THE VANISHING OF COHOMOLOGY ASSOCIATED TO DISCRETE SUBGROUPS OF COMPLEX SIMPLE LIE GROUPS*

Hans-Christoph IM HOF and Ernst A. RUH

(Received September 1, 1980)

1. Introduction

Let G denote a connected complex simple Lie group and K a maximal compact subgroup of G. The quotient $M=G / K$ is a riemannian symmetric space of non-compact type. Let Γ denote a discrete subgroup of G with compact quotient $\Gamma \backslash G$, and let ρ denote an irreducible non-trivial complex representation of G in a finite dimensional complex vector space F. In this paper we prove that for such representations a certain quadratic form defined by Matsushima and Murakami [3] is positive definite, and hence $H^{*}(\Gamma, M, \rho)$ vanishes.

The motivation for this paper is a result of Min-Oo and Ruh [4] on comparison theorems for non-compact symmetric spaces, where an estimate from below for the first eigenvalue of the Laplace operator on 2-forms with values in a bundle associated to the adjoint representation is essential. This estimate is an immediate consequence of the positivity of the above quadratic form. The vanishing of $H^{*}(\Gamma, M, \rho)$, without the information on the first eigenvalue, is a special case of [1, Ch. VII, Th. 6. 7].

2. The result

Let g denote the Lie algebra of left-invariant vector fields of the simple Lie group $G, \rho: \mathfrak{g} \rightarrow \mathfrak{g l}(F)$ the representation induced by $\rho: G \rightarrow G L(F)$, and $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}$ a Cartan decomposition of g with \mathfrak{f} the Lie algebra of a maximal compact subgroup K. We identify the Lie algebra g with the corresponding vector fields on $\Gamma \backslash G$.

Let $A(\Gamma, M, \rho)\left(A_{0}(\Gamma, M, \rho)\right.$ in the notation of Matsushima and Murakami [3]) denote the vector space of F-valued differential forms on $\Gamma \backslash G$ which are horizontal and ad K-equivariant, i.e., $\eta \in A(\Gamma, M, \rho)$ satisfies $i_{X} \eta=0$ and $\theta_{X} \eta=$ $-\rho(X) \eta$ for all $X \in \mathfrak{f}$, where i_{X} is interior multiplication and θ_{X} is the Lie

[^0]derivative. A q-form $\eta \in A(\Gamma, M, \rho)$ is determined by its values $\eta_{i_{1}, \cdots, i_{q}}=$ $\eta\left(Y_{i_{1}}, \cdots, Y_{i_{q}}\right)$ on q-tuples of basis vectors of \mathfrak{p}. According to [3, (6.7)], the Laplace operator
$$
\Delta: A(\Gamma, M, \rho) \rightarrow A(\Gamma, M, \rho)
$$
is a sum of a differential operator Δ_{D} and an operator Δ_{ρ} associated to the representation ρ. Restricted to q-forms these operators have the following coordinate expressions.
\[

$$
\begin{aligned}
& \left(\Delta_{D} \eta\right)\left(Y_{i_{1}}, \cdots, Y_{i_{q}}\right)=-\sum_{k=1}^{n} Y_{k}^{2} \eta_{i_{1}, \cdots, i_{q}}+\sum_{k=1}^{n} \sum_{u=1}^{q}(-1)^{u}\left[Y_{i_{u}}, Y_{k}\right] \eta_{k i_{1}, \cdots, \hat{i}_{u}, \cdots, i_{q}} \\
& \left(\Delta_{\rho} \eta\right)\left(Y_{i_{1}}, \cdots, Y_{i_{q}}\right)=\sum_{k=1}^{n} \rho\left(Y_{k}\right)^{2} \eta_{i_{1}, \cdots, i_{q}}-\sum_{k=1}^{n} \sum_{u=1}^{q}(-1)^{u} \rho\left(\left[Y_{i_{u}}, Y_{k}\right]\right) \eta_{k i_{1}, \cdots \hat{i}_{u}, \cdots, i_{q}}
\end{aligned}
$$
\]

where $\left\{Y_{i} ; i=1, \cdots, n=\operatorname{dim} M\right\}$ is an orthonormal basis of \mathfrak{p} with respect to the Killing form φ of \mathfrak{g} restricted to \mathfrak{p}. As in [3], the definition of Δ requires a choice of an admissible hermitean inner product on F. The inner product \langle,\rangle_{F} is called admissible if for all $u, v \in F$ the following conditions hold:

$$
\begin{array}{lll}
\langle\rho(X) u, v\rangle_{F}=-\langle u, \rho(X) v\rangle_{F} & \text { for } & X \in \mathfrak{l} \\
(\rho\langle Y) u, v\rangle_{F}=\langle u, \rho(Y) v\rangle_{F} & \text { for } & Y \in \mathfrak{p} .
\end{array}
$$

Matsushima and Murakami [3] prove that admissible hermitean inner products always exist.

The following result is well known.
Proposition 1. The vector space $H^{*}(\Gamma, M, \rho)$ is canomically isomorphic to the vector space $\{\eta \in A(\Gamma, M, \rho) ; \Delta \eta=0\}$ of harmonic forms.

The restriction of the Killing form φ to \mathfrak{p} together with the scalar product \langle,\rangle_{F} on F induce a hermitean scalar product $($,$) on A(\Gamma, M, \rho)$, obtained by integrating the pointwise defined scalar product

$$
\langle\eta, \omega\rangle=\sum_{i_{1}<\cdots<i_{q}}\left\langle\eta_{i_{1}, \cdots, i_{q}}, \omega_{i_{1}, \cdots, i_{q}}\right\rangle_{F} .
$$

Here $\eta_{i_{1}, \cdots, i_{q}}$ and $\omega_{i_{1}, \cdots, i_{q}}$ are the coordinates of q-forms with respect to an orthonormal basis in \mathfrak{p}, and $\langle\eta, \omega\rangle$ is defined to be zero if η and ω are of different degrees.

The following result is proved in [3].
Proposition 2. The quadratic forms $\eta \mapsto\left(\Delta_{D} \eta, \eta\right)$ and $\eta \mapsto\left(\Delta_{\rho} \eta, \eta\right)$ are positive semi-definite.

A differential form $\eta \in A(\Gamma, M, \rho)$ is a section of the trivial vector bundle on
$\Gamma \backslash G$ with fibre $\operatorname{Hom}(\Lambda \mathfrak{p}, F)$, the homomorphisms from the exterior algebra over \mathfrak{p} to F. The operator Δ_{ρ} does not involve derivatives and thus can be viewed as a linear map

$$
\Delta_{\rho}: \operatorname{Hom}(\Lambda \mathfrak{p}, F) \rightarrow \operatorname{Hom}(\Lambda \mathfrak{p}, F)
$$

Our main result concerns the positivity of the quadratic form $\eta \mapsto\left\langle\Delta_{\rho} \eta, \eta\right\rangle$ on $\operatorname{Hom}(\Lambda \mathfrak{p}, F)$, which by Proposition 2 implies the vanishing of the cohomology vector space $H^{*}(\Gamma, M, \rho)$.

Theorem. Let ρ denote an irreducible non-trivial complex representation of a complex simple Lie algebra g on a finite dimensional complex vector space F. Then the quadratic form $\eta \mapsto\left\langle\Delta_{\rho} \eta, \eta\right\rangle$ on $\operatorname{Hom}(\Lambda \mathfrak{p}, F)$ is positive definite, and therefore $H^{*}(\Gamma, M, \rho)=(0)$.

The basic ideas of the proof are similar to those of Raghunathan [6]. Our restriction to complex Lie groups allows us to prove the optimal result. In addition, Assertions III and IV of [6], which lead to difficulties, can be avoided.

3. The proof

The restriction to complex Lie algebras g allows us to identify $\operatorname{Hom}_{\mathbf{R}}(\Lambda \mathfrak{p}, F)$ with $\operatorname{Hom}_{\mathbf{C}}(\Lambda \mathfrak{g}, F)$. In the following we suppress the subscripts \mathbf{R} and \mathbf{C}. Since $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}$ and $\mathfrak{p}=i \mathfrak{f}$, multiplication with i is a \mathbf{R}-vector space isomorphism $J: \mathfrak{t} \rightarrow \mathfrak{p}$. Let $\Lambda J: \Lambda \mathfrak{f} \rightarrow \Lambda \mathfrak{p}$ denote the induced isomorphism and define

$$
\operatorname{Hom}(\Lambda \mathfrak{p}, F) \xrightarrow{\simeq} \operatorname{Hom}(\Lambda \mathfrak{f}, F) \xrightarrow{\simeq} \operatorname{Hom}(\Lambda \mathfrak{g}, F),
$$

where the first isomorphism is composition with ΛJ, and the image ξ of $\xi^{\prime} \in \operatorname{Hom}(\Lambda \mathfrak{f}, F)$ under the second isomorphism is defined by $\xi(X \otimes \lambda)=\lambda \xi^{\prime}(X)$, for $X \in \Lambda \mathfrak{f}$ and $\lambda \in \mathbf{C}$.

From now on we identify $\operatorname{Hom}(\Lambda \mathfrak{g}, F)$ with $F \otimes \Lambda \mathfrak{g}^{*}$ and view Δ_{ρ} as an element in the endomorphism ring of $F \otimes \Lambda g^{*}$. Let c denote the Casimir element with respect to the Killing form φ in the universal enveloping algebra $U(\mathrm{~g})$ of g . The representation ρ extends to $U(\mathrm{~g})$. In the following lemma σ denotes the dual of the representation Λ ad induced by the adjoint representation of \mathfrak{g}.

Lemma 1. $2 \Delta_{\rho}=3(\rho \otimes 1)(c)+(1 \otimes \sigma)(c)-(\rho \otimes \sigma)(c)$
This lemma proves in particular that Δ_{ρ} is a selfadjoint endomorphism with respect to the scalar product \langle,$\rangle introduced earlier.$

Proof. Let $\left\{X_{k} ; k=1, \cdots, n\right\}$ be an orthonormal basis of \mathfrak{f} with respect to $-\varphi$ restricted to \mathfrak{t}, and $\left\{Y_{k}\right\}=\left\{i X_{k}\right\}$ the corresponding basis in \mathfrak{p}. The image
$\xi \in \operatorname{Hom}(\Lambda \mathfrak{g}, F)$ of $\eta \in \operatorname{Hom}(\Lambda \mathfrak{p}, F)$ under the isomorphism defined above evaluated on $\left(X_{i_{1}}, \cdots, X_{i_{q}}\right)$ is

$$
\xi\left(X_{i_{1}}, \cdots, X_{i_{q}}\right)=\eta\left(i X_{i_{1}}, \cdots, i X_{i_{q}}\right)=\eta\left(Y_{i_{1}}, \cdots, Y_{i_{q}}\right) .
$$

With this identification of $\operatorname{Hom}_{\mathbf{C}}(\Lambda \mathfrak{g}, F)$ and $\operatorname{Hom}_{\mathbf{R}}(\Lambda \mathfrak{p}, F), \Delta_{\rho}$ operates on ξ as follows:

$$
\begin{aligned}
\left(\Delta_{\rho} \xi\right)\left(X_{i_{1}}, \cdots, X_{i_{q}}\right) & =\sum_{k=1}^{n} \rho\left(i X_{k}\right)^{2} \xi\left(X_{i_{1}}, \cdots, X_{i_{q}}\right) \\
& -\sum_{k=1}^{n} \sum_{u=1}^{q}(-1)^{u} \rho\left(\left[i X_{i_{u}}, i X_{k}\right]\right) \xi\left(X_{k}, X_{i_{1}}, \cdots, \hat{X}_{i_{u}}, \cdots, X_{i_{q}}\right) \\
& =(S \xi)\left(X_{i_{1}}, \cdots, X_{i_{q}}\right)+(T \xi)\left(X_{i_{1}}, \cdots, X_{i_{q}}\right) .
\end{aligned}
$$

In view of the identification $\operatorname{Hom}(\Lambda \mathrm{g}, F)=F \otimes \Lambda \mathrm{~g}^{*}$, the first summand is given in terms of the Casimir element c as

$$
S=(\rho \otimes 1)(c)
$$

since $\left\{X_{k}\right\}$ and $\left\{-X_{k}\right\}$ are dual bases with respect to φ and therefore $c=-\sum X_{k}^{2}$. To deal with the second summand, we abbreviate $E=\Lambda g^{*}$ and specialize to $\xi=f \otimes e$ with $f \in F$ and $e \in E$. The immediate goal is to prove that in this case

$$
T(f \otimes e)=\sum_{k=1}^{n} \rho\left(X_{k}\right) f \otimes \sigma\left(X_{k}\right) e
$$

Let $c_{i j}^{k}$ denote the structure constants of \mathfrak{f} (and \mathfrak{g}) with respect to the basis $\left\{X_{k}\right\}$; thus $\sum_{k=1}^{n} c_{i j}^{k} X_{k}=\left[X_{i}, X_{j}\right]$, and

$$
\rho\left(\left[i X_{i_{u}}, i X_{k}\right]\right)=-\rho\left(\left[X_{i_{u}}, X_{k}\right]\right)=-\sum_{s=1}^{n} c_{i_{u}}^{s} \rho\left(X_{s}\right)=-\sum_{s=1}^{n} c_{s i_{u}}^{k} \rho\left(X_{s}\right)
$$

where the last equality holds because $c_{i j}^{k}$, in terms of an orthonormal basis with respect to $-\varphi$, is skew symmetric in each pair of indices. We have

$$
(T \xi)\left(X_{i_{1}}, \cdots, X_{i_{q}}\right)=\sum_{s=1}^{n} \sum_{u=1}^{q}(-1)^{u} \rho\left(X_{s}\right) \xi\left(\left[X_{s}, X_{i_{u}}\right], X_{i_{1}}, \cdots, \hat{X}_{i_{u}}, \cdots, X_{i_{q}}\right)
$$

Abbreviating $X=X_{i_{1}} \wedge \cdots X_{i_{q}}$ we obtain $(T \xi)(X)=\sum_{k=1}^{n} \rho\left(X_{k}\right) \xi\left(-\Lambda \operatorname{ad}\left(X_{k}\right) X\right)$, and for $\xi=f \otimes e$ and σ the dual representation of Λ ad we obtain

$$
T(f \otimes e)=\sum_{k=1}^{n} \rho\left(X_{k}\right) f \otimes \sigma\left(X_{k}\right) e
$$

To conclude the proof we compute as in [6]

$$
2 \rho\left(X_{k}\right) \otimes \sigma\left(X_{k}\right)=(\rho \otimes \sigma)\left(X_{k}\right)^{2}-\rho\left(X_{k}\right)^{2} \otimes i d_{E}-i d_{F} \otimes \sigma\left(X_{k}\right)
$$

and obtain

$$
2 T=(\rho \otimes 1)(c)+(1 \otimes \sigma)(c)-(\rho \otimes \sigma)(c)
$$

To prove the Theorem we will show that all the eigenvalues of Δ_{ρ} are positive. The basic observation (see Lemma 2 below) is that for any irreducible representation ρ, the endomorphism $\rho(c)$ is a scalar operator whose eigenvalue is given in terms of the highest weight of ρ. This fact will be applied individually to the irreducible components of $\rho \otimes 1,1 \otimes \sigma$, and $\rho \otimes \sigma$.

First we introduce some notation. As above we fix a Cartan decomposition $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}$, where \mathfrak{f} is a compact real form of \mathfrak{g} and $\mathfrak{p}=i \mathfrak{l}$. Let \mathfrak{g} be a Cartan subalgebra of \mathfrak{g} compatible with the given Cartan decomposition. Then $\mathfrak{G}=\mathfrak{G}_{\mathfrak{f}} \oplus \mathfrak{h}_{\mathfrak{p}}$, where $\mathfrak{G}_{\mathfrak{p}}=\mathfrak{G} \cap \mathfrak{t}$ and $\mathfrak{G}_{\mathfrak{p}}=\mathfrak{G} \cap \mathfrak{p}=i \mathfrak{h}_{\mathfrak{p}}$. Let Δ denote the root system of the pair $(\mathfrak{g}, \mathfrak{h})$. To each $\alpha \in \Delta$ we associate $H_{\infty} \in \mathfrak{h}$ such that $\alpha(H)=\left\langle H_{\alpha}, H\right\rangle$ for all $H \in \mathfrak{h}$, where the Killing form is denoted by \langle,$\rangle from now on. Then \mathfrak{h}_{\mathfrak{p}}$ coincides with the real vector space spanned by $\left\{H_{\alpha} ; \alpha \in \Delta\right\}$, so Δ may be viewed as a subset of $\mathfrak{G}_{\mathfrak{p}}^{*}$, the real dual of $\mathfrak{h}_{\mathfrak{p}}$. The Killing form \langle,$\rangle is real and$ positive definite on $\mathfrak{h}_{\mathfrak{p}}$, hence it induces a scalar product \langle,$\rangle on \mathfrak{b}_{\mathfrak{p}}^{*}$. By fixing a basis of Δ we once and for all determine a set Δ^{+}of positive roots. We define $\delta=\sum_{\alpha \in \Delta^{+}} \alpha$.

Lemma 2. Let $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(F)$ be any irreducible representation of \mathfrak{g} with highest weight λ, then $\rho(c)=\langle\lambda, \lambda+\delta\rangle \cdot i d_{F}$.

For a proof see Raghunathan [5, Lemma 4], or Bourbaki [2, Ch. 8, §6, n ${ }^{\circ} 4$].
Lemma 2 immediately applies to our given representation ρ and thus enables us to compute the contribution of $3(\rho \otimes 1)(c)$ to the eigenvalues of $2 \Delta_{\rho}$. The second term $(1 \otimes \sigma)(c)$ involves the representation $\sigma=\Lambda \mathrm{ad}^{*}$ of g on $E=\Lambda \mathrm{g}^{*}$. This representation is no longer irreducible, so Lemma 2 applies to each component of σ separately. Thus the knowledge of the highest weights of the irreducible components of σ is required.

Lemma 3. Let μ be the highest weight of an irreducible component of σ. Then μi_{0} of the form $\mu=\sum_{\alpha \in \Delta} m_{\alpha} \alpha$, with $m_{\infty} \in\{0,1\}$.

Proof. The weight space decomposition of ad: $\mathfrak{g} \rightarrow \mathfrak{g l}(g)$ with respect to the Cartan subalgebra \mathfrak{G} equals the root space decomposition of the pair (g. \mathfrak{h}), i.e.,

$$
\mathfrak{g}=\mathfrak{h} \oplus \sum_{\alpha \in \Delta} \mathrm{g}_{\alpha}
$$

The dual representation $\mathrm{ad}^{*}: \mathfrak{g} \rightarrow \mathfrak{g l}\left(\mathfrak{g}^{*}\right)$ leads to the analogous decomposition

$$
\mathfrak{g}^{*}=\mathfrak{b}^{*} \oplus \sum_{\alpha \in \Delta}\left(\mathrm{g}^{*}\right)_{a}, \quad \text { with } \quad\left(\mathrm{g}^{*}\right)_{\infty}=\left(\mathfrak{g}_{-a}\right)^{*}
$$

Now let $n=\operatorname{dim} \mathrm{g}^{*}, r=\operatorname{dim} \mathfrak{g}^{*}$, and observe $\operatorname{dim}\left(\mathrm{g}^{*}\right)_{\boldsymbol{\alpha}}=1$. Then $E=\Lambda \mathrm{g}^{*}=$ $\Lambda\left(\mathfrak{h}^{*} \oplus \sum_{\alpha \in \Delta}\left(g^{*}\right)_{\infty}\right)$ is isomorphic to a sum of subspaces of the form

$$
\Lambda^{h}\left(\mathfrak{h}^{*}\right) \otimes\left(\mathrm{g}^{*}\right)_{\alpha_{1}} \otimes \cdots\left(\mathrm{~g}^{*}\right)_{a_{k}},
$$

where $0 \leqslant h \leqslant r, 0 \leqslant k \leqslant n-1, \alpha_{i} \in \Delta$, and $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$.
Such a subspace is invariant under the action of \mathfrak{h}, it has weight $\alpha_{1}+\cdots+\alpha_{k}$. This implies in particular that the highest weights of the irreducible components occuring in σ are of the form $\alpha_{1}+\cdots+\alpha_{k}, \alpha_{i} \in \Delta, \alpha_{i} \neq \alpha_{j}$ for $i \neq j$.

Let now $E=\sum E_{\mu}$ be the decomposition of E into its irreducible components E_{μ} indexed by their respective highest weights. Lemma 2 enables us to compute the eigenvalues of $(1 \otimes \sigma)(c)$ on $F \otimes E_{\mu}$. The third term, $(\rho \otimes \sigma)(c)$, in Lemma 1 involves the representation $\rho \otimes \sigma$ of \mathfrak{g} on $F \otimes E$. This space certainly decomposes into the sum $\Sigma F \otimes E_{\mu}$, but each of the components $F \otimes E_{\mu}$ may further decompose into a sum $F \otimes E_{\mu}=\sum V_{\mu}^{\nu}$, where the subspaces V_{μ}^{ν}, irreducible under $\rho \otimes \sigma$, are indexed bei their respective heighest weights ν.

For each μ there is exactly one component $V_{\mu}^{\lambda+\mu}$ of $F \otimes E_{\mu}$ with highest weight $\lambda+\mu$. All other components V_{μ}^{ν} have highest weights $\nu<\lambda+\mu$. The following lemma allows us to restrict our attention to the spaces $V_{\mu}^{\lambda+\mu}$.

Lemma 4. Let ρ_{1}, ρ_{2} be two irreducible representations of g uith respective highest weights λ_{1}, λ_{2}. Then $\lambda_{1}>\lambda_{2}$ implies

$$
\left.\left\langle\lambda_{1}, \lambda_{1}+\delta\right\rangle\right\rangle\left\langle\lambda_{2}, \lambda_{2}+\delta\right\rangle
$$

Proof. Let $\beta=\lambda_{1}-\lambda_{2}$ and assume $\beta>0$. Then

$$
\begin{aligned}
& \left\langle\lambda_{1}, \lambda_{1}+\delta\right\rangle-\left\langle\lambda_{2}, \lambda_{2}+\delta\right\rangle= \\
& 2\left\langle\lambda_{2}, \beta\right\rangle+\langle\beta, \beta\rangle+\langle\beta, \delta\rangle>0,
\end{aligned}
$$

since λ_{2} and δ are dominant.
According to Lemma 4, the maximal eigenvalue of $(\rho \otimes \sigma)(c)$ restricted to $F \otimes E_{\mu}$ is attained on the space $V_{\mu}^{\lambda^{+\mu}}$. Since $(\rho \otimes 1)(c)$ and $(1 \otimes \sigma)(c)$ are positive scalar operators on the whole space $F \otimes E_{\mu}$, and $(\rho \otimes \sigma)(c)$ occurs with a minus sign in $2 \Delta_{\rho}$, the minimal eigenvalue of $2 \Delta_{\rho}$ restricted to $F \otimes E_{\mu}$ is attained on the space $V_{\mu}^{\lambda+\mu}$. This minimal eigenvalue involves only λ and μ, according to Lemma 2. Our claim is now reduced to the

Assertion. Let μ be any of the highest weights occuring in the decomposition $E=\sum E_{\mu}$. Then the eigenvalue of $2 \Delta_{\rho}$ is positive on $V_{\mu}^{\lambda+\mu}$.

Proof. On $V_{\mu}^{\lambda^{+\mu}}$ we have

$$
2 \Delta_{\rho}=\{3\langle\lambda, \lambda+\delta\rangle+\langle\mu, \mu+\delta\rangle-\langle\lambda+\mu, \lambda+\mu+\delta\rangle\} \cdot \mathrm{id} .
$$

By a straightforward computation this reduces to

$$
\Delta_{\rho}=\{\langle\lambda, \lambda\rangle+\langle\lambda, \delta-\mu\rangle\} \cdot \mathrm{id} .
$$

The term $\langle\lambda, \lambda\rangle$ is obviously positive, since λ is the highest weight of a nontrivial representation. Now $\delta=\sum_{\alpha \in \Delta^{+}} \alpha$, and according to Lemma 3, $\mu=\sum_{\alpha \in \Delta} m_{\alpha} \alpha$ with $m_{\infty} \in\{0,1\}$, hence $\delta-\mu=\sum_{\alpha \in \Delta^{+}} n_{\alpha} \alpha$ with $n_{\infty} \in\{0,1,2\}$. Therefore $\langle\lambda, \delta-\mu\rangle$ $=\sum_{\alpha \in \Delta^{+}} n_{\alpha}\langle\lambda, \alpha\rangle \geqslant 0$, since λ is dominant.

References

[1] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups, and representations of reductive groups, Ann. of Math. Study 94, Princeton University Press 1980.
[2] N. Bourbaki: Groupes et algèbres de Lie, Ch. 7, 8, Act. Sci. Ind. 1364, Hermann, Paris, 1975.
[3] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. 78 (1963), 365-416.
[4] Min-Oo and E.A. Ruh: Vanishing theorems and almost symmetric spaces of noncompact type, Math. Ann. 257 (1981), 419-433.
[5] M.S. Raghunathan: On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math. 87 (1965), 103-139.
[6] M.S. Raghunathan: Vanishing theorems for cohomology groups associated to discrete subgroups of semisimple Lie groups, Osaka J. Math. 3 (1966), 243-256; Corrections ibid, 16 (1979), 295-299.

[^0]: * This work was done under the program Sonderforschungsbereich "Theoretische Mathematik" (SFB 40) at the University of Bonn.

