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1. Introduction and results

Let (M,g) be a compact Einstein manifold. If all Einstein metrics on M
near g are homothetic to g, then the Einstein metric g is said to be rigid. The
first result concerning the rigidity of Einstein metrics is given by Berger [1;
Proposition 6.4]. He proved that all Einstein metrics on the sphere S” whose
sectional curvature is (dim M—2)/(dim M—1)-pinched are homothetic to g.
Berger and Ebin [2; §7] considered generalizations of this result and introduced
“infinitesimal deformations”. The result they gave is, roughly speaking, that
the space of all Einstein metrics on M is locally finite dimensional. By their
method, Koiso [7; Proposition 3.3] gave the following Proposition (for the
definition, see 2) and applied it to locally symmetric spaces of non-compact
type without 2-dimensional factor ([7; Theorem 1.1]) and to some irreducible
locally symmetric spaces of compact type ([7; Theorem 1.2]).

Proposition 2.5. If there is no essential Einstein i-deformation of an Ein-
stein metric g, then g is rigid.

One of the purposes of this paper is to generalize Koiso [7; Theorem 1.2].
For that, we shall classify essential Einstein i-deformations on simply connected
symmetric spaces of compact type (Theorem 5.7). The result is as follows.

Corollary 5.8. Let (M ,g) be a locally symmetric Einstein manifold of compact
type. Let (M,g) be its universal riemannian covering and (M,§)=TIY-,(M,,g.)
the irreducible decomposition as symmetric space. If N=1 and (M,§) is neither
SUp+9)SUp)x U(g)) (pz9=2), SUDSO() (I1=3), SUE2Y/Sp() (1=3),
E¢/F, nor SU(l) (1=3), then g is rigid. If N=2 and M, are neither one of the
above, G, nor any hermitian space except S? then g is rigid. If N=3 and M,
are neither one of the above nor S?, then g is rigid.

Another purpose is to decide whether the converse of Proposition 2.5
holds or not. We expect that the converse holds, because if so, we would get
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many examples of Einstein metrics by Theorem 5.7. In the case of Kihler
metrics, i.e., if we consider only Kihler metrics on a compact complex manifold,
then it is not difficult to show that the converse holds (cf. Yau [13]). But, unfor-
tunately, we shall give counter-examples to the converse in the real case. To
analyze this problem, we shall introduce “infinitesimal deformations of second
order” (Definition 4.4) and check whether each essential Einstein ¢-deformation
has an Einstein i-deformation of second order or not (Theorem 6.2). As a
result, we shall give the following

Theorem 6.12. There exist Einstein metrics which is infinitesimally deform-
able but rigid.

This paper is organized as follows: after some preliminaries in 2, we consider
infinitesimal Einstein deformations in 3 and infinitesimal Einstein deformations
of second order in 4, in general case. We apply the results in 3 and 4 to sym-
metric spaces of compact type in 5 and 6. Theorem 5.7 and Corollary 5.8
are proved in § and Theorem 6.12 in 6.

2. Preliminaries

In this section, we recall some fundamental definitions and some known facts
concerning the space of riemannian metrics and deformations of Einstein me-
trics. Let M be a compact connected C~-manifold with n=dim M =3. Rie-
mannian metrics on M, etc. are all to be in C™-category, unless otherwise stated.
When we fix a riemannian metric on M, we identify covariant tensors and con-
travariant tensors with each other by the fixed metric as usual, and denote by
T*M, S*M the p-tensor bundle over M, the symmetric 2-tensor bundle over M,
respectively. Moreover, we denote by ( , ) the inner product on tensors on M
and by < , ) the global inner product for tensor fields.

For a fibre bundle F over M, we denote by H’(F) the set of all H'-cross
sections of F. We denote by M’, 9’ the Hilbert manifold of all H’*-riemannian
metrics on M, the group of all H*-diffeomorphisms of M, respectively. (Here,
we assume that s is sufficiently large.) The group 9¢*! acts on H° by pull-
back and this action admits a slice (Ebin [6;8.20 Théoréme]). For a riemannian
metric g on M, we denote by S; this slice. Recall that S} is a submanifold of H*
containing g such that T,S;=Ker &, where & is the differential operator:
H'(S*2M)—H*"Y(TM) defined by

(Sh), = —Vlh“ .

Denote by “M; the Hilbert manifold of all H*-riemannian metrics on M with
volume ¢. The tangent space of M at g M; is given by Ker [, where the
function [ on H'(S’M) is defined by [h=<h,g>.
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DerINITION 2.1.  Let g M7 be an Einstein metric. If there exists a 9<*-
invariant open set U of M containing g such that every H*-Einstein metric in
U is an element of (9D*)*g, then g is said to be rigid.

If we use Ebin’s slice, we get the following

Lemma 2.2 (Koiso [8; Lemma 3.1)]. Let g€ M7 be an Einstein metric. If
there exists an open neighbourhood V of g in S;N M: such that g is the unique H’-
Einstein metric in V, then g is rigid.

For g M:, we define

T(g) = jMugvg ’
E(g) = S(g)—(T(g)/ne)-g ,
where u, is the H* *-function on M defined by the scalar curvature of g and
S(g) the Ricci tensor of g. Remark that g is an Einstein metric if and only if
E(g)=0. Following Lichnerowicz [10; (19.4)], the differential S of the map
S: M—H}S’M) at g& M’ is given by
(2.2.1) 28(h) = (A+2L+2Q—28*86—Hess tr)h ,
where (Bh);; = —V'V,h;; for he H(S’M),
(Lh)'l = R,'kjlhkl for hEHS(SzM) N
Z(Qh),] - Sikhkj+Sjkhki for hEHS(SZM) )
2(8*5),12 V,'fj‘{‘v,f,' for EEHS(TM) ,
and the sign convention of the curvature tensor R is taken in such a way that
R;;;;=0 for the standard sphere. Since an Einstein metric is a critical point of

the function T on ¥, the differential E’ of E at an Einstein metric g€ M7 is
given by

2.2.2) 2EY(H) — (A+2L—28*5—Hess tr)h
Since T(SsN M)=Ker §NKer [, if ke T,(S;N M), then
2.2.3) 2E(h) — (A+2L—Hess tr)h.

DerINITION 2.3. Let g M7 be an Einstein metric. 'We denote by EID(M)
or simply EID the kernel of the map E;|T,(S;NH:). A non-zero element
h<EID is called an essential Einstein i-deformation. 1f EID vanishes, then g
is said to be infinitesimally non-deformable, otherwise infinitesimally deformable.

The Lichnerowicz operator A is defined by
A = B4 2Lap+pQOyr  for e HI(TM),
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where BW)igeiy = —V'Vidriyiy
(L)ipip = DR K DD,
a<(,
and POV)iyiy = 238 i R, -

Remark that this definition does not contradict the previous definitions and
the ordinary Laplace-Bertrami operator (Lichnerowicz [10; §10]). Moreover,
we can check that A commutes with &, 8% Hess, tr and d on an Einstein
manifold.

Lemma 2.4 (Berger and Ebin [2; Lemma 7.1]). Let g& M7 be an Einstein
metric. The space EID(M) coincides with Ker(As—2€) N Ker tr N Ker 8, where A
is the restriction of the Lichnerowicz operator A to H*(S?M) and & the Einstein
constant, i.e., S(g)=E-g.

Proposition 2.5 (Koiso [8; Proposition 3.3]). Let g be an Einstein metric
on M. If g is infinitesimally non-deformable, then g is rigid.

3. Einstein i-deformation

Let g M~ be an Einstein metric with Einstein constant &, i.e., S(g)=
&-g. We define differential operators v: H*(S?M)— H*"(TM) and B: H*(S*M)
— H*}(S’M) by

1
=&+ —-dtr,
Y=o+ y 4t
B = As—2&—Hess tr.
Remark that 8 is an elliptic operator.

Lemma 3.1. B(Ker N Ker [)=Im BN Ker ¥y NKer /.

Proof. Denote by A, the Lichnerowicz operator on H'(TM). By Koiso
[8; Lemma 3.2],

(3.1.1) vB = (A,—2¢)8.
Since tr B=2(A—é&)tr,
B(Ker dNKer f)cIm BNKer yNKer f.

Let BheKer vy NKer [ and decompose % into Y+ 8*E; 8¢yr=0, by Ebin [6;8.8
Proposition]. Then

0 = vBh = (A,—26)8(y+8%*E) = 88%(A,—26)E, (3.1.1)
and so, 8*(A,—28)E=0, 8(A,—26)£=0. Since we can easily check that



RiGIDITY AND INFINITESIMAL DEFORMABILITY OF EINSTEIN METRICS 647

(3.12) 8% — %(AI—ZS—I—dS),
0 — 85%(A,—26)E — %(AI—ZE—l—dS) (A—26)E = % (A—26VE,

which implies that (A,—2€)E=0.

(3.1.3) BS*E — (Ag—26—Hess tr)S*E
= 8%(A,—2&)E+Hess 68 = Hess 3¢ .

Set p=Hess 6£4&6E-g. Then
(3.1.4) 3¢ = 88*ddE—e&dsE

(3.1.2)
(A —26+d8)dSE—EddE

l

d3(A,—26)E+ % dASE—EdSE

ll

Y N N

dS(A,—26)E =0,

(3.1.5) B¢ = (As—2&—Hess tr) (Hess 86138+ g)

= Hess ASE—n& Hess 0&

= (2—mn)& Hess 8¢ .
Since AE=2¢£ and so ASE=2¢68E, if €&=0 then A¥=0 and §£=0. Therefore
288*E=(A,—2&+d8)E=0, which implies that §*¢=0. In this case the equalities
8h=0 and Bh=B(h—([h[nc)- g) hold, and so B(Ker s N Ker [)DIm BN Ker ¥ N
Ker . Thus we may assume that £+0. Then

Bh = B+ B8*E = Byr+Hess 8¢ (3.1.3)
= B(r+¢/(2—n)), (3.1.5)
and S(y+p/(2—n)E) =0, (3.1.4)
1
— (8% — L —
S = [h—[8*E Zefﬁh 0,
S = [ Hess SE+&f8E-g=0. Q.E.D.

Proposition 3.2. Let g be an Einstein metric on M. Then
Im(E;|Ker [)®EID = Ker vy N Ker [
(orthogonal direct sum), where Im(E}|Ker [f) is a closed subspace.

Proof. First we see that Im(Ej|Ker [) = Ej(Ker N Ker [) P E;(Im 5%)
and Ej(Ker 8 N Ker [)=@B(Ker 3 N Ker [) by (2.2.4) and E(Im §*)=0, and so
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Im(E;|Ker [)=B(Ker §NKer f). Next we remark that the formal adjoint
B* of B is given by Ag—26—g -85 and see, by Lemma 2.4, that

{B(Ker dNKer [), EID> = (Ker §NKer [, B¥EID> = 0.

Moreover, by Lemma 2.4 and Lemma 3.1, it is easy to see that G(KerdN
Ker [Y@EID CcKer v N Ker J.

Now, let keKer yNKer f. Since B is elliptic, we can decompose % into
B++r; B*4=0. Then

0 = 888*yr = 58(As—26—g-SS)yr
= (A—26)88vr+ 5455
= 2(A—&)88v .

But here £=0 or & is not an eigenvalue of A on a compact Einstein manifold

(Lichnerowicz [9; p. 135]). Then 83y»=0, and so (As—2&)Yr=0.
0 = dvh = 3vBp+oryr

, (3.1.1)
= B(A—26)3p+8(3+ - d tr)

— (A—26)35¢+ % Atr .
Therefore (A—28)288¢=—-;—Atr(AS—ZS)\]r, and so (A—26)686¢p=0, 0=Atr 4
=2&tryr. If €0, then tr »=0. Even if é=0, fy=[h—[Bp=0 implies that
tr »=0. Thus
= vh = vB¢p+7
= (A,—26)d¢p+0v,
which implies that (A,—2&)’8¢p=—08(A,—2&)y»=0 and so (A,—2€)8¢p=0 and

Syr=0. These formulae implies that J»€EID and B¢p<Ker v N Ker [, and so
BpeB(Ker 3N Ker [) by Lemma 3.1. Q.E.D.

(3.1.1)

Proposition 3.3. Let g be an Einstein metric with Einstein constant E.
Then dim EID

= dim(Ker(As—2¢) N Ker tr)—dim(Ker(A,—2¢&))+dim(Ker 6*).
Proof. Define a differential operator 6: H'(TM)— H*"*(S*M) by
O — B*E-+ - 0-g.

Remark that tr =0 and the formal adjoint 6* of € is given by
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0%h —Sht L dth.
n

Let heKer(As—28)NKertr. Since € has injective symbol, we can decompose
h into GE+; 6*y=0 (Ebin [6; 8.5 Théoréme]). Then O=tr h=tr O +trr=
tr ¢, and

S — O¥pp— L dtrp— 0.
%

Moreover 0= (As—28)h

= (As—26)0E+(As—28)

= 0(A,—28)E+(As—28),

0*(As—28)r = (A, —28)0* =0,
and so 0*0(A,—26)E=0, (A,—26)E=0 and (As—2&)=0, which implies that
J&EID. In this correspondence: k—>vr, if A€ EID then 4»=h. Thus we have
a projection P: Ker(As—2€) N Ker tr > EID; P(h)=+r. Then
dim EID = dim(Ker(As—2¢&) N Ker tr)—dim(Ker P).

Here, if we remark that tr =0, then we see that

Ker P = Im 0 N Ker(A;—2€) .

We easily see that §(Ker(A,—2€))CKer P. Conversely, let 6 & Ker(As—2€)
for Ee H(TM) and decompose £ into &+(A,—28)n; (A,—2€)5=0. Then 0=
(As—28) 0E = (As— 26)0C +(As — 26)*0n = (As—2€)*0n, and so O(A,—28)n=
(A,—2€)0n=0. Therefore £=Ker(A,—2&)+Ker 0, which implies that 6 gives
a surjection from Ker(A;—2¢€) to Ker P. Thus

dim Ker P = dim Ker(A,—2&)—dim(Ker(A,;—2&) N Ker 0) .

Here we easily see that Ker 8* C Ker(A,—28) N Ker 6 by (3.1.2). Conversely,
if EeKer(A,—2&) N Ker 6, then
0= 805 — 8(3*+L g-5)%
" (3.1.2)

I

L (a—2e4-as)e—L ase
2 n

(-t

and so 8£=0, §*£=0, which implies that Ker §* DKer(A;—2&) N Ker . Q.E.D.

4. Infinitesimal Einstein deformation of second order

In this section, we discuss about the second derivative of the map E. Let
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gEM and heH’(S’M). Regarding ~ as an infinitesimal deformation of g,
ie, heT, M, we set

X(&,7) = (Ven)' forEneTM.
Then X is a well-defined 3-tensor field (of type (1,2)) and given by
Xt = 2 (V= Vhs)
(see Lichnerowicz [9; (17.2)]).

Lemma 4.1. Let g be an Einstein metric and h an essential Einstein i-
deformation of g. Then we have

(4.1.1) g"’Xu" =0,
(4.1.2) VX, = (Lh)/,
(4.1.3) (Riji) = VX' —V, X',

and the symmetric part of X,,; with respect to i and j is (1/2)Vh;;.

Proof. That is easy to check by tensor calculas. For (4.1.3), see Lich-
nerowicz [9; (17.5)].

Proposition 4.2. Let g= M7 be an Einstein metric and h an essential Ein-
stein i-deformation of g. Then the second derivative E}'(h,h) is given by

2E}/ (h,h);;
== thlvkvlhij-[—zvkhil -thj,—ZV’hik * vkhj1‘4'Rimj1hmkhkl
"Z(hk[Vinkjl‘i‘h“Vijhu) - Vihkm * thkm
+2((Lh)*hj+(Lh) *hy)+V V(B R) .

Proof. Since g is a critical point of the function T on M:, T;(h)=0. More-
over, (Hess T') (k,h)=0 by Koiso [7; Theorem 2.4, Theorem 2.5]. Thus we see
E”(h,h)=S"(h,h). We calculate S”’(h,h) by Lemma 4.1.

(Bh); = —(g"ViVihi;)’

= hklvkvlhij+g“(Xk1mvmhij+inmvlhm;‘+ijmvlhim)

&8V (X" X" i) (4.1.1), (4.1.2)
= WMV ik iA-2X, "V - 2X0 "V R VX" By VX B,
= hk,VkV[h,'j“|‘ (ka,‘m + V,'hkm —_— thki) . thm] (4'. l .2)

H(Vik "+ V " —V"Ry) « V*him+(LR)" by j+-(L) " i
= hklvkvlhii+zvkhim * thmj_“‘(vihkm ¢ thmj+vjhkm ¢ thim)
— vahk,' * thmj-*—((Lh),mhmj —*—(Lh)jmh,m) )
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(Lh)‘l = (gkaimjlhkl)’ (4. 1 3)
= —n Rimjlhkz‘|‘gm(Viij’—VmXijl)'hkl o
= —R/" ' hpthy+ V. X, B" — YV, X B

= _Rimjlhmkhkl'l_ %Vivjhml * hm,'—é‘vm(vihjl—l—vjhil_vlhl'i) .hml

= —R.’mjlhmkhu“i‘ _;‘Vivjhml'hml_‘—%h’nlvmvlhij

o (R I+ R R+ R B

—% (ViVuhi b4V Vb 0™

— —2Rimjlhmkhkl+ —;‘V,thml .hml+—%hmlvmvlhij

+% ((Lh)ikhkj+(Lh)jkhki)_ % (Vivmhj,'hml+ Vjvmhil 'h’ml) ’

(O = 1 (8" Sy +8" S )
= — (hletlhkj+hlejlhkt)+ - (S khkl+S khk) == O

(Hess tr &)'=(Hess)’ tr k+-Hess (tr £)'=Hess (tr k)’
(tr )" = (§"hw) = —h*'hy = —(h,h),

(Hess tr h)=—V,,(h,}),

(8%8h)" = (8*)'8h—+8%(8h)’ = 8*(Sh)’,

(8h): = —(g"Vihy)
= IV g (X P+ X" i)

. 1 (4.1.1)
= h"vh;+ Evihkm'hkm )

(S*Sh)ff = ’;—‘Vf(hklvkhlj"Fé‘ thkm'hkm)+%Vj(hklvkh1i+—;”Vih/em'hmk)

% AR T —;“ hklvivkhlj'l—% VhH eV b+ %— VAV 79
+%v,vjh,," -hm"+%v,-h;" Vi VIV Wt VRV

- Ly . vkh,,+%v,-h“-vkh,i+%v,-hkm-v,~hk'"+% WY by
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+% k”’Vijth%viv,-h,:‘ .lzk,,,+i- (R;i' "+ Ry ",
= %(Vih“‘thu-l-th”'-th,;)—i-%vih”movjh,,'”
+% (h"‘v,-vkhquh“v,-vkh,,-)Jr% V.V k"R, .

Therefore, 2E”(h,h);;
= BV Vi 2Vl -V s (V il VR iV 0™ - VR )
—2V"hyi* V(L) B+ (LR); "By
—4R " hy ViV il - B RN,V B
(LAYt ;+-(LR)) ) —(V iV ) B -V N i <R
—(Vil¥ V-V 0¥ N by ) — Vb oV "
- (hklvivkhtj+hklv ijhu‘) —V.v jhkm G
+V.V;h,h). Q.E.D.
Now, we calculate <E”(h,k), k> which we use in 6.
Lemma 4.3. Let g and h be as in Proposition 4.2. Then

2{E"(h,h), k)

= 26&$h;;j, hithy ;>4-3<V iV g, B> —6<V iV iy, high

Proof.

SHENN iz, Bii> = ViV ik, Bihi
Vb VPR, > = —<hV NV Ry, B >—< BN Ry, ViR
V! VPR B> = % <hii(BR)jy hi> = —<(Lh);j, hi*hy;>
<Vlhik'vkhjb hij> = _<hikvlvkhjb hij>_<hikvkhjb Vlhij>

== _<hik(lemjhml+lemlhjm)) hii>+<hikhjh Vkvlhij>

=2 Vb, hihj >—(LR)i;, bty >—Ehij, kiR
<Rimjlhmkhkb hij> = <(Lh)ij) ]'ikhkj> )
SHEN Vb RN NV ki, B> = 2BV ik, Bi

= KV Vhy, huh;p
Vil Vil", bij> = —<B ViV " > = —<V NV ik, hijhid
<(Lh)ikhkj+(l’h) jkhki) hij> = 2<(Lh)ij) kikhkj> ’
{Hess(h, k), h>=0. Q.E.D.

Now, let g€ M be an Einstein metric and g(#) a curve in S;N e such



RiGIDITY AND INFINITESIMAL DEFORMABILITY OF EINSTEIN METRICS 653

that g(0)=g and each g(¢) is an Einstein metric. Then,
E(g(0)) =0,

E(g(t)) = 0, i.e., Bg(g'(0)) =0,

0

4
dt

& Bg(0) = 0, ., EY/(2'(0). 8 O)+ELe"(0) = 0.

Therefore, for an Einstein metric g, we call a pair (k") C=(S?M)x C~(S*M)
an essential Einstein 7-deformation of second order of g if 4 is an essential Ein-
stein i-deformation of g and A’ satisfies that E”(k,k)+E’'(h')=0.

DEFINITION 4.4. Let g be an Einstein metric and 4 an essential Einstein
i-deformation of g. If there exists ' C>(S?M) such that (k,A’) is an essential
Einstein 7-deformation of second order, % is said to be integrable up to second
order. If there is an Einstein deformation g(¢) of g such that g’(0)=h,4 is said
to be integrable.

We easily see the following

Proposition 4.5. Let g be an Einstein metric and h an essential Einstein
i-deformation of g.  If h is not integrable up to second order, then h is not integrable.

Moreover the following proposition holds.

Proposition 4.6. Let g= M7 be an Einstein metric. If all essential Einstein
i-deformations are not integrable up to second order, then g is rigid.

Proof. By Lemma 2.2, it is sufficient to prove that g is isolated in S; N M.
Consider the map E|S;N M:: SgN Mi—H*"%S’M). By formula (2.2.3) and
Lemma 3.1, Im(E | S; N M:); is closed in H*"*(S?M). Denote by P the ortho-
gonal projection: H* %(S*M)—Im(E|S;N M:);. Then Im(PoE|S;N M=
Im(E|S;N M:); and, by the implicit function theorem, there is an open neigh-
bourhood U of g in S;N M such that all H*-Einstein metrics in U are elements
of (PoE|S;NM:)"'(0)NU. Here, since the operator B is elliptic, (PoE|S}
NM)O0)NU becomes a finite dimensional submanifold of SiN M. If
we apply the condition to the map E|(P<E|S;N M;)"(0) N U, then the result is
obvious. Q.E.D.

Lemma 4.7. Let g= M7 be an Einstein metric and h an essential Einstein
i-deformation. Then h is integrable up to second order if and only if E"(h,h) is
orthogonal to EID.

Proof. By the definition, % is integrable up to second order if and only if
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E"(h,hycIm(E| M);. Remark that the formulae yE=0 (by the Bianchi
identity) and fE=0 on ' hold. By differentiating the formulae, we get
that

ve (1, 1) (E(9)+2v5(h) (Ef(M)+vEY (h,h) = O,
o (hh) (E()+2S5(h) (Eg(h)+ JE (b, 1) = 0

for all g& M: and he H'(S?2M). Therefore the assumption of g and % implies
that vE"”(h,h)=0 and [E’(h,h)=0,ie., E’(h,h)cKer yNKer f. Thus by
Proposition 3.2, the result is obvious. Q.E.D.

5. Classification of essential Einstein i-deformations

In this section and the following, we use the representation theory of Lie
groups. For fundamental data concerning root systems of simple Lie algebras
(resp. of irreducible symmetric pairs), see Bourbaki [4; Planche I-IX] (resp.
Murakami [11]).

First we show some facts concerning a compact semi-simple Lie group G
and G-modules. Modules are all taken to be complex modules, unless other-
wise stated. Let g be the Lie algebra of G with a G-invariant inner product
B and a a Cartan subalgebra of g with a linear order. We denote by 23,
the sum of all positive roots of g and by V(A) the irreducible G-module with
highest weight A. Then the Casimir operator on V(\) coincides with the
scalar operator e(V(\))=B(r+28;, \). If G is decomposed into IT;G; where G;
are simple groups, we denote by g; the Lie algebra of G; and B; the restriction
of Bon ¢g;. An irreducible G-module V has the form ®;V; where each 7; is an
irreducible G;-module or a trivial G;-module C. Then we see e(V)=>e(V)).
Assume that all B; satisfy e(g¢)=2¢&. By an easy computation, we can check

Lemma 5.1. Let G be a compact simple Lie group. Then for any irreducible
G-module, e(V') > (2/3)€ holds.

By this lemma, we can classify irreducible G-modules V" such that e(V)=
2¢, for a semi-simple Lie group G. Assume that V' has the form ®V; and
that each V; is not trivial. Then the equality e(V)=2¢& implies that G has at
most two simple factors. For the case that G is simple, we can check

Lemma 5.2. Let G be a compact simple Lie group and V an irreducible
G-module. If e(V)=2¢&, then V is isomorphic to €.

For the case where G has two simple factors, we list all pairs of irreducible
G;-modules V;(i=1,2) such that e(V))+e(V,)=26 and e(V)<e(V,). In the
following table, w; means the highest weight of ¥, and V.
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Table 5.3.
v, v,
w1, wyfAz 1/Bof a1 (=1
1, wzl—l/Azl—l 0)1/D212+1 (lg 2)
@,/C, /Dy, (I=1)
wz/ B, @3, 0’4/ D,
0’1/ C, ﬁ’a/ B,
CDI/ Gz 601/ Gz

Next, we show some facts concerning a simply connected irreducible sym-
metric space G/K of compact type. Let f be the Lie algebra of K and g=f+m
the canonical decomposition. We compute the dimension of Hom,(g¢, Si(m¢)),
where S means the traceless part of the symmetric tensor product. If G/K is of
group type, then gé=f¢+° mC=¥C as K-modules. So we have to compute
dimcHom(¥¢, S3(£€)), where K is a compact simple Lie group.

Lemma 5.4. If K is not of type A, (1=2), then dimcHom,(¥¢, S5(£€))=0.
If K is of type A, (I=2), then dimeHom(tC, S¥(t€)=1.

If G/K is not of group type, we can check

Lemma 5.5. The dimension of Homg (g, S§(m€)) is (H1) two if (G,K)=
(SU(p+9), S(U(p)x Ulg)) [AI] (p=g=2), (H2) zero if (G,K)=(SU(2),
S(U(1)x U(1))) [S?, (H3) one if (G,K) is of another hermitian type, (N1) one if
(G,K)=(SU(I), SO(I)) [AI] (1=3), (SU2I), Sp(])) [ALI] (I=3) or (E,F,) [EIV]
and (N2) zero if (G,K) is of another non-hermitian type.

Now, we come back to our Einstein manifold (#/,g) and assume that (M, g)
is a simply connected symmetric space G/K. The tangent space ToM of M
at the origin is identified with m and the metric g is induced by a G-invariant
inner product B on g.

Generally, for a finite dimensional K-module U, a cross section s of the
homogeneous vector bundle G X U over M may be identified with a U-valued
function s on G such that s(xy)=y's(x) for all k&G and yeK. Let C~(G,U)x
be the space of all such s and enlarge this space to H(G,U)x. Then C=(G,U)g
and H°G,U)x canonically become G-modules and H°(G,U), is decomposed
into @;V; as Hilbert space, where V; are irreducible G-modules contained in
C=(G,U)g. Let V be an irreducible G-module and denote by W the direct
sum of all irreducible G-modules V; which are isomorphic to V. Then we
see, by the Frobenius reciprocity theorem (cf. Wallach [12; Theorem 8.2]),
that

dim W = dim V-dim Homy(V,C=(G, U)y)
= dim V-dim Homg(V,U).
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Lemma 5.6 (Koiso [8; Proposition 5.3]). The Lichnerowicz operator A
regarded as an endomorphism of C=(G, @mC)y coincides with the Casimir operator.

Let M=T1,Y¥:M, be the irreducible decomposition of the symmetric space
M. Remark that all (M,g,) are Einstein manifolds with the same Einstein
constant €. Let (G, K,) be the symmetric pair of each M,, g, (resp. ,) the Lie
algebra of G, (resp. K,) and g,=%,4m, the canonical decomposition. Since
Ker 3* CcKer(A,—2€), Lemma 5.6 implies that e(gS)=2¢€. Therefore we see,
combining Proposition 3.3, that

(56.1)  dimgEID = Y, dim¢ V- dimoHomy(V®, S3(m®))
— 2%dimcV?-dimcHomg(V®, m€)+dimqg° ,

where V® runs through the set of all equivalence classes of irreducible G-modules
whose Casimir operators are 26. Let

Ve =C"D DV
be the irreducible decomposition of ¥V as K-module. Each V% has the form

Vi,

ecr®
where I is a subset of {#€Z; 1<b<N} and V%, are irreducible K,-modules.
Then we see that

Homg(V?, S§(m€))
N
= Homg(V*, BSH(mE)PD dmEQmE+CVY)
a=1 agh
N N-
— BHom,(V*, SY(me))® §Homy(V*, mE@mE)@ SHomy(V*,C) .
Here, by Frobenius reciprocity, if Homg(V?, mf@m§) does not vanish, then
there is a non-zero 2-tensor field 2 on M such that Ah=2&h and A€ T(M,)°®
T(M,)¢ at each point of M. Then AlZ=—2Lh=0 and so & is parallel. But

a parallel symmetric 2-tensor field is a linear combination of the metrics g, on
M,. Therefore

Homg(V*, mfQ@m§) =0 for asb.
Thus Homg(V?, S§(m¢))
ng N
= & SHomy(V3, S3(m))® SHomy(C*, SHme)

Ny eéz Hom(V?%, €)@ ®Homg(C*, C) .

If Homy(C, S3(m¢))=0, then there is a G-invariant symmetric 2-tensor field 4
such that A€ .S§(M,)C at each point. Since there is no such 4,
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Hom,(C", S§(m¢)) = 0.
Thus Hom,(V*, S§(m€))
ne V(¥ -1)
— & DHomy( ® V14, S{m)® @ Homy(C, €)
i=16=1 verf

= @ Homg,(V?, S§(mE))DCN"1,

a,i; I1¥=(9)

Moreover,
ne N
Homy(V%, m) = Homg(& V%, élmf)—}—HornK(C"a, Bme) .

Here, since there is no parallel 1-tensor field on M, Homg(C, ¥ ,m&)=0.
Therefore,

Homg(V?, m€) = 'é_S éHomK(V‘,-', m¢)

ng N
= @ @Homg( Q V7, mf)
i=1e=1 ser®
= ® Homg (V% mf).
¥

a,i; (9)

Thus we see
dim EID = SLN(V?)-dim V*,
where  N(V*®)
= 2 [dim¢Homg (V¥, S§(mf))—dimcHomg (VF, m&)]

0,i; I¥=(a)

+ v (N—1)+«",

and «*=1if V* or V*@®V? is isomorphic to some gf, «*=0 if not. (The case
V*®V® occurs if M, is of group type.)

Now, we compute N(V®). By Lemma 5.1 and remarks following it, the
number of elements of I*= {J72,I¢ is one or two.

Case 1: the number of elements of I* is one. We may assume that [°=
{1}. First we assume that M, is not of group type. Then Lemma 5.2 implies
that V? is isomorphic to gf.

Case 1-H (M, is hermitian). The module V* is decomposed into ¥/°P
mi PmyPC as K;-module, where ¥{ is the semisimple part of f,, mf is the
4/ —1-eigenspace of m¢{ with respect to the almost complex structure of M,.
Then dim Homg (V*, mf)=2, »*=1, «*=1. Therefore,

N(V*®) = dim Homy (gf, S{(mf))+N—2.

Combining with Lemma 5.5 (H), we see that
N(V®)=N if M, is of type AIII (p=¢=2),
NWV*)=N-2if M, is S?,

N(V?®)=N—1 if M, is of another hermitian type.
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Case 1-N (M, is not hermitian). The module V* is irreducibly decom-
posed into ¥f@mf as K;-module. Then dimcHomg (V*,m§)=1, »*=0, «*=1.
Therefore,

N(V®) = dim Homyg (gf, S§(m¢)).

By Lemma 5.5(N), we see that

NW*)=1 if M, is of type AI (/=3), AIl (/=3) or EIV,

N(V*®)=0 if M, is of another non-hermitian type.

Next we assume that M, is of group type. Then Lemma 5.2 implies
that V* is isomorphic to f or to W,QW, as G;-module, where W, and W,
are irreducible modules of simple factors of G,.

Case 1-G (V* is isomorphic to ¥f). The modules V?® m{ and f{ are
isomorphic to each other as K;-modules. Then dim Homg (V* mf{)=1, »*=0
and «®=1. Therefore,

N(V*) = dim Homyg (tf, S(¥f)) .

By Lemma 5.4, we see that

NWV*)=1if M, is SU(I) (I1=3),

N(V*)=0 if M, is another group.

Case 1’-G (V* is isomorphic to W,®W,). Table 5.3 implies that this case
occurs only if M, is the group of type G,. By computing, we see that
dimHom, (V*, S§(mf))=1, dim Homy (V*,m{)=1, »*=1 and «*=0. Therefore,

N(V*)=N—1if M, is of type G,,

N(V*)=0 if M, is another group.

Case 2: the number of elements of I? is two. We may assume that [°=
{1,2} and V*=W,Q W,, where W, is an irreducible G,-module such that e( W) <
e(W,). Then, since the first non-zero eigenvalue of A on C=(M,) is greater than
& (Lichnerowicz [9; p. 135]), Homg (W),C*(G),C)x,)=0 and so Hom, (W,,C)
=0. Let W,=®;W,; and W,=C"® P;W,; be the irreducible decompositions
as K, and K,-modules. Then V* is irreducibly decomposed into

"
EB DWW, D @Wl,i®Wz,j

as K, X K,-module. Therefore, since »*=0 and «*=0, we sece that

N(V*) = p-[dim Homg (W), S§(mf))—dim Homg (W, mf)].

If M, is of group type, then W, is irreducible as K,-module, and so x=0, which
implies that N(V*)=0. Let G, and W, be in the list of V, in Table 5.3 and
assume that (G, K;) is a symmetric pair. We can check that if Homg, (W, C)=+
0, then G,/K, is the standard sphere, i.e., of type B or D, and W,=V(w,).
On the other hand, if G, is of type A, and W,=V(w,) or V(w,), or G, is of
type C, and W,=V(w,), then we can check that there is no symmetric pair
(G, K)) such that Homy (W), S§(mf))#+0 or Homy (W), mf)==0. Moreover if
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M, is of group type, we easily see that the K;-module W, does not admit zero as
weight and S§(mf) and mf admits zero as weight, and so Homg (W), S§(£))=0
and Homy (W,,#f)=0. Thus in this case we see that N(V'*)=0.

Let M,M, and G, be as above. Assume that M, is a hermitian space or
the group of type G;. Then there is a unique irreducible G;-module V', such
that ¢(V;)=2¢ and Homg (V,C)#0. Moreover dim Homy (V;,C)=1. There-
fore 2¢ is an eigenvalue of A on C=(M,) and the corresponding eigenspace F

becomes an irreducible real G;-module. Let g, be the metric on each M, and
f.E€F and set

h = Hess fi+& Ef ga

Ah = Hess Af,+¢& 2 26f,+ £ = 2¢h

Sh = S(Hess f1+8f1 g1)+62‘. 3(f. ga) =0,

tr b= —Afl—f—ef‘_,n,,f = 28f1+82n fas

where n,=dim M,. If 2).Yn,f,—2f,=0, then h€EID(M). Remark that if M,
=387 then Hess f,+&f,-,=0. Since EID(M,)C EID(M), we get the following

Then,

Theorem 5.7. Let (M,g) be a compact simply connected symmetric Einstein

type ‘ 18 N, form of he W,
SU(p+9)/S(U(p)xU(a) su(p+q)C N ho+Hess fi+¢ 6%, faga
(p2q22) (ZeZ 1 nafa—2£1=0)
S2 su(2)C N-2 DY fala
(201!2 naf a= 0)
other hermitian gf" N-—1 Hess f1+ ¢ ¥, fag.
(2a1=v1 nafa—2f1=0)
G: V(0)QV(01) N-1 Hess f,+¢ 3¥, .24
(Ea 1Mafa—2f 1=
SU() su(/)C 2 B
(1=3)
SU(1)|SO() su(l)C 1 ho
(=3)
SUQ2D/Sp() =u(2/)C 1 ho
(=3)
EG/F4 €s 1 hO
other type 0

) decomposes into right invariant form and left invariant form
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manifold, (M,g)=11.%:(M,,g,) its irreducible decomposition as symmetric space
(dim M,=n,) and (G, K,) the symmetric pair attached to M,. Then EID(M)
becomes a real G-module and is decomposed into D, W, where each W€ is a G,-module
(which may be 0). Each W is the direct sum of N, copies of an irreducible G-
module V, (N, may be 0). The G,~module V,, N, and the form of elements of W,
are listed above (we may assume that a=1). There h, means an element of EID(M,)
(CEID(M)), f, eigenfunctions of A on C=(M,) with eigenvalues 2&.

Corollary 5.8. Let (M,g) be a locally symmetric Einstein manifold of com-
pact type and 11,2, M, be the irreducible decomposition of the universal riemannian
covering manifold M of M. If N=1 and M is neither SU(p-+q)/S(U(p)x U(q))
(pZq=2), SUQ)SO() (1=3), SU@LYSp(D) (123), EolF, nor SU() (1=3), then
g isrigid. If N=2 and M, are neither one of the above, the group of type G, nor
any hermitian space except S? then g is rigid. If N=3 and M, are neither one of
the above nor S? then g is rigid. '

Proof. It is obvious that infinitesimal non-deformability of an Einstein
metric reduces to that of its riemannian covering. So Proposition 2.5 implies
this result. Q.E.D.

6. Second order Einstein i-deformation on symmetric spaces

Let (M,g) be a compact simply connected symmetric space G/K where g
is an Einstein metric with Einstein constant €. Let M=T],Y,M, be its irredu-
cible decomposition and (G,,K,) the symmetric pair of M,. By Theorem 5.7,
EID(M)=®,Y,W, where each W, is a real G,-module (which may be 0). By
Lemma 4.7, if we denote by yr(hy,k;) the EID-component of E”(h,,k;) for b,
h,=EID, then A is integrable up to second order if and only if yr(h,k)=0. We
easily see that 4 is a G-homomorphism. Therefore we get

Lemma 6.1. In the above situation, if Homy(S* P, W,), B ,W,)=0, then
all essential Einstein i-deformations are integrable up to second order.

HOmG(SzéBaWa)s @aWa)
= HOIIIG(G?SZ( Wa)GB aenga® Wb) e? Wc)
= @ HomG(Sz( Wa)» Wb)® %Homc( W.QW,, Wc) .

Since each W, has no trivial component as G,-module, the last form equals to
@Y Homy(S¥W,),W,). Thus the integrability of A&EID(M) up to second
order reduces to the integrability of its components in each W,.

If M, is E¢/F,, then by Theorem 5.7, W, is isomorphic to g, and Lemma 5.4
implies that Homg(S*(W}), W,)=0.

Let M, be the group of type G, or a hermitian space except AIll (p=g=2)
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and denote by F the 2&-eigenspace of A on C=(M;). Then by Theorem 5.7,
an element # of W, has the form

b+ gfuga ,
where b€ C~(S?M,) and f,F. We calculate E”(h,h).
WV by = (W)Y () u+ ';NZ (hy, Hess f,)- g, ,
Vi Vb = V() Vill) 25 (o) 2
Vhi Vb = V()i V(B i s
R} 'hyh™ = R,-"j’(hl)km(h,)"’,—eﬁ_‘z, (fo)&as
BV Vi = BV V()i
Vil -V iy = Vi) -V j(hy) e+ aé n,Vifa'Vifa,
Rl = R (u)inl)f—€ 33 (18
Hess (h, h) — Hess (s, ) +-2 i; n.df,Qdf,+2 ﬁ‘é n,f,-Hessf,,
and so 2E"(, h)
— 2B, ) +2 33 (I, Hess £)-g,
123 (dfodf) 8ot 2y e @df+2 3 mfHess ,
Let h'=h{+3%Y,fi-g,€W;. Then
{E"(h,h), h'> = {E"(h,h,), hi>
+ 2, @.+ 2, Hess £, hi)
+2 2 m(h, Hess f)+(dfondf), 12>

Assume that M, is not of type AIII (p+¢=3). Then we can set h,=Hess f
+&f-g, and h{=Hess f'+Ef'- g, where f,f'€F. Moreover, by Lemma 5.4,
Homyg (S%(gf), f)=0 holds. Therefore

<E"(hy,hy), k1> =0,

<dfa®dfa+2fa'Hessfa:h{> =0 ’

@dfodfa),fi> =0,

{(hy, Hess f,), fi> = {(Hess f, Hess f,), fi>o—EXf - f,, fi> =10,
which implies that yr(k,h)=0 for h€ W,.

Theorem 6.2. Let (M,g) be a compact simply connected symmetric Einstein
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manifold. If all irreducible factors of M are meither SU(p-+q)/S(U(p)* U(q))
(p+4¢=3), SUW) (1=3), SU()/SO() (1=3) nor SU2L)/Sp(l) (I1=3), then all
essential Einstein i-deformations are integrable up to second order.

Now, we treat the case where M,=P!C) (I=2). For f,f'€F, we decom-
pose f-f’ into eigenfunctions of A and denote by r(f,f’) the F-component.
The map +» becomes a real SU(/+1)-homomorphism: S*F)—F.

Lemma 6.3. Let » and F be as above. Then 0. Moreover, if 1 is
even, Jr(f,f)*0 for all non-zero f EF.

Proof. Let S¥*CC'*! be the unit sphere. Then U(l)={weC;|w|=1}
acts on S¥*! and C'*! by w(2)=w-2 and S#*!/U(1) becomes the projective space
P'(C). The spectrum of A on C~(P'(C)) is given by {2m(l4+m)&/(l4+1); me Z,
m=0}. Denote by F" the eigenspace with eigenvalue 2m(l+m)&/(l+1) and
H"(C'*") the space of all homogeneous harmonic polynomials of degree 2m on
C'** which are invariant under the action of U(1). If f&F™, then f is extended
canonically to an element f&H™(C'*"). This correspondence ~ is an SU(I+1)-
isomorphism (cf. Berger, Gauduchon and Mazet [3; pp. 172-173]). Let
fEF. Since F is isomorphic to 8u(/+1) as a real SU(/4-1)-module, we may
assume that f is an element of the subspace of F which corresponds to a Cartan
subalgebra of 8u(/+1). That is,

- + X 1+

Fa)=Sa ¢ | a,€R, Sa, = 0.
i=1 i=1
Set A’=A/4 on C'*'. Then A’'=>)}1] 0°/02'0Z".

A'f =A@ F A D aa; |7 |? 2|
H ity
=42 d & |42 N aia;| 5|
i it

—23al# 2,
and, l
INOIAESES 2 EULEPNS M AEIEINS A EILEYE
= 43301 (151 12719
— (3t b))
Therefore, ' ]
Py Dt Pl S P HC),
and TR I [ PV

1437 41 "%
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Thus Y(f,f)=0 if and only if |a;| is independent of 7. Q.E.D.

Lemma 6.4. Let ' be any real SU(I+1)-homomorphism: SXF)—F. If
(L) [o=A(f,f), [ for all fEF, then ' =c+.

Proof. That is easy to see by Lemma 5.4 and the fact that F is isomorphic
to 811(/4-1) as real SU(l+1)-module. Q.E.D.

Lemma 6.5. The Lichnerowicz operator A commutes with the covariant
derivative V on a locally symmetric space.

Proof. The operators A and V may be regarded as the Casimir operator
(Lemma 5.6) and a G-homomorphism, respectively. Q.E.D.

Denote by D?f the p-tensor field defined by
(Dpf);l...,'p = V.~1°'°V,~pf.

Lemma 6.6. Let N be a locally symmetric Einstein manifold with Einstein
constant €. If f € C=(N) satisfies Af=2¢f, then

(6.6.1) <KDMif,df @D f> = &(D*f, D*f), >,
(6.6.2) (D f, D), f>
= (1=-p)&(D*f, D*f), f>—2(LD*f, D*f), f> -
Proof.
[6.6.1] VN Vi [ Vif ViV

= _<V"1mv‘pf’ Vivif'Vil’"Vipf+vif'ViVi"'°Vipf>
— (D*f, Af -D*f>—<{df @D*f, D*"'f> .
[6.6.2] VNV Vi, [ f ViV Vi, [
= Vi Vo LV f VN Vo fHf VIV Vi
= —<df@D*f, D*"' f>4LD*f, fAD*f,
and so (D f, DP ), f> (6.6.1)
= —&(D*f, D?f), f>+<fD*f, (A—2L—pQ)D* f

= —&(D?f, Df), f>+<fD*f, DPAF> (63)
—KfD*f, LD* [ >—pe fD*f, D* > . Q.E.D.
Lemma 6.7. If f eC~(P!(C)) satisfies Af=2&f, then
(6.7.1) L Hess f = —c(Hess f—&f+g),
(6.7.2) R,k RV, f = 2*(Hess f—&f - g)ij

where 2¢ is the holomorphic sectional curvature.
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Proof. Denote by 2% 2° etc. holomorphic coordinate functions. Since

Vf is a holomorphic vector field, VoVgf=0. We know that the curvature
tensor has the form

Ry’ = ¢(84'05"+82°35")
(cf. Calabi and Vesentini [5; (3.5)]). Therefore,
[67.1] (L HCSSf)aﬂ = Rw‘YQSVstf: 0 )

(L HCSSf)wp = R‘”ypSVngf: —-Ry'”ﬂsV“’Vaf
= —C(3y¢838—|—3y835‘”)vyvsf

= —(V*Vaf+V'Vyf+85")
= —c(Hess f+&f-£)% .
And if we set ¢;;}=R;},R;"*V,V,f, then
[6.7.2] Pop = Rai":ReE*VyVsf =0,

‘JBwﬂ = Rmeys‘Rp&eV'fVEf = RsmgprgsEV'stf
= (8,874 8.78:%) (84585 +85°855) V4V f
= 262(88"857—]— SsySBm)Vyvsf

= 2cR""Vy Ve f
= —2¢(L Hess )% . Q.E.D.
Lemma 6.8. Let f and c be as above. Then
(6.8.1) df,df), f> = &[40,
(6.8.2) {(Hess f, Hess f), f> =0,
(6.8.3) {Hess f,df ®df > = &<f*, f>,
(6.8.4) KD*f,df @Hess f> =10,
(6.8.5) Df,D°f), f = 4ceXf% [ s
(6.8.6) {(L Hess f, Hess f), f> = —2c6%<f%, >,
(6.8.7) Df,df QDf> = 4ce¥f*, >,
(6.8.8) <L Hess f,df @df > =0,
(6.8.9) (D*f,df QL Hess > = —2c&% f% [,
(6.8.10) VNV VIV, ViVif> = X3 1,
(6.8.11) Adf = &df

(6.8.12) AHess f = 2c(Hess f—&f - g)
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Proof. Except (6.8.10), that is easy to show by Lemma 6.6 and Lemma 6.7.

[6.8.10] <V.V,f-VV.f, ViV f>
= — VIV, f VIV f+V.V, [ VVV.S, VifD
= (Adf @df, Hess f>—<V.V,;Vif, Vif ViV f>
= &df Q@df, Hess f>—{ Ry} Vi f+ ViV V[, Vif V.V f>
= &%, f>+<L Hess f,df Qdf >—<D*f,df @ Hess >

(6.8.11)
(6.8.3)
(6.8.8), (6.8.4)

= &SP QE.D.
Lemma 6.9. Let f and c be as above. Then
(6.9.1) VNV, ViV V> = —2EK f [,
(6.9.2) VNV, VNV = —c& 4.

Proof.

[6.9.11 <V.V,ViV.f, ViVif ViV f>
= —V, ViV f, VIV f ViV f+ ViV f VLD
= (D*f, Adf @ Hess f >
VIV, Vi VNSOV VLS, Vi ViV VLD
= &D*f,df @ Hess >
HR " ViR ViV uf+V ViV Vif VD
—<D*f, df @ AHess f>
= 2<RijmkaVIf) Vif ViV >+HD f, df QD*f
—2KD¥f, df @ (Hess f—&Ef+g)>
= 2R;" W'V, Vi f V"V o4
—2cEdAS, f-df>
= 2R KR\ fHViViVif), Vif e VuVif>
= 2R ™R VuVif, VfVif>
+2<V1(RijmkVinf), Vif VaVif>
= 2R;" RN Vif Vo f 52V (L Hess f) jm Vif +VuVi>
= 4¢*(Hess f—&f - g, dAf Qdf> (6.7.2), (6.7.1)
+26<Vl(Hessf_8f’g)im ij°VmVIf>
= 4322, f>—4c*ef, (df, df)>
42V ;Vnfs Vif *V iV f>—2c6{df Qdf, Hess f
= 2R, * wVa [V Vs Vif *V V[ >—206K f2, [

(6.8.11)

(6.8.4), (6.8.12)
(6.8.7), (6.8.4)

(6.8.1)

(6.8.3)

(6.8.1), (6.8.3)
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= —2KKdf ®df, L Hess f>+2c(D*f, df @ Hess f>—2cEX f% f>

= 2cXdf @df, Hess f—&f - g>—2ceX f* f> 2222
= 286K f*, fo—26(df, df), f>—2e6X f*, > (6.8.1)
= —2ef%, f>.
[6.9.2] <V:ViV;V.f, ViV, f ViVif>

= (Vi(Ry;" Vo [+ VYV, ViV f ViV D
= R NiVuf, ViV, [ ViV OV ViV, ViV f Vi f> (6.9.1)
= —ViVaf V'V, f, (L Hess f)n>—2cX " f> (6.7.1)
= KViVnf Vi f, ViV i [~ gmi>— 206, [ (6.8.10)
= &K f%, f>—c&{(Hess f, Hess f), f>—2c&f%, >

2 (6.8.2)
= —c&f4f>. Q.E.D.

Now, we come back to our symmetric space (M,g) where M;=P!(C) (I1=2)
(below Theorem 6.2). We assume that N=2. Set h=+p+¢; y=Hessf+
Ef g, ¢=Ef - g, where f, f'E€F. Remark that 3y=0. In the following
calculation, we use Lemma 6.4, Lemma 6.8 and Lemma 6.9. If tr 2=0, then
heEID(M) and

2{E"(h,h), k>

= 26$h;i;, Bty >+-3V iV b, By >— 6KV ik, Bl

= 2&{ri;, 1!"ik¢'kj>+25<¢ij, D pri>+3KViV idrw, Vil
+ ViV jburs Vi jprr>— KV Vi, Yijbran -

Here, {4rij, Yty

= ViV, [, ViV ViV o436V f f ViV i
+3EXViV, f, 2+ (80> +E [ (801> [+ (8)i5>

= & f% [o— 66X f%, fo+me f*

= (m—5)eXf% >,
$pijs pitri> = EXf+(82)is (f)+(82)is>

= nEX(f)
VNV s Vil

= ViV, ViV f VeV f >+ &V i, ViV if - f (8w
+&VV A (80 VaVif >+EXVV i, 2+ (81)15(8) w0

= ViV VL, ViV f ViV O+ &NV, ViV i~V >
+ &V, f ViV f>— B, f -Hess f>—&XAYH, [

= —2c&% f? f>—2&%Hess f, f +Hess f>
+(n,—2)E%Hess f, f - Hess [

(4.3)

(6.8.10), (6.8.2)

(6.9.1)
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—&B Hess f+EAf g, f -Hess f>—2(m,—2)e< % f>
= —2c&X f?, f>—2c6(Hess f—Ef - g,, f -Hess [
+46Kf, fO—2(m—2)eX 2, >

(6.8.2), (6.8.12)

(6.8.2)
= —6cE f2, fO—2(m—4)efL >,
ViV ibus ijpuy = EXVV [ (€us Vij* [ (&)wr)
= m,&%f'+Hess f’, Hess f+&f - g> (6.8.2)

= —2me(f Y5>,
ViV il
= ViVelrjn ViV, f ViV >+EVVibin f+(81)iiViVif >
= ViV, VL, ViV, f ViV [ D&V f, ViV [V f>
+E&VIV VS ViV D+EXVIVLS (8w [ ViV f>
= —c&Xf2 fO+Ef4 1
+E<RjkmijV1f+Rjkleijf+ VijVlef:f . Vlef>
+&<(Hess f, Hess f), f>

(6.9.2), (6.8.10)

6.8.2
= —c& f2, fO+E 2 fO+E% (Hess f, Hess f), f> ( )
+&(L Hess f, Hess f), f>—& VAdf, f +Hess f> (6.8.6),
= — &K f%, [o+EKf? fo—26X f, f>—26%Hess f, f - Hess f> (62'68;2

= =3 f4 O+Ef 1>
Thus, <E”(h,h), k>

= —2m—2)E< f%, [ —3me(f'), [o+me(f) f> -
Since f'=—((n,—2)/n,)f, we have

<E"(h,h),h> — _("1—2) (m+-n—2) (m+ 2”2_2).E4<f2’f> .

nj

Therefore, by Lemma 6.4, we get

Lemma 6.10. Let h be as above and h” have the same form defined by f”.
Then <E"(h,h), b >=r-{f% ">, where r is a non-zero constant.

Theorem 6.11. Let P(C)xM' (I=2) be a symmetric Einstein manifold.
Then there exists an essential Einstein i-deformation which is not integrable.

Proof. That is easy to see by Proposition 4.5, Lemma 4.7, Lemma 6.3
and Lemma 6.10. Q.E.D.

Moreover, we have the following

Theorem 6.12. There exist rigid Einstein metrics which are infinitesimally
deformable.
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Proof. For example, let M be P¥(C)x.S? Then, by Theorem 5.7, all

elements #€EID(M) have the form introduced above Lemma 6.10. Thus

Proposition 4.6, Lemma 6.3 and Lemma 6.10 complete the proof. Q.E.D.
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