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SOME PROPERTIES OF THE SCATTERING AMPLITUDE
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0. Introduction

In [14] we studied some properties of the S-matrix for the Schrodinger
operator

(0.1) T=—A+0(y)

in R¥. The first purpose of this work is to investigate some more properties of
the S-matrix for the Schrodinger operator (0.1) in R® with a short-range potential
O(y) (82~84). FEspecially the scattering amplitude F(k, w, ") will be studied
under the assumption that Q(y)=0(|y|?7%), €>0. Next these results will be
used to show the uniqueness of the inverse scattering proklem for general short-
range potentials Q(y)=0(|y|™*"%), €>0.

As in [14], our methods are based on the spectral representation theory for
the Schrodinger operator which has been developed by many authors (e.g.,
Ikebe [6], Agmon [1], Saito [10], [11], [13]).

§1 is a preliminary section and is devoted to stating some results on the
Schrodinger equation

(0.2) (T—Fu=f.

One of them is the limiting absorption principle and the others are the asymptotic
behavior of the solution % at infinity and the spectral representation theorem
for (the self-adjoint realization of) 7. The scattering operator .S and the scat-
tering matrix §(k) will be discussed in §2. In §3 and §4 we shall study the
properties of the scattering amplitude F(&, w, »'). First we shall give some
representation formulas for F(k, o, '), where F(k, w, ') is represented by the
potential O(y) and the generalized Fourier transform associated with 7. And
then several properties of F(k, w, ') will be derived from the representation
formulas. Among others, we shall show some similar results to the ones in the
recent papers of Enss and Simon [3] and Jensen [8]. The main results of §5 is
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an asymptotic formula
(0.3) lim BBk, 31,00 = — 27 00) ly—2 1 dy

RS
for xR, where F(k)=—2zik"\(S(k)—I) with the S-matrix S for T (see §2),
x; (w)=exp(—ikwz)EL*S? and ( . )s is the inner product of L*S?). (0.3)
is valid for any short-range potential Q(y) and the uniqueness of the inverse
scattering problem will be shown by the use of (0,3).

(0.3) can be also used to reconstruct the potential Ofy) by its S-matrix
§(k). We shall discuss it elsewhere.” In this paper we restrict oarselves to
the three dimensional case for the sake of simplicity. But all the results can be
easily extended to the higher dimensional case. It will be discussed elsewhere, too.

1. Preliminaries

We consider the differential operator

(1.1) T=—-A+0(y)

in R®. Here A is the Laplacian in R® and Q(v) is a real-valued function which
satisfies the following

(4u) O(y) is a real-vaiued, continuous function such that

(1.2) Q) I =Cl+Iy)™" (yER)
with constants u>1 and C>0.

For uc Hy(R%),,. Tu is well-defined as a distribution and we have TusL?
(R%)10c, Where H,(R®) is the Sobolev space of the second order. In order to
discuss the S-matrix and the scattering amplitude for 7' we shall recall some
results about the equation

1.3) (=1,
(1. uE Hy(R%),,. N L24(R®),
with the radiation condition
(14) 1Dually-, < oo
where § is a constant such that
(1.5) 1/2<8=<min {1, (n+1)/2},
Li(R®) is a weighted Hilbert space defined by
(1.6) 3R = {uELA(R¥)1oo/(1+ | ¥ )Pu(y) € L*(R®)}

1) See Saito [15].
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with its inner product

(17) (w0 = |1+ 1y 12utr) )y
and norm :

(18) lally == [, w)al,

and we set

Du = PPy = (D, Du, D),

Du=2%1 iy pyu  (j=1,23)

0y; |yl
with 5,=v,/|y|. For the literature about the equations (1.3)—(1.4) see, e.g.,
References of Saito [13]. Let us denote by B(X, Y) all bounded linear opera-
tors from X into Y.

Theorem 1.1. Let O(y) satisfy (Au) with p>1 and let & be as in (1.5).
Let a be a positive constant.

(1) Then there exists a unique solution u=u(k, f) of the equations (1.3)-
(1.4) for any real k, k=0, and f = L}(R®).

(it)  The solution u=u(k, f) satisfies the estimate

(1.9)

(1.10) lull_y < I—i—l Ifll, (1kl2a, fELRY),
where C 1s a constant depending only on a, 8 and Q(y).
(iii) If we defire an operator (T—K*)™* by

(1.11) (T—R)f = u(k, f)

for real k, k=0, then the operator (T—FK")™* is a B(L}(R®), L% (R®))-valued, con-
tinuous function on R— {0}, and we have

(1.12) (T~ < T% (k| Za)
with the same C as in (1.10), where ||(T—FK?)7Y|| is operator norm of (T—K*)™" in
B(LY(R?), LZ(RY)).

(iv) For each real k, k=0, (T—k?)~" is a compact operator from Li(R®) into
LZ(R®).

This theorem is a special case of Theorem 1.5 of Saito [12]. Let Z; be
all kR such that the equation (1.3)—(1.4) with f=0 has a non-trivial solution.
Then it should be noted that 3 is at most {0} in our case, because Q(y) is real-
valued.
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The next theorem is concerned with the asymptotic behavior of the solu-
tion u(%, f).

Theorem 1.2. Let Q(y) satisfy (Au) with p>1. Denote by u=u(y, k, f)
the solution of the equations (1.3)—(1.4) with ke R— {0} and f = Li(R®).
(1) Then, the strong limt,

(1.13) D(R)f = D(k, Q)f = s—lim e "r,u(r,, &, f) ,

exists in L*(S?), S? denoting the unit sphere in R® and {r,} being a sequence such
that r, 1 o and

(1.14) tim 73 {| Du(r,e0, k. 1) |7 do = 0.
e Y

The limit ®(k)f € L*(S?) is independent of the choice of such {r,}.
(ii) D(k)y=7>(k, Q) defines a B(L3(R®), L*(S?))-valued, continuous function
cn R— {0} with the estimate

C

(1.15) “‘P(k)uém (lklza),
where a is an arbitrary positive number, C depends on a and Q(y) and ||D(R)|| deno-
tes the operator norm of ®(k) in B(L3(R®), L*(S?)).

(ili) @®(R) is a compact operator from L}(R®) into L*S?) for each k& R—
{0}.

(iv) Let Q,(y), n=1, 2, -+, be a sequence of real-valued, continuous funciions
on R® such that sup (14 | y|)*| O.(y) | <oo with n>1 and Q,(y) converges to Q(y)
for each y=R® as n—oo. Then we have the strong limit

(1.16) D(k, Q) = s—Llim (&, 0,)

for each ke R— {0} and the operator norm ||®(k, Q,)|| in B(Li(R®), L*(S?) is
uniformly bounded for n=1, 2, ---.
(v) Let Q(y)=0. Then ®(k, 0) takes the from

(1.17) (®(k, 0)f) (@) = (dr)s—lim [ e (3) dy

in L*(S?) for ke R— {0} and f € L}(R?).

Proof. (i), (iii) and (iv) of Theorem 1.2 directly follow from Proposition
12.2 of Saito [13]. But we should note that we discuss in [13] the operator L
with operator-valued coefficients which is unitarily equivalent to 7" by the unitary
operator

(1.18) U: LR > f(y) = 1f(ro) € LX((0, =), LX(S?), dr)
(r=lyl, 0 =y/lyl€S?,
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and that we should set u(y, k)= y|k in Proposition 12.2 of [13], since our Q(y)
does not contain a long-range part. Let us give a proof of (1.15). Applying
Proposition 12.2, (ii) of [13] to our case, we get

(1.19) lR(R)f 52 = k7" Im (u(k, ), o

(cf. (8.15) of Theorem 8.4 of [13], too), where || ||s2 is the norm in L*(S?), ( , ),
is the usual L*(R®)-norm, and Im A denotes the imaginary part of an. (1.15)
follows from (1.19) and the estimate (1.12). (v) can be seen from the well-
known relation

(1.20) wy, k, f) = (47:)“5 |y—z| e f(2) dz
Rr3

in the case of O(y)=0 and the asymptotic relation

(1.21) lim 7 |reo—y | e*rom31=n = gmikey

Q.E.D.

In §4 we shall need a result from the spectral representation theory for the
self-adjoint realization of T=—A-+0(y) ([1], [11], [13]). Let H, and H
denote the self-adjoint realizations of Ty=—A and T in L*(R®), respectively,
i.e.,

Huy= —Au,
(1.22) {D<Ho> — H(RY,
and

Hu= Tu,
(1.23) {D<H) — D(H,),

where D(4) is the domain of 4 and H,(R?) is as above. We set for £>0

{¢+(k) = (2/n)1/2d>(k, 0,

(1.24) D(k) = (2/=)*D(k, 0) .

Then we can easily see that

(1.25) (@R} () = @) s—lim | e*2f(3) dy
PIKR

in L¥(S?) for f € LY(RY).

Theorem 1.3. Let Q(y) satisfy (Au) with p>1. Let E(+) be the spectral
measure assoctated with H. Then we have

(1.26) (BB, o= SII<1>+(k)f s:k°dk  (fELYRY),

v'B
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where B is a Borel set in (0, ) and /B={k>0/F*<B}.
For the proof see, e.g., §11 and §12 of [13].

2. S-matrix

In this section we shall discuss the properties of the S-matrix for the Schro-
dinger operator T=—A+0(y). Let Q(y) satisfy (4.) with x>1 and H and
H,be as in §1. Then it is well-known that the wave operators W.=W .(H, H)
are well-defined by

(2.1) W. = s—lim exp (itH)exp (—itH,)
I-»too

(Kuroda [9]). The scattering operator S is defined by

(2.2) S=Wwiw._,

W* denotiong the adjoint of W,. The scattering matrix (S-matrix) S‘(k), k>0,
is an operator on L*(S?) determined by tbe relation

(2.3) (FST*F) () = {SUENF(IEI}E) (= &/IE])
for F(§)eC7(R®), where & is the usual Fourier transform
(2.4) (FNE = oy *Lim. | e f(5) ay

in L¥R}), and G* is the adjoint operator of & from L% R}) onto L*(R3).

Theorem 2.1. Let Q(y) satisfy (Au) with p>1. Let D, (k) and Dy(k) be
as in (1,24) and let DF(k) be the adjoint operator of Dy(k) from L*(S?) into L2 y(R3),

i.e.,

(2.5) (1R} 0) = @) {ex(0) do (+SLHSY).
Let us define a linear operator SA(k)=S(k, 0), k>0, on L*(S? by
(2.6) S(k) = I—ink®., (k)QDH(E) .

where I denotes the identity operator on L*(S?). Then §(k)EB(L2(S2)) and (2.3)
hold. Here B(X) means B(X, X).

Proof. Since the multiplication operator Q=0Q(y)X is a bounded linear
operator from L24(R®) into Li(R%), ®f(k)B(L*(S?), L2y(R%) and @, (k)= B(L}
(R%), L*(S?), we can see that @, (k)Qd¥ (k) B(LX(S?), and hence S(k) is well-
defined as an element of B(L*S?). For the proof of (2.3) see Theorem 3.2
and (i) of Remark 3.3 of [14). Q.E.D.

Let us list some properties of S-matrix S(k)
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Theorem 2.2. Let Q(y) satisfy (A,) with p>1 and let S(k)=S(k, Q) be
the S-matrix.
(i) The S(k) is a unitary operator on L*(S?).
(i) Set
27)  B(k) = —2zik (S(E)—I) = —22°D,(R)QD¥E)  (k>0).
Then the estimate
(28) IE®)] = Ok (k>0)

holds. Here ||F(K)|| denotes the operator norm of F(k) in B(LX(S?).
(iii) For each k>0 F(k) is a compact operator on LX(S?).
(iv) Let Q,(y), n=1, 2, ---, be as in (iv) of Theorem 1.2. Then we have

29 F(k, Q) = s—lim F(k, Q,)
Jor each k>0.

Proof. For the proof of (i) see §4 of [14]. Since we have ||D.(R)]|, [|®F(%)||
=O0(k™") from (1.15), (2.8) immediately follows. (iii) can be shown by the
compactness of @, (k) ((iii) of Theorem 1.2) and the boundedness of Q®(k).
(iv) follows from (iv) of Theorem 1.2 and the fact that Q,®§(k) converges strongly
to Q®F(k) in B(LX(S?), L}(R®)) as n—>oo. Q.E.D.

3. The scattering amplitude

In this and the following sections we shall assume that Q(y) statisfies (4,)
with z>2. Then it is known (Amerin et al. [2], §10.2) that F(k), defined by
(2.7), is a Hilbert-Schmidt operator on L*(.S?) with its Hilbert-Schmidt kernel
F(k, , 0'), k>0, 0,0’€S? i.e., we have

(ER)x) (0) = SF(k, 0, 0)io)do’  (x€L¥(S?),
(3.1) st

S S[F(k, w, ®)|? dodo’<< oo
\ S2 S2
F(k, o, »') is called the scattering amplitude. We shall give a proof of (3.1)
and show a formula where the scattering amplitude F(%, w, ") is represented
by the potential O(y). Some properties of F(k, w, »') will be obtained from
the representation.
We shall start with a well-known formula for F(k, w, o).

Theorem 3.1. (Ikebe [7]). Let Q(y) satisfy (Au) with p>3 and let Q(y)
be Holder continuous. Then we have
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(2) Flks @, o) = —(42)" {90, —Ra) Q)™ dy
i (R>0, », 0'=8?),

where @(y, £), v, EE R, is the generalized eigenfunction associated with H=Hy+Q
which is a unique solution of the Lippmann-Schwinger equation

(3) 90,8 = etr—(m) | Iy—s1 e 10E)p(s, £) ds.

r3

Further, F(k, 0, »") is continuous on (0, o)X S?x S? and we have
(3.4) Flk,0,0") = Fk, —0', —0) (>0, 0, 0'€S?).

For the proof see Ikebe [7] (Theorem 1 and the foot-note 7)) or Amerin et

al. [2], §10.2.
Now multiply both sides of (3.3) by O(y) and set £=—kw. Then we can

rewrite (3.3) as
(3-5) T+ 0(To—F)7HO()p(+, —ko)) = e™*0(y),

where we should note that (4z)7!|y—=z|~'e*!77#! is the resolvent kernel of
Ty=—A and that Q(y)p(y, &)= Lj(R®) since ¢(y, &) is a bounded function on
R? for each fixed & as is known in Ikete [6]. It follows from (iv) of Theorem
1.2 that Q(T,—k*)~" is a compact operator on Lj(R%). On the other hand, the
equation

(3.6) T+ Q(T— k) u =0

has only the trivial solution =0 in L}(R®). In fact, let u,& L(R®) be a solution
of the equation (3.6). Then, setting v,=(T,—k*)"'4,, we can easily see that
v, is a solution of the equation (7'—&*)v,=0 with the radiation condition (1.4), and
hence 9,=0 by the uniqueness of the equations (1.3)—(1.4), whence u,=0 follows.
These two facts are enough to show the existence of {I+Q(T,—k&*)"'} e
B(L}(R?) and we have from (3.5)

(3.7) O)p(y, —kw) = {I+Q(T,—k) 71} 1(e*0(+)) -
Thus we arrive at

Proposition 3.2. Let Q(y) be as in Theorem 3.1. Then the scattering am-
plitude F(k, o, ") for H=Hy+Q has the expression
(3.8) Fk, 0, 0') = —(7/2)""@y(k) {(I+B(k)) (e~ " Q)} (o)
(>0, o, w'ESZ) R

where we set

3.9) B(k) = B(k, Q) = Q(T,—K)™
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and
(3.10) {@y(R)f} () = (27)"¥s—lim S e f(y) dy
for fEe L}(R).

Now let us assume that Q(y) satisfy (4,) with x>2. Take a sequence Q,(y),
n=1, 2, .-+, such that Q,(y) converges to O(y) in the sense of (iv) of Theorem
1.2 and each Q,(y) satisfies (4u) with x>3 and is Holder continuous. Let
F,(k, o, »") be the scattering amplitude for H,=H,+Q,, n=1, 2, ---. Then it
follows from Proposition 3.2 that

(3.11) Fyk, 0, 0") = —(7/2) (k) {(I+B,(k)) (e " Qn)} (o)

with B,(k)=0,(T,—k)'. Since Q,(y) converges to Q(y) in Lj(R?), we have
for each pair (k, w)=(0, o0)x.S?
(312)  s—lim Fy(k, 0, -) = —(x/2)"BR) {(I+BE) e O}

in L*(S?). On the other hand, it follows from (iv) of Theorem 2.2 that 2 (k, O.)
converges to F(k, Q) strongly as m—>oco. Therefore, denoting the right-hand
side of (3.12) by F(k, w, »'), we get

(3.13) Bk, O)x = SF(k, o, 0')x(0") do’

for each xe L¥(S?).

Theorem 3.3. Let Q(y) satisfy (Au) with p>2.
(i) Then the operator F (R) has the kernel which has the expressin
(3.14) Fk, 0, 0") = —(7[2)*Do(k) {(I+B(k)) (™" Q)} (o) »

(k) and B(k) being given as in (3.10) and (3.9), respectively.
(i1) F(k, w, *) is an L*(S?)-valued, uniformly continuous function on [a, o)
X S? for each a>0 with the estimate

(3.15)  IFk o, le<CRUI+BER) QO (k=4 0,

uhere C is a constant depending only on a>0 and Q(v), and ||(I4B(k))7'|| is the
operator norm of (I+-B(k))™ in B(L(R®)). Further, F(k, -, *) is a Hilberi-Schmidt
kernel and us Hilbert-Schmidt noym is O(k™") as k— oo,

(i) Set

(316)  Flko,0') = —(x2)"R) (e 0) (@) +Jk, o, o).

Then for each a>0 J(k, w, ") is a uniformly continuous function on [a, o)X S?X £*?
uith the estimate
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(3.17) | J(&, o, ") | < CEI(I+B(R) I ICI15 -
The Ly-estimate for I(k, o, +) is given as

(3.18) 1]k, @, *)ll2=CR|(I+B(R) | IQlls,=/1Qlls
(1Qlls » == sup (1+[31)* 1))

for k=a, o= S*. Here C is a constant depending only on a>0 and Q(y).

Proof. The existence of the integral kernel F(k, », ") of 2 (k) and (3.14)
have been shown already in the argument before Theorem 3.3. (3.15) directly
follows from the estimate (1.15) with ®(k) replaced by ®,(—k), and hence
F(k, », »") is a Hilbert-Schmidt kernel for each £>0. Since (I4+B(k))™* is
uniformly bounded on [a, o) and ®y(k) and B(k), k<[a, o), are uniformly
continuous in B(L}(R?), L*S?) and B(L}(R®), respectively, we can show the
uniform continuity of F(k, w, +) on [a, o)X S% Let us turn into the proof of
(iii). It follows from the relation

(3.19) (I+B(k))™ = I—B(k) (I+B(k))™*
that
(3.20) J(&, 0, ") = (7[2)"Dyk) {B(K) (I+B(k)) (e~ *"Q)} (") .

Therefore, noting the definition of ®,(k) and B(k) ((3.10) and (3.9), respec-
tively) and using the Schwarz inequality, we have

(3.21) | J(k, @, o')]
= (47r)“S | Q)| (To—F) I +B(k)) (e *Q) | dy

= (47) Qs (To—F?) I+ B(R) (e OQ)ll-s -

It is easy to see that (3.17) is obtained from (3.21). (3.18) can be shown quite in
a similar way, though we have to use (1.15) (with ®(k) replaced by ®,(—&)) in
addition. Starting with (3.20) again and proceeding as in the proof of (ii), we
can easily show thw uniform continuity of J(k, o, o’). Q.E.D.

ReEMARK 3.4. Recently Jensen [8] has investigated the asymptotic behavior
of the total scattering cross-section. His potential admits some local singularities.
In the case that Q(y) has no local singularities, His results can be derived from
ours.

From (iii) of Theorem 3.3 we can see that the singularities of F(k, w, o)
can arise only from the term —(7/2)"*®(k) (e~**'Q) (»’). For example, let us
show the following two theorems. For the first one cf. Villarroel [17].

Theorem 3.5. Let O(y) satisfy (Ay) with 2< p =<3 and let Q(y) be spherically
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symmetric, i.e., Q(¥)=0(|1y!|), Then the singularities of F(k, w, »") lie only on
w=0w', ie., F(k, o, w') is a continuous function for k>0, oFo’. Further, we
have the estimate

(3.22) Fk, o,0")=0(lo—o'|F3) (Jo—o'|—0),
where [ is an arbitrary number such that 2<<p<pu.
Proof. By a simple calculation we have for oo’

(323)  —(m[2)"@yk) (*Q) (@) = —lim (4m) " | eH=10(1 1) dy

PIKR

— —(k]cu—co'l)’lgrQ(r) sin (kr|o—o'|) dr .
0
The right-hand side of (3.23) is continuous for 2>0 and w=w’. By the use of
the condition (4,) we get

(3.24) | (7/2)*Dy(E) (e~ *"Q) ()

co

=Cklo—w] )F_sgr(l-i—r)'z—(“’ﬁ)p(kr lo—o'| );_2 &

with p(£)=t7"[sin ¢|. (3.22) directly follows from (3.24). Q.E.D.

Theorem 3.6. Let Q(y) satisfy (Au.) with 2<p=<3 and let 3Q(y)/0y;,
j=1, 2, 3, satisfy (Ag) with 2>3. Then the singulariiies of F(k, w, ") lie only
on w=w'. We have the estimate, with any p' such that 3<p'<p, p'<4,

(3.25) Fk, 0,0") = O(|lo—ao'|*  (Jlo—o'|—0).

Proof. Let w=+w’. With no loss of generality we shall assume that
o, Fw{, where w=(w,, 0,, w;) and o’'=(w}, 0}, w}). Then we have by partial
integration

(3.26) — (72 Dy(k) (e~ Q) (")
= (4mik(wf—a)) | {ee-7—1} (20/0y) dy .
R3
We proceed to get (3.25) as in the proof of Theorem 3.5. Q.E.D.

Finally let us show that the scattering amplitude F(k. w, ') can be ex-
panded in series when k is large enough. It follows from (1.12) that for each
p€(0, 1) there exists k,>0 such that

(3.27) IBR)I=p  (k=k,),

[|B(k)|| being the operator norm of B(k)=Q(T,—k")™* in B(L}(R®). Then,
making use of the relation
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o

(3.28) (I+B(k)™ = Z} (—B(k))’
and the estimate
(3.29) [ ([2)7®y(k) {(— B(k)) (e * Q)} (") | =Ck™*p" IO}

(kgkp, ]: 1, 2) "') )

which can be obtained by proceeding as in the proof of (3.17) in Theorem 3.3,
we have the series expansion

(3.30) J(k, 0, 0") = —(z[2)* ,2”1 Do(k) {(—B(R)Y (e * Q)} (<) ,

where the right-hand side of (3.30) converges uniformly for k=%, and o, o' S%
Thus we arrive at the Born series (cf. Chapter 12 of Amerin et al. [2]).

Theorem 3.7. Let Q(y) satisfy (Au) with w>2. Then we have the series
expansion

(3.31) Fk, @, ©")+(z[2)"* @y(k) (e Q) ()
= — (/2" 2 k) {(—BRY (" O)} (o),
where the right-hand side of (3.31) converges uniformly for (k, o, o')E [k, o0)x S?
X S? with k>0 large enough.
4. Some estimate on the total cross-section

Let us set
(4.1) o(k, ©) = o(k, ®, Q) = ||F(k, o, *)||}2.

a(k, ) is called the total scattering cross-section. Recently Enss and Simon [3]
got some interesting results about the estimates on the term

a+Y
4.2) Kat, v) = L, v, Q) = S o(k, o, Q) dk

@y
by uniting their time-dependent methods and geometrical methods. Among
others, they have shown that, roughly speaking,

(4.3) Le, 7, 8Q) = Ca™?glQl;  (¢>0),
where 8>—;— and C depends only on >0, and that
(4.4) I(a, v, Q)< C(R*+R™),

where the sapport of Q(y) is assumed to be compact and is contained in a ball
{veR¥|y|<R}, and C depends only on «, ¥ >0.
In this section we shall show the results similar to (4.3) and (4.4) by starting
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with our definition of F(k, w, »’) and using the time-independent methods.
Let us begin with an another interpretation of the classical formula (3.2) for the
scattering amplitude F(k, w, »’). By the use of (3.4) we can rewrite (3.2) as

(+5) Flk, 0, ') = — (=) (3, ko) Q(y)e > dy .
R3

Lemma 4.1. Let Q(y) be as in Theorem 3.1. Let ®.(k) be as in (1.24).
Then we have
(+6) U} (@) = s—lim@n) ™ | oy, ko)f(9) dy

I7I<R (k>0’ fELg(RS))

in L*(S?), where ] is a unitary operator on L*(S?) defined by
(4.7) (Jx) (0) = x(—w)  (x€LXS?),
and @(y, &) is the generalized eigenfunction associated with H=H,+Q (see
Theorem 3.1).

Proof. Set

(4.8) u(y) = (27,)-3/ZS¢(y, ko)x () do

S
with xL*S?. Then it follows from the Limpmann-Schwinger equation
that

4.9) u = SFR)x—(Ty—(—k)P)"Ou
where
(4.10) BF () = (2m) e 13(0) do

and (Ty—(—k)) 7 f (f€Li(R%) is the solution of the equations (1.3)—(1.4) with
T and k replaced by T, and —k, respectively. We next obtain from Theorem
2.6 and Remark 3.3, (ii) of [14]

(4.11) O¥(R)x = Df(k)x—(T—(—Ek)) Q¥ (k) ,

d*(k) being the adjoint of @, (k) and (T—(—k)*) ! being defined quite similarly
to (T,—(—k)%)™" above. Set ov(y)=¥(k)x—DF(k)x. Then, by (4.11), v(y)
satisfies the radiation condition (1.4) with %k replaced by —k. On the other
hand, by a simple calculation, we have

(4.12) (Ty—F)yo = —QD*(k)x ,
where we have used (4.11) again. Thus we get

(4.13) D¥(k)x = DF(ER)x—(To—(—k)) ' Q¥(k)x .
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Replace x by Jx in (4.13) and notice that

(4.14) D¥(k)Jx = DF(k)x (k>0, xeLX(S?).
Then we get from (4.9) and (4.13) (with x replaced by Jx) u(y)=<=>¥*(k)Jx, and
hence (4.6) follows just by taking the adjoint. Q.E.D.

Theorem 4.2. Let Q(y) satisfy (Ay) with n>2. Then we have the expres-
sion for F(k, v, )

(4.15) Fk, 0, 0') = —(7[2)* J@.(k) (7" Q) (o) -

Proof. We can obtain (4.15) by approximating Q(y) by a sequence Q,(y),
n=1, 2, -+, such that each Q,(y) satisfies (4,) with >3 and is smooth enough.
Then it follows from (4.5) and Lemma 4.1 that we obtain (4.15) with F(k, o, »')
and Q(y) replaced by F,(k, », ') and Q,(y), respectively, where F,(k, o, »)
is the scattering amplitude associated with Q,(y). By letting #— oo in the relation
obtained above, we arrive at (4.15). Q.E.D.

The following theorem is a slight modification of Theorem 4.2. But it
will be useful later.

Theorem 4.3. Let Q(y) satisfy (Au) with p>2. Let \r(y) be a C? function
on R? such that r(y)=1 for |y| >R with R>0. Then we have

(4.16) F(k, 0, o) = —([2)" ] (k) {T—F) (Ye™"*)} (&) .

Proof. It follows from Theorem 4.2 and the decomposition e #*’=
Yr(y)e”*or 4 (1—Ar(y))e*? that it is enough to show

(4.17) DR)f = 0

for f=(T—F)u with u(y)eH,y(R®),,. which has compact support in R% In
fact, u(y) is the solution of the equations (1.3)-(1.4), and hence, by the definition
of ®(k) ((1.13)),

(4.18) DR)f = s—lri.r,?o e *ru(r-)=0. Q.E.D.

Now let us give an estimate on the total cross-section o (&, w)=a(k, ®, Q).
Here our potential Q(y) is more restricted than that in Enss and Simon [3].

Theorem 4.4. Let Q(y) satisfy (Au) with p>5/2. Let v>0 and let
a—2v>0. Then we have
a+Y
(4.19) I(et, 7, Q) = Sc(k, o, Q) dk = Ca”’|OILlIOll,  (»ES?)
@>y

with a constant C=C(7v) depending only on v >0.
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For the definition of the norm || ||z see (1.6)~(1.8).

RemMark 4.5. If we replace Q(y) by gO(y) with g>0, then we have
(4.20) I(a, v, 80) = Ca”’glIOILIIQN,  (0€S?).

Proof of Theorem 4.4. The proof is divided into three steps.
(I) Let z be a positive integer and set

m;=a—y+Q2ym; (=01, 1),

Aj = [m;, mj] (G7=12,-,m),

A; = [mi_,, m?) Gg=12, -, n),

fR) = f(k, ©) = —([2)"Q(y)e” ™7,

f(R) being regarded as an L*R%-valued function on |[@¢—7Y a+7Y]. Then,

taking note of the continuity of @, (k) in B(Li(R®), L*S?) ((ii) of Theorem 1.2)
and the continuity of f(k) in L*(R®), and using Theorem 1.3, we obtain

(4.21)

a+Y

(4.22) (1R, o, -Yseked = tim 33 10. (ofom, 5ok
-y 3,
= 1im 33 (1B )fm11,
where || ||, is the usual L} R®-norm and E(-) is the spectral measure assciated
with H=H,+0.

(II) Let a—y=<k<m=a-+7v. Then we have
(4.23) [Lf(m)—f(R)llo = (=/2)"”I| | y | Qll(m—F) .

In fact, (4.23) follows from the relation

m

(+24) fom)—1k) = (e[2)Q(hieoy e dt

k

(III) Set G(k)=E([m3, k*]). Then the right-hand side of (4.22) can be

rewritten as

*25) S = BIBE)m)llE = 5 (1G0m)—Glm, )} fomy), fomy)o

= 3 [(flmy)—m;), Glm)f(m))y
+(G(my)f(ms2.), flm)—fm )]
+(Gm)fm,), fm,)o -

Make use of the estimate (4.23), [|G(R)II=1 and ||f(R)ll,=(=/2)*||Oll,, Then
it follows from (4.25) that
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(4.26) S= g [(=/2)111 3 | Qllo(2 fr) X 2((2) *( Qo]+ (=/2)lI QI3
= {=(1+47)/2HIQILIQI ,
which is combined with (4.22) to give (4.19) with C(v)=2=(1-+4%). Q.E.D.
The next theorem corresponds to (4.4).

Theorem 4.6. Let O(y) be a continuous function whose support is contained
in a ball {yeR®|y| <R} with R>0. Let 0<a<b<oo. Then

(4.27) Sa(k, ©,0) dk < C(R*+R™),

a

where C depends only on a and b.

Proof. Let us start with the expression (4.16) in Theorem 4.3. Let
p(t) be a C? function on (— oo, oo) such that p(t)=0 (t=0), p(t)=1 (¢=1). Set

(4.28) Y(¥) = ¥a(y) = p((1y| —R)/R).
Then we have, noting that Q(y)yr(y)=0 (yER?),

F(k, o, 0") = {JP.(R)f(R)} (o),
(4.29) f(k) = —(z[2)""(T— k) (Y(y)e™ )
= (7)2) 2 { Ao+ 2iR(VAp) - o} €07 .

Since we have the estimates

|V | < CR™! (C,= mtaXIP,(t)’) s

(+30) {mw = QCHCIR™ (Cy=max| p"(9)]),

and the supports of V4 and A+ are contained in {R=|y|=<2R}, we get

|f(R)| S Cy(R'+R?)  (a<k=b),

(+31) {| fm)—f(R)| < CA+R™) (m—k)  (ask=m=b)

with C;=C;b, C,, C,), j=3, 4. Therefore, proceeding as in the proof of
Theorem 4.4, we obtain
b

(4.32) ot o, )k < R+ R

a

with Cy=Cy(b, Cy, Cy). (4.27) is immediate from (4.32). Q.E.D.

5. Asymptotic behavior of ﬁ(k)

This section is devoted to showing two asymptotic formulas for the operator
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F (k)=—2nik"(§(k)——] ) as k—>oco. From these formulas we shall get two
theorems on the uniqueness of the inverse scattering problem.

First let us assume that the potential Q(y) satisfies (4,) with x>2. Then
the existence of the scattering amplitude F(k, », »') is guaranteed (Theorem
3.3). Let £E€R3 £30, and set m= || >0, 0,=E/|E| €S? i.e., E=mw, For
each positive integer # let k,(m) be a function on (0, o) such that k,(m)=m and
k,(m) } oo as m—>oco for each m>0. We shall adopt polar coordinates (¢, ),
0=<p<27,0<0=m, and let w, be represented as (¢, 0,). Set

{wn(m, C")0) == (‘Po: 00+91)€Sz )
wy(m, o)) = w,(m, w)—(mlk,(m))w,=S?,

(5.1)

where 0, is determined by cos 0,=m/(2k,(m)). Then we have k&, (0),—w»,)=—E.
Further we set
(5.2) F, (&) = F(k,(m), w,(m, w,), wi(m, w,))

(E=mw,ER EX0,n=1,2, ).

The following theorem is an extesion of Faddeev [4].

Theorem 5.1. Let Q(y) satisfy (Au) with p>2. Let F(k, w, »") be the
scattering amplitude for H=H+ Q. Then for each positive integer n F,(E), defined
by (5.2), is well-defined for almost all £ =R? and we have

(5.3) lim F,(§) = —(=/2)X(F0) (8),

where F s the usual Fourier transform and the lef-hand side exists and is equal to
the right-hand side for almost all £ RS,

The relation (5.3) can be written, symbolically, as

(54) lim | Bk, 0, 01) = —(x/2(FO) (8).

Corollary 5.2. Let Q\(y) and Qy(y) satisfy (Au) with u>2. Let F(k, w, '),
j=1, 2, be the scattering amplitude for H,=H,+Q;. If F\(k, o, )=F,y(k, o, )
in L*(S?) for each pair (k, »)E(0, co)x S? then we have Q\(y)=Qy(y) for all
yER:,

Proof of Theorem 5.1. It follows from (iii) of Theorem 3.3 that
(5.5) Flk, 0, ') = —(4z) s —lim | e*=10() dy

iR
+J(k, o, o)

in L*S%). Take a sequence R,, p=1,2,:::, such that R, ! co as p—co and
there exists the limit
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-0) @r)lim | e 0p) dy = (F0) @)

VI<R,
for almost all £€R%.  Set E=mw, m>0 and w,=S% and set k=k,(m), o=
w,(m, wy), o'=cw(m, ) in (5.5), where k,, o, and o} are as above. Then we
have

(.7 Fy&) = —(=[2)(FQ) () +J(kus @4 @2) 5

and, since the right-hand side is well-defined for almost all £ER? F,(£) is
also well-defined for almost all £&R3. The estimate (3.17) can be applied to
show that

(5.8) F(§)+(=[2) (FQ) (&) = o(1)
as n—oo, which implies that lim F,(£) exists for almost all £&R® and we
get (5.3). Q.E.D.

Next let us assume that Q(y) is a general short-range potential. In this
case the Hilbert-Schmidt kernel F(k, o, ') does not exist in general. But
the operator F\(k) is well-defined as was shown in §2. For 2 R®and k>0 we
set

(5.9) (0) = e e (S  (0ESY.

Theorem 5.3. Let Q() satisfy (Au) with p>1. Let B(k) and x, (o) be
as above. Then we have for any € R3

(5.10) lim F(B(R) 0 32,52 = —27(00) | y—51 dy .

Rr3

Here ( , )s* denotes the inner product of L*(S?).
Proof. From the definition of F(k) ((2.7)) and (4.11) it follows that

(5.11) (BB, 2y %4.0)s?
= —2n*(QDF(k)xs . PE(R)x 2)o
= _2”2(Q®g‘(k)xk,z q)z’k(k)xk,z)o
+27( QP (k) xs, oo (T—(—k)) QD (K% 2)o
= fik, 2)+fok, 2) .

The definition of ®¥(k) and (7'—(—k)?)™* are given in the proof of Lemma 4.1.
Since
(5.12) (D¥(R)xy ) (9) = (2”)—3/2Seikw(y—z) do

52

= (2|z)*(k|y—=|) tsin(k| y—=2]|),
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we have

(513)  Bfik5) = —42(00) | y—s| *fsin(kl y—= 1)} dy

®3
~—2(0u)ly—s1"dy (ko)
R3
where we have used the Riemann-Lebesgue theorem. On the other hand, by
Theorem 1.1, we get

(5.14) Rk, 2)]
= 47 |(Q1y =217, (T—(—R)) Q1 y—217¢4,.(3))o!
(91,:(y) = sin(k| y—=1))
< 4zl y—=| OIRIT—(—R)) I .
(5.14) is combined with the estimate (1.12) (with & replaced by —k&) to give

(5.15) ik, 2) = Ok (k—eo)
for each zeR® (5.10) follows from (5.13) and (5.15). Q.E.D.
By the use of the formula (5.10) we can show the following

Theorem 5.4 (the uniqueness of the inverse scattering problem for the
short-range potentials). Let O\(y) and Q,(y) satisfy (Au) with p>1 and let
S,(k) and Sz(k) be the S-matrices for Hy=H,+Q, and H,=H\+Q,, respectively.
If S,(k)=S5,(k) for k>0 (or mare exactly, S(k,)=S,(k,) for a sequence {k,} such
that k, 1 oo as n—o0), then Q,(y)=Q,(y) for all yER®.

Proof. It follows from Theorem 5.3 that we have only to show the follow-
ing: Assume that Q(y) satisfies (4,) with x>1 and

(5.16) ¢ = [om)ly—212ay=0

R3S
holds for all z€R3, Then Q(y)=0.

Denote the dual form between the spase S(R®) of rapidly decreasing func-
tions and the dual space S'(R%) by < , > and let Sy(R}) be all G(§)eS(R})
such that G(£)=0 in a neighborhood of the origin £=0. Then we obtain
from the definition of the Fourier transform in S’(R?%)

(5.17) 0=<Tg G>=<g F'G>
— [aslay 00) 1 y—214F6) ()

=<0, [2]7(F'G)>
for GESy(R}). Here F~'G is defined by
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(5.18) (FG) (2) = (22) ™| e G(g) de

RS
and we should note that |z| %(Z 'G)=S(R®) for GESy(R}) (* denotes the
convolution), because

(5.19) F (2] (F G)) (§) = 22*|E| "G(E)ES(RY),

where we used the formula

(5.20) F(1=z]17Y (&) = 27*|E|

(Gel’ fand and Shilov [5], p. 194). From (5.17) and (5.19) it can be seen that
(5.21) GO, IEIT'G>=0  (GES(RY),

which implies that

(5.22) FO,H>=0 (HeS(RY),

because |&|H(E)=Sy(R}) for any H(E)eS,(R:). Therefore the support of
FQ is at most the origin £=0. Thus, applying a theorem in the theory of
distributions (see, e.g., Schwartz [16], p. 100), QO is represented as

(5.23) FQ = P(D)s,

where P(y)=P(y,, ¥» ¥s) is a polynomial, § is Dirac’s é-function and D=
(—10/0g,, —10/0E,, —i0/0E;). Since F(P(D)8)=P(y), finally we get

(5.24) 0(y) = Py)-

But any polynomial other than P=0 can not be short-range, and hence Q(y)=

0. Q.E.D.
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