $B \leq F_{0}$, so $V=(E \cap A) B=E$ or F_{0}. Hence (i) holds.

Clearly $P \in \operatorname{Syl}_{2}\left(C_{G}(E \cap A) \cap N(E)\right)$. So if (ii) is false there is a 2-element $g \in N(P) \cap C(E \cap A)$ such that $E^{g} \neq E$. Therefore, $N(P)^{(P \cap \Omega)}=A_{6}$ or S_{6}. Let $I=N(P) \cap C(E \cap A)$. Then $I^{(P \cap \Omega)} \neq 1$ and is normal in $N(P)^{(P \cap \Omega)}$. So, $I^{(P \cap \Omega)} \geq A_{6}$ and this forces $S \leq I$, a contradiction. This proves (ii). (iii) now follows from (i), (ii), and the symmetry between E and F_{0}.
(2.10) $\Omega=E^{G}$.

Proof. See (2.9) and (2.3) (iii).
(2.11) Set $K=O^{2}\left(N_{G}(P)\right)$. Then
(i) $K / P O(K) \cong 3 A_{6}$.
(ii) $[y, K] \leq P O(K)$.
(iii) $P /(E \cap A)$ is the natural module for $K / P O(K)$.
(iv) $E \cap A$ is the natural module for $K / P O(K)\langle y\rangle \cong A_{6}$.

Proof. $\quad N_{K}(E)^{(P \cap \Omega)} \geq A_{5}$, so by (2.9) $K^{(P \cap \Omega)}=A_{6} . \quad N_{K}(E) \neq\left(N_{K}(E) \cap\right.$ $C(E \cap A)) K_{P \cap \Omega}$ so $K \neq C_{K}(E \cap A) K_{P \cap \Omega}$. Hence $K / C_{K}(E \cap A) \cong A_{6}$ acts naturally on $E \cap A$.
$(K P)_{P \cap \Omega}=P\left(N_{K P}(R)_{P \cap \Omega}\right)$ while $\left(N_{K P}(R)_{P \cap \Omega}\right) / O(K) R$ acts faithfully on $R Z$, and hence is a subgroup of E_{9}. Thus $K P / P O(K)$ is a subgroup of $A_{6} \times E_{9}$ or of $3 A_{6} \times Z_{3}$. Choose y as in 2.7. $y \in N_{H}(R) \leq N(E) \leq N(P)$, while by 2.6 parts (ii) and (v), $(E \cap A) / Z=[P, E / Z] \leq C_{P / Z}(y)$ and $C_{P / Z}(y)$ is a complement to R in $C_{s}(Z)$. Thus $[y, K] \leq P O(K)$, so $P / E \cap A$ is a faithful $G F(4)$-module for $K / P O(K)$, so $K / P O(K) \leq G L_{3}(4)$. Then as $K / P O(K) \leq A_{6} \times E_{9}$ or $3 A_{6} \times Z_{3}$, the lemma holds.
(2.12) Let $P S \unrhd T_{0} \in \operatorname{Syl}_{2}\left(N_{G}(S)\right)$. Then
(i) $T_{0} \in \operatorname{Syl}_{2}(G)$;
(ii) $\quad S P \leq T=T_{0} \cap O^{2}\left(N_{G}(P)\right),\left|T_{0}: T\right| \leq 2$, and $H\langle x\rangle T / S \cong S_{3} \times A_{5}$;
(iii) $Z_{2}(T)=Z \neq Z(T)$;
(iv) $E^{T}=\left\{E, F_{0}\right\}$; and
(v) $P \unlhd T_{0}$.

Proof. (i) is just (2.8) (ii). ($E \cap A) / Z=Z(P S / Z)$, so $E \cap A \unlhd T_{0}$. Thus (v) follows from (2.9) (ii). By (2.11) and (1.7), $O^{2}\left(N_{G}(P)\right)=I \times O(C(R))$ where $y \in I$ is the split extension of P by A_{6} / Z_{3}. Let J be the setwise stabilizer in $O^{2}\left(N_{G}(P)\right)$ of $\left\{E, F_{0}\right\} . \quad P S \leq T=T_{0} \cap J \in \operatorname{Syl}_{2}(J)$, while with (2.11) (ii), $\langle y\rangle\left(N_{A}(S) \cap N(P)\right) O(C(A))$ contains a Hall 2'-group of J, so $J \leq N(S)$. $J / O_{2}(J) O(C(A)) \cong Z_{3} \times S_{3}$ with $[y, J] \leq O_{2}(J) O(C(A))$, so $J H / S O(C(R))=S_{3} \times A_{5}$. Of course $J H=\langle X\rangle T H$. $T_{0} J H / S \leq S_{3} \times S_{5}$, so $\left|T_{0}: T\right| \leq 2$. Hence (ii) and (iv) hold. Finally J induces S_{3} on Z, so $Z \neq Z(T)$. On the otherhand $Z_{2}(T) \leq C_{H T}(S / Z)=S$ while by (2.6) (i), $Z(S / Z(T))=Z / Z(T)$. Hence (iii) holds.
(2.13) Let $K=H T\langle x\rangle$. Then K is the semidirect product of $N_{K}(\langle x\rangle)$ with S and $N_{K}(\langle x\rangle)$ is determined up to conjugation in $\operatorname{Aut}(S)$, so that the isomorphism class of K is determined.

Proof. $\quad C_{S}(x)=1$ and $C_{K}(S)=Z$, so K is the semidirect product of $N_{K}(\langle x\rangle)$ with S by a Frattini argument and we may regard K as a subgroup of $W=$ $N_{\text {Aut }(s)}(\langle x\rangle)$. Choose notation as in 2.6. ii and set $W^{*}=W / U . \quad$ By 2.6. ii and (v), and as the 1-cohomology of the natural module for A_{5} is trivial, U is transitive on the complements to U in $U H$. Thus it remains to show K^{*} is determined up to conjugacy in W^{*}, since $C_{U}(H)=1$.

Let $t \in T$ invert x with $t^{2} \in S$ and $[H, t] \leq S$. As $C_{W^{*}}\left(t^{*}\right)^{\infty} \neq 1, t$ interchanges the components of W^{*}, and then as t inverts x, t^{*} is determined up to conjugacy in W^{*}. Then $K^{*}=E\left(C_{W^{*}}\left(t^{*}\right)\right)\left\langle t^{*}\right\rangle\left\langle x^{*}\right\rangle$ is determined up to conjugacy in W^{*}.
(2.14) (i) There exists a unique subgroup Q of T isomorphic to the central product of three quaternion groups and invariant under $\langle y\rangle$.
(ii) $Q \unlhd H T$.
(iii) $|E \cap A: E \cap A \cap Q|=2$.

Proof. Let $D=S u z . \quad$ By (2.13) we may take $H T\langle x\rangle \leq D . \quad$ Set $\langle z\rangle=Z(T)$, $C=C_{D}(z)$ and $Q=O_{2}(C)$. Then $Q \cong\left(Q_{8}\right)^{3}$. Set $\tilde{C}=C /\langle z\rangle$ and $C^{*}=C / Q$. Suppose $B \leq T$ with $B \cong Q \neq B$. Then $\widetilde{B} \cong E_{64}$, so $\left|B^{*}\right| \geq\left|\widetilde{Q}: C_{\widetilde{Q}}(B)\right|$. So as $C^{*} \cong \Omega_{6}^{-}(2)$ acts naturally on $\widetilde{Q}, E_{8} \cong B^{*} \leq O_{2}\left(C_{C^{*}}\left(Z\left(T^{*}\right)\right)\right.$ with $B^{*}=C_{C^{*}}\left(B^{*}\right)$. Suppose $\langle y\rangle \leq N(B)$. Set $C_{C^{*}}\left(Z\left(T^{*}\right)\right)=K^{*}$ and $\bar{K}=K^{*} / Z\left(T^{*}\right)$. Then \bar{B} is a 4-subgroup of \bar{K} invariant under $\langle\bar{y}\rangle$, so $\bar{B}=Z\left(\bar{T}^{k}\right)$ for some $k \in C_{K}(y)$, or $B^{*} \cong Q_{8}$. As $B^{*} \cong E_{8}$, the first case holds. But then $B^{*} \neq C_{G}\left(B^{*}\right) \cong E_{16}$. Thus Q is uniquely determined.

As $Q \unlhd C \geq H T, Q \unlhd H T . \quad(Q \cap S) / Z$ is an irreducible $G F(2)$-module of S / Z of rank 4 for H / S, so $(E \cap A \cap Q) / Z=C_{Q \cap S / Z}(P)$ is of order 2, and (iii) holds.
(2.15) Set $K=O^{2}\left(N_{G}(P)\right)$ and $\langle z\rangle=Z(T)$. Then
(i) $T \in \operatorname{Syl}_{2}(K)$.
(ii) $E \cap A \cap Q=Z_{3}(T) \cap E \cap A$.
(iii) $Q \unlhd C_{K}(z)$.

Proof. $T_{0} \leq N(K)$ by (2.13) and $T \in \operatorname{Syl}_{2}(K)$ from the definition of T. By (2.11) (iv), $Z_{3}(T) \cap E \cap A$ is a hyperplane of $E \cap A$. By (2.14) (iii), $E \cap A \cap Q$ is a hyperplane of $E \cap A$ in $Z_{3}(T)$, so (ii) holds. Then $\left[Q, Z_{3}(T) \cap E \cap A\right] \leq\langle z\rangle$, so $Q \leq O_{2}\left(C_{K}(z)\right)$ by (2.11) (iv). But $C_{K}(z)=O_{2}\left(C_{K}(z)\right) C_{K}(\langle z, y\rangle)$, and for $g \in C_{K}(\langle z, y\rangle), Q^{g} \leq T$ and $y \in N\left(Q^{g}\right)$, so $Q=Q^{g}$ by (2.14) (i). Thus $Q \unlhd C_{K}(z)$.
(2.16) Set $M=\left\langle T^{N(Q)}\right\rangle$. Then $M / Q O(Z(M)) \cong \Omega_{6}^{-}(2)$ acts naturally on $Q /\langle z\rangle$.

Proof. Out $(Q) \cong O_{6}^{-}(2)$ with $H T / Q$ a maximal parabolic of $E(\operatorname{Out}(Q))$. So by (2.15) (iii), $\operatorname{Out}_{M}(Q) \cong \Omega_{\overline{6}}^{-}(2) . \quad C_{M}(Q)=O(M)\langle z\rangle$ and by (1.7), $O(M) \leq Z(M)$.
(2.17) (i) M is transitive on $Z^{C(z)} \cap Q$
(ii) $N(Z) \cap C(z)$ is transitive on the $C(z)$-conjugates of Q containing Z.

Proof. (2.16) implies (i) and (i) implies (ii),
(i) $N_{G}(Z)=H T_{0}\langle x\rangle O\left(N_{G}(Z)\right)$ with $H T \unlhd N_{G}(Z)$.
(ii) If $g \in C(z)$ and $m\left(Q \cap Q^{g}\right)>1$, then $Q=Q^{g}$.

Proof. Set $X=N(Z), \bar{X}=X / Z$. Then by (2.8), $\bar{S}=J\left(\bar{T}_{0}\right)$, so \bar{S} is weakly closed in $N_{\bar{X}}(\bar{S})$. We next show \bar{S} to be strongly closed. If not by Corollary 4 of [5], there is $\bar{B} \leq \bar{S}$ and $g \in X$ such that $\bar{D}=\bar{B}^{g} \not \ddagger \bar{S}$ and for $d \in \bar{D}-\bar{S}$, $m([\bar{S}, d]) \leq m(\bar{D} \mid \bar{D} \cap \bar{S})$. But $m([\bar{S}, t]) \geq 2$ for each involution $t \in T_{0}-S$ by (2.6), so $m(\bar{D} \mid \bar{D} \cap \bar{S})>1$. Hence by (2.6) there is $d \in \bar{D}-\bar{S}$ with $m([\bar{S}, d])=4$, so $m(\bar{D} / \bar{D} \cap \bar{S}) \geq 4>m\left(T_{0} / S\right)$, a contradiction.

So \bar{S} is strongly closed. Now by Goldschmidt's fusion Theorem [5], and the action of H on $\bar{S}, \bar{S} O(\bar{X}) \unlhd \bar{X}$. By (1.7), $S \unlhd X$, so (i) follows from (1.7) and (2.6).

Choose g as in (ii). Then as $m\left(Q \cap Q^{g}\right)>1$, we may take $Z \leq Q^{g}$. So by (2.17) we may take $g \in X$. Now as $C_{X}(z)=C_{H}(z) T_{0} O(N(Z)$) with $[H T, O(C(Z))]=1$ and $Q \unlhd C_{H}(z) T_{0}, Q=Q^{g}$.

Set $\quad X=C(z), \tilde{X}=X /\langle z\rangle, N_{X}(Q)^{*}=N_{X}(Q) / Q$.
(2.19) Q is weakly closed in X.

Proof. If $g \in X$ with $Q \neq Q^{g} \leq N(Q)$, then $\widetilde{Q}^{g} \cong E_{64}$, so as $N_{X}(Q)^{*} \cong O_{6}^{-}(2)$ or $\Omega_{\overline{6}}^{-(2)}$ acts naturally on $\widetilde{Q}, m\left(Q \cap Q^{g}\right)>1$. This contradicts (2.18) (ii).

We can now obtain a contradiction. By (2.18) (ii), (2.19), and (1.10), Q is strongly closed in $C_{G}(z)$. So by Goldschmidt's fusion theorem [5], $Q O(X) \unlhd X$. Then (2.16) and (1.8) imply $O(X)=1$, and $M \unlhd X$. By Theorem 2 in [11], and Theorem B of [10], we have $\left\langle A^{G}\right\rangle \cong S u z$, which we are assuming false.

3. Co_{1}

In this section we assume $A / Z(A) \cong G_{2}(4)$ and obtain a contradiction; we continue the notation in $\S 1$. In particular, let $A_{1} \cong S L_{3}(4)$ be as in (1.4) and $\langle x\rangle=Z\left(A_{1}\right)$. Inaddition we set $B=E\left(C_{G}(x)\right) \quad B y(1.3) \quad$ (iii) $Z(A)=1$.
(3.1) $B=3 S u z$, the covering group of the Suzuki group.

Proof. This follows from (8.14) of [3] and the result established in $\S 2$.
Since A_{1} is standard in B and $R \in \operatorname{Syl}_{2}\left(C_{B}\left(A_{1}\right)\right)$ the entire analysis of $\S 2$ applies to the triple $\left(R, A_{1}, B\right)$, replacing (R, A, G). We will make use of the subgroups Z, E, F, P, Q, and T as defined in $\S 1$ or constructed in $\S 2$. Then $E \cap A$ is the direct product of two long root subgroups of A (or A_{1}). Let $B_{0}=C_{B}(z)^{\prime}$, for $z \in Z^{\sharp}$. Then $Q \unlhd B_{0}$ and $B_{0} / Q \cong \Omega_{\overline{6}}^{-}(2)$.
(3.2) Let $I=N_{A}(E \cap A)$.
(i) $I=D(J \times\langle x\rangle)$, where $D=O_{2}(I)$ and $J \cong S L_{2}(4)$.
(ii) $(E \cap A)=Z(D), D /(E \cap A)$ is elementary of order 4^{3}, and $D /(E \cap A)$
is generated by the images of 3 short root subgroups.
(iii) $\left.Z(D J /(E \cap A))=U_{a}(E \cap A)\right)=U_{a}(E \cap A) /(E \cap A)$ for U_{a} a short root subgroup.
(iv) $\left[D, U_{\infty}\right]=E \cap A$.
(v) I $I D$ acts indecomposably on $D /(E \cap A)$.
(vi) I / D acts on $D / U_{w}(E \cap A)$ as on the natural module for $G L_{2}(4)$.

Proof. These facts are elementary consequences of the Chevalley commutator relations for $G_{2}(4)$.
(i) $E-(E \cap A)$ is partitioned by the sixteen members of $R^{G} \cap E=\Delta$.
(ii) $N(E)=D(N(E) \cap N(\langle x\rangle))$. In particular $N(E)^{\Delta}=(N(E) \cap N(\langle x\rangle))^{\Delta}$, $N_{B}(E)^{\Delta} \unlhd N(E)^{\Delta}$, and $N_{B}(E)^{\Delta}$ is $G L_{2}(4)$ acting on its natural module.
(iii) $\hat{P}=P D=O_{2}(N(E) \cap C(E \cap A)) \in \operatorname{Syl}_{2}(N(E) \cap C(E \cap A))$ and $\hat{P}^{\Delta}=P^{\Delta}$ is regular.
(iv) $C_{\hat{P}}(E)=D C_{P}(E)=D \times R$.

Proof. (i) is just (1.5) (i). $X=N(E) \cap N(\langle x\rangle)$ is transitive on Δ, so $N(E)=X(N(E) \cap N(R))$. By a Frattini argument and (3.2) (i), $N(E) \cap N(R)=$ $D N_{X}(R)$, so $N(E)=D X$. Now (ii) follows, and implies (iii) and (iv).
(i) $\hat{P}=D P$ with $D \cap P=E \cap A$.
(ii) $D=[\hat{P}, x]$.
(iii) $Z(\hat{P} /(E \cap A)) \geq U_{\omega} R(E \cap A) /(E \cap A)$.
(iv) $[\hat{P}, \hat{P}] \leq U_{\infty}(E \cap A)$.

Proof. By 3.3) (iii), $\hat{P}=D P$, while $D \cap P=C_{P \cap A}(E)=E \cap A . \quad$ By (i), $[\hat{P}, x] \leq D$, while by (3.2), $D=[D, x]$, so (ii) holds. J acts on $C_{D / E \cap A)}(P)$, so by (3.2), $\left[U_{\infty}, P\right] \leq E \cap A$. Of course $[P, R] \leq E \cap A$, so (iii) holds. Then (3.2) (vi) implies $[P, D] \leq U_{a}(E \cap A)$, while by (3.2) (ii), $[D, D] \leq E \cap A$, and by (2.11) (iii), $[P, P] \leq E \cap A$. Hence (iv) holds.

$$
\begin{equation*}
D=O_{2}\left(C_{G}(P)\right) \in \operatorname{Syl}_{2}\left(C_{G}(P)\right) \tag{3.5}
\end{equation*}
$$

Proof. We first show that $[D, P]=1$. Choose $Y \leq C_{G}(x)$ such that $|Y|=3, Y$ is transitive on R^{\ddagger} and $[R, A]=1$ (for example $Y=\langle y\rangle$, with y as in (2.11)). Then $Y \times\langle x\rangle$ contains a subgroup Y_{1} of order 3 such that $Y_{1} \leq C_{G}(A)$. Then Y_{1} acts on $\hat{P},\left[Y_{1}, D\right]=1$ and $\left[Y_{1}, P\right]=P$. Therefore, $\left[P, Y_{1}, D\right]=[P, D]$, $\left[Y_{1}, D, P\right]=[1, P]=1$, and $\left[D, P, Y_{1}\right] \leq\left[D, Y_{1}\right]=1$. By the 3-subgroups lemma, $[P, D]=1$.

Finally, $C_{G}(P) \leq C_{G}(R)$ so that $C_{G}(P)=C(P) \cap C(R)=C_{D}(P) O(C(A))=$ $D O(C(A))$ by (1.7), so the lemma holds.

$$
\begin{equation*}
\text { Let } \left.T_{1}=T \cap J \in \operatorname{Syl}_{2}(J), V_{0} /(E \cap A)=C\left(T_{1}\right) \cap D / E \cap A\right) \text {, and } V=\left[V_{0},\langle x\rangle\right] . \tag{3.6}
\end{equation*}
$$

Then V contains a unique $\langle x\rangle$-invariant subgroup Q_{0} such that $Q_{0} \cong Q_{8}$ and $Z\left(Q_{0}\right)=Z(Q)$.

Proof. The action of $J \times\langle x\rangle$ on $D /(E \cap A)$ is easily determined from the Chevalley commutator relations. The group V_{0} is the product of $E \cap A$ together with the product of two short root subgroups, where the short roots add to a long root. Then V is the group generated by these two short root subgroups.

The group $V \mid Z(V) \approx E_{16}$ and $Z(V)=C_{V}(x)$ is a long root subgroup. Since $\langle x\rangle$ acts without fixed points on $V \mid Z(V),\langle x\rangle$ stabilizes precisely five 4-subgroups of Y / Z. Aside from the images of the two short root subgroups, there are three subgroups each having preimage containing a unique $\langle\boldsymbol{x}\rangle$-invariant Q_{8} and having center of order 2 in $Z(V)=Z$. Since $Z(Q) \leq Z$, the result follows.
(i) $T \leq C_{G}\left(Q_{0}\right)$.
(ii) $Q_{0} Q$ is extraspecial of order 2^{9}.
(iii) $Q_{0} \in \operatorname{Syl}_{2}\left(C_{G}(Q)\right)$.
(iv) $B_{0} \leq C_{G}\left(Q_{0}\right)$.

Proof. By (3.5) and the fact that $P T_{1} \unlhd T$, we have $T \leq N\left(V_{0}\right)$. Since also $T \leq C(x)$, by (3.6), $T \leq N\left(Q_{0}\right)$. As $\langle x\rangle \times T$ acts on Q_{0}, we necessarily, have (i). In particular, $Q \leq C\left(Q_{0}\right)$, proving (ii).

Let $C=C_{G}(Q)$ and suppose $Q_{0} \notin \operatorname{Syl}_{2}(C)$. Consider $N_{C\langle r\rangle}\left(Q_{0}\langle r\rangle\right)=N$, where $r \in R^{\sharp}$. First we claim that $Q_{0}\langle r\rangle$ has index at most 2 in a Sylow 2-subgroup of N. So suppose otherwise and let $Y=C \cap N \cap C(r)$. Then $|C \cap N: Y| \leq 2$ so $Q_{0} O(Y)<Y$ and $Y \leq C(Q)<C(E \cap A \cap Q)$. By (2.14) (iii), $Y \leq D R O(C(A))\langle x\rangle$. By (1.7) $Y=\left(\langle x\rangle O_{2}(Y)\right) \times O(Y)$. Now $A R \cap C(Q) \unlhd A R \cap N(Q)$, so it follows from (3.2) and $Y^{X}=Y$, that $U_{\infty} \leq Y$. However, the commutator relations show $U_{a} \nleftarrow N\left(Q_{0}\right)$, a contradiction. Therefore, the claim holds. We conclude that $N / Q_{0}\langle r\rangle$ has a 2-complement of index 2.

Both N and $Q_{0}\langle r\rangle$ are invariant under $\langle x\rangle \times E . \quad$ By (1.7) and the above claim we conclude that $\left|N_{c}(\langle x\rangle)\right|$ is divisible by 4. As $N(\langle x\rangle) / O(N(\langle x\rangle)) \leq$ $\operatorname{Aut}(\mathrm{Suz})$, this is impossible. This establishes (iii).

To obtain (iv) consider the group C. If $O(C) \neq 1$, the assertion follows from (1.7) and the structure of $C o_{1}$. Suppose $O(C)=1$. If $E(C)=1$, then $C=Q_{0}\langle x\rangle$ and (iv) holds. If $E(C) \neq 1$, then $O^{2^{\prime}}(C) \cong S L_{2}(q)$ for some $q \equiv 3,5$ $(\bmod 8)$ and $\left[Q_{0}, B_{0}\right] \leq\left[O^{2^{\prime}}(C), B_{0}\right]=1$.
(3.8) Let $F=N_{G}\left(Q_{0} Q\right)^{(\infty)}$. Then $Q_{0} Q \unlhd F$ and $F / Q_{0} Q \cong \Omega_{8}^{+}(2)$.

Proof. By (3.7) $\langle x\rangle \times B_{0} \leq N_{G}\left(Q_{0} Q\right)$. Let $M=O^{2}\left(N_{G}\left(Q_{0} Q\right) / C_{G}\left(Q_{0} Q /\langle z\rangle\right)\right)$. Then $M \leq \Omega_{8}^{+}(2)$ and $\langle x\rangle \times B_{0}$ induces a subgroup M isomorphic to $Z_{3} \times \Omega_{6}^{-}(2)$. Easy arguments show that $\left(Z_{3} \times \Omega_{6}^{-}(2)\right)\langle t\rangle=M_{1}$ is maximal in $\Omega_{8}^{+}(2)$, where
τ inverts the Z_{3} factor and induces a transvection on the $\Omega_{6}^{-}(2)$ factor. It will suffice to show that M contains such an element τ and $M>M_{1}$.

To get τ, use the fact that $N_{A}(\langle x\rangle)$ contains an involution inverting x. Thus $M_{1} \leq M$. The argument in the first paragraph of the proof of (3.7) shows that $[V, T] \leq V$. Since $\langle x\rangle$ acts irreducibly on $V / Q_{0} Z,[V, T] \leq Q_{0} Z \leq Q_{0} Q$. Hence $V \leq N_{G}\left(Q_{0} Q\right)$ and V induces on $Q_{0} Q /\langle z\rangle$ a subgroup of M not contained in M_{1}. This proves (3.8).

$$
\begin{equation*}
N_{G}\left(Q_{0} Q\right) / Q_{0} Q O\left(N_{G}\left(Q_{0} Q\right) \cong \Omega_{8}^{+}(2)\right. \tag{3.9}
\end{equation*}
$$

Proof. Otherwise $\langle x\rangle \times B_{0}\langle g\rangle \leq C_{G}(x)$, where g induces a transvection on $Q /\langle z\rangle$. On the otherhand $N_{G}(\langle x\rangle) / O\left(N_{G}(\langle x\rangle)=\operatorname{Aut}(S u z)\right.$, so no such g exists.
(3.10) $C_{F}(Z)$ contains a normal subgroup \hat{S} such that
(i) \hat{S} is special with $Z(\hat{S})=Z$, and \hat{S} is the central product of three copies of a Sylow 2-group of $L_{3}(4)$.
(ii) $C_{F}(Z) \mid \hat{S} \cong \Omega_{6}^{+}(2)$ has two noncentral chief factors on \hat{S} / Z, both of which are natural.
(iii) \hat{S} is weakly closed in $N_{G}(\hat{S})$ with respect to $N_{G}(Z)$.
(iv) $N_{G}(\hat{S}) / \hat{S} O\left(C_{G}(\hat{S})\right) \cong S_{3} \times \Omega_{6}^{+}(2)$ and $C_{F}(Z) O(C(Z))=N_{G}(\hat{S}) \cap C(Z)$.

Proof. F acts on $Q_{0} Q /\langle z\rangle$ as the natural module for $\Omega_{8}^{+}(2)$ and the image of Z is a singular point. So $N_{F}(Z) / Q_{0} Q$ is a parabolic subgroup of $\Omega_{8}^{+}(2)$ isomorphic to $Q_{6}^{+}(2)$ on its natural module. Set $U=C_{Q_{0} Q}(Z)$ and $\hat{S}=O_{2}\left(C_{F}(Z)\right)$. Then $1 \unlhd Z \unlhd U \unlhd S \unlhd C_{F}(Z)$ is a normal series with U / Z and \hat{S} / U the natural module for $C_{F}(Z) / \hat{S} \cong \Omega_{6}^{+}(2)$. That is (ii) holds.

Next $S=C_{\hat{S}}(x)$ and $\hat{S}=S[\hat{S}, x]$. Moreover by $2.6, B_{1}=C_{B}(Z)^{\infty}$ is a subgroup of F acting as $\Omega_{4}^{-}(2)$ on S / Z as the sum of two natural modules, and S is the central product of two copies of the Sylow 2-group of $L_{3}(4)$. Also there is $g \in C_{F}(Z)$ with $[\hat{S}, x] \leq C_{\hat{S}}\left(x^{g}\right)=S^{g}$, so $[\hat{S}, x]$ is isomorphic to a Sylow 2-group of $L_{3}(4)$. As $\left[\hat{S}, x, B_{1}\right]=1, S=[S, B] \leq C([\hat{S}, x])$. Therefore (i) holds.
$V=\hat{S} / Z$ is elementary abelian and if $g \in N(Z)$ with $\hat{S}^{g} \leq F$ and $\hat{S} \neq \hat{S}^{g}$, then $V \neq V^{g}$ and $m\left(V^{g} / V \cap V^{g}\right)=m\left(V / V \cap V^{g}\right) \geq m\left(V / C_{V}\left(V^{g}\right)\right)$, which is impossible by (ii). Thus \hat{S} is weakly closed in F with respect to $N(Z)$.

Let $j \in Q_{0} Q-C(Z)$ be an involution. Then $[Z, j]=z$ and $\left[j, C_{F}(Z)\right] \leq$ $C_{Q_{0} Q}(Z) \leq \hat{S}$, so $j \in N(\hat{S})$ and $\left\langle C_{F}(Z), j\right\rangle \mid \hat{S} \cong Z_{2} \times \Omega_{6}^{+}(2)$. However from (i), $\operatorname{Out}(\hat{S})$ is the extension of $Z_{3} \times O_{6}^{+}(4)$ ky a field automorphism, so as $[Z, j] \neq 1$, j induces a field or glaph-field automorphism, and as j centralizes $C_{F}(Z) / \hat{S}$, it is the former. In particular $C_{F}(Z) / \hat{S}=E(\operatorname{Out}(\hat{S})) \cap C(j)$ is maximal in $E(\operatorname{Out}(\hat{S}))$, so if $N_{G}(\hat{S})^{\infty} \neq C_{F}(Z)$, then $N_{G}(\hat{S})^{\infty} / \hat{S} \cong \Omega_{6}^{+}(4)$. But then as $R Z / Z$ and $(E \cap A) / Z$ are singular points in $\hat{S} / Z, R Z \in(E \cap A)^{N(\hat{S})}$, contradiction.

So $C_{F}(Z)=N_{G}(\hat{S})^{\infty}$, and hence by (1.7), $N_{G}(\hat{S}) \cap C(Z)=C_{F}(Z) O\left(N_{G}(\hat{S})\right)\langle t\rangle$, where either $t=1$ or t induces a $G F(4)$-transvection on \hat{S} / Z. In the latter case t acts on $\langle j, U\rangle=Q_{0} Q$, and (3.9) supplies a contradiction. In particular the second part of (iv) holds. In addition as \hat{S} is weakly closed in F with respect to $N(Z)$, (iii) holds. There is an element of order 3 in A acting nontrivially on Z, so by (iii) and a Frattini argument some 3-element in $N(\hat{S})$ is nontrivial on Z, so that the proof of (iv) is complete.
(3.11) (i) $\quad \hat{S}=O_{2}\left(C_{G}(Z)\right)$.
(ii) $N_{G}(\hat{S})$ contains a Sylow 2-group of G.

Proof. Claim \hat{S} is strongly closed in $N(\hat{S})$ with respect to $C(Z)$. Assume not. By $3.10, \hat{S}$ is weakly closed, while $V=\hat{S} / Z$ is an elementary subgroup of $C(Z)^{*}=C(Z) / Z . \quad$ So by Theorem 4 in [5] there is $U \leq V$ and $W=U^{g} \leq N(V)$ such that $m([V, w]) \leq m(W / W \cap V)$ for each $w \in W$. But by 3.10, $m([V, w]) \geq 4$ for each involution $w \in N(V) / V$, so $m(W / W \cap V) \geq 4$. As $\left(N(V) \cap C(Z)^{*}\right) / V \cong \Omega_{6}^{+}(2)$ has 2-rank 4, $m(W / W \cap V)=4$ and $W V / V=O_{2}(X / V)$ where X is the stabilizer of a singular point of V. Now if $w \in W-V$ then $m\left(C_{V}(w)\right)=8$, so by symmetry between V and $V^{g}, m(W) \geq 8$. Thus $m\left(C_{V}(W)\right) \geq m(V \cap W) \geq 4$, impossible as $m\left(C_{V}(W)\right)=2$.

So the claim is established. Now by Goldschmidt's fusion theorem [5] and (1.7) and (3.10) (iv), (i) holds. Moreover if $I \in \operatorname{Syl}_{2}\left(N_{G}(Z)\right)$, then $Z=Z_{2}(I)$, so (3.10) (iii) and (i) imply (ii).
(3.12) Let $Q_{1}=Q_{0} Q$.
(i) If $g \in C(z)$ and $m\left(Q_{1} \cap Q_{1}^{g}\right)>1$, then $Q_{1}=Q_{1}^{g}$.
(ii) Q_{1} is weakly closed in a Sylow 2-subgroup of $C_{G}(z)$.

Proof. Suppose $g \in C(z)$ and $m\left(Q_{1} \cap Q_{1}^{g}\right)>1$. By (3.8) we may assume $Z \leq Q_{1} \cap Q_{1}^{g}$, and applying (3.8) to $N\left(Q_{1}^{g}\right)$ we may take $g \in N(Z) . \quad$ By (3.11) and (3.10) $C_{G}(z) \cap N(Z)=C_{F}(Z)\langle j\rangle O(N(Z))$ and by (1.7) $\left.[O(N / Z)), C_{F}(Z)\langle j\rangle\right]=1$. Since $C_{F}(Z)\langle j\rangle \leq N\left(Q_{1}\right)$ we conclude that $g \in N\left(Q_{1}\right)$, proving (i).

To prove (ii), suppose $g \in C(z)$ and $Q_{1}^{g} \leq N\left(Q_{1}\right)$. By (3.9) $Q_{1}^{g} Q_{1} / Q_{1} \leq \Omega_{8}^{+}(2)$. If $Q_{1}^{g} \neq Q_{1}$, then by (i) $m\left(Q_{1} \cap Q_{1}^{g}\right)=1$, so $\left(Q_{1}^{g} \cap Q_{1}\right) /\langle z\rangle$ is an anisotropic 1-space or 2 -space. In the first case $m\left(Q_{1}^{g} Q_{1} / Q_{1}\right)=7$ and $Q_{1}^{g} Q_{1} / Q_{1}$ is a subgroup of $S p_{6}(2)$, while in the second case $m\left(Q_{1}^{g} Q_{1} / Q_{1}\right)=6$ and $Q_{1}^{g} Q_{1} / Q_{1}$ is a subgroup of $O_{6}^{-}(2)$. In either case we have a contradiction.

As in $\S 2$ we can now reach a contradiction. By (3.12) and (1.10), Q_{1} is strongly closed in $C_{G}(z)$, so by Goldschmidt's fusion theorem [5] $Q_{1} O\left(C_{G}(z)\right) \unlhd$ $C_{G}(z)$. By (1.7) and (1.8) $O\left(C_{G} /(z)=1\right.$. Finally, (3.9) and Patterson's theorem [9] yield $G \cong C o_{1}$, which we have assumed to be false.

4. He

In this section we assume $|Z(A)|$ is even. $\quad \mathrm{By}(1.6) Z_{2} \times Z_{2} \cong R \in \operatorname{Syl}_{2}(Z(A))$.
(4.1) (i) $N(E) / C(E)$ contains $3 A_{6}$ and induces S_{6} on $R^{G} \cap E$. Similarly for F.
(ii) There is an element g of order 3 and an involution y such that $\langle g, y\rangle \cong S_{3}$ and $\langle g, y\rangle$ induces S_{3} on R.

Proof. By (1.6) $N(E) / C(E)$ and $N(F) / C(F)$ contain $3 A_{6} . \quad$ By (1.7) $N(E)^{(\infty)}=$ $E L$, where $L \cong 3 A_{6}$ and $\langle g\rangle=Z(L)$ acts as an outer diagonal automorphism of A. Now $C_{A}(g) \cong A_{5}$ and we may assume that $F_{1}=F \cap C_{A}(g) \in \operatorname{Syl}_{2}\left(C_{A}(g)\right)$. Set $J=N_{L}\left(F_{1}\right) \cong S_{4} \times Z_{3}$. Then $E J \leq N\left(C_{E}\left(F_{1}\right) F_{1}\right)=N(F)$.

Let bars denote images in $N(F) / C(F)$ and suppose $\overline{N(F)}=3 A_{6}$. Then $\overline{E J} \cong S_{4} \times Z_{3}$ and $Z(\overline{E J})=Z(\overline{N(F)})$. This forces $\langle\bar{g}\rangle=Z(\overline{N(F)})$, whereas $[\bar{E}, \bar{g}]=\bar{E}$. Consequently $N(F)$ induces S_{6} on $R^{G} \cap F$. By symmetry, (i) holds. Consequently, $N(E) \cap N(R)$ induces S_{5} on $R^{G} \cap E-\{R\}$. and (ii) follows.
(4.2) Let $S=E F$ and $y \in S_{1} \in \operatorname{Syl}_{2}(N(S))$. Then either
(i) $S_{1} \in \operatorname{Syl}_{2}(G)$ and $S_{1} / S \cong E_{4}$, or
(ii) $S_{1} / S \cong D_{8}$ and $E \sim F$ in $N(A)$.

Proof. Let $S_{2}=N_{S_{1}}(E)$. By 4.1, $S_{2} / S \cong E_{4}$. As E and F are the unique elementary abelian subgroups of S of order 2^{6} we conclude either $S_{1} / S \cong D_{8}$ or $S_{1}=S_{2}$. In the first case $E \in F^{N(S)}$ and as $N(E)$ is transitive on $R^{G} \cap E, N(R)$ is transitive on $E^{G} \cap N(R)$, so $E \in F^{N(A)}$ and (ii) holds. In the second case we show $S=J\left(S_{1}\right)$, to conclude $S_{1} \in \operatorname{Syl}_{2}(G)$, so that (i) holds. If not there exists $E_{2}{ }^{6} \simeq U \leq S_{1}$ with $U \neq E$ or F. Then

$$
\begin{equation*}
\left|\operatorname{Aut}_{U}(E)\right| \geq\left|E: C_{E}(U)\right| \tag{*}
\end{equation*}
$$

But by 4.1.i, the representation of $\operatorname{Aut}_{G}(E)$ on E is determined and (*) forces $\operatorname{Aut}_{U}(E)=\operatorname{Aut}_{F}(E)$, so that $U \leq U E=F E=S$.
(4.3) $\quad S_{1} \in \operatorname{Syl}_{2}(G)$.

Proof. Suppose otherwise and let $g \in N\left(S_{1}\right)-S_{1}$ with $g^{2} \in S_{1}$. Then $S^{g} \neq S$. Let $Z=Z(S)=E \cap F$. If $Z^{g}=Z$, then g stabilizes the two element set $R^{G} \cap Z$. So, for some $s \in S_{1}, g_{s} \in N(R)$ and it follows that $g \in S_{1}$. Suppose, then, that $Z^{g} \neq Z$.

We have $Z=S^{\prime}$, so $Z^{g}=\left(S^{\prime}\right)^{g}$. By (4.2) $\left|E^{g} \cap S\right| \geq 2^{4}$ and so either ($E^{g} \cap S$) Z or $\left(F^{g} \cap S\right) Z$ is elementary of order at least 2^{5}, say the former. Therefore, $\left(E^{g} \cap S\right) Z \leq E$ or F and $S^{g} \leq N(E)$ or $N(F)$. Apply (4.2) to conclude that $Z^{g}=\left(S^{g}\right)^{\prime} \leq S$. Now $S \cap S^{g} \leq C\left(Z Z^{g}\right)$ and $Z Z^{g} \leq E$ or F. Since $\left|S^{g} S: S\right| \leq 4$ we necessarily have $\left|S \cap S^{g}\right|=2^{6}$ and $\left|S^{g} S: S\right|=4$. Then
$S \cap S^{g}=E$ or F, so $g \in N(E)$ or $N(F)$. But this is not the case.
(i) $N_{G}(S) / S O(C(S)) \cong S_{3} \times S_{3}$ or $S_{3} \backslash Z_{2}$
(ii) The structure of S_{1} is uniquely determined by $\left|S_{1}\right|=2^{10}$ or 2^{11}.

Proof. Let $A(S)=\operatorname{Aut}(S) / C_{\text {Aut }(S)}(S / Z(S))$. As $S \in \operatorname{Syl}_{2}(A)$ and $E_{4} \cong R \in$ $\operatorname{Syl}_{2}(Z(A))$ with $A / Z(A) \cong L_{3}(4)$, we may calculate in A to determine $Z(S)=E \cap F$ is partitioned by

$$
\left\{R, R_{0}\right\} \cup\{[E, s]: s \in S\}
$$

where $R_{0}=[Z(S), x]$ and x is of order 3 in $N_{A}(S)-Z(A) . \quad N_{G}(S) \leq N_{G}(Z(S))$, so $N_{G}(S)$ acts transitively on the two member set $R^{G} \cap Z(S)=\left\{R, R_{0}\right\}$ and $\left|N_{G}(S): N(R) \cap N_{G}(S)\right|=2=\left|\operatorname{Aut}(S): N_{\text {Aut }(S)}(R)\right| . \quad \operatorname{Out}_{\text {Aut }(A)}(S) \cong S_{3} \times S_{3} \cong$ $A(S / R)$ and $N_{A(S)}(R)$ is isomorphic to a subgroup of $A(S / R)$, so $\left.A(S) \cong S_{3}\right\rangle Z_{2}$ and $N_{A(S)}(R) \cong S_{3} \times S_{3} . \quad \operatorname{Out}_{N(E)}(S) \cong S_{3} \times S_{3}$, so (i) holds.

Let $T \in \operatorname{Syl}_{3}(A\langle g\rangle \cap N(S))$, and choose T so that $S_{1}=S N_{S_{1}}(T) . \quad C_{S}(T)=$ $1=C(T) \cap C_{\mathrm{Aut}(s)}(S / Z(S))$ as T is irreducible on $S / Z(S)$. Thus the product is semidirect and $N_{S_{1}}(T) \leq A(S) \cong S_{3} \backslash Z_{2}$. Next by $4.2, N_{S_{1}}(T) \cong E_{4}$ or D_{8}, and in the former case $N_{S_{1}}(T) \leq N(E)$. Thus $\left|S_{1}\right|=2^{10}$ or $2^{11}, T N_{S_{1}}(T)=N_{A(s)}(E)$ or $A(S)$, and $S_{1} T$, and hence also S_{1}, is uniquely determined by $\left|S_{1}\right|$.
(4.5) (i) S_{1} is isomorphic to a Sylow 2-group of He or $\operatorname{Aut}(\mathrm{He})$.
(ii) S_{1} contains a unique extraspecial 2-subgroup Q of order 2^{7} with $Z(Q)=Z\left(S_{1}\right)$.
(iii) $Q \leq N(E) \cap N(F)$.
(iv) $S_{1} / Q \cong D_{8}$ or D_{16}.
(v) $Q \cong\left(D_{8}\right)^{3}$.

Proof. (i) follows from (4.4) and the fact that the results obtained so far apply to $H e$ and $\operatorname{Aut}(H e)$. In particular we can embed S_{1} as a Sylow 2-group of $G_{1}=H e$ or $\operatorname{Aut}(H e)$. Let $\langle z\rangle=Z\left(S_{1}\right), C=C_{G_{1}}(z)$, and $Q=O_{2}(C)$. Then (iii), (iv), and (v) follow from the structure of G_{1}. Moreover $C / Q \cong L_{3}(2)$ or $P G L_{2}(7)$, with $E(C / Q)$ acting on $V=Q /\langle z\rangle$ as the sum of the natural module and its dual. In particular this forces $V=J(S /\langle z\rangle$), so Q is unique, and (ii) holds.
(4.6) Let $\langle z\rangle=Z(Q), X=E$ or F, and $I_{X}=O^{2^{\prime}}(C(z) \cap N(X))$. Then
(i) $I_{X} \cong E_{64}\left(S_{4} \times Z_{2}\right)$.
(ii) $I_{X} \neq N(R)$.
(iii) $|Q \cap X|=16$.
(iv) $Y=\left\langle I_{E}, I_{F}\right\rangle \leq N(Q)$.

Proof. By (4.1) and (1.7) $O^{2^{\prime}}\left(N_{G}(X)\right)=L \cong S_{6} / Z_{3} / E_{64}$, and $E(L / X)$ acts naturally on X. In particular $I_{X}=C_{L}(z) \cong E_{64}\left(S_{4} \times Z_{2}\right)$. As $S_{1} \cap N(X) \nsubseteq N(R)$,
(ii) holds. By (4.5) (v), $m(X \cap Q) \leq 4$ and by (4.5) (iv), $m(X \mid X \cap Q) \leq 2$, so (iii) holds. By (iii), $Q X / X \cong E_{8}$, so as $L / X \cong S_{6} / Z_{3}, N_{L}(Q X) / X \cong Z_{2} \times S_{4}$. As $\langle z\rangle=Z(Q X),\langle z\rangle \unlhd N_{L}(Q X)$, so $I_{X}=N_{L}(Q X)$. Hence (iv) holds.
(4.7) (i) $Y / Q \cong L_{3}(2)$.
(ii) $Q \mid\langle z\rangle$ is the sum of the natural module for Y / Q and its dual.
(iii) $N(Q) / Q O(N(Q)) \cong L_{3}(2)$ or $P G L_{2}(7)$.

Proof. By (1.7) we may take $O(N(Q))=1$. Embed S_{1} in G_{1} as in 4.5, and adopt the notation of that lemma. Let V_{1} and V_{2} be the two $E(C / Q)$-chief factors in $V=Q /\langle z\rangle$. Then $E Q / Q$ centralizes a hyperplane E_{1} of V_{1} and a point E_{2} of V_{2}, with $E_{1} E_{2}=[V, E]$. As $[E, Q] \leq E \cap Q \cong E_{16}, E_{1} E_{2}=(E \cap Q) /\langle z\rangle$. In particular each member of $E-Q$ induces an involution of type a_{2} on V, and $E F$ induces automorphisms in $\Omega_{\overline{6}}^{-}(2)$ on V. Therefore $Y=\left\langle E^{Y}, F^{Y}\right\rangle$ induces automorphisms in $\Omega_{6}^{-}(2) \cong A_{8}$ on $V . E F Q=S_{1} \cap Y Q$ with $E F / Q \cong D_{8}$ and $Y=O^{2^{\prime}}(Y)=O^{2}(Y)$, so $Y Q / Q \cong A_{6}, A_{7}$, or $L_{3}(2)$. However there is one class each of A_{6} 's and A_{7} 's and two classes of $L_{3}(2)$'s in A_{8}. As the involutions in $E F Q / Q$ are of type a_{2}, we conclude (i) and (ii) holds. Similarly as $S_{1} / Q \cong D_{8}$ or D_{16} and $Y / Q \cong L_{3}(2)$ is a transitive subgroup of $N_{G}(Q)^{\infty} / Q \leq A_{8}$, (iii) holds.
(4.8) Q is strongly closed in S_{1} with respect to $C(z)$.

Proof. By (4.5) (ii), Q is weakly in S_{1} with respect to $C(z)$. Set $\bar{N}(Q)=$ $N(Q) / Q O(N(Q))$ and $C(z)^{*}=C(z) /\langle z\rangle$, so that $V=Q^{*} \cong E_{64}$. Assume Q is not strongly closed. By (2.4) of [12], there exists $g \in C(z)$ such that, setting $L=\left\langle Q, Q^{g}\right\rangle, B=N_{Q}\left(Q^{g}\right), D=Q^{g} \cap N(Q)$, and $I=Q \cap Q^{g}$, the following hold:
(1) $L / B D \cong L_{2}\left(2^{n}\right), S z\left(2^{n}\right)$, or $D_{2 m}, m$ odd;
(2) $B D / I$ is the sum of natural modules for $L / B D$; and
(3) $I \neq D$.
$m(\bar{D}) \leq m(\bar{S})=2$. But by Corollary 4 in [5], $m([V, d]) \leq m(\bar{D})$ for each $d \in D-I$, while by (4.7), $m([V, s]) \geq 2$ for each $s \in S_{1}-Q$. Hence $m(\bar{D})=2$ and $m([V, d])=2$ for each $d \in D-I$. By (4.7) it follows that $\bar{D} \leq E(\bar{N}(Q))$ and that $[D, V]=C_{V}(D)$ is of rank 3. But $B=[Q, V] I$, so $B^{*}=C_{V}(D)$ is of codimension at most 2 in V, a contradiction.
(i) $Q=F^{*}\left(C_{G}(z)!\right.$.
(ii) $C_{G}(z) / Q \cong P G L_{2}(7)$.

Proof. By 4.8 and Goldschmidt's fusion theorem [5], $Q O(C(z)) \unlhd C(z)$. By (4.7) and (1.8) $O(C(z))=1$. If $C(z)=Y$, then by [4], $G \cong H e$, contrary to our assumption that G is a counter example to the Main Theorem. So (4.7) completes the proof.

$$
\begin{equation*}
G \neq O^{2}(G) \tag{4.10}
\end{equation*}
$$

Proof. All involutions in $E F$ are fused to z or $r \in R^{\ddagger}$ in $N_{G}(E)$ and $N_{G}(F)$. All involutions in Y are fused into $E F$ under Y. But by (4.9) (ii) $\left|S_{1}\right|=2^{11}$, so as $R^{G} \cap Z(S)$ is of order $2,\left|S_{1} \cap N(R)\right|=2^{10}$. In particular some involution $t \in S_{1} \cap N(R)-Y$ induces a graph-field automorphism on A. Then $[R, t]=1$ and $C_{A}(t) / R \cong E_{9} Q_{8}$. Then $m_{3}\left(C_{G}(t)\right)>1$, so by (4.9) $t \notin z^{G}$. Hence if (4.10) is false, $t \in r^{G}$ by Thompson transfer. As $[R, t]=1$, this contradicts (1.1).

As G is simple, (4.10) yields a contradiction. This completes the proof of the Main Theorem.

References

[1] M. Aschbacher: Standard components of alternating type centralized by a 4-group, (to appear).
[2] M. Aschbacher and G. Seitz: Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1-92.
[3] M. Aschbacher and G. Seitz: On groups with a standard component of known type, Osaka J. Math. 13 (1976), 439-482.
[4] U. Dempwolff and S. Wong: On finite groups whose centralizer of an involution has normal extra special and abelian subgroups, I, J. Algebra 45 (1977), 247-253.
[5] D. Goldschmidt: 2-fusion in finite groups, Ann. of Math. 99 (1974), 70-177.
[6] D. Holt: Transitive permutation groups in which an involution central in a Sylow 2-subgroup fixes a unique point, (to appear).
[7] C. Nah: Unpublished.
[8] T. Ostrom and Wagner A.: On projective and affine planes with transitive collineation groups, Math. Z. 71 (1959), 186-199.
[9] N. Patterson: Thesis, University of Cambridge, 1972.
[10] N. Patterson and S. Wong: The nonexistence of a certain simple group, J. Algebra 39 (1976), 138-149.
[11] F. Smith: On the centralizers of involutions in finite fusion-simple groups, J. Algebra 38 (1976), 268-273.
[12] F. Timmesfeld: On elementary abelian TI-subgroups, J. Algebra 44 (1977), 457476.

Michael Aschbacher
Department of Mathematics California Institute of Technology Pasadena, California 91125 U.S.A.

Gary M. Seitz
Department of Mathematics
University of Oregon
Eugene, Oregon 97403
U.S.A.

[^0]: * Research supported in part by N.S.F. grant 7721554
 ** Research supported in part by N.S.F. grant 78-01944

