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1. Introduction and results

Let (M,g) be a compact Einstein manifold. If all Einstein metrics on M
near g are homothetic to <§

r, then the Einstein metric g is said to be rigid. The
first result concerning the rigidity of Einstein metrics is given by Berger [1
Proposition 6.4]. He proved that all Einstein metrics on the sphere Sn whose
sectional curvature is (dim M—2)/(dim M—l)-pinched are homothetic to g.
Berger and Ebin [2; §7] considered generalizations of this result and introduced
"infinitesimal deformations". The result they gave is, roughly speaking, that
the space of all Einstein metrics on M is locally finite dimensional. By their
method, Koiso [7; Proposition 3.3] gave the following Proposition (for the
definition, see 2) and applied it to locally symmetric spaces of non-compact
type without 2-dimensional factor ([7; Theorem 1.1]) and to some irreducible
locally symmetric spaces of compact type ([7; Theorem 1.2]).

Proposition 2.5. If there is no essential Einstein ί-deformation of an Ein-
stein metric g, then g is rigid.

One of the purposes of this paper is to generalize Koiso [7; Theorem 1.2].
For that, we shall classify essential Einstein /-deformations on simply connected
symmetric spaces of compact type (Theorem 5.7). The result is as follows.

Corollary 5.8. Let (M,g) be a locally symmetric Einstein manifold of compact
type. Let (M,g) be its universal riemannίan covering and (Mίg)=ΐl^ι(Mayga)
the irreducible decomposition as symmetric space. If N=\ and (M,g) is neither
SU(p+q)IS(U(p)xU(q)) (p^2), SU(l)ISO(l) (7^3), SU(2l)/Sp(l) (7^3),
E6/F4 nor SU(l) (/^3), then g is rigid. If N=2 and Ma are neither one of the
above, G2 nor any hermitίan space except S2, then g is rigid. If N^3 and Ma

are neither one of the above nor S2, then g is rigid.

Another purpose is to decide whether the converse of Proposition 2.5
holds or not. We expect that the converse holds, because if so, we would get
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many examples of Einstein metrics by Theorem 5.7. In the case of Kahler

metrics, i.e., if we consider only Kahler metrics on a compact complex manifold,

then it is not difficult to show that the converse holds (cf. Yau [13]). But, unfor-

tunately, we shall give counter-examples to the converse in the real case. To

analyze this problem, we shall introduce "infinitesimal deformations of second

order" (Definition 4.4) and check whether each essential Einstein /-deformation

has an Einstein /-deformation of second order or not (Theorem 6.2). As a

result, we shall give the following

Theorem 6.12. There exist Einstein metrics which is infinitesimally deform-

able but rigid.

This paper is organized as follows: after some preliminaries in 2, we consider

infinitesimal Einstein deformations in 3 and infinitesimal Einstein deformations
of second order in 4, in general case. We apply the results in 3 and 4 to sym-

metric spaces of compact type in 5 and 6. Theorem 5.7 and Corollary 5.8
are proved in 5 and Theorem 6.12 in 6.

2. Preliminaries

In this section, we recall some fundamental definitions and some known facts

concerning the space of riemannian metrics and deformations of Einstein me-

trics. Let M be a compact connected C°°-manifold with w— dim M^3. Rie-

mannian metrics on M, etc. are all to be in C°°-category, unless otherwise stated.

When we fix a riemannian metric on M, we identify covariant tensors and con-

travariant tensors with each other by the fixed metric as usual, and denote by

TpMy S2M the ^-tensor bundle over M, the symmetric 2-tensor bundle over M,
respectively. Moreover, we denote by ( , ) the inner product on tensors on M

and by ζ , y the global inner product for tensor fields.

For a fibre bundle F over M, we denote by H\F) the set of all ίΓ-cross

sections of F. We denote by <5tts, 3)s the Hubert manifold of all /Γ-riemannian

metrics on M, the group of all .fΓ-diffeomorphisms of M, respectively. (Here,

we assume that s is sufficiently large.) The group ίDs+1 acts on <3HS by pull-

back and this action admits a slice (Ebin [6;8.20 Theoieme]). For a riemannian
metric g on M, we denote by Ss

g this slice. Recall that Ss

g is a submanifold of JMS

containing g such that TgS
s

g=Ker δ, where δ is the differential operator:
H\S2M)^HS-\TM) defined by

Denote by JHS

C the Hubert manifold of all /Γ-riemannian metrics on M with

volume c. The tangent space of <3tts

c at g ̂  3tts

c is given by Ker /, where the

function / on HS(S2M) is defined by /*=<*,£>.
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DEFINITION 2.1 . Let g e e5KΓ be an Einstein metric. If there exists a <DS+1-
invariant open set U of <3fts

c containing g such that every /Γ-Einstein metric in

U is an element of (£)3+l)*g, then g is said to be rigid.

If we use Ebin's slice, we get the following

Lemma 2.2 (Koiso [8; Lemma 3.1)]. Letg^<3l£? be an Einstein metric. If

there exists an open neighbourhood V of g in Ss

g{\<3M,s

c such that g is the unique Hs-

Einstein metric in Vy then g is rigid.

c, we define

= S(g)-(T(g)lnc) g,

where ug is the Hs~2-f unction on M defined by the scalar curvature of g and

S(g) the Ricci tensor of g. Remark that g is an Einstein metric if and only if

E(g)=Q. Following Lichnerowicz [10; (19.4)], the differential S'g of the map

S: JHS->HS-2(S2M) at g^JM* is given by

(2.2.1) 2Sg(h) = (Δ+2L+2ρ-2δ*δ-Hess tr)A ,

where (SA),V = -V'VA, for hϊΞHs(S2M) ,

(Lh){j = JV/AW for h<=Hs(S2M) ,

2(Qh)ij = Sfhkj+Sfhki for

and the sign convention of the curvature tensor R is taken in such a way that

Rijijί^Q for the standard sphere. Since an Einstein metric is a critical point of

the function T on <_3/J, the differential E' of £" at an Einstein metric g^<3H7 is
given by

(2.2.2) 2Eg(h) = (Δ+2L-2δ*δ-Hess tr)A .

Since Γ (̂S; Π c5f/?)=Ker δ Π Ker /, if Ae Tβ(S'β Π c3/ί)ι then

(2.2.3) 2Eg(h) = (Δ+2L-Hess tr)A .

DEFINITION 2.3. Let g^ <3tt™ be an Einstein metric. We denote by EID(M)

or simply EID the kernel of the map Eg\ Tg(SgΓ\ <3tts

c). A non-zero element
A^EID is called an essential Einstein i-deformatίon. If EID vanishes, then g

is said to be ίnfinitesίmally non-deformable, otherwise infinίtesίmally deformable.

The Lichnerowicz operator Δ is defined by

for
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where

and

Remark that this definition does not contradict the previous definitions and
the ordinary Laplace-Bertrami operator (Lichnerowicz [10; §10]). Moreover,

we can check that Δ commutes with δ, δ*, Hess, tr and d on an Einstein

manifold.

Lemma 2.4 (Berger and Ebin [2; Lemma 7.1]). Let g^<3H7 be an Einstein
metric. The space EID(M) coincides with Ker(Δs— 28) Π Ker tr Γl Ker δ, where Δs

is the restriction of the Lichnerowicz operator Δ to HS(S2M) and £ the Einstein

constant, i.e., S(g)=6 g.

Proposition 2.5 (Koiso [8; Proposition 3.3]). Let g be an Einstein metric
σn M. If g is infinίtesimally non-deformable, then g is rigid.

3. Einstein z-deformation

Let g^^ί00 be an Einstein metric with Einstein constant £, i.e., S(g)=
S g. We define differential operators 7: Hs(S2M)-+Hs~l(TM) and β: H\S2M)
-+HS~2(S2M) by

β = Δs— 2ε— Hess tr.

Remark that β is an elliptic operator.

Lemma 3.1. /3(Ker δ Π Ker /)= Im β Π Ker 7 Π Ker /.

Proof. Denote by Δx the Lichnerowicz operator on HS(TM). By Koiso

[8; Lemma 3.2],

(3.1.1) 7/9 = (Δx-2£)δ .

Since tr β=2(Δ— £)tr,

/3(Ker δ Π Ker J)clm β Π Ker 7 Π Ker / .

Let /3AeKer7ΓlKer/ and decompose h into ψ+δ*£; δ-î O, by Ebin [6;8.8
Proposition] . Then

0 = 7/3* = (Δ1-2£)δ(^+δ*f) - δδ*(Δx-2£)? , (3.1.1)

and so, δ*(Δ!— 2f)f =0, δ(Δj— 2θ)?=0. Since we can easily check that
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(3.1.2) δδ* = 1 (^-26+dS) ,

0 = δδ*(Δ,-2ε)£ = 1 (Δj-fc+rfδ) (Δ,-2£)£ = 1 (Δi-Zε)2? ,

which implies that (Δj— 2£)£ =0.

(3.1.3) /3δ*£ = (Δs-2£-Hess tr)S*f

= δ*(Δ1-2ε)|+Hess δ? = Hess δ£ .

Set φ=Hess δξ+Sδξ g. Then

(3.1.4) δφ = 8S*dSξ-€dSξ
(3-1.2)

= </δ(Δ,-2ε)£+

(3.1.5) /3φ = (Δs-2θ-Hess tr) (Hess Sξ+εδξ g)

= Hess Δδξ-nε Hess δ£

= (2-«)6 Hess Sξ .

Since Δξ=2εξ and so Δδ£=26δ£, if £=0 then Δ£=0 and δ^=0. Therefore
2δδ*?=(Δ!-2ε+ίίδ)^=0, which implies that δ*£=0. In this case the equalities
8h=Q and βh=β(h-(Shlnc) g) hold, and so /Q(Ker δ Π Ker J) => Im β Π Ker γ Π
Ker /. Thus we may assume that £ φO. Then

= /3^+Hess δ? (3.1.3)

= /8(ψ+φ/(2-β)6) , (3.1.5)

and δ(^+φ/(2_M)£) = 0 , (3.1.4)

/φ = / Hess δf+6/δg ^ = 0 . Q.E.D.

Proposition 3.2. Let g be an Einstein metric on M. Then

Im(E't \ Ker J)ΘEID = Ker 7 Π Ker /

(orthogonal direct sum), where Im(^|Ker /) is a closed subspace.

Proof. First we see that Im(E'e \ Ker /) = ^(Ker δ Π Ker J) ® E'g(lm δ*)
and £ ;(Ker δ Π Ker /)=/3(Ker δ Π Ker /) by (2.2.4) and ^(Im δ*)=0, and so
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Im(Z?£|Ker/) = /8(KerδΓΊKer /). Next we remark that the formal adjoint
/?* of β is given by Δs— 26— g δδ and see, by Lemma 2.4, that

</3(Ker δ Π Ker /), EID> = <Ker δ Π Ker /, /3*EID> = 0 .

Moreover, by Lemma 2.4 and Lemma 3.1, it is easy to see that /3(KerδΠ
Ker J)φEIDcKer 7 Π Ker J.

Now, let /beKer γ ΠKer /. Since β is elliptic, we can decompose h into
5*Λ/r=0. Then

0 - δδ/3*-ψ = δδ(Δ5-2£-£ δδ)ψ

But here £=0 or ε is not an eigenvalue of Δ on a compact Einstein manifold
(Lichnerowicz [9; p. 135]). Then δδψ=0, and so (Δ5— 2£>ψ =0.

0 = 87 h = δγβφ+δγψ

( ' '

— (Δ— 2£)δδφ+ — Δ tr ψ .
ZΛ

Therefore (Δ-2£)2δδφ==-—Δtr(Δs-2f)ι/r, and so (Δ-2θ)δδφ-0, 0=Δtr -ψ
z*

=26 tr ψ . If 5ΦO, then tr -ψ =0. Even if £=0, fψ=fh-fβφ=Q implies that
tr ψ=0. Thus

j

which implies that (Δx— 2ε)2Sφ= — δ(Δi— 2£)ψ=0 and so (Δ!— 2£)δφ=0 and
δ-v/r^O. These formulae implies that ψeEID and βφ e Ker γ Π Ker /, and so
βφ<Ξ/3(Ker δ Π Ker /) by Lemma 3.1. Q.E.D.

Proposition 3.3. Let g be an Einstein metric with Einstein constant £.
Then dim EID

= dim(Ker(Δs-2£) Π Ker tr)-dim(Ker(Δ1-2£))+dim(Ker δ*) .

Proof. Define a differential operator θ: H\TM)-*HS-\S2M) by

n

Remark that tr 0— 0 and the formal adjoint θ* of θ is given by
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θ*h = 8h+ — dtrh.
n

Let /ieKer(Δs— 2£) Π Ker tr. Since θ has injective symbol, we can decompose
h into θξ+ψ; 0*ψ=0 (Ebin [6; 8.5 Theoreme]). Then 0=tr A=tr θξ+tτψ=
tr ι/r, and

* r = 0.
w

Moreover 0 = (Δs—2β)h

= 0 ,

and so 0*0^— 2ε)f =0, 0(Δ1-2f)?-0 and (Δs-2£)<ψ=0, which implies that
Λ/reEID. In this correspondence: λ-» ψ , if AeEID then -ψ =A. Thus we have

a projection P: Ker(Δs— 26) Π Ker tr->EID; P(A)= ψ . Then

dim EID - dim(Ker(Δs-26) Π Ker tr)-dim(Ker P) .

Here, if we remark that tr 0=0, then we see that

Ker P = Im 0 Π Ker(Δ5-2£) .

We easily see that 0(Ker(Δ1-2£))cKer P. Conversely, let 0£eKer(Δs-2£)

for ξ^H\TM) and decompose ξ into ζ+(^-2ε)-η\ (A1~2ε)ζ=0. Then 0=
(As-2ε)θξ = (Δs-2ε)θζ+(Δs-2εγθη = (Δs-2εYθη, and so θ(A1~2ε)η=
(Δj— 2ε)θη=0. Therefore ?eKer(Δ!— 2ε)+Ker 0, which implies that 0 gives

a surjection from Ker(Δι— 26) to Ker P. Thus

dim Ker P - dim Ker(Δ1-26)-dim(Ker(Δ1-2ε) Π Ker 0) .

Here we easily see that Ker 8*cKer(Δ!— 2ε) ΠKer 0 by (3.1.2). Conversely,

if ξ eKer(Δ1-2f) Π Ker 0, then

(3.1.2)

and so δξ=Q, S*ξ=Q, which implies that Ker δ*=)Ker(Δ1-2£) Π Ker 0. Q.E.D.

4. Infinitesimal Einstein deformation of second order

In this section, we discuss about the second derivative of the map E. Let
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g^Jtf and h^H\S2M). Regarding h as an infinitesimal deformation of gy

i.e., h^TgJM8, we set

Then A" is a well-defined 3-tensor field (of type (1,2)) and given by

(see Lichnerowicz [9; (17.2)]).

Lemma 4.1. Z ί̂ g be an Einstein metric and h an essential Einstein i-

deformation of g. Then we have

(4.1.1)

(4.1.2) v*JΓ«y = (LA),-' ,

(4.1.3) (*,,*')' = V, *,;-V,*»' ,

α/xrf £/ie symmetric part of Xikj with respect to i and j is (l/2)VAv

Proof. That is easy to check by tensor calculas. For (4.1.3), see Lich-
nerowicz [9; (17.5)].

Proposition 4.2. Let g^JMΐ be an Einstein metric and h an essential Ein-

stein i-deformatίon of g. Then the second derivative Eg'(h,h) is given by

2E'e'(h,h)ii

= 2A*'V,V Ay

Proof. Since g is a critical point of the function T on Ms

c, Tg(h)=0. More-

over, (Hess T) (A,A)=0 by Koiso [7; Theorem 2.4, Theorem 2.5]. Thus we see
E"(h,h)=S"(h,h}. We calculate S"(h,h) by Lemma 4.1.

.U)) (4.1.2)

A*'V*VAy+(VA"+VΛ"-V"Aw).V*A.y

"+ V A"- V"AW) Vkhim+(Lh)rhmj+(Lh)"hin

V;A, y+2V4A i

M V*A f f l J +(V A" V*Amy+ V A" V*A<(.)
wA4ί - V*A.y+((LA)ί"A.y+(LA)>"Aί.) ,
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(LA){y = &*-*,./*«)' , .

- y ^ - . w , .

1 v,v/A.' Λ",+-U"'v»vΛ>

y V^

+ , . , , , . -

y

*,) = 0 ,

(Hess tr A)'=(Hess)' tr A+Hess (tr A)'=Hess (tr A)'

(tr A)' = (£%,)' = -A*'A« = -(A,A) ,

(Hess tr A)ίy=-V,V/Λ,A),

(8*δA)' = (δ*)'δh+δ*(δh)' = 8*(8A)' ,

(4.1.1)

= 1 V<A*' VΛy+ y AwV 4VAy+y VyA*'. VA/+ y A*'VyVΛ/

+1V<VΛ" A.*+^VyA4" V^.+^VyVΛ" A*.+lvΛ" VyA*.

= yV^' VΛy+yVyA '.VΛί+y VίA*.. V.V+y A^'
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"

= 1 (v, A" vA, +VyA*' vA, )+γ v AV VA"

Therefore, 2E"(h,h),,i

= A*'V,VA/+2V A" V*A.y+(V A" V*Λ.,y+ VA" V*A<.)

-(V,**1 V Ay+ VyA" VA<) - V,A*. V A"

+V,Vy(A,A) . Q.E.D.

Now, we calculate (E"(h,h), hy which we use in 6.

Lemma 4.3. Lei £ αwrf A δe βί t» Proposition 4.2. TTzew

= 2ε<Aί; , A(*A,,.

Proof.

<A*'V*V Ay, A,y> = <V,V Aι» M«>

<VA' V*Ay/, A<y> = -<A/V*VV Aίy>-<Ai'vV V*A i ; > ,

' V*Ay fo A/y> = 1 <A,'(SA)y,, A, y> = -

Άrt VVAίy> = -<hikVlVkhih A<y>-<A«V*Ay/J VA/>

*'VyVA/, A, ,> = Wvπfa,, A, y

<VίA*. VA"» *«> = -<A*.V,VA". *«> = -<V,VA/, M«>
<(Lh)thki+(Lh)?hKt A,.y> = 2<(LA),.y, A,*AW> ,

<Hess(A,A), A>=0. Q.E.D.

Now, let g^JίK be an Einstein metric and #(ί) a curve in S^D Jί/Γ such
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that g(Q)=g and each g(t) is an Einstein metric. Then,

E(g(t)) = 0, i.e., £ίV(0),£XO))+ W'(0)) = 0
o

Therefore, for an Einstein metric g, we call a pair (h)h
t)^C00(S2M)xC00(S2M)

an essential Einstein /-deformation of second order of g if h is an essential Ein-
stein /-deformation of g and A' satisfies that E"(h,K)+E'(h')=Q.

DEFINITION 4.4. Let g be an Einstein metric and h an essential Einstein
/-deformation of g. If there exists h'^C°°(S2M) such that (h,hf) is an essential
Einstein /-deformation of second order, h is said to be integrable up to second
order. If there is an Einstein deformation g(f) of g such that gf(0)=hfh is said

to be integrable.

We easily see the following

Proposition 4.5. Let g be an Einstein metric and h an essential Einstein

i-deformation of g. If h is not integrable up to second order, then h is not integrable.

Moreover the following proposition holds.

Proposition 4.6. Let g^<3tt™ be an Einstein metric. If all essenlial Einstein

i-deformations are not integrable up to second order, then g is rigid.

Proof. By Lemma 2.2, it is sufficient to prove that g is isolated in Ss

g Π <3tts

c.
Consider the map E\SgΓiJtts

c: SgΓ[<5Hs

c-*Hs-2(S2M). By formula (2.2.3) and

Lemma 3.1, Im(E \ Ss

g Π 3tts

c)'g is closed in HS~2(S2M). Denote by P the ortho-

gonal projection: HS~2(S2M) -» Im(E \ Ss

g Π JK;)£. Then Im(PoE\SgΓ\*3H'c)g=
Im(E I Sg Π <3ttsc)g and, by the implicit function theorem, there is an open neigh-
bourhood U of g in SgΓ\ 3tts

c such that all /Γ-Einstein metrics in U are elements

of (PoE\Ss

gΓ\^ίscΓ1(0)Γ\U. Here, since the operator β is elliptic, (P*E\S'g
Π^cΓ^nC/ becomes a finite dimensional submanifold of SίΠc5Kί. If

we apply the condition to the map E \ (P<>E \ Sg Π JU')"1^) Π C/, then the result is
obvious. Q.E.D.

Lemma 4.7. Let g^Jtt™ be an Einstein metric and h an essential Einstein
i-deformation. Then h is integrable up to second order if and only if E"(h,h) is
orthogonal to EID.

Proof. By the definition, h is integrable up to second order if and only if
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E//(h,h)Glm(E\JH$)/g. Remark that the formulae jE= 0 (by the Bianchi
identity) and fE=0 on c5$f hold. By differentiating the formulae, we get
that

rί'(M) (E(g))+27t(h) (Eχh))+vE'/(h,h) = 0 ,

fi'(h,h) (E(g))+2f'g(h) (Eχh))+fE'/(h,h) = 0

for all g^tSHc and h^H\S2M). Therefore the assumption of g and h implies

that 7E"(h,h) = Q and /£"(A,Λ) = 0,i.e., E"(h,h)EΞKer γΠKer /. Thus by
Proposition 3.2, the result is obvious. Q.E.D.

5. Classification of essential Einstein /-deformations

In this section and the following, we use the representation theory of Lie
groups. For fundamental data concerning root systems of simple Lie algebras

(resp. of irreducible symmetric pairs), see Bourbaki [4; Planche I-IX] (resp.
Murakami [11]).

First we show some facts concerning a compact semi-simple Lie group G
and G-modules. Modules are all taken to be complex modules, unless other-
wise stated. Let Q be the Lie algebra of G with a G-invariant inner product
B and α a Cartan subalgebra of g with a linear order. We denote by 2δg

the sum of all positive roots of Qc and by V(\) the irreducible G-module with
highest weight λ. Then the Casimir operator on V(\) coincides with the
scalar operator e(V(\))=B(\-{-2SQy λ). If G is decomposed into ΠtGt where Gt

are simple groups, we denote by g, the Lie algebra of G, and B{ the restriction

of B on g, . An irreducible G-module V has the form ®,Ft where each V{ is an
irreducible Grmodule or a trivial Grmodule C. Then we see e(V)=^Σίie(Vl).
Assume that all B{ satisfy e(Q?)= 2£. By an easy computation, we can check

Lemma 5.1. Let G be a compact simple Lie group. Then for any irreducible

G-module y e(V)> (2/3)6 holds.

By this lemma, we can classify irreducible G-modules V such that

2£, for a semi-simple Lie group G. Assume that V has the form ®Vι and

that each V{ is not trivial. Then the equality e(V)=2£ implies that G has at

most two simple factors. For the case that G is simple, we can check

Lemma 5.2. Let G be a compact simple Lie group and V an irreducible

G-module. If e(V)=2ε, then V is isomorphic to Qc.

For the case where G has two simple factors, we list all pairs of irreducible

Grmodules Ff (ί=l,2) such that e(V1)+e(V2)=2β and e(V^e(V^ In the

following table, ωt means the highest weight of Vl and V2.
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Table 5.3.

Vl V2

ωi, ω2//A2 ωι/B2/
2

+2/+ι

ωi, ω2/-ι/A2/_ι ωι/D2/

2

+1

ωι/C, ωι/D/+2 (/^l)

ω2/B2 ω3, ω4/D4

ωj/Cg ω3/B3

ωι/G2 ωι/G2

Next, we show some facts concerning a simply connected irreducible sym-
metric space G/K of compact type. Let ϊ be the Lie algebra of K and g— ϊ+tn

the canonical decomposition. We compute the dimension of Hom#(gc,So(mc)),
where Si means the traceless part of the symmetric tensor product. If G\K is of
group type, then gc— lc-\-lc, mc— lc as ./C-modules. So we have to compute
dimcΐiomκ(tc

ySo(lc))y where K is a compact simple Lie group.

Lemma 5.4. If K is not of type A, (/^2), then dimcHom^(ϊc,5?(fc))-=0.

// K is of type A/(/^2), then dimcHomjr(ϊc,*S?(IC7)) = l.

If G/K is not of group type, we can check

Lemma 5.5. The dimension of Homκ(Qc ', S%(mc)) is (HI) two if (G,K)=

(SU(p+q), S(U(p)xU(q))) [AΠI] (p^q^2), (H2) zero if (G,K)=(SU(2),

S(U(1)X C/(l))) [S2], (H3) one if (G,K) is of another hermitian type, (N\) one if
(G,K)=(SU(l), S0(l)) [AI] (7^3), (SC/(2/), Sp(l)) [All] (/S>3) or (£6,F4) [EIV]
and (N2) zero if (G,K) is of another non-hermitίan type.

Now, we come back to our Einstein manifold (Myg) and assume that (M,g)
is a simply connected symmetric space G/K. The tangent space T0M of M
at the origin is identified with m and the metric g is induced by a G-invariant
inner product B on g.

Generally, for a finite dimensional ./f-module U, a cross section s of the
homogeneous vector bundle GxκU over M may be identified with a [/-valued
function s on G such that s(xy)=y~1s(x) for all x^G and y^K. Let C°°(G,U)K

be the space of all such s and enlarge this space to H\G, U)κ. Then C~(G,U)K

and H°^G, U)κ canonically become G-modules and H°(G, U)κ is decomposed
into @iVi as Hubert space, where V{ are irreducible G-modules contained in
C°°(G, U)κ. Let V be an irreducible G-module and denote by W the direct
sum of all irreducible G-modules Ft which are isomorphic to V. Then we
see, by the Frobenius reciprocity theorem (cf. Wallach [12; Theorem 8.2]),
that

dim W= dim F dim HomG(F,C°°(G, U)κ)

= dim F dim Homκ(V, U) .
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Lemma 5.6 (Koiso [8; Proposition 5.3]). The Lίchnerowίcz operator Δ
regarded as an endomorphίsm of C°°(G, ®pmc)κ coincides with the Casίmir operator.

Let M=ΐ[a*ιMa be the irreducible decomposition of the symmetric space
M. Remark that all (Ma,ga) are Einstein manifolds with the same Einstein
constant 8 . Let (Ga,Ka) be the symmetric pair of each Ma, Qa (resp. la) the Lie
algebra of Ga (resp. Ka) and ga— ϊΛ+tnβ the canonical decomposition. Since

Ker δ*dKer(Δ1— 2£), Lemma 5.6 implies that e(Q%)=2β. Therefore we see,
combining Proposition 3.3, that

(5.6.1) dimΛEID =

where V" runs through the set of all equivalence classes of irreducible G-modules
whose Casimir operators are 26. Let

be the irreducible decomposition of V" as ^-module. Each V" has the form

where I* is a subset of {b^Z\ lίίb^N} and V*ta are irreducible ^-modules.
Then we see that

β

Here, by Frobenius reciprocity, if Hom#(F*,m!r®m£) does not vanish, then
there is a non-zero 2-tensor field h on M such that Δh=2βh and h^T(Ma)

c®

T(Mb)
c at each point of M. Then M = -2Lh=0 and so Λ is parallel. But

a parallel symmetric 2-tensor field is a linear combination of the metrics ga on
Ma. Therefore

FΛ, m?®mf) - 0 for

Thus Hom^(FΛ, 50

2(mc))

Cv«, C) .

If Hom^(C,5o(m?))Φθ, then there is a G-invariant symmetric 2-tensor field h
such that h^So(Ma)

c at each point. Since there is no such A,
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= 0 .

Thus Homκ(V*, S2

0(mc))
»» ir v^cjf-o

= 0 ΘHomjfί ® Vf.i, 50

2(mf))Φ θ Hom^C, C)

- 0 Hom^(Ff, 5§(mί?))ΘCrv-(JV-1).
«,»;/?={«}

Moreover,
nΛ N tf

Hom^F", mc) = Hom^(0F?, 0m?)+HomΛ:(CrX
ί = l « = 1 « = l

Here, since there is no parallel 1-tensor field on M, Hom/f(C, 0βΐι
Therefore,

Hom*(F*, mc) = 0 0Hom*(F?, mf)

nΛ &

S FM, wf)

^F?, mf) .
«,. ; ί={«}

Thus we see

dim EID =

where N(V*)

and κ°=l if FΛ or V*®V* is isomorphic to some flf , Λ:Λ=O if not. (The case
FΛ0FΛ occurs if M3 is of group type.)

Now, we compute N(V*). By Lemma 5.1 and remarks following it, the
number of elements of /*— (J ?f i/? is one or two.

Case 1 : the number of elements of I* is one. We may assume that Ia=
{!}. First we assume that MI is not of group type. Then Lemma 5.2 implies
that V* is isomorphic to gf .

Case 1-H (Mλ is hermitian). The module VΛ is decomposed into Ϊίc0
πtί0mΓ0Cf as J^-module, where ϊί is the semisimple part of ΐ l y mί is the
i V— 1-eigenspace of mf with respect to the almost complex structure of Mλ.
Then dim Hom^F*, mf)=2, v*= 1, *:*= 1 . Therefore,

7V(FΛ) = dim Hom^ίflf ,

Combining with Lemma 5.5 (H), we see that
N(V*)=N if M, is of type AIII

N(V*)=N—l if Ml is of another hermitian type.
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Case 1-N (M1 is not hermitian). The module V* is irreducibly decom-
posed into ϊfθmf as ̂ -module. Then dimcΐίomKι(Vcί,mc

1)=lJ v*=Q, κ*=l.
Therefore,

JV(F") - dim Hom^ίflf, S0

2(mf)) .

By Lemma 5.5(N), we see that
N(V*)=\ if Ml is of type AI (7^3), All (7^3) or EIV,
7V(FΛ)— 0 if M1 is of another non-hermitian type.
Next we assume that M1 is of group type. Then Lemma 5.2 implies

that V* is isomorphic to If or to Wλ®W2 as Gx-module, where Wl and W2

are irreducible modules of simple factors of Glβ

Case 1-G (V* is isomorphic to ϊf). The modules V", mf and ϊf are
isomorphic to each other as ^-modules. Then dim Hom^ι(FQ>,tnf)=l, v"=Q

and κ«= 1. Therefore,

N(V«) = dim Hom^ϊf, 50

2(ϊf)) .

By Lemma 5.4, we see that
N(V*)=l if M! is SU(l) (7^3),
N(V )=0 if Ml is another group.
Case I'-G (V* is isomorphic to Wι®W2). Table 5.3 implies that this case

occurs only if Mλ is the group of type G2. By computing, we see that

dimHom^F^S0

2(tnf))=l, dimHom^(FΛ,mf)-l, v*=\ and κ*=Q. Therefore,
N(V*)=N- 1 if Ml is of type G2,
N(V*)=Q if MI is another group.
Case 2: the number of elements of I* is two. We may assume that I*=

{1,2} and V"=Wl® W2y where Wa is an irreducible GΛ-module such that e(W^
e(W2). Then, since the first non-zero eigenvalue of Δ on C°°(M1) is greater than

£ (Lichnerowicz [9; p. 135]), HomGi(^1,C
00(G1,C)jri)=0 and so HomKl(Wl9C)

=0. Let Wl=®iWlti and W2= Cμθ @iW2ti be the irreducible decompositions
as Kγ and X"2-modules. Then V* is irreducibly decomposed into

θ ΘJ^iίθ ®Wli®W2ji j
as -R^X-K^module. Therefore, since ^Λ— 0 and ^—0, we see that

N(V*) = μ [dim HomKl(Wl9 5g(mf))-dim HomKι(Wl9 mf)] .

If M2 is of group type, then W2 is irreducible as ^-module, and so μ=Q, which
implies that N(V*)=Q. Let G2 and W2 be in the list of V2 in Table 5.3 and
assume that (G2,K2) is a symmetric pair. We can check that if HomK2(W2,C)3F
0, then G2/K2 is the standard sphere, i.e., of type B or D, and W2=V(ωι).
On the other hand, if GI is of type A/ and W1=V(ω1) or F^ω/), or G! is of
type C/ and W1=V(ωι)ί then we can check that there is no symmetric pair

such that HomκJWl9Sϊ(mξ))*Q or Hom^ί^mOΦO. Moreover if
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MI is of group type, we easily see that the .K^-module Wl does not admit zero as
weight and So(mf) and tnf admits zero as weight, and so ΆomKί(Wl9So(lζ))=Q
and HomKι(Wlyl?)=Q. Thus in this case we see that N(V")= 0.

Let M,Ma and Ga be as above. Assume that Ml is a hermitian space or
the group of type G2. Then there is a unique irreducible Grmodule Vλ such
that e(VΪ)=2s and Hom^( Vl9 C) φ 0. Moreover dim HomKι(Vl9C)=l. There-
fore 2£ is an eigenvalue of Δ on C°°(M1) and the corresponding eigenspace jF
becomes an irreducible real Gi-module. Let ga be the metric on each Ma and
/Λ<EjFandset

Then,

where ΛΛ= dim Ma. If Σ«-ι«β/β— 2/i=0, then AeEID(M). Remark that if Λ^
— S\ then Hess/1+£/1 ^ι=0. Since EID(M1)cEID(M), we get the following

Theorem 5.7. Let (M,g) be a compact simply connected symmetric Einstein

Ah = Hess Δ/i+e Σ 2f /α ga = 2εh ,

Sh = δ

tr A = -

type N, form

SU(p + q)IS(U(p)xU(q)) N

S2 N-2

other hermitian βf N-l

N-l

SU(l)

SU(l)ISO(l)

SU(2l)ISp(l)

E6/F4

other type

C*) decomposes into right invariant form and left invariant form
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manifold, (M}g) = T[a=i(Ma,ga) its irreducible decomposition as symmetric space
(dimMa=na) and (Ga,Ka) the symmetric pair attached to Ma. Then EID(M)
becomes a real G-module and is decomposed into ®aWa where each W% is a Ga-module

(which may be 0). Each Wζ is the direct sum of Na copies of an irreducible Ga-
module Va (Na may be 0). The G-module Va, Na and the form of elements of Wa

are listed above (we may assume that a= 1). There h0 means an element of EID(Mj)
(cEID(M)), fa eigenfunctiσns of Δ on C°°(Ml) with eigenvalues 2β.

Corollary 5.8. Let (M,g) be a locally symmetric Einstein manifold of com-
pact type and ΐla^ιMa be the irreducible decomposition of the universal riemannian

covering manifold M of M. If N=l and M is neither SU(p+q)IS(U(p)x U(q))

(P^q^Z), SU(l)/SO(l) (7^3), SU(2l)/Sp(l) (7^3), E6/F4 nor SU(l) (/^3), then
g is rigid. If N=2 and Ma are neither one of the above, the group of type G2 nor

any hermitian space except *S2, then g is rigid. If N^3 and Ma are neither one of
the above nor S2, then g is rigid.

Proof. It is obvious that infinitesimal non-deformability of an Einstein
metric reduces to that of its riemannian covering. So Proposition 2.5 implies

this result. Q.E.D.

6. Second order Einstein /-deformation on symmetric spaces

Let (M,g) be a compact simply connected symmetric space G/K where g
is an Einstein metric with Einstein constant 6. Let M= Tίa=ιMa be its irredu-
cible decomposition and (Ga>Ka) the symmetric pair of Ma. By Theorem 5.7,

EIΌ(M)=®a"ιWa where each Wa is a real GΛ-module (which may be 0). By
Lemma 4.7, if we denote by ψ(hlyh2) the EID-component of Ef/(h^h^ for hly

A2^EID, then h is integrable up to second order if and only if ψ(hyh)=Q. We

easily see that i/r is a G-homomorphism. Therefore we get

Lemma 6.1. In the above situation, if HomG(S2(®aWa), ®0Wa}=. 0, then
all essential Einstein ί-deformations are integrable up to second order.

= θ HomG(S2(Wa), W® θ HomG(Wa®Wby Wc) .
a,b

Since each Wa has no trivial component as GΛ-module, the last form equals to

θΛHomcOS2^), Wa). Thus the integrability of AeEID(M) up to second
order reduces to the integrability of its components in each Wa.

If MΊ is E6/F4, then by Theorem 5.7, Wλ is isomorphic to Q1 and Lemma 5.4

implies that HomG(S2(WQ, PFi)=0.
Let M! be the group of type G2 or a hermitian space except AIII (p^q^2)
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and denote by F the 2£-eigenspace of Δ on C°°(M1). Then by Theorem 5.7,
an element h of Wλ has the form

1. We calculate E"(h, h).

A*'V»VAι = (Aι)*'V<Vy(A1)H+ ijft,
β = 2

V*A« VΛ ' = V*(AO« v*(Aι)/+ Σ (dfa,dfa) ga ,

(Aι)*'V,V*(Λι)y/ ,

Heβs(A,Λ) = Hess(/iI,A1)+2ΣM/a®^+2Σ2«flΛ Hess/a,

and so 2E"(k,h)

= 2£/'(A1,A1)+2g(A1, Heβs/.).Λ

+2"J2(df.,dfβ) g.+ g»^/.®^.+2g»./..Heβs/..

Let A'=Aί+Σ«-2/ί ^«e^Ί Then

+ Σ »
Λ = 2

+2 Σ ».<(A,, He88/.)+(4r.,4r.),/ί>
fl = 2

Assume that Mα is not of type AIII (p-\-q^3). Then we can set λι=Hess/
+εf gι and A{=Hess/'+£/' ι̂, where f,f'eF, Moreover, by Lemma 5.4,
HomGι(S2(gf), flf)=0 holds. Therefore

<(Alf He8β/.),/ί> = <(Hess/, Hes* /.),/'.>-?</ •/„/'.> = 0 ,

which implies that ty(h,fi)=Q for h^W^

Theorem 6.2. Z,e£ (M,g) be a compact simply connected symmetric Einstein
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manifold. If all irreducible factors of M are neither SU(p+q)/S(U(p)xU(q))
(ρ+q^3), SU(l) (/^3), SU(l)/SO(l) (/^3) nor SU(2l)/Sp(l) (/^3), then all
essential Einstein ί-deformatίons are ίntegrable up to second order.

Now, we treat the case where M1=Pl(C) (/2^2). For f,f'^F, we decom-
pose /•/' into eigenfunctions of Δ and denote by ψ(f,f) the jF-component.
The map i/r becomes a real 5C/(/+l)-homomorphism: S2(F)->F.

Lemma 6.3. Let ι|r and F be as above. Then Λ/rΦO. Moreover, if I is
even, ty(f,f) Φ 0 for all non-zero

Proof. Let S2l+1dCl+l be the unit sphere. Then U(l)= faeC; \w\ =1}
acts on S2l+l and Cl+1 by w(z)=wz and S2l+1/U(l) becomes the projective space
P\C). The spectrum of Δ on C°°(P/(C)) is given by {2m(/+m)£/(/+l); JH eZ,
m^O}. Denote by Fm the eigenspace with eigenvalue 2m(/+m)£/(/+l) and
Hm(Cl+1) the space of all homogeneous harmonic polynomials of degree 2m on
C/+1 which are invariant under the action of U(l). I f f ^ F ™ , then/ is extended
canonically to an element f^Hm(Cl+1). This correspondence ~ is an SU(l+l)-
isomorphism (cf. Berger, Gauduchon and Mazet [3; pp. 172-173]). Let
f€ΞF. Since F is isomorphic to §u(/+l) as a real ££/(/+ l)-module, we may
assume that /is an element of the subspace of F which corresponds to a Cartan
subalgebra of 3u(/+ 1 ) . That is,

> ΣX = o .
»• = ! ί = l

Set Δ'=Δ/4 on C/+1. Then Δ'=Σί ίί ^fixΌH.

Δ'/2 = Δ' Σ a2i \ z< 1 4+Δ' Σ. β<βy I *' I Ί *' \ 2

and,

y ί | 2

Therefore,

and ΛK/,/) = Σ (̂ - Σ «ϊ) I *Ί2
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Thus ψ(/,/)=0 if and only if | βt | is independent of i. Q.E.D.

Lemma 6.4. Let ψ' be any real SU(l+l)-homomorphism: S2(F)-*F. If

'(/> f),f>=<Ψ(f,f),f> for allftΞF, then ψ'=cψ.

Proof. That is easy to see by Lemma 5.4 and the fact that F is isomorphic
to §u(/+ 1) as real SU(l+ l)-module. Q.E.D.

Lemma 6.5. The Lichnerowicz operator Δ commutes with the covariant
derivative V on a locally symmetric space.

Proof. The operators Δ and V may be regarded as the Casimir operator
(Lemma 5.6) and a G-homomorphism, respectively. Q.E.D.

Denote by Dpf the ^>-tensor field defined by

Lemma 6.6. Let N be a locally symmetric Einstein manifold with Einstein
constant ε. Iff e C°°(N) satisfies Δf=2εf, then

(6.6.1) <Z>>+7, df®D*fy = ε<(D>f,

(6.6.2) <(D>+1f,DH*f),

= (\-p}ε((D*f, D>f),f>-2<(LD*f,

Proof.

[6.6.1] ΦΐVϊ ViJ, V./ V.v V,/)

= -^-v. ,/, vίvi/ v, 1-v, ί/+v( / v'v, 1-v, ί/>
= <jyf,

[6.6.2] ^.V.v V.

a n d s o , t

= -S<(D>f,D>f),f>+<fD>f,(Δ-2L-pQ)D>f>

= -ε<(D>f, D»f), * * (6l5)

Q.E.D.

Lemma 6.7. /// <= C°°(P'(C)) satisfies Δ/=2£/, then

(6.7.1) L Hess/= -c(lϊessf-εf g) ,

(6.7.2) ^ΛΛ/' VίV,/ = 2c2(Hess /-£/ g)t) ,

where 2c is the holomorphίc sectional curvature.
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Proof. Denote by ZΛ, sf etc. holomorphic coordinate functions. Since
V/ is a holomorphic vector field, VαVβ/=0. We know that the curvature
tensor has the form

W)

(cf. Calabi and Vesentini [5; (3.5)]). Therefore,

[6.7. 1] (L Hess/)αβ = l^VVγV,/ = 0 ,

(L Hese/)% = #

And if we set φ,v=#, ΛR/'ίV*V//, then

[6.7.2] φΛβ = R^Wvtftf = 0 ,

= -2c(L Hess/)% . Q.E.D.

Lemma 6.8. Let f and c be as above. Then

(6.8.1) <(df,<y),f> = ε<f,f>,

(6.8.2) <(Hess/, Hess/),/> = 0 ,

(6.8.3) <Hess /,#&#> = £2</2,/> ,

(6.8.4) <D3f,df® Hess/> = 0 ,

(6.8.5) <(JD
3/,03/),/> = 4cε2</2,/>.

(6.8.6) <(L Hess/, Hess/),/> = -2c62<f\f> ,

(6.8.7) <D*f,df®D3fy = 4cε3<f2,fy,

(6.8.8) <L Hessf,df®df> = 0 ,

(6.8.9) <D»/, 4T ® i Hess /> = -2c£3</2, /> ,

(6.8.10) <V,V,./.V'V*/, V, V*/> = £3</2,/> ,

(6.8.11) Άdf=εdf,

(6.8.12) SHess/=2c(Hess /-£/•£)
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Proof. Except (6.8.10), that is easy to show by Lemma 6.6 and Lemma 6.7.

[6.8.10] <V, Vy/ V'V*/, V, V*/>

Hess/>-<V, V; Vί/J V*/ V, Vy/> g

, Hess/>-CRiit'yV;/+ V*V,V; /, V»/ V, Vy/> ' ^
' '

—
~ ' Q.E.D.

Lemma 6.9. Let f and c be as above. Then

(6.9.1) <V, VyV4V//, V, V,/ V*V,/> =

(6.9.2) <V,V,VyV,/, V. Vy/ V^V,/) =

Proof.

[6.9.1] <V (VyV ίV ;/,V,Vy/ V*V,/>

= -<V; V«V,/, V'V,Vy/ V*V,/+V,V,/- V'V.Vj/>

<V'V>V*V//, Vy/ V'V*V,/>+<V,V*V//, Vy/ V, V''V*V,/>
(6.8.11)

(6.8.4), (6.8.12)
iJ ' ViVkViJ^-t-^ίS-J, aj Q9i*Y/>

Eίess/— £f'g)y

= 2<JR/y
f f l

iV
ίV/VY,

m —-i—jl—-kf «-» -f ~-,m*-,l ^ \ i x ,^3/ _f2 j \ V * * / > \ * * /

(6.8.1)

), Vy/ V.V,/>

2<Rji»'llRs

kliVmVlf, Vy/ Vs/>-2<V,(L Hess /),.„, Vy/ V.V,/>

)yM( Vy/ V«V,/> g

, Hess/> g

( ' ' •*' ( ' '
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= -2c<df®df, L Hess/>+2C<Z>3/, df® Hess />-2c£3</2,/>

= 2c\df®df, Hess/-ε/ £>-2Cε2</2,/> 6 g'3
= 2c*ε\f,fy-2c*ε<(df,df),f>-2cε*<f,f> ' '

[6.9.2] <V,V*Vy Vι/, V. Vy/ V*V,/>

= <V, (^ΛV'»/+VyV*V//, V,Vy/ V*V,/>

= <Rkj

m,ViVmf, V, Vy/ V*Vι/>+<V<Vy V*V//, V Vy/ V*V;/>

= -<V, Vw/ V'Vy/, (L Hess/)M,>-^</2,/> J YJ

g Q

= c£3</2,/>-c£<(Hess/, Hess/),/)-^/2,/) ' g J

Q.E.D.

Now, we come back to our symmetric space (Λί,g) where M1=P'(C) (/^2)
(below Theorem 6.2). We assume that ./V^2. Set A=τ|r+ψ; ψ =Hess/+
£/*^ι. Φ=€f'g2, where f,f&F. Remark that δ ψ =0. In the following
calculation, we use Lemma 6.4, Lemma 6.8 and Lemma 6.9. If tr h=0, then
AeEID(M)and

2<E"(h,h),hy

= 2ε<hίj, A,*

+ 3<V, Vyφ*(,

Here, <-ψ iy, -ψ , * ψ-t_,.>

= <V<Vy/, V. V

<φ, y. Φ/Φ*y> =

')2,/'>,

-H» ψ>, yΨ'

,, V, Vy/ V*V//>+£<V, V/>hί, ViVj

V, Vyψ*,,/2 (SΊ)ιy(ίΊ)w>

J ViVy/ V*V(/>+θ<V, Vy/, VίVy/ V*V*/>

+6<V<VyΨ*to/ V, Vy/>-ε<Sψ, / Hess />-£2<Δ ,̂ /2>

= -2r£3</2

J/>-2£3<Hess/,/.Hess/>

+(Wl-2)£2<Hess/,/ Hess/>
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)
V h V

g

, V, V,/ V*V,/>+f <V, V*/, V, V'/ V*V//>

V λ ^ •

<V»V,φ«, *</£*;> = £2<V, V, /' •(

«2ε
2</'.Hess/',Hess/+f/ 1̂>

+f2<(Hess/, Hess/),/>

+£<(L Hess/, Hessf),fy-ε<.VΔdf,f Hessfy (6.8.6),

= -^3</2,/>+f4</2,/>-2Cε3</2

J/>-2ε2<Hess/,/ Hess/> ί6'8'1

Thus, <E"(h,h),

Since/'=-((«!—2)/«2)/, we have

<E"(h,h),hy = _("ι-2) («ι+«,-2) («ι+2n2-2)>g4</2>/> _

Therefore, by Lemma 6.4, we get

Lemma 6.10. Let h be as above and h" have the same form defined by /".
(E"(h,h),h"y=r (f2,f"y, where r is a non-zero constant.

Theorem 6.11. L^ Pl(C)xM' (/^2) &e ίz symmetric Einstein manifold.
Then there exists an essential Einstein i-deformation which is not integrable.

Proof. That is easy to see by Proposition 4.5, Lemma 4.7, Lemma 6.3
and Lemma 6.10. Q.E.D.

Moreover, we have the following

Theorem 6.12. There exist rigid Einstein metrics which are infinitesimally
deformable.
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Proof. For example, let M be P2l(C)xS2. Then, by Theorem 5.7, all
elements AeEID(M) have the form introduced above Lemma 6.10. Thus
Proposition 4.6, Lemma 6.3 and Lemma 6.10 complete the proof. Q.E.D.
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