Im Hof, H.-C. and Ruh, E. A. Osaka J. Math. 19 (1982), 669-675

THE VANISHING OF COHOMOLOGY ASSOCIATED TO DISCRETE SUBGROUPS OF COMPLEX SIMPLE LIE GROUPS*

HANS-CHRISTOPH IM HOF AND ERNST A. RUH

(Received September 1, 1980)

1. Introduction

Let G denote a connected complex simple Lie group and K a maximal compact subgroup of G. The quotient M=G/K is a riemannian symmetric space of non-compact type. Let Γ denote a discrete subgroup of G with compact quotient $\Gamma \setminus G$, and let ρ denote an irreducible non-trivial complex representation of G in a finite dimensional complex vector space F. In this paper we prove that for such representations a certain quadratic form defined by Matsushima and Murakami [3] is positive definite, and hence $H^*(\Gamma, M, \rho)$ vanishes.

The motivation for this paper is a result of Min-Oo and Ruh [4] on comparison theorems for non-compact symmetric spaces, where an estimate from below for the first eigenvalue of the Laplace operator on 2-forms with values in a bundle associated to the adjoint representation is essential. This estimate is an immediate consequence of the positivity of the above quadratic form. The vanishing of $H^*(\Gamma, M, \rho)$, without the information on the first eigenvalue, is a special case of [1, Ch. VII, Th. 6. 7].

2. The result

Let g denote the Lie algebra of left-invariant vector fields of the simple Lie group G, $\rho: \mathfrak{g} \rightarrow \mathfrak{gl}(F)$ the representation induced by $\rho: G \rightarrow GL(F)$, and $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ a Cartan decomposition of \mathfrak{g} with \mathfrak{k} the Lie algebra of a maximal compact subgroup K. We identify the Lie algebra \mathfrak{g} with the corresponding vector fields on $\Gamma \backslash G$.

Let $A(\Gamma, M, \rho)$ $(A_0(\Gamma, M, \rho)$ in the notation of Matsushima and Murakami [3]) denote the vector space of *F*-valued differential forms on $\Gamma \setminus G$ which are horizontal and ad*K*-equivariant, i.e., $\eta \in A(\Gamma, M, \rho)$ satisfies $i_X \eta = 0$ and $\theta_X \eta = -\rho(X)\eta$ for all $X \in \mathfrak{k}$, where i_X is interior multiplication and θ_X is the Lie

^{*} This work was done under the program Sonderforschungsbereich "Theoretische Mathematik" (SFB 40) at the University of Bonn.

derivative. A q-form $\eta \in A(\Gamma, M, \rho)$ is determined by its values $\eta_{i_1, \dots, i_q} = \eta(Y_{i_1}, \dots, Y_{i_q})$ on q-tuples of basis vectors of \mathfrak{P} . According to [3, (6.7)], the Laplace operator

 $\Delta: A(\Gamma, M, \rho) \to A(\Gamma, M, \rho)$

is a sum of a differential operator Δ_{p} and an operator Δ_{ρ} associated to the representation ρ . Restricted to q-forms these operators have the following co-ordinate expressions.

$$\begin{split} (\Delta_D \eta)(Y_{i_1}, \cdots, Y_{i_q}) &= -\sum_{k=1}^n Y_k^2 \eta_{i_1, \cdots, i_q} + \sum_{k=1}^n \sum_{u=1}^q (-1)^u [Y_{i_u}, Y_k] \eta_{ki_1, \cdots, i_u, \cdots, i_q}, \\ (\Delta_\rho \eta)(Y_{i_1}, \cdots, Y_{i_q}) &= \sum_{k=1}^n \rho(Y_k)^2 \eta_{i_1, \cdots, i_q} - \sum_{k=1}^n \sum_{u=1}^q (-1)^u \rho([Y_{i_u}, Y_k]) \eta_{ki_1, \cdots, i_u, \cdots, i_q}, \end{split}$$

where $\{Y_i; i=1, \dots, n=\dim M\}$ is an orthonormal basis of \mathfrak{P} with respect to the Killing form φ of \mathfrak{g} restricted to \mathfrak{P} . As in [3], the definition of Δ requires a choice of an admissible hermitean inner product on F. The inner product \langle , \rangle_F is called admissible if for all $u, v \in F$ the following conditions hold:

$$\langle
ho(X)u, v
angle_F = -\langle u,
ho(X)v
angle_F \quad ext{ for } X \in \mathfrak{k} \ , \ (
ho\langle Y)u, v
angle_F = \langle u,
ho(Y)v
angle_F \quad ext{ for } Y \in \mathfrak{p} \ .$$

Matsushima and Murakami [3] prove that admissible hermitean inner products always exist.

The following result is well known.

Proposition 1. The vector space $H^*(\Gamma, M, \rho)$ is canonically isomorphic to the vector space $\{\eta \in A(\Gamma, M, \rho); \Delta \eta = 0\}$ of harmonic forms.

The restriction of the Killing form φ to \mathfrak{P} together with the scalar product \langle , \rangle_F on F induce a hermitean scalar product (,) on $A(\Gamma, M, \rho)$, obtained by integrating the pointwise defined scalar product

$$\langle \eta, \omega \rangle = \sum_{i_1 < \cdots < i_q} \langle \eta_{i_1, \cdots, i_q}, \omega_{i_1, \cdots, i_q} \rangle_F.$$

Here η_{i_1,\dots,i_q} and ω_{i_1,\dots,i_q} are the coordinates of q-forms with respect to an orthonormal basis in \mathfrak{p} , and $\langle \eta, \omega \rangle$ is defined to be zero if η and ω are of different degrees.

The following result is proved in [3].

Proposition 2. The quadratic forms $\eta \mapsto (\Delta_D \eta, \eta)$ and $\eta \mapsto (\Delta_p \eta, \eta)$ are positive semi-definite.

A differential form $\eta \in A(\Gamma, M, \rho)$ is a section of the trivial vector bundle on

 $\Gamma \setminus G$ with fibre Hom $(\Lambda \mathfrak{P}, F)$, the homomorphisms from the exterior algebra over \mathfrak{p} to F. The operator $\Delta_{\mathfrak{p}}$ does not involve derivatives and thus can be viewed as a linear map

$$\Delta_{\rho}$$
: Hom $(\Lambda \mathfrak{p}, F) \to$ Hom $(\Lambda \mathfrak{p}, F)$.

Our main result concerns the positivity of the quadratic form $\eta \mapsto \langle \Delta_{\rho} \eta, \eta \rangle$ on Hom $(\Lambda \mathfrak{p}, F)$, which by Proposition 2 implies the vanishing of the cohomology vector space $H^*(\Gamma, M, \rho)$.

Theorem. Let ρ denote an irreducible non-trivial complex representation of a complex simple Lie algebra g on a finite dimensional complex vector space F. Then the quadratic form $\eta \mapsto \langle \Delta_{\rho} \eta, \eta \rangle$ on $\operatorname{Hom}(\Lambda \mathfrak{p}, F)$ is positive definite, and therefore $H^*(\Gamma, M, \rho) = (0)$.

The basic ideas of the proof are similar to those of Raghunathan [6]. Our restriction to complex Lie groups allows us to prove the optimal result. In addition, Assertions III and IV of [6], which lead to difficulties, can be avoided.

3. The proof

The restriction to complex Lie algebras g allows us to identify $\operatorname{Hom}_{\mathbf{R}}(\Lambda \mathfrak{p}, F)$ with $\operatorname{Hom}_{\mathbf{C}}(\Lambda \mathfrak{g}, F)$. In the following we suppress the subscripts **R** and **C**. Since $g = \mathfrak{t} \oplus \mathfrak{p}$ and $\mathfrak{p} = i\mathfrak{t}$, multiplication with *i* is a **R**-vector space isomorphism $J: \mathfrak{t} \to \mathfrak{p}$. Let $\Lambda J: \Lambda \mathfrak{t} \to \Lambda \mathfrak{p}$ denote the induced isomorphism and define

$$\operatorname{Hom}\left(\Lambda\mathfrak{p}, F\right) \xrightarrow{\simeq} \operatorname{Hom}\left(\Lambda\mathfrak{k}, F\right) \xrightarrow{\simeq} \operatorname{Hom}\left(\Lambda\mathfrak{g}, F\right),$$

where the first isomorphism is composition with ΛJ , and the image ξ of $\xi' \in \operatorname{Hom}(\Lambda \mathfrak{k}, F)$ under the second isomorphism is defined by $\xi(X \otimes \lambda) = \lambda \xi'(X)$, for $X \in \Lambda \mathfrak{k}$ and $\lambda \in \mathbb{C}$.

From now on we identify $\operatorname{Hom}(\Lambda \mathfrak{g}, F)$ with $F \otimes \Lambda \mathfrak{g}^*$ and view Δ_{ρ} as an element in the endomorphism ring of $F \otimes \Lambda \mathfrak{g}^*$. Let *c* denote the Casimir element with respect to the Killing form φ in the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} . The representation ρ extends to $U(\mathfrak{g})$. In the following lemma σ denotes the dual of the representation $\Lambda \mathfrak{ad}$ induced by the adjoint representation of \mathfrak{g} .

Lemma 1.
$$2\Delta_{\rho} = 3(\rho \otimes 1)(c) + (1 \otimes \sigma)(c) - (\rho \otimes \sigma)(c)$$

This lemma proves in particular that Δ_{ρ} is a selfadjoint endomorphism with respect to the scalar product \langle , \rangle introduced earlier.

Proof. Let $\{X_k; k=1, \dots, n\}$ be an orthonormal basis of \mathfrak{k} with respect to $-\varphi$ restricted to \mathfrak{k} , and $\{Y_k\} = \{iX_k\}$ the corresponding basis in \mathfrak{p} . The image

 $\xi \in \text{Hom}(\Lambda \mathfrak{g}, F)$ of $\eta \in \text{Hom}(\Lambda \mathfrak{p}, F)$ under the isomorphism defined above evaluated on $(X_{i_1}, \dots, X_{i_g})$ is

$$\xi(X_{i_1},\cdots,X_{i_q})=\eta(iX_{i_1},\cdots,iX_{i_q})=\eta(Y_{i_1},\cdots,Y_{i_q}).$$

With this identification of $\operatorname{Hom}_{\mathbb{C}}(\Lambda \mathfrak{g}, F)$ and $\operatorname{Hom}_{\mathbb{R}}(\Lambda \mathfrak{p}, F)$, Δ_{ρ} operates on ξ as follows:

$$\begin{split} (\Delta_{\rho}\xi)(X_{i_{1}},\cdots,X_{i_{q}}) &= \sum_{k=1}^{n} \rho(iX_{k})^{2}\xi(X_{i_{1}},\cdots,X_{i_{q}}) \\ &- \sum_{k=1}^{n} \sum_{u=1}^{q} (-1)^{u} \rho([iX_{i_{u}},iX_{k}])\xi(X_{k},X_{i_{1}},\cdots,\hat{X}_{i_{u}},\cdots,X_{i_{q}}) \\ &= (S\xi)(X_{i_{1}},\cdots,X_{i_{q}}) + (T\xi)(X_{i_{1}},\cdots,X_{i_{q}}) \,. \end{split}$$

In view of the identification $\operatorname{Hom}(\Lambda \mathfrak{g}, F) = F \otimes \Lambda \mathfrak{g}^*$, the first summand is given in terms of the Casimir element *c* as

$$S = (\rho \otimes 1)(c)$$
,

since $\{X_k\}$ and $\{-X_k\}$ are dual bases with respect to φ and therefore $c = -\sum X_k^2$. To deal with the second summand, we abbreviate $E = \Lambda \mathfrak{g}^*$ and specialize to $\xi = f \otimes e$ with $f \in F$ and $e \in E$. The immediate goal is to prove that in this case

$$T(f\otimes e) = \sum_{k=1}^n \rho(X_k) f \otimes \sigma(X_k) e$$
.

Let c_{ij}^k denote the structure constants of \mathfrak{k} (and \mathfrak{g}) with respect to the basis $\{X_k\}$; thus $\sum_{k=1}^{n} c_{ij}^k X_k = [X_i, X_j]$, and

$$\rho([iX_{i_u}, iX_k]) = -\rho([X_{i_u}, X_k]) = -\sum_{s=1}^n c_{i_u k}^s \rho(X_s) = -\sum_{s=1}^n c_{s_i k}^k \rho(X_s),$$

where the last equality holds because c_{ij}^k , in terms of an orthonormal basis with respect to $-\varphi$, is skew symmetric in each pair of indices. We have

$$(T\xi)(X_{i_1},\cdots,X_{i_q})=\sum_{s=1}^n\sum_{u=1}^q(-1)^u\rho(X_s)\xi([X_s,X_{i_u}],X_{i_1},\cdots,\hat{X}_{i_u},\cdots,X_{i_q}).$$

Abbreviating $X = X_{i_1} \wedge \cdots X_{i_q}$ we obtain $(T\xi)(X) = \sum_{k=1}^n \rho(X_k)\xi(-\Lambda \operatorname{ad}(X_k)X)$, and for $\xi = f \otimes e$ and σ the dual representation of Λ ad we obtain

$$T(f\otimes e) = \sum_{k=1}^{n} \rho(X_k) f \otimes \sigma(X_k) e$$
.

To conclude the proof we compute as in [6]

$$2
ho(X_k)\otimes\sigma(X_k)=(
ho\otimes\sigma)(X_k)^2-
ho(X_k)^2\otimes id_E-id_F\otimes\sigma(X_k)$$

672

and obtain

$$2T = (\rho \otimes 1)(c) + (1 \otimes \sigma)(c) - (\rho \otimes \sigma)(c) .$$

To prove the Theorem we will show that all the eigenvalues of Δ_{ρ} are positive. The basic observation (see Lemma 2 below) is that for any irreducible representation ρ , the endomorphism $\rho(c)$ is a scalar operator whose eigenvalue is given in terms of the highest weight of ρ . This fact will be applied individually to the irreducible components of $\rho \otimes 1$, $1 \otimes \sigma$, and $\rho \otimes \sigma$.

First we introduce some notation. As above we fix a Cartan decomposition $g=\mathfrak{k}\oplus\mathfrak{p}$, where \mathfrak{k} is a compact real form of \mathfrak{g} and $\mathfrak{p}=i\mathfrak{k}$. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} compatible with the given Cartan decomposition. Then $\mathfrak{h}=\mathfrak{h}_{\mathfrak{f}}\oplus\mathfrak{h}_{\mathfrak{p}}$, where $\mathfrak{h}_{\mathfrak{f}}=\mathfrak{h}\cap\mathfrak{k}$ and $\mathfrak{h}_{\mathfrak{p}}=\mathfrak{h}\cap\mathfrak{p}=i\mathfrak{h}_{\mathfrak{f}}$. Let Δ denote the root system of the pair $(\mathfrak{g},\mathfrak{h})$. To each $\alpha \in \Delta$ we associate $H_{\mathfrak{a}} \in \mathfrak{h}$ such that $\alpha(H)=\langle H_{\mathfrak{a}}, H\rangle$ for all $H\in\mathfrak{h}$, where the Killing form is denoted by \langle , \rangle from now on. Then $\mathfrak{h}_{\mathfrak{p}}$ coincides with the real vector space spanned by $\{H_{\mathfrak{a}}; \alpha \in \Delta\}$, so Δ may be viewed as a subset of $\mathfrak{h}_{\mathfrak{p}}^*$, the real dual of $\mathfrak{h}_{\mathfrak{p}}$. The Killing form \langle , \rangle is real and positive definite on $\mathfrak{h}_{\mathfrak{p}}$, hence it induces a scalar product \langle , \rangle on $\mathfrak{h}_{\mathfrak{p}}^*$. By fixing a basis of Δ we once and for all determine a set Δ^+ of positive roots. We define $\delta = \sum_{\mathfrak{a}\in\Lambda} \alpha$.

Lemma 2. Let $\rho: \mathfrak{g} \rightarrow \mathfrak{gl}(F)$ be any irreducible representation of \mathfrak{g} with highest weight λ , then $\rho(c) = \langle \lambda, \lambda + \delta \rangle \cdot id_F$.

For a proof see Raghunathan [5, Lemma 4], or Bourbaki [2, Ch. 8, §6, n° 4].

Lemma 2 immediately applies to our given representation ρ and thus enables us to compute the contribution of $3(\rho \otimes 1)(c)$ to the eigenvalues of $2\Delta_{\rho}$. The second term $(1 \otimes \sigma)(c)$ involves the representation $\sigma = \Lambda ad^*$ of \mathfrak{g} on $E = \Lambda \mathfrak{g}^*$. This representation is no longer irreducible, so Lemma 2 applies to each component of σ separately. Thus the knowledge of the highest weights of the irreducible components of σ is required.

Lemma 3. Let μ be the highest weight of an irreducible component of σ . Then μ is of the form $\mu = \sum_{\alpha \in \Delta} m_{\alpha} \alpha$, with $m_{\alpha} \in \{0, 1\}$.

Proof. The weight space decomposition of ad: $g \rightarrow gl(g)$ with respect to the Cartan subalgebra \mathfrak{h} equals the root space decomposition of the pair $(\mathfrak{g}, \mathfrak{h})$, i.e.,

$$\mathfrak{g} = \mathfrak{h} \oplus \sum_{\mathfrak{a} \in \Delta} \mathfrak{g}_{\mathfrak{a}}$$
.

The dual representation $ad^*: g \rightarrow gl(g^*)$ leads to the analogous decomposition

$$\mathfrak{g}^* = \mathfrak{h}^* \oplus \sum_{\boldsymbol{\omega} \in \Delta} (\mathfrak{g}^*)_{\boldsymbol{\omega}}$$
, with $(\mathfrak{g}^*)_{\boldsymbol{\omega}} = (\mathfrak{g}_{-\boldsymbol{\omega}})^*$.

Now let $n = \dim \mathfrak{g}^*$, $r = \dim \mathfrak{h}^*$, and observe $\dim(\mathfrak{g}^*)_{\alpha} = 1$. Then $E = \Lambda \mathfrak{g}^* = \Lambda(\mathfrak{h}^* \oplus \sum_{\alpha} (\mathfrak{g}^*)_{\alpha})$ is isomorphic to a sum of subspaces of the form

$$\Lambda^{h}(\mathfrak{h}^{*})\otimes(\mathfrak{g}^{*})_{\mathfrak{a}_{1}}\otimes\cdots(\mathfrak{g}^{*})_{\mathfrak{a}_{k}},$$

where $0 \leq h \leq r$, $0 \leq k \leq n-1$, $\alpha_i \in \Delta$, and $\alpha_i \neq \alpha_j$ for $i \neq j$.

Such a subspace is invariant under the action of \mathfrak{h} , it has weight $\alpha_1 + \cdots + \alpha_k$. This implies in particular that the highest weights of the irreducible components occuring in σ are of the form $\alpha_1 + \cdots + \alpha_k$, $\alpha_i \in \Delta$, $\alpha_i \neq \alpha_i$ for $i \neq j$.

Let now $E=\sum E_{\mu}$ be the decomposition of E into its irreducible components E_{μ} indexed by their respective highest weights. Lemma 2 enables us to compute the eigenvalues of $(1\otimes\sigma)(c)$ on $F\otimes E_{\mu}$. The third term, $(\rho\otimes\sigma)(c)$, in Lemma 1 involves the representation $\rho\otimes\sigma$ of \mathfrak{g} on $F\otimes E$. This space certainly decomposes into the sum $\sum F\otimes E_{\mu}$, but each of the components $F\otimes E_{\mu}$ may further decompose into a sum $F\otimes E_{\mu}=\sum V_{\mu}^{\nu}$, where the subspaces V_{μ}^{ν} , irreducible under $\rho\otimes\sigma$, are indexed bei their respective heighest weights ν .

For each μ there is exactly one component $V_{\mu}^{\lambda+\mu}$ of $F \otimes E_{\mu}$ with highest weight $\lambda + \mu$. All other components V_{μ}^{ν} have highest weights $\nu < \lambda + \mu$. The following lemma allows us to restrict our attention to the spaces $V_{\mu}^{\lambda+\mu}$.

Lemma 4. Let ρ_1 , ρ_2 be two irreducible representations of g with respective highest weights λ_1 , λ_2 . Then $\lambda_1 > \lambda_2$ implies

$$\langle \lambda_1, \lambda_1 + \delta \rangle > \langle \lambda_2, \lambda_2 + \delta \rangle$$

Proof. Let $\beta = \lambda_1 - \lambda_2$ and assume $\beta > 0$. Then

$$egin{aligned} & \langle\lambda_1,\,\lambda_1{+}\delta
angle{-}\langle\lambda_2,\,\lambda_2{+}\delta
angle = \ & 2\langle\lambda_2,\,eta
angle{+}\langleeta,\,eta
angle{+}\langleeta,\,eta\rangle{+}\langleet$$

since λ_2 and δ are dominant.

According to Lemma 4, the maximal eigenvalue of $(\rho \otimes \sigma)(c)$ restricted to $F \otimes E_{\mu}$ is attained on the space $V_{\mu}^{\lambda+\mu}$. Since $(\rho \otimes 1)(c)$ and $(1 \otimes \sigma)(c)$ are positive scalar operators on the whole space $F \otimes E_{\mu}$, and $(\rho \otimes \sigma)(c)$ occurs with a minus sign in $2\Delta_{\rho}$, the *minimal* eigenvalue of $2\Delta_{\rho}$ restricted to $F \otimes E_{\mu}$ is attained on the space $V_{\mu}^{\lambda+\mu}$. This minimal eigenvalue involves only λ and μ , according to Lemma 2. Our claim is now reduced to the

Assertion. Let μ be any of the highest weights occuring in the decomposition $E = \sum E_{\mu}$. Then the eigenvalue of $2\Delta_{\rho}$ is positive on $V_{\mu}^{\lambda+\mu}$.

Proof. On $V_{\mu}^{\lambda+\mu}$ we have

$$2\Delta_{\rho} = \{3\langle \lambda, \lambda + \delta \rangle + \langle \mu, \mu + \delta \rangle - \langle \lambda + \mu, \lambda + \mu + \delta \rangle\} \cdot \mathrm{id}.$$

By a straightforward computation this reduces to

674

$$\Delta_{
ho} = \{\!\langle \lambda, \lambda
angle \!+\! \langle \lambda, \delta \!-\! \mu
angle \} \cdot \mathrm{id}$$
 .

The term $\langle \lambda, \lambda \rangle$ is obviously positive, since λ is the highest weight of a nontrivial representation. Now $\delta = \sum_{\alpha \in \Delta^+} \alpha$, and according to Lemma 3, $\mu = \sum_{\alpha \in \Delta} m_\alpha \alpha$ with $m_\alpha \in \{0, 1\}$, hence $\delta - \mu = \sum_{\alpha \in \Delta^+} n_\alpha \alpha$ with $n_\alpha \in \{0, 1, 2\}$. Therefore $\langle \lambda, \delta - \mu \rangle$ $= \sum_{\alpha \in \Delta^+} n_\alpha \langle \lambda, \alpha \rangle \ge 0$, since λ is dominant.

References

- A. Borel and N. Wallach: Continuous cohomology, discrete subgroups, and representations of reductive groups, Ann. of Math. Study 94, Princeton University Press 1980.
- [2] N. Bourbaki: Groupes et algèbres de Lie, Ch. 7, 8, Act. Sci. Ind. 1364, Hermann, Paris, 1975.
- [3] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. 78 (1963), 365-416.
- [4] Min-Oo and E.A. Ruh: Vanishing theorems and almost symmetric spaces of noncompact type, Math. Ann. 257 (1981), 419-433.
- [5] M.S. Raghunathan: On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math. 87 (1965), 103–139.
- [6] M.S. Raghunathan: Vanishing theorems for cohomology groups associated to discrete subgroups of semisimple Lie groups, Osaka J. Math. 3 (1966), 243-256; Corrections ibid, 16 (1979), 295-299.

Hans-Christoph Im Hof and Ernst A. Ruh

Mathematisches Institut der Universität Bonn Wegelerstrasse 10 D-5300 Bonn, Germany