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0. Introduction

In [14] we studied some properties of the ^-matrix for the Schrϋdinger
operator

(O.i) r=-Δ+ρ(j)

in RN. The first purpose of this work is to investigate some more properties of
the S-matrix for the Schrϋdinger operator (0.1) in R3 with a short-range potential
POO (§2^-'§4). Especially the scattering amplitude F(k,ω,ω') will be studied
under the assumption that Q(y)=O( \ y\ ~2~ε), £>0. Next these results will be
used to show the uniqueness of the inverse scattering problem for general short-
range potentials Q(y)=O(\y\~1~*), £>0.

As in [14], our methods are based on the spectral representation theory for
the Schrϋdinger operator which has been developed by many authors (e.g.,
Ikebe [6J, Agmon [1], Saitό [10], [11], [13]).

§1 is a preliminary section and is devoted to stating some results on the
Schrϋdinger equation

(0.2) (T-k?)u=f.

One of them is the limiting absorption principle and the others are the asymptotic
behavior of the solution u at infinity and the spectral representation theorem
for (the self-adjoint realization of) T. The scattering operator S and the scat-
tering matrix S(k) will be discussed in §2. In §3 and §4 we shall study the
properties of the scattering amplitude F(k, ω, ω'). First we shall give some
representation formulas for F(k) ω, ω'), where F(k, ω, ω') is represented by the
potential Q(y] and the generalized Fourier transform associated with T. And
then several properties of F(k, ω, ω') will be derived from the representation
formulas. Among others, we shall show some similar results to the ones in the
recent papers of Enss and Simon [3] and Jensen [8]. The main results of §5 is

* This work was partially supported by the Thyssen Stίftung.
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an asymptotic formula

(0.3) lim #(P(K)xk „ *f> = -2π\Q(y) \y-z \ ~2 dy
»

for #<ΞΛ3, where P(k)=-2πίk-\S(k)-I) with the S-matrix S for Γ(see §2),
*M(ω)=exp(— ikωz)<=L\S2} and ( . )S2 is the inner product of L2(S2). (0.3)
is valid for any short-range potential Q(y) and the uniqueness of the inverse
scattering problem will be shown by the use of (0,3).

(0.3) can be also used to reconstruct the potential Q(y) by its 5-matrix
S(k). We shall discuss it elsewhere. υ In this paper we restrict ourselves to
the three dimensional case for the sake of simplicity. But all the results can be
easily extended to the higher dimensional case. It will be discussed elsewhere, too.

1. Preliminaries

We consider the differential operator

(1.1) T=-A+Q(y)

in R3. Here Δ is the Laplacian in R3 and Q(y) is a real-valued function which
satisfies the following

(Aμ) Q(y) ί$ a real-valued, continuous function such that

with constants μ>l and C>0.

For u^H2(R3)ιoc Tu is well-defined as a distribution and we have
(J?3)loc, where H2(R3) is the Sobolev space of the second order. In order to
discuss the ί-matrix and the scattering amplitude for T we shall recall some
results about the equation

with the radiation condition

(1.4)

where 8 is a constant such that

(1.5)

Lβ(R3) is a weighted Hubert space defined by

(1.6)

1) See Saito [15].
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with its inner product

(1.7) (if, v)β =

and norm

(1.8) l l« l

and we set

(1 9)

with j^—V / l j y l F°r the literature about the equations (1.3)-(1.4) see, e.g.,
References of Saitϋ [13]. Let us denote by B(X, Y) all bounded linear opera-
tors from X into Y.

Theorem 1.1. Let O(y) satisfy (Aμ) with μ>l and let S be as in (1.5).
Let a be a positive constant.

( i ) Then there exists a unique solution u=u(k,f) of the. equations (1.3)-
(1.4) for any real k} ΛΦO, andf^L2

8(R3).
(ii) The solution u=u(k,f) satisfies the estimate

(1.10) I M I - β ^ ^ l l / l l β (\k\^a,f(ΞLl(R*))y\k\

where C is a constant depending only on a, δ and Q(y).
(iii) If we define an operator (T—k2)"1 by

(1.11) (T-krιf=u(k,f)

for real k, &ΦO, then the operator (Γ-*2)'1 is a B(Ll(R3), L2-B(R3))-valued, con-
tinuous function on R— {0} , and we have

(1.12) IKΓ-FΠI^- (1*1 ^α)
1*1

with the same C as in (1.10), where \\(T — &2)"1!! is operator norm of (T — k2)~l in
l(R\ Lts(R3)).
(iv) For each real k, &ΦO, (T—k2)~l is a compact operator from L\(R3) into

This theorem is a special case of Theorem 1.5 of Saitό [12]. Let Σ/? be
all k^R such that the equation (1.3)-(1.4) with /=0 has a non-trivial solution.
Then it should be noted that ΣΛ is at most {0} in our case, because Q(y) is real-
valued.
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The next theorem is concerned with the asymptotic behavior of the solu-
tion u(k,f).

Theorem 1.2. Let Q(y) satisfy (Aμ) with μ>l. Denote by u=u(y, k , f )
the solution of the equations (1.3)-(1.4) with k^R— {0} andf<=L2

δ(R3).
( i ) Then, the strong lίmt,

(1.13) Φ(K)f = Φ(k, Q)f = s-lim e-"»krnu(rnω, k, f ) ,
tt-^ oα

exists in L2(S2), S2 denoting the unit sphere in R3 and {rn} being a sequence such

that rn f oo and

(1.14) lim rl \ \3)u(rnωy k,f)\2dω = Q.
"•>- J2

The limit Φ(k)f^L2(S2) is independent of the choice of such {rn}.

(ii) Φ(K)=Φ(k, Q) defines a B(L\(R3), L\S2)}-valued3 continuous function

m R— {0} with the estimate

(1.15)
\k\

where a is an arbitrary positive number, C depends on a and Q(y) and ||Φ(&)|| deno-
tes the operator norm of Φ(k) in B(L2

8(R3), L2(S2)).

(iii) Φ(&) is a compact operator from L2

8(R3) into L2(S2) for each k^R—

{0}.
(iv) Let Qn(y), n=l, 2, •••, be a sequence of real-valued, continuous functions

on R3 such that sup (1 + | y \ )μ | Qn(y) \ < °° with μ>l and Qn(y) converges to Q(y)
for each y^R3 as w ̂ oo. Then we have the strong limit

(1.16) Φ(ft, Q) = s-lim Φ(k, Qn)
W_^.oo

for each &<=Λ-{0} and the operator norm \\Φ(k, Q,)\\ in B(Ll(R3), L2(S2)) is

uniformly bounded for w=l, 2, •••.
( v ) Let Q(y) = 0. Then Φ(k, 0) takes the from

(1.17) (Φ(*,0)/)(ω)=. .
jR-><*>

\Y\<R

Proof, (i), (iii) and (iv) of Theorem 1.2 directly follow from Proposition
12.2 of Saitό [13]. But we should note that we discuss in [13] the operator L
with operator-valued coefficients which is unitarily equivalent to T by the unitary
operator

(1.18) U: L2(R*)Ξ)f(y) ^ r/(rω)eL2((0, oo), #(£*), dr)

(r= \y\,ω
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and that we should set μ(y3 k)= \y\k in Proposition 12.2 of [13], since our Q(y)
does not contain a long-range part. Let us give a proof of (1.15). Applying
Proposition 12.2, (ii) of [13] to our case, we get

(1.19) HΦ(6)/H2s2 = k~l Im(κ(A,/),/)0

(cf. (8.15) of Theorem 8.4 of [13], too), where || ||s
2 is the norm in L2(*S2), ( , )0

is the usual L2(jR3)-norm, and Im λ denotes the imaginary part of λ. (1.15)
follows from (1.19) and the estimate (1.12). (v) can be seen from the well-

known relation

(1.20) u(yy k,f) = (4τr)-1( \y-z\ -%*">-*f(z) dz

*3

in the case of Q(y)=Q and the asymptotic relation

(1.21) lim r \rω-y | -V*<|Γ-*-r> = e~ikωy .
r->oo

Q.E.D.

In §4 we shall need a result from the spectral representation theory for the

self-adjoint realization of T=—Δ+Q(y) ([1], [H], [13]). Let HQ and H
denote the self-adjoint realizations of T0=—Δ and T m Z/2(Λ3), respectively,

i.e.,

(122)
{ }

and

\Hu = Tu ,
(Ί 23"ί <
^ ' } \D(H) =

where D(A) is the domain of A and H2(R3) is as above. We set for

>0(&) = (2/πγ'2Φ(k, 0).

Then we can easily see that

(1.25) (Φo(&)/) (ω) = (2π)~3/2s— lim I e~ikωyf(y) dy
\y\<R

mL2(S2)forf£ΞLl(R3).

Theorem 1.3. Let Q(y) satisfy (Aμ) with μ>l. Let £"(•) be the spectral
measure associated with H. Then we have

(1.26) (E(B)f,f)0= j | | f l
T/B
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where B is a Borel set in (0, oo) and VB= {k>Q/k?ζΞB} .

For the proof see, e.g., §11 and §12 of [13].

2. S-matrix

In this section we shall discuss the properties of the S-matrix for the Schrϋ-
dinger operator T-— Δ+Q(y). Let Q(y) satisfy (Aμ) with μ>l and H and
HQ be as in §1. Then it is well-known that the wave operators W+= W±(Hί HQ)
are well-defined by

(2.1) W± = s— lim exp (itH) exp(—itHQ)

(Kuroda [9]). The scattering operator S is defined by

(2.2) S= W*W_,

Wϊ denotiong the adjoint of W+. The scattering matrix (S-matrix) S(k), k>0,
is an operator on L2(S2) determined by the relation

(2.3) (3S9*F)(ξ)={έ(\ξ\)F(\ξ\ )}(ξ) (ξ=ξl\ξ\)

for F(ξ)GC%(R3), where 3 is the usual Fourier transform

(2.4)

in L%Rf), and £F* is the adjoint operator of 3 from L\R\) onto L2(R3

y).

Theorem 2.1. Let Q(y) satisfy (Aμ) with μ>l. Let Φ+(k) and Φ0(k) be
as in (1,24) and let Φ$(k) be the adjoint operator of Φ0(k) from L2(S2) into L2_δ(R3),
i.e.,

(2.5) {Φί(*M (y) = (2π)-3/2\eikωyx(ω) dω (x£ΞL2(S2)) .
s*

Let us define a linear operator $(k)=έ(k, Q)9 k>Q, an L2(S2) by

(2.6) S(k) = I-iπkΦ+(k)QΦ$(k) .

where I denotes the identity operator on L\S2). Then S(k)^B(L2(S2)) and (2.3)
hold. Her eB(X] means B(X3X).

Proof. Since the multiplication operator O= Q(y)X is a bounded linear
operator from L2.8(R3) into L2

S(R3), Φ^(k)^B(L\S2)9 LL8(R3)) and Φ+(k)<=B(L2

s

(R3), L2(S% we can see that Φ+(k)QΦ$(k)<=B(L2(S2)), and hence S(k) is well-
defined as an element of B(L2(S2)). For the proof of (2.3) see Theorem 3.2
and (i) of Remark 3.3 of [14j. Q.E.D.

Let us list some properties of S-matrix S(k).

\y\<R
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Theorem 2.2. Let Q(y) satisfy (Aμ) with μ>l and let S(k)=S(k3 Q) be
the S-matrix.

( i ) The S(k) is a unitary operator on L2(S2).

(ii) Set

(2.7) P(k) = -2πik-\S(K)-I) = -2π2Φ+(k)QΦf(K)

Then the estimate

(2.8) | | ) | | = 0(k-2)

holds. Here \\P(k)\\ denotes the operator norm of P(K) in B(L2(S2)).

(iii) For each &>0 F(k) is a compact operator on L2(S2).

(rv) Let Qn(y)yn=\, 2, •••, be as in (iv) of Theorem 1.2. Then we have

(2.9)

for each k>0.

Proof. For the proof of (i) see §4 of [14]. Since we have ||Φ+(fc)||, ||Φf (
— O(k~1) from (1.15), (2.8) immediately follows, (iii) can be shown by the
compactness of Φ+(k) ((iii) of Theorem 1.2) and the boundedness of QΦ$(k).
(iv) follows from (iv) of Theorem 1.2 and the fact that QnΦf(K) converges strongly
to QΦΪ(k) in B(L2(S2)y Ll(R3)) as w->oo. Q.E.D.

3. The scattering amplitude

In this and the following sections we shall assume that Q(y) statisfies (Aμ)
with μ>2. Then it is known (Amerin et al. [2], §10.2) that F(k), defined by
(2.7), is a Hubert-Schmidt operator on L2(S2) with its Hubert-Schmidt kernel
F(k, ω, ω'), k>0, ω,ω'e*S2, i.e., we have

<°°

)x) (ω) - F(k9 ω, ω'Xω') dω'

(3.1) f
I \\F(k,ω,ω)\2dωdω'

F(k, ω, ω') is called the scattering amplitude. We shall give a proof of (3.1)
and show a formula where the scattering amplitude F(k, ω, ω') is represented
by the potential Q(y). Some properties of F(k, ω, ω') will be obtained from
the representation.

We shall start with a well-known formula for F(k, ω, ω').

Theorem 3.1. (Ikebe [7]). Let Q(y) satisfy (Aμ) with μ>3 and let Q(y)
be Holder continuous. Then we have
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(3.2) F(k, ω, ω') = -(4π)-^φ(y, -kω)Q(y)eik^ dy

** (£>0, ω,ω'eΞS2),

where φ(y, ξ},y, ξ^R3, is the generalized eigenfunction associated with H=HQ+Q
which is a unique solution of the Lippmann-Schwinger equation

(3.3) φ(y, ξ) = e^-(*πγλ\y-z \ -W*">-*Q(*)φ(z, ξ) dz.
B3

Further, F(k, ω, ω') is continuous on (0, °o)xS2xS2 and we have

(3.4) F(k, ω, ω') = F(k, -ω', -ω) (Λ>0, ω, ω'eS2) .

For the proof see Ikebe [7] (Theorem 1 and the foot-note 7)) or Amerin et

al. [2], §10.2.

Now multiply both sides of (3.3) by Q(y) and set ξ=—kω. Then we can

rewrite (3.3) as

(3.5) {/+0(ro-*2n (ρ( M , -*ω)) = e-^Q(y) ,

where we should note that (4τr)~1| y— z\ ~leik{y~z\ is the resolvent kernel of

TQ= — Δ and that Q(y)φ(y> ξ)^L2

8(R3) since φ(y, ξ) is a bounded function on
R3 for each fixed ξ as is known in Ikele [6]. It follows from (iv) of Theorem

1.2 that Q(T0— k2)'1 is a compact operator on L2

S(R3). On the other hand, the
equation

(3.6) {7+ρ(Γ0-tf)-1}« = 0

has only the trivial solution u=0 in Ll(R3). In fact, let u^L\(P?) be a solution

of the equation (3.6). Then, setting v0=(T0—k2)~1uQy we can easily see that

v0 is a solution of the equation (T— k2)v0=Q with the radiation condition (1.4), and

hence v0= 0 by the uniqueness of the equations (1.3)-(1.4), whence u0=0 follows.

These two facts are enough to show the existence of {I-\-Q(T0— Λ2)"1}"1^
B(L2

8(R3)) and we have from (3.5)

(3.7) Q(yyp(y, -*ω) = {i+Q(TQ-k2γi}-\eik« Q(.}} .

Thus we arrive at

Proposition 3.2. Let Q(y) be as in Theorem 3.1. Then the scattering am-
plitude F(k, ω, ω') for H=HQ-\-Q has the expression

(3.8) F(k,

where we set

(3.9)

ω, ω = -
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and

(3.10) {Φ )̂/> (ω) = (2;r)-^-lim ( e
B->°° J

\y\<R

Now let us assume that Q(y) satisfy (Aμ) with μ>2. Take a sequence Qn(y)>

w=l, 2, •••, such that Qn(y) converges to Q(y) in the sense of (iv) of Theorem

1.2 and each Qn(y) satisfies (Aμ) with μ>3 and is Holder continuous. Let

Fn(k, ω, ω') be the scattering amplitude for Hn=H0+Qn, n=l, 2, •••. Then it

follows from Proposition 3.2 that

(3.11) Fn(k, ω, ω') = -(*/2)1/2Φo(*) {(I+Bn(k)Y\e-^ Qn)} (ω')

with Bn(k)=Qn(T(s-te)-1. Since Qn(y) converges to Q(y) in Ll(Rz), we have
for each pair (k, ω)e(0, oo)χ52

(3.12) ί-lim Fn(k, ω, •) = -(π/2^2Φ0(k) {(I+B(k)Γ\e-
ikω Q)}

«̂ .<x»

in L2(S2). On the other hand, it follows from (iv) of Theorem 2.2 that F(k, Qn)
converges to F(k, Q) strongly as τz->oo. Therefore, denoting the right-hand

side of (3.12) by F(k, ω, ω'), we get

(3.13) P(k, Q)x = \F(k, ω, ω')x(ω') dω'
8*

for each x<=ΞL\S2).

Theorem 3.3. Lei Q(y) satisfy (Aμ.) with μ>2.

(i) Then the operator F(k) has the kernel which has the expressin

(3.14) F(k, a>, ω') = -(πβγflφ^k) {(I+B(k)Γ1(e-a"Q)} (ω') ,

Φ0(k) and B(k) being given as in (3.10) and (3.9), respectively.

(ii) F(k,ω, •) is an L2(S2)-valued, uniformly continuous function on [a, oo)

X S2 for each a>0 with the estimate

(3.15) \\F(k, ω, )ll5

2^«-1||(/+β(^))-1|| ||ρ||δ (fea, ω^S2),

where C is a constant depending σrdy on α>0 and Q(y), and \\(I+B(k))~l\\ is the

operator norm of (I+B(k))~l in B(L2

8(R3)). Further, F(k, , ) is a Hίlberi-Schmidt

kernel and us Plilbert-Schmidt noim is O(k~1) as k-*o°.

(iii) Set

(3.16) F(k, ω, ω') = -(πβY/2Φ0(k) (e~ik<u'Q) (ω')+J(k, ω, ω') .

Then for each a>0 J(k, ω, ω') is a uniformly continuous function on [a, o°)xS2xS2

with the estimate
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(3.17) \J(k, ω, ω') I ̂  Ck-W+B^Πl \\Q\\l

The L2-estimate for J(k, ω, ) is given as

(3.18) \\j(k, ω, )ll^c*-'iκ/+*(Λ)πι ιιριι,..ιιριι,

for k^a, ωξzS2. Here C is a constant depending only on α>0 and Q(y).

Proof. The existence of the integral kernel F(k, ω, ω') of P(k) and (3.14)
have been shown already in the argument before Theorem 3.3. (3.15) directly
follows from the estimate (1.15) with Φ(k) replaced by Φ0(— A), and hence
F(k, ω, ω') is a Hubert-Schmidt kernel for each A>0. Since (I+B(k)Yl is
uniformly bounded on [α, oo) and Φ0(k) and B(k), k^[a, oo), are uniformly
continuous in B(L2

8(R3), L2(S2)) and B(Ll(R*)), respectively, we can show the
uniform continuity of F(k, ω, •) on [0, oo)χS2. Let us turn into the proof of
(iii). It follows from the relation

(3.19)

that

(3.20) J(k, ω, ω') = (π/2y'2Φ0(k) {B(k) (I+B(k)Γ(e~ik-Q)} (ω'}.

Therefore, noting the definition of Φ0(Λ) and B(k) ((3.10) and (3.9), respec-
tively) and using the Schwarz inequality, we have

(3.21) \J(k,ωίω'}\

dy

It is easy to see that (3.17) is obtained from (3.21). (3.18) can be shown quite in
a similar way, though we have to use (1.15) (with Φ(&) replaced by Φ0( — &)) in
addition. Starting with (3.20) again and proceeding as in the proof of (ii), we
can easily show thw uniform continuity of J(k, ω, ω'). Q.E.D.

REMARK 3.4. Recently Jensen [8] has investigated the asymptotic behavior

of the total scattering cross-section. His potential admits some local singularities.
In the case that Q(y) has no local singularities, His results can be derived from
ours.

From (iii) of Theorem 3.3 we can see that the singularities of F(k, ω, ω7)

can arise only from the term —(π/2)1/2ΦQ(k) (e~ikω'Q) (ω'). For example, let us
show the following two theorems. For the first one cf. Villarroel [17].

Theorem 3.5. Let Q(y) satisfy (Aμ.) with 2<μ^3 and let Q(y) be spherically
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symmetric, i.e., O(y)=Q(\y\), Then the singularities of F(k, ω, ω') lie only on
ω=ω', i.e., F(k, ω, ω') is a continuous function for &>0, ωφω'. Further, we

have the estimate

(3.22) F(k, ω, ω') - O( I ω-ω' | ̂ ) (\ ω-ω' | -> 0) ,

where μ is an arbitrary number such that 2<μ<μ.

Proof. By a simple calculation we have for ωφω'

(3.23) -(7r/2)1/2Φ0(Λ) (*-''*-£?) (ωf) = -lim(4*)-1 ( eik^~^yQ(\y\) ay
B-><» J

co |y|<B

= ~(k\ω-ω'\yΛrQ(r)sm(kr\ω-ω'\)dr .
0

The right-hand side of (3.23) is continuous for A>0 and ωΦω'. By the use of
the condition (Aμ) we get

(3.24)

-ω'| )?-» Jr(l +
0

with ρ(t)=t~l I sin ί I . (3.22) directly follows from (3.24). Q.E.D.

ω-ω - r + r - - ' ) » ω-ω

Theorem 3.6. L*tf g(j) ί^w/j (^4μ) wίίA 2<μ^3 and let dQ(y)/dyjy

j=l, 2, 3, satisfy (A$) with μ>3. Then the singularities of F(k, ω, ω;) lie only
on ω=ω'. We have the estimate, with any μ' such that 3<μ'<μ, μ'^4 9

(3.25) F(k, ω, ω'} = O( I ω-ω' | μ/'4) ( | ω-ω'| -> 0) .

Proof. Let ωφω'. With no loss of generality we shall assume that
ωjΦωί, where ω— (α^, ω2, ω3) and ω'=(ωί, ω$, ωa). Then we have by partial
integration

(3.26) -(*/2)'/2Φ0(*) (*-'*->•<?) (a/)

"("-•')'- 1} (QQIdyJ dy .

We proceed to get (3.25) as in the proof of Theorem 3.5. Q.E.D.

Finally let us show that the scattering amplitude F(k. ω, ω') can be ex-
panded in series when k is large enough. It follows from (1.12) that for each
pe(0, 1) there exists &p>0 such that

(3.27) \\B(k)\\£p

being the operator norm of B(k)=Q(T<s-k2)-1 in B(Ll(R3)). Then,
making use of the relation
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(3.28) (I+B(k)Γl = Σ (
y=ι

and the estimate

(3.29) I (πj2)^Φ0(k) {(-B(k))'(e-"»Q)} (ω') | 2£

(k^kf, y = l , 2 , » ),

which can be obtained by proceeding as in the proof of (3.17) in Theorem 3.3,
we have the series expansion

(3.30) J(k, ω, ω') = -(τr/2)'/2 Φ0(*) {(-B(k))'(e-^'Q)} (ω') ,

where the right-hand side of (3.30) converges uniformly for k^kp and ω,
Thus we arrive at the Born series (cf. Chapter 12 of Amerin et al. [2])

Theorem 3.7. Let Q(y) satisfy (Aμ) with μ>2. Then we have the series
expansion

(3.31) F(k, ω, ωf}+(π!2)^Φ,(k) (e^'Q) (ω')

= ~(*/2)1/2 Σ Φo(*) i(-

where the right-hand side 0/(3.31) converges uniformly for (k, ω, ω')^[fe, oo)χS2

X S2 with k>0 large enough.

4. Some estimate on the total cross-section

Let us set

(4.1) σ(k, ω) = σ(k, ω, Q) = \\F(k, ω, ) l l l 2 -

σ(k, ω) is called the total scattering cross-section. Recently Enss and Simon [3]
got some interesting results about the estimates on the term

Λ + Y

(4.2) /(«, 7) = /(«, γ, Q) = j σ(k, ω, Q) dk

by uniting their time-dependent methods and geometrical methods. Among
others, they have shown that, roughly speaking,

(4.3) 7(α, γ, gQ) £ CcΓ2g>\\Q\\l (g>G) ,

where δ> — and C depends only on γ>0, and that
Zj

(4.4) I(aίΎ9Q)^C(R2+R-1)ί

where the support of Q(y) is assumed to be compact and is contained in a ball
{y^R3l\y\<R}, and C depends only on α, Ύ>0.

In this section we shall show the results similar to (4.3) and (4.4) by starting
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with our definition of F(k, ω, ω') and using the time-independent methods.
Let us begin with an another interpretation of the classical formula (3.2) for the
scattering amplitude F(k, ω, ω'). By the use of (3.4) we can rewrite (3.2) as

(4.5) F(k, ω, ω') = - (4πYl\φ(y, kω')Q(y)e-
ik*» dy .

7?3

Lemma 4.1. Let O(y) be as in Theorem 3.1. Let Φ+(k) be as in (1.24).
Then we have

(4.6) ί/Φ+(*)/} (ω) = *- Km^)-*2 J φ(y, kω)f(y) dy

in L2(S2), where J is a unitary operator on L\S2) defined by

(4.7) (Jx) (ω) = x(-a>) (xeL2(S2)) ,

and φ(y, ζ] is the generalized eigenfunctίon associated with H=HQ-\-() (see
Theorem 3.1).

Proof. Set

(4.8) u(y) = (2π)-3/2(φ(y,kω)x(ω) dω
s2

with x^L2(S2). Then it follows from the Limpmann-Schwinger equation
that

(4.9) u =

where

(4.10) ΦJ(Λ)# = (2π)-3/2\e-ikωyx(ω) d

and (^-(-^^/(f^LKR3)) is the solution of the equations (1.3)-(1.4) with
T and k replaced by Γ0 and —k9 respectively. We next obtain from Theorem
2.6 and Remark 3.3, (ii) of [14]

(4.11) Φ*(% = φ*(%_(Γ-(-^)2)-1ρΦ?(% ,

Φϊ(&) being the adjoint of Φ+(k) and (T— (— k)2)'1 being defined quite similarly
to (Γo-(-β)2)-1 above. Set v(y)=Φ$(k)x—Φ$(k)x. Then, by (4.11), v(y)
satisfies the radiation condition (1.4) with k replaced by — k. On the other
hand, by a simple calculation, we have

(4.12) (Γ0-fc> =

where we have used (4.11) again. Thus we get

(4.13) Φ*(k)x = Φ$(k)x-(T
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Replace x by Jx in (4.13) and notice that

(4.14) ΦΪ(k)Jx = Φt(k)x (k>Q9 x

Then we get from (4.9) and (4.13) (with x replaced by Jx,) u(y)—Φ%(k)Jx, and
hence (4.6) follows just by taking the adjoint. Q.E.D.

Theorem 4.2. Let Q(y) satisfy (Aμ) with μ>2. Then we have the expres-
sion for F(k, ω, ω')

(4.15) F(k, ω, ω') = -(*/2)"7Φ+(A) (e^'Q) (ω') .

Proof. We can obtain (4.15) by approximating Q(y) by a sequence Qn(y\
n=l9 2, •••, such that each Qn(y) satisfies (Aμ) with μ>3 and is smooth enough.
Then it follows from (4.5) and Lemma 4.1 that we obtain (4.15) with F(k, ω, ω')
and Q(y) replaced by Fn(k, ω, ω') and QH(y), respectively, where Fn(k, ω, ω')
is the scattering amplitude associated with Qn(y). By letting n— > °o in the relation
obtained above, we arrive at (4.15). Q.E.D.

The following theorem is a slight modification of Theorem 4.2. But it
will be useful later.

Theorem 4.3. Let Q(y) satisfy (Aμ) with μ>2. Let ψ(y) be a C2 function
on R3 such that ψ(y) = l for \y\>R with R>0. Then we have

(4.16) F(k, ω, ω'} = -(π/2γ<2JΦ+(k) {(T-k2) (•**-»*')} (ω') .

Proof. It follows from Theorem 4.2 and the decomposition e~tkωy=
ψ(y)e~ikωy+(l—ψ(y))e-ikωy that it is enough to show

(4.17) φ(k)f=Q

for f—(T—k2)u with u(y) e H2(R3)ιoc which has compact support in R3. In
fact, u(y) is the solution of the equations (1.3)-(1.4), and hence, by the definition

(4.18) Φ(*)/= s~^m e~ikrru(r ) = 0 . Q.E.D.

Now let us give an estimate on the total cross-section σ(k, ω)=σ(k, ω, Q).
Here our potential Q(y) is more restricted than that in Enss and Simon [3].

Theorem 4.4. Let Q(y) satisfy (Aμ) with μ>5/2. Let γ>0 and let
a — 2j > 0. Then we have

Λ+y

(4.19) I(a, 7, Q) = j σ(k, ω, Q) dk ̂  Ca
Λ-V

uith a constant C=C(Γf) depending only on 7>0.
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For the definition of the norm || \\β see (1.6)<^(1.8).

REMARK 4.5. If we replace Q(y) by gQ(y) with £>0, then we have

(4.20) I(a, 7, gQ) 5Ξ C

Proof of Theorem 4.4. The proof is divided into three steps.
(I) Let n be a positive integer and set

(mj = a-7+(27/n)j (j = 0, 1, —, n),

Δy = [mj_ly ntj] (j = 1, 2, —, n),

&j = [™2i-i> ™2λ (j = 1, 2> •"> ») >
(4.21)

f(k) being regarded as an L2(jR3)-valued function on [α—7 <x-\-7]. Then,
taking note of the continuity of Φ+(k) in B(L2

S(R3), L2(S2)) ((ii) of Theorem 1.2)
and the continuity of f(k) in £%R3), and using Theorem 1.3, we obtain

(4.22) j \\F(k, ω, )IΓ
Λ-V

where || ||0 is the usual L2(/?3)-norm and E( ) is the spectral measure assciated
with H=HQ+Q.

(II) Let a— 7^ίk<m^a+7 Then we have

(4.23) ll/W-/(^llo^(^/2)

In fact, (4.23) follows from the relation

(4.24) /(«)-/(*) = (nl2γκQ(y )iωy^ dt .
k

(III) Set G(k)=E([ml, k2}). Then the right-hand side of (4.22) can be
rewritten as

(4.25) s =
J = l

), G(ιιιy)/(»y))0

Make use of the estimate (4.23), ||G(fc)||^l and ||/(&)||o^(7r/2)1/2||£||0. Then
it follows from (4.25) that
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(4.26)

which is combined with (4.22) to give (4.19) with C(γ) =2τr(l+4γ). Q.E.D.

The next theorem corresponds to (4.4).

Theorem 4.6. Let O(y) be a continuous function whose support is contained
in a ball \y<=R3/\y\ ^J?} with R>0. Let 0<a<b<°°. Then

(4.27) σ(Λ, ω,ρ) dk
a

where C depends, only on a and b.

Proof. Let us start with the expression (4.16) in Theorem 4.3. Let
p(ί) be a C2 function on (— oo, oo) such that p(t)=0 (t^O), p(t)= 1 (ί^ 1). Set

(4.28) ψty) = v-jfOO = />(( I >Ί -Λ)/Λ) .

Then we have, noting that Q(y)^(y) = 0 (y^R3),

k,ω,ω')= VΦ+(k)f(k)l(ω'),

(4.29) f(k) = -(

Since we have the estimates

j l V ψ l ϊ

1 1 Δψ I ̂  (2Ct+ C2)Λ-2 (C2 = max | p"(

and the supports of V ψ and Δ ψ- are contained in {R^ \y\ ^2R}, we get

ί I /(*) I ^

' l|/(m)

with Cj=Cj(b, Cl9 C2), 7 = 3, 4. Therefore, proceeding as in the proof of
Theorem 4.4, we obtain

(4.32) Jσ (fc, ω,
α

with C5=C5(i, Q, C2). (4.27) is immediate from (4.32). Q.E.D.

5. Asymptotic behavior of F(K)

This section is devoted to showing two asymptotic formulas for the operator
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F(k)=—2πik~1(S(k)—I) as k->oo. From these formulas we shall get two

theorems on the uniqueness of the inverse scattering problem.

First let us assume that the potential Q(y) satisfies (Aμ) with μ>2. Then

the existence of the scattering amplitude F(k, ω, ω') is guaranteed (Theorem

3.3). Let ξ<ΞR\ ζ ΦO, and set m= \ξ\>0, ωQ=ξl\ξ\^S\ i.e., ξ=mω0. For

each positive integer n let kn(m) be a function on (0, oo) such that kn(m)^m and

kn(m) t °° as n~ >0° f°r each τw>0. We shall adopt polar coordinates (φ, #),
π, 0^0^τr, and let ω0 be represented as (φ0, Θ0). Set

(m, ω0) — ωn(X ωQ) —

where 0X is determined by cos Θ1=m/(2kn(m)). Then we have kn(ω'n— ωM)— — £ .

Further we set

(5.2) Fn(ξ) = F(ku(m), ωn(m, ω0), ω'n(m, ω0))

, n- 1,2, .-).

The following theorem is an extesion of Faddeev [4],

Theorem 5.1. Let Q(y) satisfy (Aμ) with μ>2. Let F(k, ω, ω') be the

scattering amplitude for H=HQ-\-Q. Then for each positive integer n Fn(ξ), defined

by (5.2), is well-defined for almost all ξ&R3 and we have

(5.3) lim Fn(ξ) = -(πβγ\3Q) (ξ) ,
M-^oo

where 3 is the usual Fourier transform and the lef-hand side exists and is equal to

the right-hand side for almost all

The relation (5.3) can be written, symbolically, as

Corollary 5.2. Let Q^y) and Q2(y) satisfy (Aμ) with μ>2. Let F^k, ω, ω'),

y=l, 2, be the scattering amplitude for Hj=H0+Qj. If F^k, ω, )=F2(k, ω, •)

in L2(S2) for each pair (k, ω)e(0, oo)χ52, then we have Qι(y) = Q2(y) for all

Proof of Theorem 5.1. It follows from (iii) of Theorem 3.3 that

(5.5) F(k} ω, ω') = -(47r)-1ί-lίm J eik^'-"»Q(y) dy
"^"VKR

+J(k, ω, ω')

in L2(S^). Take a sequence Rp, p=l,29 , such that Rp f °o as p-*oo and

there exists the limit
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(5.6) (2*

for almost all ξ^R3. Set ξ=mω0y m>0 and ω0^S2, and set k=kn(m), ω=
ωn(my ω0), ωf=ω/

n(mί ω0) in (5.5), where kn, ωn and ω£ are as above. Then we
have

(5.7) Fn(ξ) = -Or/2) (ffQ) (?)+/(*„ ωB, ωί) ,

and, since the right-hand side is well-defined for almost all ξ^R3, Fn(ξ) is
also well-defined for almost all ξ^R3. The estimate (3.17) can be applied to
show that

(5.8)

as w-^oo, which implies that lim FΛ(ξ) exists for almost all ξ^R3 and we
«̂ .0»

get (5.3). Q.E.D.

Next let us assume that Q(y) is a general short-range potential. In this
case the Hubert- Schmidt kernel F(k, ω, ωr) does not exist in general. But
the operator F(k) is well-defined as was shown in §2. For z€=R3 and &>0 we
set

(5.9) *M(ω) = e-»"*ΞL2(S*) (ω^S2) .

Theorem 5.3. Let Q(y) satisfy (Aμ) with μ>l. Let F(k) and xk>z(ω) be
as above. Then we have for any z £Ξ R3

(5.10) lim k\P(k)Xktl, *»> = -2π\Q(y) \ y-z Γ dy .
J3

Here ( , )s

2 denotes the inner product of L2(52).

Proof. From the definition of P(k) ((2.7)) and (4.11) it follows that

(5.11)

The definition of Φϊ£(&) and (T—(—k)2)~l are given in the proof of Lemma 4.1.

Since

(5.12) (Φί(Λ)*M) (y) = (2w)-*2*rt"<>-*> dω
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we have

(5.13) tf/i(Λ, z) = -4π\Q(y)\y-z\-2{sm(k\y-z\)r dy
*3

-»-2*\Q(y)\y-z\-*dy (*-*«>),
&

where we have used the Riemann-Lebesgue theorem. On the other hand, by
Theorem 1.1, we get

(5.14) \k\f2(k,z)\

(5.14) is combined with the estimate (1.12) (with k replaced by —k) to give

(5.15) k*f2(k,z) = 0(k->) (Λ-*oo)

for each z<=R3. (5.10) follows from (5.13) and (5.15). Q.E.D.

By the use of the formula (5.10) we can show the following

Theorem 5.4 (the uniqueness of the inverse scattering problem for the

short-range potentials). Let Q\(y) and Q2(y) satisfy (Aμ) with μ>l and let
Sλ(K) and S2(k) be the S -matrices for H1=H0-\-Q1 and H2=H0

JτQ2ί respectively.
If ol(k)=S2(k) for A>0 (or mere exactly, S1(^n)=S2(^w) for a sequence {kn} such
that kn f oo as «-»oo)f then Q^ΞΞQ^y) for all y<=R3.

Proof. It follows from Theorem 5.3 that we have only to show the follow-
ing: Assume that Q(y) satisfies (Aμ) with μ>l and

(5.16) g(*)

holds for all *e#3. Then Q(y) = 0.
Denote the dual form between the spase S(R3) of rapidly decreasing func-

tions and the dual space S'(R3) by < , > and let 50(/2|) be all G(ξ)^S(R3

ξ)
such that G(ξ)= 0 in a neighborhood of the origin ξ= 0. Then we obtain
from the definition of the Fourier transform in S'(R3)

(5.17) 0 =

= \dz\dy Q(y) \ y-

for Ge5Ό(^?|). Here S~1G is defined by
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(5.18) (ff-'G) (z) = (2π)-

and we should note that \z\ -2^~1G)^S(R3) for GeS0(Λf) (* denotes the

convolution), because

(5.19)

where we used the formula

(5.20)

(Gel* fand and Shilov [5], p. 194). From (5.17) and (5.19) it can be seen that

(5.21)

which implies that

(5.22)

because \ξ\H(ξ)(=S0(Rl) for any H(ξ)(=S0(R3

f). Therefore the support of
EFO is at most the origin ξ=0. Thus, applying a theorem in the theory of

distributions (see, e.g., Schwartz [16], p. 100), <3iQ is represented as

(5.23) 3Q = P(D)8 ,

where P(y)=P(ylt y2> y3) is a polynomial, δ is Dirac's δ-function and D=

(-idjQξ!, -ftps* -ι9/afs). Since £F-1(P(Z))S)=P(j), finally we get

(5.24) Q(y) = P(y).

But any polynomial other than P=0 can not be short-range, and hence Q(y) =
0. Q.E.D.
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