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1. Introduction

In this paper, we consider the equivariant KO-rings and J-groups of spheres
which have linear pseudofree circle actions.

Let S' be the circle group consisting of complex numbers of absolute
value one. For a sequence p=(py, ps, ***, pm) Of positive integers, we define
the S'-action @, on the complex m-dimensional vector space C™ by

Py, (21,22 *+*5 B)) = (s712y, §722,, -+, sP73,,)

and denote by
SZM-I(PD Do s Pm)

the unit sphere S*! in C™ with this action @,. Then the S'-action on
S?m= by, Py ++, Pw) 18 said to be pseudofree (resp. free) if (p;, p;)=1 for i 45 and
pi>1 for some 1=<i<m (resp. p)=p,=+*+=pn,=1) (see Montgomery-Yang [19],

[207]).

The main results of our paper are as follows:

Theorem 4.7. Let p; (1 =<1 =<m) be positive odd integers such that (p;, p;)=1
for i=£j. Then there is a monomorphism of rings :

©: KOS(S™ (s, po, > pw)) = KO(CP* )® DRO(Zy,) .

(For details see §4.)
Let G; (=1) denote the stable homotopy group =,.(S") (n=i+42). We
define s(k)=f[ |G;| for k>0, where |G;| denotes the order of the group G; and
i=1
put s(—1)=1.

Theorem 5.4. Let p; (1=<i <m) be positive odd integers such that (p;, p;)=1
for i%j and (p;, s(2m—3))=1 for 1<i<m. Then there is a monomorphism of

groups:
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&: Jo(S™ NPy, b -+, b)) = JCP")® Dz, (+) -

(For details see §5.)

The paper is organized as follows:

In §§2 and 3, we consider a generalization of the results due to Folkman
[9] and Rubinsztein [23] and prove some preliminary results. In §§4 and 5,
we study an isomorphism and an S’-fiber homotopy equivalence of real S'-vector
bundles over the pseudofree S*-manifold S™~Y(p,, p,, -+, pn) respectively. In
§6, we consider the problem on quasi-equivalence posed by Meyerhoff and
Petrie ([18], [21]).

2. Equivariant homotopy

Let n be a positive integer. Denote by Z, the cyclic group Z/nZ of order
n. If V is a real representation space of Z,, we denote by S(V) its unit sphere
with respect to some Z,-invariant inner product. Denote by [X, Y] the set of
homotopy classes of maps from X to Y. In this section, we shall prove the
following theorem (cf. Folkman [9; Proposition 2.3] and Rubinsztein [23;
Corollary 5.3]).

Theorem 2.1. Let V be a complex Z, -representation space such that Z,
acts freely on S(V) and dimp V=2m. Let X be a Z,-space which satisfies the
following conditions:

(1) X is path-connected and q-simple for 1 <q=<2m—1,

(ii)  the map of X into itself given by the action of a generator of Z, is homotopic
to the identity,

Hom(Z,, my_(X))=0  for 1=<i<m,

W) Bxt(Z,, ma(X)=0  for 1<i<m—1.

If there exist Z,maps f,, fi: S(V)— X such that [f]=[f]€[S™ ", X], then f,
and f, are Z ,-homotopic.

Before beginning the proof of Theorem 2.1, we require some notations and
lemmas.

Let M be a Z,-space S(V)x [0, 1], where [0, 1] is the unit interval with the
trivial Z,-action. Then M is a compact smooth Z,-manifold with a free Z,-
action. Let x, be a point of S(V). We put N=S(V)x {0, 1} U {x,} X [0, 1]
and M'=M|Z,. Let z: M— M’ be the natural projection. We put N'=z(N).

Let R be an arbitrary abelian group. By the universal-coefficient theorem,
we have the following lemmas.

Lemma 2.2. There are isomorphisms:

HYM,N;R)=0  for 0=¢q=<2m—1,
H*(M, N; R)=R.
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Lemma 2.3. There are isomorphisms:

HM',N'; Ry=HM',N'": R)=0,
H*Y(M', N'; R) = Ext(Z,,R)  for 2<q=<m,
H*(M', N'; R) = Hom(Z,, R)  for 1=gq<m—1,
H*™M',N'; R)=R.
Since the Z,-action on M is free and orientation-preserving, we have
Lemma 2.4. Assume that Hom(Z,, R)=0. Then the homomorphism
x*: H™(M', N'; R) — H*(M, N; R)
1S injective.

Proof of Theorem 2.1. In order to prove Theorem 2.1, it suffices to
show that there exists a Z,-map F: M— X such that F|S(V)X {0}=f, and
FISW)x {1} =f..

Since [f]=[fi]€[S*"!, X], there exists a continuous map F’: M —X such
that F'|S(V)x {0}=f, and F’|S(V)x {1}=f,. Since M is a compact smooth
Z,~-manifold and Z, acts freely on M, we can consider the fiber bundle B:

X—>MxX—->M.

Zn

A cross-section s, of the part of B over N’ (==(IN)) is defined by
so(m(2)) = [2, F'(2)]eMxX  for zEN.
Zn

To prove Theorem 2.1, it suffices to show that the cross-section s, defined on
N’ is extendable to a full cross-section of B. Because there is a one-to-one
correspondence between Z,-maps from M to X and cross-sections of 3.

Let K be a simplicial complex. Denote by K? the g-skelton. Denote by
|K | the geometric realization of K in the weak topology. It is easy to see that
there exist finite simplicial complexes K, and K, which satisfy the following:
(2.5) |K,|=M and |K,|=M",

(2.6) there exist subcomplexes L,C K, and L,C K, such that |L,|=N and
| L,| =N",

(2.7) there exists a simplicial map 7: (K,, L;)— (K3 L) such that |7]|=
7: (1 Kyl | L)) = (1K, L)

Let B(m,.,) (1=¢=2m) be the bundles of coeflicients associated with
m,-(X) (see Steenrod [27; §30]). By the assumption (i), B(z,-,) (1=9=2m)
are product bundles. Therefore the cohomology groups H'(M', N'; B(=,.,))
are isomorphic to the ordinary cohomology groups H'(M’', N'; =,_,(X)) for
1<¢=<2m. By the assumption (iii) and Lemma 2.3, we have



536 S. KAKUTANI

HY(M',N'; z,_(X)) =0 for 1=<¢<2m—1.

It follows from Steenrod [27; 34.2] that there exists a cross-section of B defined
on |[K3" (D |L,|):

s |K5" > Mx X
Zn
such that s,| | L,| =s,. There exists an obstruction cohomology class
C(s)eH™M', N'; mym-(X))

such that its vanishing is a necessary and sufficient condition for ;| | K3"~*U L,|
to be extendable over M’'. Thus we shall show that ¢(s;)=0. Consider the
product bundle B’:

X->MxX—->M.

Let B'(n,_,) (1=¢=2m) be the bundles of coefficients associated with z,_,(X).
Since B’ is a product bundle, B'(z,_,) (1=g=2m) are also product bundles.
The natural projection M X X—Mx X induces the bundle maps z: B'— B

Zn
and 7,_,: B'(r,-1)—> B(w,-,)) (1 = ¢ = 2m) covering z: (M, N)—(M', N'). Let
5,0 | K31 M x X be the cross-section of B’ induced by s, and =. It follows
from (2.7) that we have

7*(2(s1) = T(s5) EH™M, N; 703m_(X)) .

By the assumption (iii) and Lemma 2.4, z* is a monomorphism. Hence
¢(s))=0 if and only if (s;)=0. Let s;: M=|K,|—>MXX be a cross-section
of B’ defined by

53(2) = (3, F'(2))eMxX  forzeM.
We put
s, =8| |[K" '] |[Ki" |- MxX.

Then s, and s, are cross-sections of B’ defined on |Ki"'|(D|L,|) such that
$) 1 Ly|=s,| |L;]. By Lemma 2.2, we have

H'M,N; n(X))=0  for 0=¢=<2m—2.
It follows from Steenrod [27; 35.9] that
C(s)) =C(s)EH™(M, N; myp_r(X)) .
It is obvious that (s;)=t¢(s)=0. Hence we have ¢(s,)=0. q.e.d.

Corollary 2.8. Let X and V be as in Theorem 2.1. Suppose that
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() X,
(ii) there exists a Z,map f: SV)—X such that [f]=0&[S™, X]
(== 1(X))-
Let y, be an arbitrary point of X?. Then there exists a Z,-map
F:DV)—- X

such that F|S(V)=f and F(0)=y,. Here D(V) denotes the unit disk.

3. Equivariant maps which are equivariantly homotopic to zero

Let 7 be a positive integer. Let V and W be real Z,-representation spaces
with dimg V=dimp W=k>0. Let

pvs pw: Z,— GL(k, R)

be the Z,-representations afforded by V, W respectively. Then a Z,-action on
GL(k, R) is given by

soA = py(s)Apy(s)™! for s€Z,, AcGL(k, R),

and denote by GL(V, W) this Z,-space. Remark that GL(k, R) has two connected
components GL*(k, R) and GL™(k, R). If n is an odd integer, then we have

PV(Zn)) PW(Zn)CGL+(k’ R) .

Hence GL*(k, R) and GL™(k, R) are Z,-subspaces of GL(V, W) and are de-
noted by GL*(V, W) and GL~(V, W) respectively.

Let F(S(V), S(W)) denote the space of homotopy equivalent maps from
S(V) to S(W) with the compact-open topology. A Z,-action on F(S(V), S(W))
is given by

(5°f)(v) = sf(s'v) for s€Z,, fEF(S(V), S(W)), veSV).

It is well-known that F(S(V), S(W)) has two connected components F*(S(V),
S(W)) and F~(S(V), S(W)) representing maps of degree +1 and —1 respectively.
If n is an odd integer, then F*(S(V), S(W)) and F~(S(V), S(W)) are Z,-sub-
spaces of F(S(V), S(W)).

It is well-known that
(3.1) GLXV, W) and F*(S(V), S(W)) (=) are path-connected and g-simple
for ¢>0.

Moreover it is easy to see that
(3.2) If nis an odd integer, then the maps of GL*(V, W) and F*(S(V), S(W))
(=) into themselves given by the action of a generator of Z, are homotopic to
to the identity.
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Proposition 3.3. Let n be a positive odd integer. Let V and W be real
Z -representation spaces with dimp V=dimg W=~k. Let U be a complex Z ,-repre-
sentation space such that Z, acts freely on S(U) and dimg U=2m. Assume that

(1) k=2m+1,

(ii) there exists a Z,map f: S(U)=GL(V, W) such that [f]=0&[S*,
GLY(V, W),

(ii))GLXV, W)= £¢,
where E=+or —. Then there exists a Z,~map F: D(U)— GL(V, W) such that
F|S(U)=f.

Proof. It is well-known that

Z, ifi=0,1mod8,
7(GL(V,W))={ 0  ifi=2,4, 5, 6mod8,
Z  ifi=3, 7modS$,

for 1<:<k—2. Since nis odd, we have

{ Hom(Z,, my_(GL*(V, W)))=0 for 1=<i<m,
Ext(Z,, nu(GLY(V, W))) =0 for 1<i<m—1.

Therefore the result follows from Corollary 2.8. q.e.d.

Proposition 3.4. Let n be a positive odd integer. Let V and W be real Z,-
representation spaces with dimp V=dimg W=k. Let U be a complex Z,-repre-
sentation space such that Z, acts freely on S(U) and dimp U=2m. Assume that

() (n, sm—1)=1,

(i) k=2m+2,

(iii) there exists a Z,-map f: S(U)—F*(S(V), S(W)) such that [f]=0&
S, F{(S(V), S(W))],

(iv) F(S(V), S(W))* +¢,
where E=+- or —. Let @ be an arbitrary element of F*(S(V), S(W))?. Then
there exists a Z,-map F: D(U)—F(S(V), S(W)) such that F|S(U)=f and
F0)=o.

Proof. It follows from Atiyah [4; p. 294] that there exist isomorphisms
z(F(S(V), S(W)))=G;  for 1<i<k—3.
By the assumptions (i) and (ii), we have

{ Hom(Z,, 7y_(F(S(V), SV)))) =0  for 1<i<m,
Ext(Z,, m(F*(S(V), S(W)))) = 0 for 1<i<m—1.

Therefore the result follows from Corollary 2.8. q.e.d.
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4. Equivariant KO-rings

In this section, we consider an isomorphism of S'-vector bundles over
S Y py, Py +++, p) When the S'-action is free or pseudofree.

Let V be a real S'-representation space. Let X be a compact S*-space.
Denote by V the trivial S*-vector bundle

V—>XxV->X.
Let £ and 5 be real S'-vector bundles over X with dimg £=dimp». Let
p: Hom(§, ) = X

be the S'-vector bundle defined by Atiyah [3; §1.2] and Segal [25; §1]. Let
Iso(¢, n))cHom(&, n) be the subspace of all isomorphisms from £, to 7, for
x€ X, where £, (resp. 7,) denotes the fiber of £ (resp. ) over x. Clearly,
Iso(£, 1) is an S*-subspace of Hom (£, ») and

(4.1) g =p|Is0(E, 7): Iso(§, n) > X

is a surjective S*-map. We remark that £ and % are equivalent as S'-vector
bundles over X if and only if there exists an S'-cross-section of ¢ defined on X.
Let p=(py, P2 ***, Pm) be a sequence of positive integers. Denote by
D?™(p., Py, +++, Pn) the unit disk in C™ with the S'-action @, (see §1).
Let m>1 be an integer. We put

M, = S™ Y(py, pa ***s D1 1, -+, 1) for 1=k=m,
Sy = S™3(py, pa = Pr-1p 1, =+, 1) for 2<k=m,
D, = D™ (py, Py ***s Pr-1p 1, ==+, 1) for 2<k=<m,
M,= S™(1,1, -, 1),
S, =8"31,1,--,1),
D, =D"171,1,.-,1).

Here we remark that 0D,=.S, for 1=k=m.
In the following, for every positive integer 7, we always regard the cyclic
group Z, as the subgroup of S* and regard an S'-space as a Z,-space in respec-

tive context.
We define a Z,,-map j,: D,— M, by

jk(zl’ 0ty Bp-1 By 0y zm—l) = (2‘1, **ty Bp-b \/1— '2’1[2—"‘— |.2‘m__1|2; ks "',Zm_l) .

It is easy to see that j, is a Z,,-embedding and j;|S;: Sy—>M, is an S'-embed-
ding. In the following, D, and S, are regarded as a Z, -invariant subspace of
M, and an S'-invariant subspace of M, by j, respectively. Let e; (1=j=m) be
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the j-th unit vector of C". Then we see that e, &, **+, 6_,ES; and ¢,€D, as
the center of the disk.
We define a continuous map a: S'X D,—M, by

a(s, 2) = sz for s&€S', z€D,.
Then we have
Lemma 4.2. « is an identification map.
The proof is easy.

Lemma 4.3. Let X be an S'-space and let p: X—M, be a surjective S*-map.
If there exists a Z, ~cross-section t,: Dy—X of p| p~'(Dy) such that t,|S,: S,—X
is an S'-cross-section of p| p~'(S), then there exists an S'-cross-section t: M,— X of
p such that t|D,=t,.

Proof. By Lemma4.2, a: S* X D—>M, is surjective. Thus, given z€M,,
there exists s&.S* such that s™'zeD,. Define ¢t: M,—X by

(=) = st(s'2),

where s& S is chosen as s7'z€D,. Then it is easy to see that ¢ is a well-defined
S'-cross-section of p such that z|D,=t¢,. q.e.d.

Define S'-maps

hk: Mk_>Mk+l for Oékém_l
by

Di+a
hk(zla **ty By Bp+1s Bpv2y *°°H zm) = (.2’1, > B z;“ 2 B zM)
“(zl’ °cy zk: zkiil) zk+2; °ty zm)“
and we put k,=id: M, — M,. Moreover we define
By = hyoh,_jo---ohy: My, — M,  for 0Sk=<m.
Then it follows that
Tu(e;) = e; for 0Zk=m, 1=j=<m.

Let £ and 5 be S'-vector bundles over M,, with dimg E=dimg n=n. We
put

Vk = (ﬁf&)ek = Ee,,’ le = (7‘2&77)0,, = TNey for 1sk=m.

Here I{,,, W.’i (1=k=m) are regarded as Z,-representation spaces. Let
qi: Iso(A¥E, hi¥n)—M, (0=<k=<m) be S'-maps defined by (4.1). Then we have
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Lemma 4.4. There are Z, ~-homeomorphisms
Pyt qk_l(Dk) - D,,X GL(V],, Wk) fof lékém

such that the following diagram commutes:

g5 (Dy) > Dy X GL(Vy, W)

Pk
il !I;l(Dk)\“ / T
Dlz 1)

where 7, denotes the projection on the first factor.

Proof. Since D, is Z,-contractible, there exist isomorphisms of Z, -
vector bundles:

{ a: (ﬁf&)le_’Dkx Vi,
B: (anHDk_)DkX W,.

Let §: Iso(Dy X V,, Dy X W)= D, be an S'-map defined by (4.1). Then we

can define Z,,~homeomorphisms

{ yry: Iso((B¥E)| Dy, (Bifn) | Dy) — Iso(Dy X Vi, DX W),
’\II‘Z: ISO(DkX Vln Dk X Wk) - D,,X GL(V],, Wk) y

{ ‘P’l(fx) = Bx°fx°ax_1 for xEDlnfxEq;l(x) ’
Vig:) =(x, 8;)  for xED,, g.€3+(x),

respectively. It is obvious that a Z,,-homeomorphism
@i = Vot g5 (Dy) = Iso(BFE) | Dy, (Bi¥n)| Dy) — DX GL(V,, W)
satisfies our condition. q.e.d.

Define an S'-map k: My— M,, by

)= (=l 252, +-, 24m)

h(zl .2'2 e 2 —_ .
» %2 »%m ”(Zfl, zé’z, ...,z”i;'m)”

Lemma 4.5. Let m>1 be an integer and let p; (1<i=<m) be positive odd
integers with (p;, p;)=1 for i &j. Let £ and 7 be real S'-vector bundles over M,
such that dimgE=dimpy=n=2m—1 and EDOR' as an S-vector subbundle.
Assume that

(1) H*E and h*y are equivalent as S'-vector bundles over M,,

(i) &, and »,, are equivalent as Z, -representation spaces for 1<k=m.
Then & and n are equivalent as S'-vector bundles over M,,.
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Proof. Let g,: Iso(h¥E, hify)—M, (0=<k=m) be S'-maps defined by (4.1).
We shall show that there exist S'-cross-sections of g, (0=k=m):
ty: M, — Iso(BFE, hify),

by induction. Then the existence of the last S'-cross-section ¢, shows the
result.

It follows from Iberkleid [11; Theorem 3.4] that the S*-maps Froy h: My—M,,
are S'-homotopic. Hence, by the assumption (i), we have

h¥Es=h*E=h*y=hify ,
where = stands for is equivalent to. Therefore there exists an S’-cross-section
of g,:

to: My — Iso(h¥E, hiy) .

Let % be an integer greater than zero. We now assume that there exists an
S'-cross-section of ¢,_;:

te_y: My, — Iso(Bf.E B 1) .
Remark that
iik—-l = ﬁk°hk—1: My,—M,.
It follows that there exist S'-vector bundle maps
{ Ek—l: ii;zk—lg g E;zkg ’
E}i-—l: %?-171 - E;kﬂ ,

covering h;_,: M,_,— M,. We define an embedding j;: D,—M,_, by

ji(zlx 0y Bp-1 Ry 0t zm—l) = (zl’ *ty Bp-1y \/1-— Izllz—---— Izm_llz’ By 't zm—l)'

Then the restriction ji|S;: Sy—>M,_, is an S'-embedding. Thus D, and S,
are also regarded as a subspace of M,_, and an S'-invariant subspace of M,_,
by ji respectively. We put Di=ji(D,) and Si=ji(S;). It is easy to see that
{ hy_|Di: D — D,C M,,
hk—IIS’,?: ]’;—>SkCMk,

are a homeomorphism and an S'-homeomorphism respectively. It follows
that the restrictions

{ By | {(BE_.E) | D3} : (B¥_\E)| D} — (BEE)| Dy,
Ri_i| {(BE1m) | D3} : ()| D} — (Bikn) | Dy,

are isomorphisms of vector bundles. Moreover the restrictions
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{ Foos | {(BE18) | S} :
Rio | {(R¥-m) | S} :

are isomorphisms of S*-vector bundles. Using the S'-cross-section #,_,: M,_,—
Iso(A¥_.&, hi_1n), we can define a continuous cross-section of g, |gx'(D,):

u,: D, — gi'(Dy)CIso (ﬁ;}"g‘ﬁ;}‘n)

by putting uy(x)= {his|(BF18).} otsoi((Ba-s| DE) ()0 {soy | (BELE)} for xE
D,C M. Then the restriction

RELE)| St — (BEE)| S,
B im)| St~ (B¥n)|Ss,

~—~~ o~

v = | Syt Sy — qi'(Sy) CIso (BFE, i)

is an S'-cross-section of ¢,|qz'(S;). Let m: Dy X GLY(V,, W) — GL (V,, W)
be the projection on the second factor. It follows from Lemma 4.4 that v,
yields a Z, -map

v,,: Sk - GLE(V]“ Wk)
by 04(x)=my(@y(vi(x))) for xES,, where &=+ or —. Since v,=u,|.S,, we have
[2] = 0€[S™3, GLY(V,, W})] .

By the assumption (ii), V, (=(h}E),,=E&,) and W, (=(kin).,= 7.,) are
equivalent as Z, -representation spaces and V;DR'. This shows that

GLe( Vk) Wk)ZP/, :I:(b .

Moreover we remark that p, is an odd integer and Z,, acts freely on .S,.
Therefore it follows from Proposition 3.3 that there exists a Z, -map

'ZU,,: Dk - GLE(V]“ Wk)

such that @,|S,=?,. By Lemma 4.4, we can define a Z, -cross-section of
g5 (Ds):
wy: Dy — qi'(Dy) CIso (BFE, hifn)

by wy(x)=@5 (%, Wi(x)) for xED,. Since w,|S,=v,, it follows from Lemma
4.3 that there exists an S'-cross-section of ¢,:

ty: My, — Iso(R¥E, hify) .
In this way, we obtain S'-cross-sections £y, t;, ***, f,. q.e.d.
The following lemma is due to Segal (see [25; Proposition 2.1]).

Lemma 4.6. Let G be a compact Lie group and let X be a compact Hausdorff
G-space such that G acts freely on X. Then the projection pr: X —X|G induces
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an isomorphism of rings
pr*: KO(X|G) — KO4(X) .
We put
= (pr*)": KOg (M) —> KO(CP™™).
Denote by RO(G) the real representation ring of G. We define a homomor-
phism of rings
©: KOK(S™(py, B, -+, b)) = KO(CP)® S RO(Z,)
by putting
D(E—n) = w(E—*7)® D (Ea—na) -
Then we have

Theorem 4.7. Let p; (1=i=m) be positive odd integers such that (p;, p;)=1
for i &j. Then the homomorphism @ is injective.

Proof. If m=1, then KOg(S'(p,))=KOs(S"/Z,)=<RO(Z,). Therefore
we assume that m>1. If ®(E—»)=0, then A*¢—h*p=0 in KOga(M,) and
£,—n,=0 in RO(Z,,) for 1=i<m. Thus there exists an S'-representation
space U such that A¥(EDU) is equivalent to A*(»@DU). Then we put

¢ =EDR™PU and 5 =nOR"DU.

Since £’ and %’ satisfy the assumption of Lemma 4.5, £’ is equivalent to »’. It
follows that

E—n:f'—-n':O in KOSI(M,,,).
Hence @ is injective. q.e.d.

Next we consider the condition (i) of Lemma 4.5. Let ES? (resp. BS") be a
universal S'-space (resp. a classifying space for S?). Let z;: ES'X M,—BS!
(0=<k=m) be the natural projection. s

Lemma 4.8. The homomorphism
n¥: HY(BS'; Z) - HY(ES'X M,; Z)
s1

is an tsomorphism for 0=<q=<2m—2. Moreover the integral cohomology ring of
ES'X M, is
s1
H*ES'X M,; Z) = Z[c]/(¢c™),
Ss1

k
where deg c=2 and q=11I p..
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Proof. The map 7, is a projection of a sphere bundle associated with the
complex m-plane bundle 1P+ Dyt DD+ B», where 7 is the canonical com-
plex line bundle over BS'. Then the result follows from the Thom-Gysin
exact sequence. q.e.d.

Lemma 4.9. Let v: ES*X My— M,/S'=CP""! be the natural projection.
Then s

™ H¥(CP"'; Z) — H*(ES‘XIMO; Z)
S
1s an isomorphism.

Proof. The result follows from the Vietoris-Begle Mapping Theorem (see
Bredon [6; p. 371], Spanier [26; p. 344]).

Lemma 4.10. The homomorphism
(Ixh)*: H(ES'XM,; Z) - HY(ES'x M,; Z)
81 s1 S1
is an isomorphism for 0=<q=<2m—2.

Proof. Consider the following commutative diagram:

id
HY(BS") i > H(BS")
lni’,,‘ (Ixh)* 17:3“
HYES'x M) ——— > H{(ES*x M,) .
81 S1

Since z¥ and #z¥ are isomorphisms for 0=<¢=<2m—2, (1 X k)* is an isomorphism
1
for 0=¢=<2m—2. s g.e.d.

Lemmad4.11. Let & and u be real S*-vector bundles over M, with dimp §=
dimp n=~k. Assume that m=2mod 4. Then the following two conditions are
equivalent:

(i)  w(h*E)=p(h*y) in KO(CP"™),

(i1) p,-(ES‘x’g‘)———pi(ESlén) in H"'(ESlﬁ M,; Z) for 1<i=<min ([k/2],

[(m—D)j2). *~
Here p,(ES* X ) (resp. p:(ES* X)) denotes the i-th Pontrjagin class of the bundle
St S1

ES'X&E—ES'X M,, (resp. ES* X n— ES'X M,,).
81 81 S1 S1

Proof. Remark that 7%(u(h*€))=ES"' X h*E, where 7: ES" x M,—>M,|S'=
st 1
CP™"! is the natural projection. Then we have
TH(pi(i(h*E))) = PAES" X B*E)

and
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(1 B*(p(ES* X £)) = p{(ES' X h¥E) .
S1 S1 S1

Hence it follows from Lemmas 4.9 and 4.10 that the condition (ii) is equivalent
to the following:

piu(h*E)) = pi(u(h*y)) in H¥(CP"™; Z)

for 1 </=<min([k/2], [(m—1)/2]). Since m=*E2mod 4, KO(CP™™")is a free abelian
group (see Sanderson [24; Theorem 3.9]). It follows from Hsiang [10; §3]
that

pi(n(h*E)) = pi(u(h*n))  for 1=i<min([%/2], [(m—1)/2])
if and only if
w(h*E) = u(h*n) in KO(CP™™). q.e.d.
By Theorem 4.7 and Lemma 4.11, we have

Theorem 4.12. Let m be a positive integer such that m=%E2mod 4. Let
pi (1=i<m) be positive odd integers with (p;, p;)=1 for i=j. Let & and n be
real S*-vector bundles over S™ (P, pa *++, pn) with dimp E=dimgn=~k. Then
E=n in KOg(S*™ Py, po ***, Pw)) if and only if the following two conditions are
satisfied:

(1) &,=n, in RO(Z,,) for 1<i<m,

(ii) p,-(ES‘X’g’)zp‘(ES‘;fn) for 1 <i<min([k/2], [(m—1)/2]).

S,l

REMARK 4.13. Let G be a compact Lie group and let X be a finite G-CW-
complex in the sense of Matumoto [17]. Let & and % be G-vector bundles
over X such that they are stably equivalent. But, in general, £ and 5 are not
equivalent even if dim £ =dim7>dim X (cf. Sanderson [24; Lemma 1.2]).
For example, for an arbitrary integer n=0, we put

{ &= SY7, 1) x*DtDnt ,
7= S¥7, 11) X *Pt"*Dnt ,

where #? (d €Z) denotes the complex one-dimensional S'-representation space
defined by #/(s)z=s’2 for s&S', z€C*. It follows from Lemma 4.5 that

EQR'=OR".
Now we assume that there exists an isomorphism of S'-vector bundles:
w: E—y.

Since & (resp.7) is a complex vector bundle, & (resp. 7) has a canonical orien-

tation. Then the isomorphism of Z;-representation spaces w,,: &, —>7,
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is orientation-preserving, but the isomorphism of Z-representation spaces
w,,: &, —>n,, is orientation-reversing. Since S® (7, 11) is connected, this is a
contradiction. Therefore £ and 7 are not equivalent.

5. Equivariant J-groups

In [12] and [14], Kawakubo has defined the notion of the equivariant J-
group as follows:

Let G be a compact Lie group and let X be a compact G-space. Let £ and
n be real G-vector bundles over X. Denote by S(&) (resp. S(z)) the unit
sphere bundle associated with & (resp. %) with respect to some S'-invariant
metric. S(£) and S(y) are said to be G-fiber homotopy equivalent if S(£) and
S(x) are homotopy equivalent by fiber-preserving G-maps and G-homotopies.
Let T¢(X) be the additive subgroup of KOy(X) generated by elements of the
form & —7, where £ and 7 are G-vector bundles over X whose associated sphere
bundles are G-fiber homotopy equivalent. We define the equivariant J-group

Je(X) by
Jo(X) = KOx(X)|Te(X)

and define the equivariant J-homomorphism J; by the natural epimorphism
Je: KO(X) = J5(X) .

When X is a point, J;(X) is denoted by J4(*).

In this section, we shall consider the equivariant J-group of S**7'(p,, p,, ***,
pm) When the S'-action is free or pseudofree. We shall use freely the notations
in §§3 and 4.

Let X be a compact S'-space. Let £ and 7 be real S'-vector bundles
over X with dimg E=dim,%. Let E(S(£), S(»)) denote the disjoint union of
the function spaces F(S(£,), S(7,)) (see §3) and define

CRY ¢’ E(SE), St) — X
by
¢'(F(SE), S(n.) = .

Then there exists a canonical topology for E(S(§), S(n)) so that E(S(£), S(n))
is the total space of a fiber bundle with projection ¢’ and with fibers F(S(£.),
S(n,)). An S'-action

p: S'XE(S(E), S(n)) = E(S(£), S(»)),

is given by p(s, f) (v)=sf(s"'0) for s&€S', fEF(S(.), S(n.)), vES(E,:). Then
q': E(S(§), S(n))— X is an S*-map.
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Let p; (1=i{<m) be positive integers. Let & and 5 be real S'-vector
bundles over M,, (=S Y(p,, ps ***, pm)) With dimpE=dimgn. We choose and
fix some S'-invariant metrics on £ and ». Then the S'-vector bundles #*E,
h*y, h¥E and hfy (0<k<m) have canonical S'-invariant metrics induced by
the S'-invariant metrics on £ and ». We put

V= (h¥€),, = E,,, Wi= (hfn),,=m, for ISk<m.

Here V, and W, (1<k<m) are regarded as orthogonal Z, -representation
spaces. Let gi: E(S(R¥E), S(hifn))— M, (0=k=m) be S'-maps defined by (5.1).
Then we have

Lemma 5.2. There are Z, -homeomorphisms
@i ¢i (D) = Dyx F(S(V.), SWy)  for 1<k=m

such that the following diagram commutes :

4

47Dy P s DX E(S(V), S(WY)

gt qi“‘(DN / ™

Dk)

where =, denotes the projection on the first factor and the restriction
Pilgh ™ (€): gi (es) = F(S(V,),S(Wy)) —
{e.} X F(S(V), S(W)) Dy X F(S(V3), S(Wh))
is the identity.
The proof is parallel to that of Lemma 4.4, so we omit it.

Lemma 5.3. Let m>1 be an integer and let p; (1=<i=<m) be positive odd
integers such that (p;, p;,)=1 for i=j and (p;, s2m—3))=1 for 1=i<m. Let§
and 7 be real S*-vector bundles over M, such tnht dimg E=dimgn=n=2m and
ED R as an S'-vector subbundle. Assume that

(1) S(H*E) and S(h*y) are S'-fiber homotopy equivalent,

(i) S(&,) and S(x,,) are Z,-homotopy equivalent for 1 <i=m.

Then S(E) and S(n) are S*-fiber homotopy equivalent.

Proof. We put
V= (), = £, and W,=(kfp), =n, for 1Sism.
By the assumption (ii), there exist Z,-homotopy equivalences

fir S(V)) — S(W)) for 1=<i<m.
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Since £ DR, there exist Z;,-homeomorphisms
70 S(V) = S(V3) for 1I5i<m

such that deg 7,=—1. Remark that fior;: S(V;)— S(W)) is also a Z,-homo-
topy equivalence.

First we shall show that, for each 0<k=<m, there exists an S'-cross-section
of g4:

th: M, — E(S(5E), S(hty))

such that #{(e;)=f; or f; o7, for 1<j<k.
Since Ay, h: My—>M,, are S*-homotopic, it follows from the assumption (i)
that

S(RFE)~S(h*E)~S(h*n)~S(hi7) ,

where ~ stands for is S'-fiber homotopy equivalent to. Thus there exists an
S'-cross-section of g4:

th: M, — E(S(h¥E), S(hi)) .

Let k be an integer greater than zero. Suppose that we are given an S’-
cross-section of gf_;:

thoy: M,_, — E(S(hE.E), S(h¥-1n))

such that #;_;(e;)=Ff; or fjor; for 1I=i<k—1. Then there exist a continuous
cross-section of gf|qi '(Dy):

ui: Dy — qi” (Dy) CE(S(REE), S(htn))
and an S'-cross-section of ¢/|q} " '(S):
vi: S, = gi7(S,) CE(S(REE), S(ki))

such that vj=u}|S, and wui(e;)=f; or fjor; for 1=I<k—1. This is proved
similarly as Lemma 4.6, but we need give care to the condition vj(e;)= f; or
fior; for 1<j<k—1. Let my: Dy X F*(S(V}), S(W,))— F*(S(V), S(W,)) denote
the projection on the second factor. By Lemma 5.2, v} yields a Z,,-map

04: S, = F3(S(V3), S(Wy))

by putting 94(x)=7,(@i(vi(x))) for xES,, where E=+4- or —. Since vi=u;|S,,
we have

[0i] = 0[S™7%, F¥(S(V4), S(Wi))] -
Moreover f,€F(S(V3), S(Wi)2# or fiomi € FX(S(Vy), S(Wi))?2. It follows
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from Proposition 3.4 that there exists a Z,,-map

wi: D, — F*(S(V,), S(Wy))
such that w}|S,=9; and wi(e,)=f, or fi,o7,. Using Lemma 5.2, we define a
Z, ~cross-section of gt |gi " (Dy):

wh: D, — gi (D) CE(S(h¥E), S(hitn))

by putting wj(x)=@} '(x, Wi(x)) for x€D,. Since w}|S,=v} and wj(e,)=fi or
fioTs, it follows from Lemma 4.3 that there exists an S’-cross-section of ¢i:

th: My, — E(S(h¥E), S(hifn))

such that #i(e;)=wi(e;)= f; or fjor; for 1=<j=<k.
By induction, we obtain S*-cross-sections 5, t{, -*-, tn. The last S'-cross-
section ¢, gives a fiber-preserving S'-map

o: S(E) - S(n)

such that o, = f; or fjor; for I<j<m. It is easy to see that, for every x€M,,
w,: S(E,)—>S(x,) is an S;-homotopy equivalence, where S} denotes the isotropy
group at x€M,,. Therefore it follows from the equivariant Dold theorem
that o gives an S'-fiber homotopy equivalence (cf. Kawakubo [12; Theorem 2.1]
and [24; Theorem 2.1]). q.e.d.

By the same argument as in §2 of Segal [25], we obtain an isomorphism
of groups:

pr: JICP™™Y) — Jo(My)

and the following diagram commutes:
£

_n Pr
KO(CP™) £ KOg(M,)

]l prt ]s‘l
JCP™) = J (M)

(cf. Lemma 4.6). We define
7= (pr*): Jo (M) — J(CP™™).
Now we define a homomorphism of groups

&: Ja (S N py, por *+5 pw)) = J(CP™ D ,.i!"éfzp.-(*)
by putting

B(JE—n) = B E—h*n)D B Tz, (Eu—) -
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Then we have

Theorem 5.4. Let p; (1=i=<m) be positive odd integers such that (p;, p;)=1
forizjand (p;, s(2m—3))=1for 1<i<m. Then the homomorphism ® is injective.

Proof. We see easily that Js1(S'/Z, )= ]z, (). Hence Theorem 5.4 will
follow from Lemma 5.3 by the same argument as in the proof of Theorem 4.7.

Let y* denote the Adams operation on equivariant KO-theory.

Corollary 5.5. (cf. [18; Theorem 6.8].) Let a and b be integers wiht (a, b)=
(ab, p,)=1 for 1<i<m. For an arbitrary element a of KO(S™ (P, P2 ***» Pm))s
we have

Js (¥ =D)('—1)(@)) = 0 in Ja(S™ Hpy, pos =+ Pm)) -

Proof. By tom Dieck [7; Theorem 1] and tom Dieck-Petrie [8; Theorem
5], we have

Jo, (=D —1)(@),) =0 in Jp,(+)  for 1Si<m.

On the other hand, by the solution of the Adams conjecture ([1], [22]), we see
that

A(Js(B* (" =)' —1)(@))) = J(¥* =D’ —1)(u(h*())) = 0 in J(CP™T).
Therefore the result follows from Theorem 5.4. q.e.d.

ReMARK 5.7. i) The ring structure of KO(CP™™ ') and the group structure
of J(CP™') have been determined by Sanderson [24; Theorem 3.9] and Adams-
Walker [2] (see also Suter [28]). ii) The group structure of [, (*) has been
determined by Kawakubo [13] and [15].

6. Quasi-equivalence

Let G be a compact Lie group and let X be a compact G-space. Let &
and 7 be real G-vector bundles of the same dimension over X. In [18] and
[21], a G-map w: E—» which is proper, fiber-preserving and degree one on
fibers is called a quasi-equivalence. Let a=7—EEKO(X) and define =0
to mean there exist a G-vector bundle ¢ over X and a quasi-equivalence
w: EPI—nPo.

Problem 6.1. ([18], [21].) Given aEKO4(X), given necessary and suffi-
cient conditions for & =0.

In this section, we consider the above problem when G=S'and X=.8%"!
(p1 P2 ***» Pw) With a free or pseudofree S'-action.

We have



552 S. KAKUTANI

Theorem 6.2. Let p; (11 =m) be positive odd integers such that (p;, p;)=1
for i=%j and (pi, s2m—3))=1 for 1 <i<m. Let & and n be real S'-vector
bundles of the same dimension over S™ Y(py, P, ***s Pm). Then a=n—E=0if and
only if £ and v satisfy the following two conditions:

(i) J(u(hE)=J sl n)) in J(CP*)

(i) oa,=n,—E,=0 for 1=<i<m,
where we regard a,, as an element of KOZP’_(*)_%RO(Z,,,.) for 1=i=m.

Proof. It is obvious that =0 if and only if there exist an S*-vector bundle
0 over S Y(py, py, +++, pn) and a fiber-preserving S'-map ¢: S(£Dg)— S(»D0)
such that deg{,=1 for xS Y(p,, ps, ***, pw). Then the proof is parallel to
that of Lemma 5.3. , q.e.d.

Corollary 6.3. (cf. [21; Corollary 1.13).) Let @ be an arbitrary element of
KOg(S* Y py, pay **y D)) Such that o, =0 for 1=1=<m. Then there exists a
non-negative integer n so that

noa=0.

Proof. Remark that ,u,(h*a)EI’{\O/(CP"‘"). It is well-known that J(CP™™")
is a finite abelian group. Hence there exists an integer n such that

J(u(h*(na))) = nj(u(h*a)) =0  in J(CP"™).
Thus the result follows from Theorem 6.2. q.e.d.

Corollary 6.4. Let k be an integer with (k, p;)=1 for 1=i=m. Let o be
an arbitrary element of KOa(S* Y(py, =+, pm)). Then there exists a non-negative
integer e=e(k, o) such that

K —1)(a) =0

Proof. By the solution of the Adams conjecture (see [1], [22]), there exists
a non-negative integer ¢ such that

JuW*F P —1) (@) = JE @ =) (p(t*a)) =0 in J(CP").

On the other hand, by Lee-Wasserman [16; Corollaries 3.3 and 4.8] and
Atiyah-Tall [5; V. Theorem 2.8], we have

F@t—1)(a,)=0  for 1Zi<m.
Therefore the result follows from Theorem 6.2. q.e.d.

ReMARK 6.5. When X is a point and aEK;(X)==R(G), Problem 6.1 is
solved by the main theorem of [18; Theorem 5.1] (see also Atiyah-Tall [5] and
Lee-Wasserman [16]).
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