AN APPLICATION OF THE ITERATED LOOP SPACE THEORY TO COHOMOLOGY SUSPENSIONS

Takashi WATANABE

(Received September 3, 1981)

0. Introduction

For a based space $X, \Sigma X$ and ΩX denote respectively the reduced suspension and loop space of X. There is a natural (iterated) isomorphism

$$
\phi^{n}:\left[\Sigma^{n} X, Y\right] \cong\left[X, \Omega^{n} Y\right]
$$

For $i \geq 1$ let $\Sigma^{*}: H^{i}(\Sigma X) \rightarrow \tilde{H}^{i-1}(X)$ be the suspension isomorphism and σ^{*} : $H^{i}(X) \rightarrow \tilde{H}^{i-1}(\Omega X)$ the cohomology suspension (see, for example, [16, VIII]). For an n-fold loop space $X=\Omega^{n} Y$, let

$$
\xi_{n}=\phi^{-n}\left(1_{X}\right): \Sigma^{n} X \rightarrow Y
$$

Then $\xi_{n}^{*}: H^{i}(Y) \rightarrow H^{i}\left(\Sigma^{n} X\right)$ factors as the composite

$$
H^{i}(Y) \xrightarrow{\left(\sigma^{*}\right)^{n}} \tilde{H}^{i-n}(X) \xrightarrow{\left(\Sigma^{*}\right)^{-n}} H^{i}\left(\Sigma^{n} X\right) .
$$

So we can obtain results on $\left(\sigma^{*}\right)^{n}$ by studying ξ_{n}^{*}.
Convert ξ_{n} into a fibre map and denote by $G_{n} X$ its fibre. (It is known by Barcus and Meyer [2] that $G_{1} X \simeq \Sigma(X \wedge X)$.) Suspose that X is $(m-1)$ connected $(m>1)$ and consider the Serre spectral sequence for the $\bmod p$ cohomology of this fibration. Then Milgram [12, I] showed that there is a (3 m $+n-1$)-equivalence of $\Sigma^{n} e_{n}^{2} X$ into $G_{n} X$ (where $e_{n}^{2} X \simeq S^{n-1} Х_{z_{2}}(X \wedge X)$, the extended square of X [11]). Using it, he found formulas for the differentials of this spectral sequence in total degrees less than $3 m+n-1$, which gives a precise description of the relationship between the cohomology of Y and that of X. Our aim is to extend this result to total degrees less than $4 m+n-1$.

Throughout this paper, all spaces are assumed to be of the homotopy type of a based $C W$-complex. p will always denote a prime, and let $H_{*}(X)$ and $H^{*}(X)$ denote respectively the $\bmod p$ homology and cohomology of X. For all $X, H_{*}(X)$ is assumed to be of finite type. So we have a dual pairing

$$
\langle,\rangle: H^{i}(X) \otimes H_{i}(X) \rightarrow Z_{p} .
$$

This paper is organized as follows. In $\S 1$ we collect some results about n-fold loop spaces. In $\S 2$ we mention the result of Milgram [12, Theorem 4.6] (Theorem 3) in our terminology. With the aid of this theorem, our main result (Theorem 7) is stated in §3. Its proof is facilitated by use of two lemmas (Lemmas 8 and 9) which are also due to Milgram; we treat them in $\S 4$. $\S \S 5$ and 6 are devoted to prove Theorems 3 and 7 respectively. $\S 7$ contains several remarks.

1. Results about \boldsymbol{n}-fold loop spaces

F. Cohen [5, III] constructed a satisfactory theory of homology operations on n-fold loop spaces. We exhibit some of his results which we need. For more complete accounts see [5, III].

Let Y be an arbitrary space and $n \geq 1$. Then

In $H_{*}\left(\Omega^{n} Y\right)$ there exist operations

$$
\begin{align*}
& Q^{s}: H_{i}\left(\Omega^{n} Y\right) \rightarrow H_{i+s}\left(\Omega^{n} Y\right) \text { for } p=2 \text { and } 0 \leq s \leq i+n-1, \tag{1.1}\\
& Q^{s}: H_{i}\left(\Omega^{n} Y\right) \rightarrow H_{i+2(p-1) s}\left(\Omega^{n} Y\right) \text { for } p>2 \text { and } 0 \leq 2 s \leq i+n-1, \\
& \lambda_{n-1}: H_{i}\left(\Omega^{n} Y\right) \otimes H_{j}\left(\Omega^{n} Y\right) \rightarrow H_{i+j+n-1}\left(\Omega^{n} Y\right)
\end{align*}
$$

which are natural with respect to n-fold loop maps and satisfy the following properties:
(1.2) $Q^{s}(a)=0$ if $p=2$ and $s<|a|$ or $p>2$ and $2 s<|a|$ (where $|a|$ denotes the degree of a).
(1.3) $Q^{s}(a)=a * \cdots * a$ (p-fold) if $p=2$ and $s=|a|$ or $p>2$ and $2 s=|a|$ (where * denotes the Pontrjagin product).
(1.4) $Q^{s}(1)=0$ if $s>0$ (where $1 \in H_{0}\left(\Omega^{n} Y\right)$ is the identity element).
(1.5) Let $\psi: H_{*}\left(\Omega^{n} Y\right) \rightarrow H_{*}\left(\Omega^{n} Y\right) \otimes H_{*}\left(\Omega^{n} Y\right)$ be the coproduct induced by the diagonal map of $\Omega^{n} Y$. If $\psi(a)=\Sigma a^{\prime} \otimes a^{\prime \prime}$, then

$$
\psi Q^{s}(a)=\sum_{i+j=s} Q^{i}\left(a^{\prime}\right) \otimes Q^{j}\left(a^{\prime \prime}\right)
$$

$$
\begin{equation*}
\text { If } s>p t \text {, then } \tag{1.6}
\end{equation*}
$$

$$
Q^{s} Q^{t}=\sum_{i}(-1)^{s+i}\binom{(p-1)(i-t)-1}{p i-s} Q^{s+t-i} Q^{i}
$$

if $p>2, s \geq p t$ and Δ is the $\bmod p$ homology Bockstein, then

$$
\begin{aligned}
Q^{s} \Delta Q^{t}= & \sum_{i}(-1)^{s+i}\binom{(p-1)(i-t)}{p i-s} \Delta Q^{s+t-i} Q^{i} \\
& -\sum_{i}(-1)^{s+i}\binom{(p-1)(i-t)-1}{p i-s-1} Q^{s+t-i} \Delta Q^{i}
\end{aligned}
$$

(where $\binom{i}{j}=i!/ j!(i-j)!$).
(1.7) Suppose $p=2$ and let $S q_{*}^{r}: H_{i}\left(\Omega^{n} Y\right) \rightarrow H_{i-r}\left(\Omega^{n} Y\right)$ be the dual of the Steenrod square S_{q}^{r} [14]. Then

$$
S q_{*}^{r} Q^{s}(a)=\left\{\begin{array}{ll}
\sum_{i}\binom{s-r}{r-2 i} Q^{s-r+i}\left(S q_{*}^{i} a\right) & \text { if } s<|a|+n-1 \\
\sum_{i}\binom{s-r}{r-2 i} Q^{s-r+i}\left(S q_{*}^{i} a\right) \\
\\
\quad+\sum_{\substack{i+j=r \\
i<j}} \lambda_{n-1}\left(S q_{*}^{i} a, S q_{*}^{j} a\right)
\end{array} \text { if } s=|a|+n-1 .\right.
$$

(1.8) If Y is a loop space, then $\lambda_{n-1}(a, b)=0$.
(1.9) $\quad \lambda_{0}(a, b)=a * b-(-1)^{|a||b|} b * a$.
(1.10) $\quad \lambda_{n-1}(a, b)=(-1)^{|a||b|+(|a|+|b|)(n-1)+n} \lambda_{n-1}(b, a)$; if $p=2, \lambda_{n-1}(a, a)=0$.
(1.11) $\quad \lambda_{n-1}(1, a)=\lambda_{n-1}(a, 1)=0$.
(1.12) If $\psi(a)=\Sigma a^{\prime} \otimes a^{\prime \prime}$ and $\psi(b)=\Sigma b^{\prime} \otimes b^{\prime \prime}$, then

$$
\begin{aligned}
\psi \lambda_{n-1}(a, b)= & \sum(-1)^{\left|a^{\prime \prime}\right|| | b^{\prime}\left|+\left|a^{\prime \prime}\right|(n-1)\right.} \lambda_{n-1}\left(a^{\prime}, b^{\prime}\right) \otimes\left(a^{\prime \prime} * b^{\prime \prime}\right) \\
& +(-1)^{\left|a^{\prime \prime}\right|\left|b^{\prime}\right|+\left|b^{\prime}\right|(n-1)}\left(a^{\prime} * b^{\prime}\right) \otimes \lambda_{n-1}\left(a^{\prime \prime}, b^{\prime \prime}\right) .
\end{aligned}
$$

(1.13) $\quad(-1)^{(|a|+n-1)(|c|+n-1)} \lambda_{n-1}\left(a, \lambda_{n-1}(b, c)\right)+(-1)^{(|b|+n-1)(|a|+n-1)} \lambda_{n-1}\left(b, \lambda_{n-1}(c, a)\right)$ $+(-1)^{(|c|+n-1)(|b|+n-1)} \lambda_{n-1}\left(c, \lambda_{n-1}(a, b)\right)=0$; if $p=3, \lambda_{n-1}\left(a, \lambda_{n-1}(a, a)\right)=0$.
(1.14) Suppose $p=2$. Then

$$
S q_{*}^{r} \lambda_{n-1}(a, b)=\sum_{i+j=r} \lambda_{n-1}\left(S q_{*}^{i} a, S q_{*}^{j} b\right)
$$

(1.15) Fur $n>1$ let $\sigma_{*}: \tilde{H}_{i}\left(\Omega^{n} Y\right) \rightarrow H_{i+1}\left(\Omega^{n-1} Y\right)$ be the homology suspension. Then $\sigma_{*} Q^{s}(a)=Q^{s}\left(\sigma_{*} a\right)$ and $\sigma_{*} \lambda_{n-1}(a, b)=\lambda_{n-2}\left(\sigma_{*} a, \sigma_{*} b\right)$.
(1.16) If $\Omega^{n-1} Y, n>1$, is simply connected and $a^{\prime}, b^{\prime} \in H_{*+1}\left(\Omega^{n-1} Y\right)$ transgress to $a, b \in H_{*}\left(\Omega^{n} Y\right)$ respectively in the Serre spectral sequence of the path fibration $\Omega^{n} Y \rightarrow P \Omega^{n-1} Y \rightarrow \Omega^{n-1} Y$, then $Q^{s}\left(a^{\prime}\right)$ and $\lambda_{n-2}\left(a^{\prime}, b^{\prime}\right)$ transgress to $Q^{s}(a)$ and $\lambda_{n-1}(a, b)$ respectively.
(Here we have written

$$
\begin{cases}Q^{|a|+n-1}(a) & \text { when } p=2 \\ Q^{(|a|+n-1) / 2}(a) & \text { when } p>2\end{cases}
$$

instead of $\xi_{n-1}(a)$; for this notation see Theorem 1.3 of [5, III].)
Throughout the remainder of this section, X will denote an arbitrary con-
nected space. Let

$$
\{a, b, c, \cdots\}
$$

be a totally ordered Z_{p}-basis of homogeneous elements for $\tilde{H}_{*}(X)$. (This ordering has no essential influence on the following argument.) Then the basic λ_{n-1}-products are defined as follows. Define a, b, \cdots to be the basic $\lambda_{n-1}-p r o-$ ducts of weight 1 . Assume inductively that the basic λ_{n-1}-products of weight $j, 1 \leq j \leq k$, are defined and totally ordered among themselves. Then a basic λ_{n-1}-product of weight k is defined to be $\lambda_{n-1}(x, y)$ where
(1) x and y are basic $\lambda_{n-1}-$ products with weight $(x)+$ weight $(y)=k$;
(2) $x<y$ and if $y=\lambda_{n-1}(z, w)$ for z and w basic λ_{n-1}-products with $z<w$, then $x \geq z$;
or
(2)' $x=y$ if $p>2$ where x is a basic λ_{n-1}-product of weight 1 and $|x|$ $+n$ is even.

For example, the basic λ_{n-1}-products of weight 2 are

$$
\begin{aligned}
& \lambda_{n-1}(a, b) \text { for } a<b \\
& \lambda_{n-1}(a, a) \text { for } p>2 \text { where }|a|+n \text { is even, }
\end{aligned}
$$

and those of weight 3 are

$$
\begin{aligned}
& \lambda_{n-1}\left(b, \lambda_{n-1}(a, c)\right), \lambda_{n-1}\left(c, \lambda_{n-1}(a, b)\right) \text { for } a<b<c ; \\
& \lambda_{n-1}\left(a, \lambda_{n-1}(a, b)\right), \lambda_{n-1}\left(b, \lambda_{n-1}(a, b)\right) \text { for } a<b
\end{aligned}
$$

Remark. The notion of basic λ_{n-1}-products is derived from (1.10) and (1.13). It will be regarded as a procedure for choosing certain indecomposable elements of $H_{*}\left(\Omega^{n} \Sigma^{n} X\right)$.

Consider sequences of non-negative integers

$$
J= \begin{cases}\left(s_{1}, \cdots, s_{k}\right) & \text { when } p=2 \\ \left(\varepsilon_{1}, s_{1}, \cdots, \varepsilon_{k}, s_{k}\right) & \text { when } p>2\end{cases}
$$

where $\varepsilon_{j}=0$ or 1 . Define the length and excess of J by

$$
\begin{aligned}
& l(J)=k \text { and } \\
& e(J)= \begin{cases}s_{1}-\sum_{j=2}^{k} s_{j} & \text { when } p=2 \\
2 s_{1}-\varepsilon_{1}-\sum_{j=2}^{k}\left(2(p-1) s_{j}-\varepsilon_{j}\right) & \text { when } p>2\end{cases}
\end{aligned}
$$

J is said to be admissible if

$$
2 s_{j} \geq s_{j-1} \quad \text { when } p=2
$$

$$
p s_{j}-\varepsilon_{j} \geq s_{j-1} \text { when } p>2
$$

for $2 \leq j \leq k . \quad J$ determines the homology operation

$$
Q^{J}= \begin{cases}Q^{s_{1}} \cdots Q^{s_{k}} & \text { when } p=2 \\ \Delta^{\varepsilon_{1}} Q^{s_{1}} \cdots \Delta^{\varepsilon_{k}} Q^{s_{k}} & \text { when } p>2\end{cases}
$$

Remark. The notion of admissibility is derived from (1.6).
For any space X let

$$
\eta_{n}=\phi^{n}\left(1_{\Sigma^{n} X}\right): X \rightarrow \Omega^{n} \Sigma^{n} X .
$$

It is well known that $\eta_{n *}: H_{*}(X) \rightarrow H_{*}\left(\Omega^{n} \Sigma^{n} X\right)$ is injective. So we may regard that $H_{*}(X) \subset H_{*}\left(\Omega^{n} \Sigma^{n} X\right)$. Then, for $a, b \in H_{*}(X)$, we have the following elements of $H_{*}\left(\Omega^{n} \Sigma^{n} X\right)$:

$$
a * b, Q^{s}(a), \lambda_{n-1}(a, b), \text { etc. }
$$

Under the above notations and terminologies, we have
(1.17) If $n>1, H_{*}\left(\Omega^{n} \Sigma^{n} X\right)$ is the free (associative and) commutative Z_{p}-algebra generated by

$$
\left\{\begin{array}{l|l}
Q^{J}(x) & \begin{array}{l}
x \text { is a basic } \lambda_{n-1}-p r o d u c t ; J \text { is admissible; } \\
\text { if } p=2, e(J)>|x| \text { and } s_{k} \leq|x|+n-1 ; \\
\text { if } p>2, e(J)+\varepsilon_{1}>|x| \text { and } 2 s_{k} \leq|x|+n-1
\end{array}
\end{array}\right\}
$$

and if $n=1, H_{*}(\Omega \Sigma X)$ is the free associative Z_{p}-algebra generated by $\{a, b, \cdots\}$.
Thus for $n \geq 1 H_{*}\left(\Omega^{n} \Sigma^{n} X\right)$ has a Z_{p}-basis consisting of all monomials in the above generators. Let us define the height of a monomial as follows:

$$
\begin{aligned}
& \operatorname{height}\left(Q^{J}(x)\right)=p^{l(J)} \text { weight }(x) \text { and } \\
& \operatorname{height}\left(Q^{J}(x) * Q^{K}(y)\right)=\operatorname{height}\left(Q^{J}(x)\right)+\operatorname{height}\left(Q^{K}(y)\right) .
\end{aligned}
$$

According to May [7], there is a functor C_{n} from spaces to spaces together with a natural transformation $\alpha_{n}: C_{n} \rightarrow \Omega^{n} \Sigma^{n}$ such that $\alpha_{n} X: C_{n} X \rightarrow \Omega^{n} \Sigma^{n} X$ is a (weak) homotopy equivalence for all X. The space $C_{n} X$ has a natural filtration $\left\{F_{k} C_{n} X \mid k \geq 0\right\}$ (such that $F_{0} C_{n} X=\{*\}, F_{1} C_{n} X \simeq X$ and $F_{k} C_{n} X \subset F_{k+1} C_{n} X$ is a cofibration for all k). $\quad H_{*}\left(F_{k} C_{n} X\right)$ may be regarded as a sub- Z_{p}-module of H_{*} ($\Omega^{n} \Sigma^{n} X$) and then it is additively generated by the elements of height $\leq k$.

For $k, n \geq 1$ let

$$
e_{n}^{k} X=F_{k} C_{n} X / F_{k-1} C_{n} X
$$

As displayed in [9], if X is ($m-1$)-connected, $m>1$, then $e_{n}^{k} X$ is $(k m-1)$ connected and therefore

The composite

$$
\begin{equation*}
F_{k} C_{n} X \xrightarrow{\subset} C_{n} X \xrightarrow{\alpha_{n} X} \Omega^{n} \Sigma^{n} X \tag{1.18}
\end{equation*}
$$

(which we denote by j_{k}) is a $((k+1) m-1)$-equivalence.
So there is an isomorphism

$$
H^{i}\left(\Omega^{n} \Sigma^{n} X\right) \cong H^{i}\left(F_{k} C_{n} X\right) \text { for } i<(k+1) m-1
$$

For $\alpha \in H^{i}(X)$ let α_{*} denote its dual. We regard it as an element of H_{i} ($\left.\Omega^{n} \Sigma^{n} X\right)$. Then, for $\alpha, \beta \in H^{*}(X)$, we have the following elements of H^{*} $\left(\Omega^{n} \Sigma^{n} X\right)$:

$$
\begin{aligned}
& \alpha * \beta=\text { the dual of } \alpha_{*} * \beta_{*}, \\
& Q^{s}(\alpha)=\text { the dual of } Q^{s}\left(\alpha_{*}\right) \\
& \lambda_{n-1}(\alpha, \beta)=\text { the dual of } \lambda_{n-1}\left(\alpha_{*}, \beta_{*}\right), \text { etc. }
\end{aligned}
$$

Combining the above notations and results, we obtain
Proposition 1. Suppose that X is ($m-1$)-connected and let $\{\alpha, \beta, \gamma, \cdots\}$ be a totally ordered Z_{p}-basis for $\tilde{H}^{*}(X)$. Then a Z_{p}-basis for $\tilde{H}^{*}\left(\Omega^{n} \Sigma^{n} X\right)$ in dimensions $<3 m-1$ is given by
height 1: α,
height 2: $\alpha * \beta$ for $\alpha \leq \beta$ where if $\alpha=\beta, p>2$ and $|\alpha|$ is even;
$Q^{s}(\alpha)$ for $p=2$ and $|\alpha| \leq s \leq|\alpha|+n-1$;
$\lambda_{n-1}(\alpha, \beta)$ for $\alpha \leq \beta$ where if $\alpha=\beta, p>2$ and $|\alpha|+n$ is even,
and that in dimensions $<4 m-1$ is given by the above together with
height 3: $\alpha * \beta * \gamma$ for $\alpha \leq \beta \leq \gamma$ where if $\alpha=\beta=\gamma, p>3$ and $|\alpha|$ is even, and if $\alpha=\beta \neq \gamma$ or $\alpha \neq \beta=\gamma, p>2$ and $|\beta|$ is even;
$\alpha * Q^{s}(\beta)$ for $p=2$ and $|\beta| \leq s \leq|\beta|+n-1$; $\alpha * \lambda_{n-1}(\beta, \gamma)$ for $\beta \leq \gamma$ where if $\beta=\gamma, p>2$ and $|\beta|+n$ is even; $\Delta^{8} Q^{s}(\alpha)$ for $p=3, \varepsilon=0$ or 1 and $|\alpha|+\varepsilon \leq 2 s \leq|\alpha|+n-1$; $\lambda_{n-1}\left(\alpha, \lambda_{n-1}(\beta, \gamma)\right)$ for $\alpha \geq \beta<\gamma$.

2. Review of Milgram's work

As in $\S 0$, if $X=\Omega^{n} Y$, we have a fibration

$$
\begin{equation*}
G_{n} X \xrightarrow{\nu_{n}} \Sigma^{n} X \xrightarrow{\xi_{n}} Y \tag{2.1}
\end{equation*}
$$

Application of the functor Ω^{n} yields a fibration

$$
\begin{equation*}
\Omega^{n} G_{n} X \xrightarrow{\Omega^{n} \nu_{n}} \Omega^{n} \Sigma^{n} X \xrightarrow{\Omega^{n} \xi_{n}} X . \tag{2.2}
\end{equation*}
$$

Put

$$
F_{n} X=\Omega^{n} G_{n} X
$$

Since $\left(\Omega^{n} \xi_{n}\right) \eta_{n}=1_{X}$ it follows that (2.2) is fibre (weak) homotopically trivial (see [12, Lemma 4.1]). So we have

Lemma 2. The following equivalent statements hold:
(i) The mod p cohomology Serre spectral sequence of the fibration (2.2) collapses.
(ii) $\left(\Omega^{n} \nu_{n}\right)^{*}: H^{*}\left(\Omega^{n} \Sigma^{n} X\right) \rightarrow H^{*}\left(F_{n} X\right)$ is surjective and its kernel coincides with the ideal generated by $\left(\Omega^{n} \xi_{n}\right)^{*}\left(\sum_{i>0} H^{i}(X)\right)$.

For the proof see [13].
Suppose again that $X=\Omega^{n} Y$ is $(m-1)$-connected for $m>1$. Then it follows from Proposition 1 and Lemma 2(ii) that $F_{n} X$ is (2m-1)-connected. Let $\left(F_{n} X\right)_{3 m-1}$ be the $(3 m-1)$-skeleton of $F_{n} X$. Then the inclusion map $i_{3 m-1}$: $\left(F_{n} X\right)_{3 m-1} \rightarrow F_{n} X$ is a $(3 m-1)$-equivalence. Since $F_{n} X=\Omega^{n} G_{n} X$, we have a map

$$
\phi^{-n}\left(i_{3 m-1}\right): \Sigma^{n}\left(F_{n} X\right)_{3 m-1} \rightarrow G_{n} X .
$$

Consider the commutative diagram

$$
\begin{gathered}
\pi_{i}\left(\left(F_{n} X\right)_{3 m-1}\right) \xrightarrow{i_{3 m-1 \#}} \pi_{i}\left(F_{n} X\right) \\
\mid \Sigma^{n} \\
\pi_{i+n}\left(\Sigma^{n}\left(F_{n} X\right)_{3 m-1}\right) \xrightarrow{\phi^{-n}\left(i_{3 m-1}\right) \approx} \xlongequal{\cong} \|_{i+n} \phi^{-n}\left(G_{n} X\right)
\end{gathered}
$$

where Σ^{n} is the n-fold suspension homomorphism. By the Freudenthal suspension theorem, Σ^{n} is an isomorphism for $i<4 m-1$ and an epimorphism for $i=4 m-1$. Therefore $\phi^{-n}\left(i_{3 m-1}\right)$ is a $(3 m+n-1)$-equivalence. So there is an isomorphism

$$
H^{i}\left(G_{n} X\right) \cong H^{i}\left(\Sigma^{n}\left(F_{n} X\right)_{3 m-1}\right) \text { for } i<3 m+n-1
$$

Through this isomorphism we shall identify them. Then, for $\omega \in H^{i}\left(F_{n} X\right)$ with $i<3 m-1$, we have an element $\sigma^{n}(\omega) \in H^{i+n}\left(G_{n} X\right)$ (hereafter we often write $\sigma^{n}(\quad)$ for $\left.\left(\Sigma^{*}\right)^{-n}(\quad)\right)$.

Let us compute $H^{*}\left(\left(F_{n} X\right)_{3 m-1}\right)$ by using the Serre exact sequence of the fibration (2.2); it is valid for dimensions $\leq 3 m-1$. Moreover, the transgression τ is trivial, by (i) of Lemma 2. Thus we have a short exact sequence

$$
0 \rightarrow H^{i}(X) \xrightarrow{\left(\Omega^{n} \xi_{n}\right)^{*}} H^{i}\left(\Omega^{n} \Sigma^{n} X\right) \xrightarrow{\left(\Omega^{n} \nu_{n}\right)^{*}} H^{i}\left(F_{n} X\right) \rightarrow 0
$$

for $i<3 m-1$. For $\chi \in H^{i}\left(\Omega^{n} \Sigma^{n} X\right)$ we denote by [χ] the image of χ under
$\left(\Omega^{n} \nu_{n}\right)^{*}:$

$$
\left(\Omega^{n} \nu_{n}\right)^{*}(\chi)=[\chi] .
$$

Then from the former part of Proposition 1 it follows that
(2.3) Suppose that $X=\Omega^{n} Y$ is $(m-1)$-connected $(m>1)$ and let $\{\alpha, \beta, \cdots\}$ be a totally ordered Z_{p}-basis for $\tilde{H}^{*}(X)$. Then a Z_{p}-basis for $\tilde{H}^{*}\left(G_{n} X\right)$ in dimensions $<3 m+n-1$ is given by:
(1) $\sigma^{n}[\alpha * \beta]$ for $\alpha \leq \beta$ where if $\alpha=\beta, p>2$ and $|\alpha|$ is even;
(2) $\sigma^{n}\left[Q^{s}(\alpha)\right]$ for $p=2$ where $|\alpha| \leq s \leq|\alpha|+n-1$;
(3) $\sigma^{n}\left[\lambda_{n-1}(\alpha, \beta)\right]$ for $\alpha \leq \beta$ where if $\alpha=\beta, p>2$ and $|\alpha|+n$ is even.

Notice that the elements α and β appearing in (2.3) have dimension $<2 m-1$. We now recall the following fact (see (3.1) of [16, VIII]):
(2.4) If $X=\Omega^{n} Y$ is ($m-1$)-connected, then

$$
\begin{aligned}
& \left(\sigma^{*}\right)^{n}: H^{i+n}(Y) \rightarrow H^{i}(X) \text { or } \\
& \xi_{n}^{*}: H^{i+n}(Y) \rightarrow H^{i+n}\left(\Sigma^{n} X\right)
\end{aligned}
$$

is an isomorphism for $i \leq 2 m-1$.
For $\alpha \in H^{i}(X)$ we denote by ${ }^{n} \widetilde{\alpha}$ an element of $H^{i+n}(Y)$ such that

$$
\left(\sigma^{*}\right)^{n}\left({ }^{n} \widetilde{\alpha}\right)=\alpha \text { or } \xi_{n}^{*}\left({ }^{n} \widetilde{\alpha}\right)=\sigma^{n}(\alpha)
$$

Thus, for each $\alpha \in H^{i}(X)$ with $i \leq 2 m-1,{ }^{n} \tilde{\alpha}$ exists uniquely.
Consider the fibration (2.1). Since Y and $G_{n} X$ are $(m+n-1)$ - and $(2 m+n$ $-1)$-connected respectively, its Serre exact sequence

$$
\begin{equation*}
\cdots \rightarrow H^{i}(Y) \xrightarrow{\xi_{n}^{*}} H^{i}\left(\Sigma^{n} X\right) \xrightarrow{\nu_{n}^{*}} H^{i}\left(G_{n} X\right) \xrightarrow{\tau} H^{i+1}(Y) \rightarrow \cdots \tag{2.5}
\end{equation*}
$$

is valid for $i \leq 3 m+2 n-1$.
Theorem 3 (Milgram). Under the above situation, the following formulas hold up to non-zero constants:
(1) $\nu_{n}^{*}\left(\sigma^{n}(\alpha \cup \beta)\right)=\sigma^{n}[\alpha * \beta]$ (where \cup denotes the cup product) and so $\tau\left(\sigma^{n}[\alpha * \beta]\right)=0$;
(2) If $p=2, \tau\left(\sigma^{n}\left[Q^{s}(\alpha)\right]\right)=S q^{s+1}\left({ }^{n} \widetilde{\alpha}\right)$;
(3) $\tau\left(\sigma^{n}\left[\lambda_{n-1}(\alpha, \beta)\right]\right)={ }^{n} \widetilde{\alpha} \cup^{n} \tilde{\beta}$.

Remark. In (1) $\alpha \cup \beta$ is always non-zero; see the Remark below Lemma 5.
For the proof see §5. Assuming this Theorem for a while, we proceed with our argument.

In the exact sequence (2.5), for $\omega \in H^{i}\left(\left(F_{n} X\right)_{3 m-1}\right)$ with $\tau\left(\sigma^{n}(\omega)\right)=0$, we denote by $\{\omega\}$ an element of $H^{i}(X)$ such that

$$
\nu_{n}^{*}\left(\sigma^{n}\{\omega\}\right)=\sigma^{n}(\omega)
$$

in $H^{i+n}\left(G_{n} X\right)$. (2.5) gives rise to a short exact sequence

$$
0 \rightarrow \operatorname{Cok} \tau \xrightarrow{\xi_{n}^{*}} H^{i}\left(\Sigma^{n} X\right) \xrightarrow{\nu_{n}^{*}} \operatorname{Ker} \tau \rightarrow 0
$$

for $i<3 m+n-1$. By Theorem 3, the additive structures of $\operatorname{Im} \tau$ and $\operatorname{Ker} \tau$ can be easily described. Thus we have

Corollary 4. Let

$$
\sum_{i<2 m-1} \check{H}^{i}(X)=Z_{p}\{\alpha, \beta, \cdots\}
$$

Then $\tilde{H}^{*}(X)$ in dimensions $<3 m-1$ has a Z_{p}-basis consisting of elements of the following four kinds:
(1) θ where $\sigma^{n}(\theta) \in \operatorname{Im} \xi_{n}^{*}$;
(2) $\alpha \cup \beta$ for $\alpha \leq \beta$ where if $\alpha=\beta, p>2$ and $|\alpha|$ is even;
(3) $\left\{Q^{s}(\alpha)\right\}$ for $p=2$ and $|\alpha| \leq s \leq|\alpha|+n-1$ where $S q^{s+1}\left({ }^{n} \widetilde{\alpha}\right)=0$;
(4) $\left\{\lambda_{n-1}(\alpha, \beta)\right\}$ for $\alpha \leq \beta$ where if $\alpha=\beta, p>2$ and $|\alpha|+n$ is even, and ${ }^{n} \widetilde{\alpha} \cup^{n} \tilde{\beta}=0$.

Notation. From now on, we use the letters α, β, γ to denote elements of $\tilde{H}^{*}(X)$ of dimension $\leq 2 m-1$ and the letter θ to denote an element of \tilde{H}^{*} (X) of dimension $<3 m-1$ for which ${ }^{n} \widetilde{\theta}$ exists, unless otherwise stated. Of course, the θ includes α.

Since the fibration (2.2) is fibre (weak) homotopically trivial, we may assume that there is a fibration

$$
X \xrightarrow{\eta_{n}} \Omega^{n} \Sigma^{n} X \rightarrow F_{n} X .
$$

Consider the following commutative diagram

where the upper row is a cofibration. Then it follows from (1.18) that the induced map $j_{2}^{\prime}: e_{n}^{2} X \rightarrow F_{n} X$ is a ($3 m-1$)-equivalence. Since $e_{n}^{2} X$ is homotopy equivalent to $S^{n-1} X_{z_{2}}(X \wedge X)$ (see Proposition 2.6 and Remark 4.10 of [8]), we can use $S^{n-1} \mid X_{z_{2}}(X \wedge X)$ instead of $\left(F_{n} X\right)_{3 m-1}$ in the argument of this section, which is just the argument of Milgram [12, I].

3. The main theorem

We now take the $(4 m-1)$-skeleton $\left(F_{n} X\right)_{4 m-1}$ of $F_{n} X$. Since the inclusion
map $i_{4 m-1}:\left(F_{n} X\right)_{4 m-1} \rightarrow F_{n} X$ is a (4m-1)-equivalence, by the same argument as in §2, the map

$$
\rho_{n}=\phi^{-n}\left(i_{4 m-1}\right): \Sigma^{n}\left(F_{n} X\right)_{4 m-1} \rightarrow G_{n} X
$$

is a ($4 m+n-1$)-equivalence. (Note that this equivalence is natural in X; see the diagram (5.1).) So there is an isomorphism

$$
H^{i}\left(G_{n} X\right) \cong H^{i}\left(\Sigma^{n}\left(F_{n} X\right)_{4 m-1}\right) \text { for } i<4 m+n-1
$$

(It follows from (2.4) that this isomorphism holds for $i=4 m+n-1$.) Similarly we shall identify them.

Let us compute $H^{*}\left(\left(F_{n} X\right)_{4 m-1}\right)$ by using the Serre spectral sequence $\left\{E_{r}\right.$, $\left.d_{r}\right\}$ of the fibration (2.2); that is,

$$
E_{2}^{i, j}=H^{i}\left(F_{n} X\right) \otimes H^{j}(X) \text { and } E_{\infty}^{*, *}=\operatorname{Gr} H^{*}\left(\Omega^{n} \Sigma^{n} X\right)
$$

By (i) of Lemma 2, $E_{r}^{*, *}=E_{\infty}^{*, *}$ for all $r \geq 2$. It follows from (2.3) that $E_{2}^{i, j}$ for $i+j<4 m-1$ with $i, j>0$ has a Z_{p}-basis consisting of elements

$$
[\beta * \gamma] \otimes \alpha,\left[Q^{s}(\beta)\right] \otimes \alpha(p=2) \text { and }\left[\lambda_{n-1}(\beta, \gamma)\right] \otimes \alpha
$$

For $\alpha \in H^{i}(X)$ let $\bar{\alpha} \in H^{i}\left(\Omega^{n} \Sigma^{n} X\right)$ denote the dual of $\alpha_{*} \in H_{i}\left(\Omega^{n} \Sigma^{n} X\right)$; then $\eta_{n}^{*}(\bar{\alpha})=\alpha$. By the multiplicative properties of the cohomology spectral sequence, $[\beta * \gamma] \otimes \alpha,\left[Q^{s}(\beta)\right] \otimes \alpha(p=2), \quad\left[\lambda_{n-1}(\beta, \gamma)\right] \otimes \alpha \in E_{\infty}^{* * *}$ are represented by $\bar{\alpha} \cup(\beta * \gamma), \bar{\alpha} \cup Q^{s}(\beta)(p=2), \bar{\alpha} \cup \lambda_{n-1}(\beta, \gamma) \in H^{*}\left(\Omega^{n} \Sigma^{n} X\right)$ respectively.

Lemma 5. In $\sum_{i<4 m-1} \tilde{H}^{i}\left(\Omega^{n} \Sigma^{n} X\right)$ the following relations hold:
(i) (1) If α, β, γ are distinct,

$$
\bar{\alpha} \cup(\beta * \gamma)=(-1)^{|\alpha|}|\beta| \beta *(\alpha \cup \gamma)+(-1)^{\left|\alpha_{i}\right| \gamma|+|\beta|| \gamma \mid} \gamma *(\alpha \cup \beta)+\alpha * \beta * \gamma
$$

(2) If $\alpha \neq \beta$,

$$
\begin{aligned}
& \bar{\alpha} \cup(\beta * \beta)=\beta *(\alpha \cup \beta)+\alpha * \beta * \beta \text { and } \\
& \bar{\beta} \cup(\alpha * \beta)=2 \alpha *(\beta \cup \beta)+\beta *(\alpha \cup \beta)+2 \alpha * \beta * \beta
\end{aligned}
$$

(3) $\bar{\alpha} \cup(\alpha * \alpha)=\alpha *(\alpha \cup \alpha)+3 \alpha * \alpha * \alpha$.
(ii) If $p=2$,

$$
\bar{\alpha} \cup Q^{s}(\beta)=\alpha * Q^{s}(\beta)
$$

(iii) (1) If α, β, γ are distinct,

$$
\begin{aligned}
& \bar{\alpha} \cup \lambda_{n-1}(\beta, \gamma)=(-1)^{|\alpha|}| | \beta|+|\alpha|(n-1) \\
& \lambda_{n-1}(\beta, \alpha \cup \gamma) \\
& \quad+(-1)^{|\alpha||\gamma|+|\beta| \gamma|\gamma|+(|\alpha|+|\beta|+|\gamma \gamma|)(n-1)+n} \lambda_{n-1}(\gamma, \alpha \cup \beta)+\alpha * \lambda_{n-1}(\beta, \gamma)
\end{aligned}
$$

(2) If $\alpha \neq \beta$,

$$
\bar{\alpha} \cup \lambda_{n-1}(\beta, \beta)=(-1)^{|\alpha|} \lambda_{n-1}(\beta, \alpha \cup \beta)+\alpha * \lambda_{n-1}(\beta, \beta) \text { and }
$$

$$
\begin{aligned}
& \bar{\beta} \cup \lambda_{n-1}(\alpha, \beta)=(-1)^{|\alpha||\beta|+|\beta|(n-1)} \lambda_{n-1}(\alpha, \beta \cup \beta) \\
& \quad+(-1)^{|\beta|+|\alpha|(n-1)+n} \lambda_{n-1}(\beta, \alpha \cup \beta)+\beta * \lambda_{n-1}(\alpha, \beta) ; \\
& \text { (3) } \quad \bar{\alpha} \cup \lambda_{n-1}(\alpha, \alpha)=(-1)^{|\alpha|} \lambda_{n-1}(\alpha, \alpha \cup \alpha)+\alpha * \lambda_{n-1}(\alpha, \alpha) .
\end{aligned}
$$

Remark. Note that for $\alpha, \beta \in H^{*}(X), \alpha \cup \beta \neq 0$ if $\alpha \neq \beta$, and $\alpha \cup \alpha \neq 0$ if $p>2$. In fact, since $X=\Omega^{n} Y$ is a connected H-space, $H^{*}(X)$ becomes a connected, associative and commutative Hopf algebra of finite type over Z_{p}; hence the Borel structure theorem (see (8.12) of [16, III]) implies the result.

Proof. Since $|\alpha|,|\beta|,|\gamma| \leq 2 m-1, \alpha, \beta, \gamma$ are primitive. So

$$
\begin{aligned}
\psi\left(\alpha_{*} *\right. & \left.(\beta \cup \gamma)_{*}\right)=\psi\left(\alpha_{*}\right) * \psi\left((\beta \cup \gamma)_{*}\right) \\
= & \left(\alpha_{*} \otimes 1+1 \otimes \alpha_{*}\right) *\left((\beta \cup \gamma)_{*} \otimes 1+\beta_{*} \otimes \gamma_{*}\right. \\
& \left.+(-1)^{|\beta||\gamma|} \mid \gamma_{*} \otimes \beta_{*}+1 \otimes(\beta \cup \gamma)_{*}\right) \\
= & \left(\alpha_{*} *(\beta \cup \gamma)_{*}\right) \otimes 1+\left(\alpha_{*} * \beta_{*}\right) \otimes \gamma_{*} \\
& +(-1)^{|\beta||\gamma|}\left(\alpha_{*} * \gamma_{*}\right) \otimes \beta_{*}+\alpha_{*} \otimes(\beta \cup \gamma)_{*} \\
& +(-1)^{\left|\left.\right|_{\|}\right||\beta|+\left|\alpha_{1}\right| \gamma \mid}(\beta \cup \gamma)_{*} \otimes \alpha_{*}+(-1)^{|\alpha||\beta|} \beta_{*} \otimes\left(\alpha_{*} * \gamma_{*}\right) \\
& +(-1)^{|\alpha||\gamma|+|\beta| \gamma|\gamma|} \gamma_{*} \otimes\left(\alpha_{*} * \beta_{*}\right)+1 \otimes\left(\alpha_{*} *(\beta \cup \gamma)_{*}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\psi\left(\alpha_{*}\right. & \left.* \beta_{*} * \gamma_{*}\right)=\psi\left(\alpha_{*}\right) * \psi\left(\beta_{*}\right) * \psi\left(\gamma_{*}\right) \\
= & \left(\alpha_{*} * \beta_{*} * \gamma_{*}\right) \otimes 1+\left(\alpha_{*} * \beta_{*}\right) \otimes \gamma_{*}+(-1)^{|\beta||\gamma|}\left(\alpha_{*} * \gamma_{*}\right) \otimes \beta_{*} \\
& +\alpha_{*} \otimes\left(\beta_{*} * \gamma_{*}\right)+(-1)^{|\alpha||\beta|+\left|\alpha_{|| |}\right|}\left(\beta_{*} * \gamma_{*}\right) \otimes \alpha_{*} \\
& +(-1)^{\left|\alpha_{\mid}\right| \beta \mid} \beta_{*} \otimes\left(\alpha_{*} * \gamma_{*}\right)+(-1)^{\left|\alpha_{\mid}\right| \gamma \gamma|+|\beta|| \gamma \mid} \gamma_{*} \otimes\left(\alpha_{*} * \beta_{*}\right) \\
& +1 \otimes\left(\alpha_{*} * \beta_{*} * \gamma_{*}\right) .
\end{aligned}
$$

Thus if $\chi=\beta_{*} *(\alpha \cup \gamma)_{*}, \gamma_{*} *(\alpha \cup \beta)_{*}$ or $\alpha_{*} * \beta_{*} * \gamma_{*}, \psi(\chi)$ contains the term $\alpha_{*} \otimes\left(\beta_{*} * \gamma_{*}\right)$ whose coefficient is $(-1)^{|\alpha||\beta|},(-1)^{|\alpha||\gamma|+|\beta||\gamma|}$ or 1 respectively. This implies (1) of (i), for if χ is other base, $\psi(\chi)$ does not contain it. Similar calculations yield (2) and (3) of (i).
(ii) and (iii) are proved similarly by using (1.4), (1.5), (1.10), (1.11) and (1.12).

It follows from Lemma 2 (ii) and Lemma 5 (i) (1) that if α, β, γ are distinct,

$$
\begin{aligned}
& 0=[\bar{\alpha} \cup(\beta * \gamma)]=(-1)^{\left|\alpha_{i}\right| \beta \mid}[\beta *(\alpha \cup \gamma)] \\
& +(-1)^{\left|\alpha \alpha_{|\gamma|}\right|+|\beta||\gamma|}[\gamma *(\alpha \cup \beta)]+[\alpha * \beta * \gamma], \\
& 0=[\bar{\beta} \cup(\alpha * \gamma)]=(-1)^{|\alpha||\beta|}[\alpha *(\beta \cup \gamma)] \\
& +(-1)^{|\alpha||\beta|+|\alpha||\gamma|+|\beta||\gamma|}[\gamma *(\alpha \cup \beta)]+(-1)^{|\alpha||\beta|}[\alpha * \beta * \gamma] \text {, } \\
& 0=[\bar{\gamma} \cup(\alpha * \beta)]=(-1)^{|\alpha||\gamma|+|\beta||\gamma|}[\alpha *(\beta \cup \gamma)] \\
& +(-1)^{|\alpha|\left|\beta_{\mid}\right|+\left|\alpha_{\|}\right| \gamma \gamma\left|+\left|\beta_{\mid}\right| \gamma\right|}[\beta *(\alpha \cup \gamma)]+(-1)^{\left|\alpha_{\mid}\right| \gamma\left|+\left|\beta_{\mid}\right| \gamma \gamma\right.}[\alpha * \beta * \gamma]
\end{aligned}
$$

in $H^{*}\left(F_{n} X\right)$. Hence

$$
\begin{align*}
& {[\beta *(\alpha \cup \gamma)]=(-1)^{|\alpha||\beta|}[\alpha *(\beta \cup \gamma)]} \tag{3.1}\\
& {[\gamma *(\alpha \cup \beta)]=(-1)^{|\alpha||\gamma|+|\beta| \gamma \gamma \mid}[\alpha *(\beta \cup \gamma)] \text { and }} \\
& {[\alpha * \beta * \gamma]=-2[\alpha *(\beta \cup \gamma)]}
\end{align*}
$$

Similarly from (2) of Lemma 5 (i) it follows that if $\alpha \neq \beta$,

$$
\begin{align*}
& {[\beta *(\alpha \cup \beta)]=2[\alpha *(\beta \cup \beta)] \text { and }} \tag{3.2}\\
& {[\alpha * \beta * \beta]=-2[\alpha *(\beta \cup \beta)]}
\end{align*}
$$

From (3) of Lemma 5 (i) it follows that

$$
\begin{equation*}
[\alpha *(\alpha \cup \alpha)]=-3[\alpha * \alpha * \alpha] \tag{3.3}
\end{equation*}
$$

From (ii) of Lemma 5 it follows that

$$
\begin{equation*}
\left[\alpha * Q^{s}(\beta)\right]=0 \tag{3.4}
\end{equation*}
$$

From (1) of Lemma 5 (iii) it follows that if α, β, γ are distinct,

$$
\begin{align*}
& {\left[\alpha * \lambda_{n-1}(\beta, \gamma)\right]=(-1)^{|\alpha||\beta|+|\alpha|(n-1)+1}\left[\lambda_{n-1}(\beta, \alpha \cup \gamma)\right]} \tag{3.5}\\
& +(-1)^{|\alpha||\gamma|+|\beta| i \gamma \mid+(|\alpha|+|\beta|+|\gamma|+1)(n-1)}\left[\lambda_{n-1}(\gamma, \alpha \cup \beta)\right] \text {, } \\
& {\left[\beta * \lambda_{n-1}(\alpha, \gamma)\right]=(-1)^{|\alpha||\beta|+|\beta|(n-1)+1}\left[\lambda_{n-1}(\alpha, \beta \cup \gamma)\right]} \\
& +(-1)^{|\alpha||\beta|+|\alpha||\gamma|+|\beta||\gamma|+(|\alpha|+|\beta|+|\gamma|)(n-1)}\left[\lambda_{n-1}(\gamma, \alpha \cup \beta)\right] \text {, } \\
& {\left[\gamma * \lambda_{n-1}(\alpha, \beta)\right]=(-1)^{|\alpha||\gamma|+|\beta| \gamma \gamma|+|\gamma|(n-1)+1}\left[\lambda_{n-1}(\alpha, \beta \cup \gamma)\right]} \\
& +(-1)^{|\alpha||\beta|+|\alpha||\gamma|+|\beta||\gamma|+(|\alpha|+|\beta!+|\gamma|+1)(n-1)}\left[\lambda_{n-1}(\beta, \alpha \cup \gamma)\right] .
\end{align*}
$$

From (2) of Lemma 5 (iii) it follows that if $\alpha \neq \beta$,

$$
\begin{align*}
& {\left[\alpha * \lambda_{n-1}(\beta, \beta)\right]=(-1)^{|\alpha||\beta|+|\alpha|(n-1)+1}\left[\lambda_{n-1}(\beta, \alpha \cup \beta)\right] \text { and }} \tag{3.6}\\
& {\left[\beta * \lambda_{n-1}(\alpha, \beta)\right]=(-1)^{|\alpha||\beta|+|\beta|(n-1)+1}\left[\lambda_{n-1}(\alpha, \beta \cup \beta)\right]} \\
& \quad+(-1)^{|\beta|+(|\alpha|+1)(n-1)}\left[\lambda_{n-1}(\beta, \alpha \cup \beta)\right] \text {. }
\end{align*}
$$

From (3) of Lemma 5 (iii) it follows that

$$
\begin{equation*}
\left[\alpha * \lambda_{n-1}(\alpha, \alpha)\right]=(-1)^{\mid \alpha_{\mid}+1}\left[\lambda_{n-1}(\alpha, \alpha \cup \alpha)\right] \tag{3.7}
\end{equation*}
$$

Combining Proposition 1, Lemma 2, Corollary 4 and relations (3.1)-(3.7), we obtain

Proposition 6. Suppose that $X=\Omega^{n} Y$ is ($m-1$)-connected ($m>1$). Then a Z_{p}-basis for $\tilde{H}^{*}\left(G_{n} X\right)$ in dimensions $<4 m+n-1$ is given by:
(1) $\sigma^{n}[\alpha * \theta]$ for $\alpha \leq \theta$ where if $\alpha=\theta, p>2$ and $|\alpha|$ is even;
(2) $\sigma^{n}[\alpha *(\beta \cup \gamma)]$ for $\alpha \leq \beta \leq \gamma$ where if $\alpha=\beta=\gamma, p>3$ and $|\alpha|$ is even, and if $\alpha=\beta \neq \gamma$ or $\alpha \neq \beta=\gamma, p>2$ and $|\beta|$ is even;
(3) $\sigma^{n}\left[\alpha *\left\{Q^{s}(\beta)\right\}\right]$ for $p=2$ and $|\beta| \leq s \leq|\beta|+n-1$ where $S q^{s+1}\left({ }^{n} \tilde{\beta}\right)=0$;
(4) $\sigma^{n}\left[\alpha *\left\{\lambda_{n-1}(\beta, \gamma)\right\}\right]$ for $\beta \leq \gamma$ where if $\beta=\gamma, p>2$ and $|\beta|+n$ is even, and ${ }^{n} \tilde{\beta} \cup{ }^{n} \tilde{\gamma}=0$;
(5) $\sigma^{n}\left[Q^{s}(\alpha)\right]$ for $p=2$ and $|\alpha| \leq s \leq|\alpha|+n-1$;
(6) $\sigma^{n}\left[\lambda_{n-1}(\alpha, \theta)\right]$ for $\alpha \leq \theta$ where if $\alpha=\theta, p>2$ and $|\alpha|+n$ is even;
(7) $\sigma^{n}\left[\lambda_{n-1}(\alpha, \beta \cup \gamma)\right]$ for $\beta \leq \gamma$ where if $\beta=\gamma, p>2$ and $|\beta|$ is even;
(8) $\sigma^{n}\left[\lambda_{n-1}\left(\alpha,\left\{Q^{s}(\beta)\right\}\right)\right]$ for $p=2$ and $|\beta| \leq s \leq|\beta|+n-1$ where $\left.S_{q}^{s+1}{ }^{n} \widehat{\beta}\right)$ $=0$;
(9) $\sigma^{n}\left[\lambda_{n-1}\left(\alpha,\left\{\lambda_{n-1}(\beta, \gamma)\right\}\right)\right]$ for $\beta \leq \gamma$ where if $\beta=\gamma, p>2$ and $|\beta|+n$ is even, and ${ }^{n} \tilde{\beta} \cup{ }^{n} \tilde{\gamma}=0$;
(10) $\sigma^{n}\left[Q^{s}(\alpha)\right]$ for $p=3$ and $|\alpha| \leq 2 s \leq|\alpha|+n-1$;
(11) $\sigma^{n}\left[\Delta Q^{s}(\alpha)\right]$ for $p=3$ and $|\alpha|<2 s \leq|\alpha|+n-1$;
(12) $\sigma^{n}\left[\lambda_{n-1}\left(\alpha, \lambda_{n-1}(\beta, \gamma)\right)\right]$ for $\alpha \geq \beta<\gamma$.

Consider the $\bmod p$ cohomology spectral sequence $\left\{E_{r}, d_{r}\right\}$ of the fibration (2.1) in total degrees $<4 m+n-1$; that is,

$$
\begin{align*}
& E_{2}^{i, j}=H^{i}(Y) \otimes H^{j}\left(G_{n} X\right), d_{r}: E_{r}^{i, j} \rightarrow E_{r}^{i+r, j-r+1} \text { and } \tag{3.8}\\
& E_{\infty}^{*, *}=\operatorname{Gr} H^{*}\left(\Sigma^{n} X\right) .
\end{align*}
$$

Then our main result is
Theorem 7. Under the above situation, the following formulas hold up to non-zero constants:
(1) $\nu_{n}^{*}\left(\sigma^{n}(\alpha \cup \theta)\right)=\sigma^{n}[\alpha * \theta]$;
(2) $\nu_{n}^{*}\left(\sigma^{n}(\alpha \cup \beta \cup \gamma)\right)=\sigma^{n}[\alpha *(\beta \cup \gamma)]$;
(3) If $p=2$ and $S q^{s+1}\left({ }^{n} \tilde{\beta}\right)=0$, $\nu_{n}^{*}\left(\sigma^{n}\left(\alpha \cup\left\{Q^{s}(\beta)\right\}\right)\right)=\sigma^{n}\left[\alpha *\left\{Q^{s}(\beta)\right\}\right]$;
(4) If ${ }^{n} \tilde{\beta} \cup n \tilde{\gamma}=0, \nu_{n}^{*}\left(\sigma^{n}\left(\alpha \cup\left\{\lambda_{n-1}(\beta, \gamma)\right\}\right)\right)=\sigma^{n}\left[\alpha *\left\{\lambda_{n-1}(\beta, \gamma)\right\}\right]$;
(5) If $p=2, \tau\left(\sigma^{n}\left[Q^{s}(\alpha)\right]\right)=S q^{s+1}\left({ }^{n} \widetilde{\alpha}\right)$;
(6) $\tau\left(\sigma^{n}\left[\lambda_{n-1}(\alpha, \theta)\right]\right)={ }^{n} \widetilde{\alpha} \cup^{n} \widetilde{\theta}$;
(7) $d_{|\boldsymbol{\alpha}|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}(\alpha, \beta \cup \gamma)\right]\right)=^{n} \tilde{\alpha} \otimes \sigma^{n}[\beta * \gamma]$;
(8) If $p=2$ and $S q^{s+1}\left({ }^{n} \tilde{\beta}\right)=0, d_{|\alpha|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\alpha,\left\{Q^{s}(\beta)\right\}\right)\right]\right)={ }^{n} \tilde{\alpha} \otimes \sigma^{n}\left[Q^{s}\right.$ (β)];
(9) (a) If ${ }^{n} \tilde{\beta} \cup^{n} \tilde{\gamma}=0, d_{|\alpha|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\alpha,\left\{\lambda_{n-1}(\beta, \gamma)\right\}\right)\right]\right)={ }^{n} \tilde{\alpha} \otimes \sigma^{n}\left[\lambda_{n-1}(\beta\right.$, $\gamma)$];
(b) If $n \tilde{\alpha} \cup^{n} \tilde{\beta}={ }^{n} \tilde{\beta} \cup^{n} \tilde{\gamma}=0$, ((a) holds and) $\tau\left(\sigma^{n}\left[\lambda_{n-1}\left(\alpha,\left\{\lambda_{n-1}(\beta, \gamma)\right\}\right)\right]\right.$ $\left.+c^{\prime} \cdot \sigma^{n}\left[\lambda_{n-1}\left(\gamma,\left\{\lambda_{n-1}(\alpha, \beta)\right\}\right)\right]\right)=\left\langle^{n} \widetilde{\alpha},{ }^{n} \widetilde{\beta},{ }^{n} \tilde{\gamma}\right\rangle\left(w h e r e c^{\prime}\right.$ is a non-zero constant and \langle, , \rangle denotes the Massey product [15]);
(c) If ${ }^{n} \widetilde{\alpha} \cup^{n} \tilde{\beta}={ }^{n} \tilde{\beta} \cup^{n} \tilde{\gamma}={ }^{n} \tilde{\gamma} \cup^{n} \tilde{\alpha}=0$, ((a), (b) hold and) $\tau\left(\sigma^{n}\left[\lambda_{n-1}(\beta\right.\right.$, $\left.\left.\left.\left\{\lambda_{n-1}(\gamma, \alpha)\right\}\right)\right]+c^{\prime \prime} \cdot \sigma^{n}\left[\lambda_{n-1}\left(\alpha,\left\{\lambda_{n-1}(\beta, \gamma)\right\}\right)\right]\right)=\left\langle^{n} \tilde{\beta},{ }^{n} \tilde{\gamma},^{n} \tilde{\alpha}\right\rangle\left(\right.$ where $c^{\prime \prime}$ is a nonzero constant);
(10) If $p=3, \tau\left(\sigma^{n}\left[Q^{s}(\alpha)\right]\right)=\Delta^{*} \mathscr{S}^{s}\left({ }^{n} \tilde{\alpha}\right)\left(\right.$ where Δ^{*} is the $\bmod 3$ cohomology Bockstein and \mathfrak{S}^{s} is the Steenrod 3rd power [14]);
(11) If $p=3, \tau\left(\sigma^{n}\left[\Delta Q^{s}(\alpha)\right]\right)=\mathfrak{S}^{s}\left({ }^{n} \widetilde{\alpha}\right)$;
(12) $d_{|\alpha|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\alpha, \lambda_{n-1}(\beta, \gamma)\right)\right]\right)={ }^{n} \widetilde{\alpha} \otimes \sigma^{n}\left[\lambda_{n-1}(\beta, \gamma)\right]$.

The proof is postponed until $\S 6$.
Remark. In the proof of Theorem 7, for the convenience of argument only, we will take as a Z_{p}-basis for $\tilde{H}^{*}\left(G_{n} X\right)$ the set of elements given in Proposition 6. However, Theorem 7 is valid, independently of the choice of $Z_{p^{-}}$ basis for $\tilde{H}^{*}\left(G_{n} X\right)$ and of the ordering of Z_{p}-basis for $\hat{H}^{*}(X)$. This assertion will be discussed in $\S 6$.

4. Lemmas

In §3 we have shown that
(4.1) If $X=\Omega^{n} Y$ is ($m-1$)-connected, there is a ($4 m+n-1$)-equivalence $\rho_{n}: \Sigma^{n}$ $\left(F_{n} X\right)_{4 m-1} \rightarrow G_{n} X$.

For $n>k \geq 1$ consider the following diagram

where the rows are fibrations. Commutativity of the right-hand square yields a map $\tilde{\eta}_{k}^{\prime}: G_{n-k} \Omega^{n} Y \rightarrow \Omega^{k} G_{n} \Omega^{n} Y$. Application of the functor Ω^{n-k} to the diagram (4.2) yields a commutative diagram

Let $\eta_{k}^{\prime}:\left(F_{n-k} \Omega^{n} Y\right)_{4 m-1} \rightarrow\left(F_{n} \Omega^{n} Y\right)_{4 m-1}$ be the restriction to the ($4 m-1$)-skeleton (of a cellular approximation) of the map $\Omega^{n-k} \tilde{\boldsymbol{\eta}}_{k}^{\prime}$. Then there is a commutative diagram

$$
\begin{array}{rll}
\Sigma^{n-k}\left(F_{n-k} \Omega^{n} Y\right)_{4 m-1} & \xrightarrow{\Sigma^{n-k} \eta_{k}^{\prime}} & \Sigma^{n-k}\left(F_{n} \Omega^{n} Y\right)_{4 m-1} \\
\rho_{n-k} & & \tilde{\eta}_{k}^{\prime} \\
\rho_{n-k} \Omega^{n} Y & & \delta^{k}\left(\rho_{n}\right) \\
\rho_{n}^{k} \Omega^{n} Y
\end{array}
$$

and by (4.1), both ρ_{n-k} and $\phi^{k}\left(\rho_{n}\right)$ are ($4 m+n-k-1$)-equivalences. Thus

$$
H^{i}\left(G_{n} \Omega^{n} Y\right) \xrightarrow{\left(\sigma^{*}\right)^{k}} H^{i-k}\left(\Omega^{k} G_{n} \Omega^{n} Y\right) \xrightarrow{\left(\tilde{\eta}_{k}^{\prime}\right)^{*}} H^{i-k}\left(G_{n-k} \Omega^{n} Y\right)
$$

may be identified with the composite

$$
\begin{aligned}
H^{i}\left(\Sigma^{n}\left(F_{n} \Omega^{n} Y\right)_{4 m-1}\right) & \xrightarrow{\left(\Sigma^{*}\right)^{k}} H^{i-k}\left(\Sigma^{n-k}\left(F_{n} \Omega^{n} Y\right)_{4 m-1}\right) \\
& \xrightarrow{\left(\Sigma^{n-k} \eta_{k}^{\prime}\right)^{*}} H^{i-k}\left(\Sigma^{n-k}\left(F_{n-k} \Omega^{n} Y\right)_{4 m-1}\right)
\end{aligned}
$$

for $i<4 m+n-1$. Then we have
Lemma 8. For any $\alpha, \beta \in H^{*}\left(\Omega^{n} Y\right)$ the following relations hold:
(1) $\left(\tilde{\eta}_{k}^{\prime}\right)^{*}\left(\sigma^{*}\right)^{k}\left(\sigma^{n}[\alpha * \beta]\right)=\sigma^{n-k}[\alpha * \beta]$;
(2) $\left(\tilde{\eta}_{k}^{\prime}\right)^{*}\left(\sigma^{*}\right)^{k}\left(\sigma^{n}\left[Q^{s}(\alpha)\right]\right)=\left\{\begin{array}{l}\sigma^{n-k}\left[Q^{s}(\alpha)\right] \text { if } p=2 \text { and } s \leq|\alpha|+n-k-1 \text { or } \\ p>2 \text { and } 2 s \leq|\alpha|+n-k-1 \\ 0 \quad \\ \text { otherwise }\end{array}\right.$
(3) $\left(\widetilde{\eta}_{k}^{\prime}\right)^{*}\left(\sigma^{*}\right)^{k}\left(\sigma^{n}\left[\lambda_{n-1}(\alpha, \beta)\right]\right)=0$.

Proof. By (1.1) and (1.8), $\left(\Omega^{n-k} \eta_{k}\right)^{*}: H^{i}\left(\Omega^{n} \Sigma^{n} \Omega^{n} Y\right) \rightarrow H^{i}\left(\Omega^{n-k} \Sigma^{n-k} \Omega^{n} Y\right)$ satisfies:

$$
\begin{aligned}
& \left(\Omega^{n-k} \eta_{k}\right)^{*}(\alpha * \beta)=\alpha * \beta ; \\
& \left(\Omega^{n-k} \eta_{k}\right)^{*}\left(Q^{s}(\alpha)\right)= \begin{cases}Q^{s}(\alpha) & \text { if } p=2 \text { and } s \leq|\alpha|+n-k-1 \text { or } p>2 \text { and } \\
0 & 2 s \leq|\alpha|+n-k-1\end{cases} \\
& \left(\Omega^{n-k} \eta_{k}\right)^{*}\left(\lambda_{n-1}(\alpha, \beta)\right)=0 .
\end{aligned}
$$

So the result follows from (4.3) and the definition of η_{k}^{\prime}.
For $n>k \geq 1$ consider the following diagram

where the rows are fibrations. Commutativity of the right-hand square yields a map $\stackrel{\xi}{\xi}_{k}^{\prime}: G_{n} \Omega^{n} Y \rightarrow G_{n-k} \Omega^{n-k} Y$. Application of Ω^{n} to (4.4) yields a commutative diagram

Let $\xi_{k}^{\prime}: \Sigma^{k}\left(F_{n} \Omega^{n} Y\right)_{4 m-1} \rightarrow\left(F_{n-k} \Omega^{n-k} Y\right)_{4 m-1}$ be the restriction to the $(4 m-1)$ -
skeleton of the map $\phi^{-k}\left(\Omega^{n} \widetilde{\xi}_{k}^{\prime}\right): \Sigma^{k} F_{n} \Omega^{n} Y \rightarrow F_{n-k} \Omega^{n-k} Y$. Then there is a commutative diagram

and by (4.1), ρ_{n} and ρ_{n-k} are $(4 m+n-1)$ - and $(4 m+n+3 k-1)$-equivalences respectively. Thus

$$
H^{i}\left(G_{n-k} \Omega^{n-k} Y\right) \xrightarrow{\left(\tilde{\xi}_{k}^{\prime}\right)^{*}} H^{i}\left(G_{n} \Omega^{n} Y\right)
$$

may be identified with the composite

$$
H^{i}\left(\Sigma^{n-k}\left(F_{n-k} \Omega^{n-k} Y\right)_{4 m+4 k-1}\right) \xrightarrow{\left(\Sigma^{n-k} \xi_{k}^{\prime}\right)} H^{*} H^{i}\left(\Sigma^{n-k}\left(F_{n-k} \Omega^{n-k} Y\right)_{4 m-1}\right) ~\left(\Sigma^{n}\left(F_{n} \Omega^{n} Y\right)_{4 m-1}\right)
$$

for $i<4 m+n-1$.
Lemma 9. For any ${ }^{k} \tilde{\alpha},{ }^{k} \tilde{\beta} \in H^{*}\left(\Omega^{n-k} Y\right)$ the following relations hold:
(1) $\left(\widetilde{\xi}_{k}^{\prime}\right)^{*}\left(\sigma^{n-k}\left[{ }^{k} \widetilde{\alpha} *^{k} \bar{\beta}\right]\right)=0$;
(2) $\left(\widetilde{\xi}_{k}^{\prime}\right)^{*}\left(\sigma^{n-k}\left[Q^{s}\left({ }^{k} \widetilde{\alpha}\right)\right]\right)=\sigma^{n}\left[Q^{s}(\alpha)\right]$;
(3) $\left(\widehat{\xi}_{k}^{\prime}\right)^{*}\left(\sigma^{n-k}\left[\lambda_{n-k-1}\left({ }^{k} \widetilde{\alpha},{ }^{k} \tilde{\beta}\right)\right]\right)=\sigma^{n}\left[\lambda_{n-1}(\alpha, \beta)\right]$,
where $\alpha\left(\right.$ resp. β) is the image of ${ }^{k} \widetilde{\alpha}\left(\right.$ resp. $\left.{ }^{k} \tilde{\beta}\right)$ under $\left(\sigma^{*}\right)^{k}: H^{i}\left(\Omega^{n-k} Y\right) \rightarrow$ $\tilde{H}^{i-k}\left(\Omega^{n} Y\right)$.

Proof. Recall (e.g. from $\S 3$ of [16, VIII]) that
(4.6) For any $Y, \sigma^{*}: H^{i}(Y) \rightarrow \tilde{H}^{i-1}(\Omega Y)$ maps every decomposable element into zero.

By this fact and (1.15), $\xi_{k}^{*}: H^{i}\left(\Omega^{n-k} Y\right) \rightarrow H^{i}\left(\Sigma^{k} \Omega^{n} Y\right)$ satisfies:

$$
\begin{aligned}
& \xi_{k}^{*}\left({ }^{k} \widetilde{\alpha} *^{k} \tilde{\beta}\right)=0 \\
& \xi_{k}^{*}\left(Q^{s}\left({ }^{k} \widetilde{\alpha}\right)\right)=\sigma^{k}\left(Q^{s}(\alpha)\right) \\
& \xi_{k}^{*}\left(\lambda_{n-k-1}\left({ }^{k} \widetilde{\alpha},{ }^{k} \widetilde{\beta}\right)\right)=\sigma^{k}\left(\lambda_{n-1}(\alpha, \beta)\right)
\end{aligned}
$$

So the result follows from (4.5) and the definition of ξ_{k}^{\prime}.

5. Proof of Theorem 3

Milgram [12, I] did not give a detailed proof of Theorem 3. Here we present it for later convenience.

If Y^{\prime} and $Y^{\prime \prime}$ are $\left(m^{\prime}+n-1\right)$ - and ($m^{\prime \prime}+n-1$)-connected respectively,
where $m^{\prime \prime} \geq m^{\prime}>1$, and if $g: Y^{\prime} \rightarrow Y^{\prime \prime}$ is a map, there is a commutative diagram of fibrations
where $X^{\prime}=\Omega^{n} Y^{\prime}, X^{\prime \prime}=\Omega^{n} Y^{\prime \prime}$ and $f=\Omega^{n} g$. Then the naturality of the Serre exact sequence yields a commutative diagram of exact sequences

for $i<3 m^{\prime}+n-1$.
Let $K\left(Z_{p}, i\right)$ be an Eilenberg-MacLane space of type $\left(Z_{p}, i\right)$ and let $\iota_{i} \in$ $H^{i}\left(K\left(Z_{p}, i\right)\right)$ be its fundamental class.

Proof of (1).
In the diagram (5.2), set $g=\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta}\right): Y \rightarrow K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right)$; then we see that to show (1) it suffices to prove

$$
\begin{equation*}
\nu_{n}^{*}\left(\sigma^{n}\left(\iota_{|\alpha|} \times \iota_{|\beta|}\right)\right)=\sigma^{n}\left[\left(\iota_{|\alpha|} \times 1\right) *\left(1 \times \iota_{|\beta|}\right)\right] \tag{1}
\end{equation*}
$$

in the case $Y=K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right)$.
Suppose $n>1$ and consider the diagram (5.2) for the case $g=\pi_{1}: K\left(Z_{p},|\alpha|\right.$ $+n) \times K\left(Z_{p},|\beta|+n\right) \rightarrow K\left(Z_{p},|\alpha|+n\right)$, the projection to the first factor. Then

$$
\begin{aligned}
& H^{|\alpha|+|\beta|+n}\left(G_{n}\left(K\left(\left(Z_{p}|\alpha|\right) \times K\left(Z_{p},|\beta|\right)\right)\right)\right. \\
& \quad=Z_{p}\left\{\sigma^{n}\left[\left(\iota_{|\alpha|} \times 1\right) *\left(1 \times \iota_{|\beta|}\right)\right]\right\} \text { modulo } \operatorname{Im}\left(G_{n} \pi_{1}\right)^{*}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{Cok}[& {\left[\xi_{n}^{*}: H^{\left|\alpha_{|+|}\right| \beta \mid+n}\left(K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right)\right)\right.} \\
& \left.\rightarrow H^{\mid \alpha_{|+|\beta|+n}}\left(\Sigma^{n}\left(K\left(Z_{p},|\alpha|\right) \times K\left(Z_{p},|\beta|\right)\right)\right)\right] \\
= & Z_{p}\left\{\sigma^{n}\left(\iota_{|\alpha|} \times \iota_{|\beta|}\right)\right\} \text { modulo } \operatorname{Im}\left(\Sigma^{n} \pi_{1}\right)^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Ker} & {\left[\xi_{n}^{*}: H^{\left|\alpha_{+}+|\beta|+n+1\right.}\left(K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right)\right)\right.} \\
& \left.\rightarrow H^{\left|\alpha_{\mid+1}\right| \beta \mid+n+1}\left(\Sigma^{n}\left(K\left(Z_{p},|\alpha|\right) \times K\left(Z_{p},|\beta|\right)\right)\right)\right] \\
= & 0 \text { modulo } \operatorname{Im} \pi_{1}^{*}
\end{aligned}
$$

For $\sigma^{n}(\omega) \in \operatorname{Im}\left(G_{n} \pi_{1}\right)^{*}$ let $\sigma^{n}(\bar{\omega}) \in H^{*}\left(G_{n} K\left(Z_{p},|\alpha|\right)\right)$ be such that $\left(G_{n} \pi_{1}\right)^{*}\left(\sigma^{n}(\bar{\omega})\right)$ $=\sigma^{n}(\omega)$. Then the behavior of $\sigma^{n}(\omega)$ in the lower sequence of (5.2) depends
on that of $\sigma^{n}(\bar{\omega})$ in the upper sequence of (5.2). So the above observation implies (1)' for $n>1$.

It remains to prove the case $n=1$. Consider the diagram (4.2) for the case that $Y=K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right)$ and $k=n-1$; then there is a commutative diagram
where $X=K\left(Z_{p},|\alpha|\right) \times K\left(Z_{p},|\beta|\right)$, and by (1) of Lemma 8,

$$
\begin{aligned}
\nu_{1}^{*}\left(\sigma\left(\iota_{|\alpha|} \times \iota_{|\beta|}\right)\right) & =\nu_{1}^{*}\left(\Sigma^{*}\right)^{n-1}\left(\sigma^{n}\left(\iota_{|\alpha|} \times \iota_{|\beta|}\right)\right) \\
& =\left(\tilde{\eta}_{n-1}^{\prime}\right)^{*}\left(\sigma^{*}\right)^{n-1} \nu_{n}^{*}\left(\sigma^{n}\left(\iota_{|\alpha|} \times \iota_{|\beta|}\right)\right) \\
& =\left(\tilde{\eta}_{n-1}^{\prime}\right)^{*}\left(\sigma^{*}\right)^{n-1}\left(\sigma^{n}\left[\left(\iota_{|\alpha|} \times 1\right) *\left(1 \times \iota_{|\beta|}\right)\right]\right) \\
& =\sigma\left[\left(\iota_{|\alpha|} \times 1\right) *\left(1 \times \iota_{|\beta|}\right)\right] .
\end{aligned}
$$

Proof of (2).
In the diagram (5.2), set $g={ }^{n} \tilde{\alpha}: Y \rightarrow K\left(Z_{2},|\alpha|+n\right)$; then we see that to show (2) it suffices to prove

$$
\begin{equation*}
\tau\left(\sigma^{n}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right)=S q^{s+1}\left(\iota_{|\alpha|+n}\right) \tag{2}
\end{equation*}
$$

in the case $Y=K\left(Z_{2},|\alpha|+n\right)$.
Consider the lower sequence of (5.2) for the case that $Y^{\prime}=K\left(Z_{2}, s+1\right)$ and $n=1$. Then

$$
H^{2 s+1}\left(G_{1} K\left(Z_{2}, s\right)\right)=Z_{2}\left\{\sigma\left[Q^{s}\left(\iota_{s}\right)\right]\right\}
$$

On the other hand,

$$
\operatorname{Cok}\left[\xi_{1}^{*}: H^{2 s+1}\left(K\left(Z_{2}, s+1\right)\right) \rightarrow H^{2 s+1}\left(\Sigma K\left(Z_{2}, s\right)\right)\right]=0
$$

and

$$
\begin{aligned}
& \operatorname{Ker}\left[\xi_{1}^{*}: H^{2 s+2}\left(K\left(Z_{2}, s+1\right)\right) \rightarrow H^{2 s+2}\left(\Sigma K\left(Z_{2}, s\right)\right)\right] \\
& \quad=Z_{2}\left\{S q^{s+1}\left(\iota_{s+1}\right)\right\}
\end{aligned}
$$

So we have

$$
\tau\left(\sigma\left[Q^{s}\left(\iota_{s}\right)\right]\right)=S q^{s+1}\left(\iota_{s+1}\right) .
$$

Consider the diagram (4.4) for the case that $Y=K\left(Z_{2}, s+1\right), n=-|\alpha|+s$ +1 and $k=n-1=-|\alpha|+s$; then there is a commutative diagram

where $X=K\left(Z_{2},|\alpha|\right)$ and $Y=K\left(Z_{2}, s\right)$, and by (2) of Lemma 9,

$$
\begin{aligned}
\tau\left(\sigma^{-|\alpha|+s+1}\left[Q^{s}\left(\iota_{|\alpha|} \mid\right)\right]\right) & =\tau\left(\tilde{\xi}_{-|\alpha|+s}^{\prime}\right) *\left(\sigma\left[Q^{s}\left(\iota_{s}\right)\right]\right) \\
& =\tau\left(\sigma\left[Q^{s}\left(\iota_{s}\right)\right]\right) \\
& =S q^{s+1}\left(\iota_{s+1}\right) .
\end{aligned}
$$

Consider the diagram (4.2) for the case that $Y=K\left(Z_{2},|\alpha|+n\right)$ and $k=$ $|\alpha|+n-s-1$; then there is a commutative diagram

where $X=K\left(Z_{2},|\alpha|\right)$ and $\Omega^{k} Y=K\left(Z_{2}, s+1\right)$, and by (2) of Lemma 8,

$$
\begin{aligned}
& \left(\sigma^{*}\right)^{|\alpha|+n-s-1} \tau\left(\sigma^{n}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& \quad=\tau\left(\sigma^{*}\right)^{|\alpha|+n-s-1}\left(\sigma^{n}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& \quad=\tau\left(\tilde{\eta}_{|\alpha|+n-s-1}^{\prime}\right)^{*}\left(\sigma^{*}\right)^{|\alpha|+n-s-1}\left(\sigma^{n}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& \quad=\tau\left(\sigma^{-\left|\alpha_{\mid}\right|+s+1}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& \quad=S Q^{s+1}\left(\iota_{s+1}\right) \\
& \quad=\left(\sigma^{*}\right)^{|\alpha|+n-s-1}\left(S q^{s+1}\left(\iota_{|\alpha|+n}\right)\right) .
\end{aligned}
$$

Since $\left(\sigma^{*}\right)^{\mid \alpha_{\mid+n-s-1}}: H^{\mid \alpha_{\mid+n+s+1}}\left(K\left(Z_{2},|\alpha|+n\right)\right) \rightarrow H^{2 s+2}\left(K\left(Z_{2}, s+1\right)\right)$ is monomorphic (see [4]), (2)' follows.

Proof of (3).
In the diagram (5.2), set $g=\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta}\right): Y \rightarrow K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right)$; then we see that to show (3) it suffices to prove

$$
\begin{equation*}
\tau\left(\sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \iota_{|\beta|}\right)\right]\right)=\iota_{|\alpha|+n} \times \iota_{|\beta|+n} \tag{3}
\end{equation*}
$$

in the case $Y=K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right)$.
Consider the diagram (5.2) for the case that $g=\pi_{1}: K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p}\right.$, $|\beta|+n) \rightarrow K\left(Z_{p},|\alpha|+n\right)$ and $n=1$. Then

$$
H^{|\alpha|+|\beta|+2 n-1}\left(G_{1}\left(K\left(Z_{p},|\alpha|+n-1\right) \times K\left(Z_{p},|\beta|+n-1\right)\right)\right)
$$

$$
\begin{aligned}
= & Z_{p}\left\{\sigma\left[\left(\iota_{|\alpha|+n-1} \times 1\right) *\left(1 \times \iota_{|\beta|+n-1}\right)\right],\right. \\
& \left.\sigma\left[\lambda_{0}\left(\iota_{|\alpha|+n-1} \times 1,1 \times \iota_{|\beta|+n-1}\right)\right]\right\} \text { modulo } \operatorname{Im}\left(G_{1} \pi_{1}\right)^{*} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{Cok}\left[\xi_{1}^{*}:\right. & H^{|\alpha|+|\beta|+2 n-1}\left(K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right)\right) \rightarrow \\
& \left.H^{\left|\alpha_{\mid}\right|+|\beta|+2 n-1}\left(\sum\left(K\left(Z_{p},|\alpha|+n-1\right) \times K\left(Z_{p},|\beta|+n-1\right)\right)\right)\right] \\
= & Z_{p}\left\{\sigma\left(\iota_{|\alpha|+n-1} \times \iota_{|\beta|+n-1}\right)\right\} \text { modulo } \operatorname{Im}\left(\sum \pi_{1}\right)^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Ker}\left[\xi_{1}^{*}:\right. & H^{\alpha_{|++|\beta|+2 n}}\left(K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right)\right) \rightarrow \\
& \left.H^{\left|\alpha_{|+|}\right| \beta \mid+2 n}\left(\sum\left(K\left(Z_{p},|\alpha|+n-1\right) \times K\left(Z_{p},|\beta|+n-1\right)\right)\right)\right] \\
= & Z_{p}\left\{\iota_{|\alpha|+n} \times \iota_{|\beta|+n}\right\} \text { modulo } \operatorname{Im} \pi_{1}^{*} .
\end{aligned}
$$

In view of the formula (1), we find that

$$
\tau\left(\sigma\left[\lambda_{0}\left(\iota_{|\alpha|+n-1} \times 1,1 \times \iota_{|\beta|+n-1}\right)\right]\right)=\iota_{|\alpha|+n} \times \iota_{|\beta|+n} .
$$

Suppose $n>1$ and consider the diagram (4.4) for the case that $Y=K\left(Z_{p}\right.$, $|\alpha|+n) \times K\left(Z_{p},|\beta|+n\right)$ and $k=n-1$; then we have the commutative diagram (5.4) (where $X=K\left(Z_{p},|\alpha|\right) \times K\left(Z_{p},|\beta|\right)$ and $\Omega Y=K\left(Z_{p},|\alpha|+n-1\right) \times K\left(Z_{p}\right.$, $|\beta|+n-1)$), and by (3) of Lemma 9,

$$
\begin{aligned}
& \tau\left(\sigma^{n}\left[\lambda_{n-1}\left(\iota_{\alpha \alpha \mid} \times 1,1 \times \iota_{|\beta|}\right)\right]\right) \\
& \quad=\tau\left(\hat{\xi}_{n-1}^{\prime}\right)^{*}\left(\sigma\left[\lambda_{0}\left(\iota_{|\alpha|+n-1} \times 1,1 \times \iota_{|\beta|+n-1}\right)\right]\right) \\
& \quad=\tau\left(\sigma\left[\lambda_{0}\left(\iota_{|\alpha|+n-1} \times 1,1 \times \iota_{|\beta|+n-1}\right)\right]\right) \\
& \quad=\iota_{|\alpha|+n} \times \iota_{|\beta|+n} .
\end{aligned}
$$

6. Proof of Theorem 7

We begin by introducing some notations.
For $i \leq j$ let $L\left(Z_{2}, i ; j\right)$ denote the mapping fibre of

$$
S q^{i}\left(\iota_{j}\right): K\left(Z_{2}, j\right) \rightarrow K\left(Z_{2}, i+j\right),
$$

and for $i>j$ let

$$
L\left(Z_{2}, i ; j\right)=\Omega^{i-j} L\left(Z_{2}, i ; i\right) .
$$

Then for any (i, j) there is a fibration

$$
K\left(Z_{2}, i+j-1\right) \xrightarrow{\varepsilon_{L}} L\left(Z_{2}, i ; j\right) \xrightarrow{\zeta_{L}} K\left(Z_{2}, j\right)
$$

which is induced by $S q^{i}\left(\iota_{j}\right)$. Put $\iota^{j}=\zeta_{L}^{*}\left(\iota_{j}\right)$. Since $S q^{i}$ is stable, it follows that $\Omega^{n} L\left(Z_{2}, i ; j+n\right) \simeq L\left(Z_{2}, i ; j\right)$ for all i, j and n, i.e., $L\left(Z_{2}, i ; j\right)$ is an infinite loop space.

Suppose $i>j$. Then $S q^{i}\left(\iota_{j}\right)=0$ and therefore

$$
\begin{equation*}
L\left(Z_{2}, i ; j\right) \simeq K\left(Z_{2}, j\right) \times K\left(Z_{2}, i+j-1\right) \tag{6.1}
\end{equation*}
$$

$$
\varepsilon_{L}^{*}\left(\kappa^{i ; j}\right)=\iota_{i+j-1} .
$$

We now take integers i, j and n so that (2) of Theorem 3 is applicable to $\sigma^{n}\left[Q^{i-1}\right.$ $\left.\left(\iota^{j-n}\right)\right] \in H^{i+j-1}\left(G_{n} L\left(Z_{2}, i ; j-n\right)\right)$, where $Y=L\left(Z_{2}, i ; j\right)$. Then $\tau\left(\sigma^{n}\left[Q^{i-1}\left(c^{j-n}\right)\right]\right)$ $=S q^{i}\left(\iota^{j}\right)$, which is equal to zero by the definition of $L\left(Z_{2}, i ; j\right)$. So $\sigma^{n}\left[Q^{i-1}\right.$ $\left.\left(\iota^{j-n}\right)\right]$ lies in the image of ν_{n}^{*}. In view of (6.1), we find that

$$
\begin{equation*}
\nu_{n}^{*}\left(\sigma^{n}\left(\kappa^{i ; j-n}\right)\right)=\sigma^{n}\left[Q^{i-1}\left(\iota^{j-n}\right)\right] \tag{6.2}
\end{equation*}
$$

For $i \leq j$ let $M\left(Z_{p} ; i, j\right)$ denote the mapping fibre of

$$
\iota_{i} \times \iota_{j}: K\left(Z_{p}, i\right) \times K\left(Z_{p}, j\right) \rightarrow K\left(Z_{p}, i+j\right) .
$$

Then there is a fibration

$$
K\left(Z_{p}, i+j-1\right) \xrightarrow{\varepsilon_{M}} M\left(Z_{p} ; i, j\right) \xrightarrow{\zeta_{M}} K\left(Z_{p}, i\right) \times K\left(Z_{p}, j\right)
$$

Application of Ω^{n} yields a fibration

$$
K\left(Z_{p}, i+j-n-1\right) \xrightarrow{\varepsilon_{M}} \Omega^{n} M\left(Z_{p} ; i, j\right) \xrightarrow{\zeta_{M}} K\left(Z_{p}, i-n\right) \times K\left(Z_{p}, j-n\right)
$$

which is induced by $\left(\sigma^{*}\right)^{n}\left(\iota_{i} \times \iota_{j}\right)$ for $n \geq 0$. Put $\iota^{i-n}=\zeta_{M}^{*}\left(\iota_{i-n} \times 1\right)$ and $\iota^{j-n}=$ $\zeta_{M}^{*}\left(1 \times \iota_{j-n}\right)$.

Suppose $n \geq 1$. Then $\left(\sigma^{*}\right)^{n}\left(\iota_{i} \times \iota_{j}\right)=0$ by (4.6), and therefore

$$
\begin{equation*}
\Omega^{n} M\left(Z_{p} ; i, j\right) \simeq K\left(Z_{p}, i-n\right) \times K\left(Z_{p}, j-n\right) \times K\left(Z_{p}, i+j-n-1\right) \tag{6.3}
\end{equation*}
$$

Let $\lambda^{n ; i-n, j-n} \in H^{i+j-n-1}\left(\Omega^{n} M\left(Z_{p} ; i, j\right)\right)$ be the element such that

$$
\varepsilon_{M}^{*}\left(\lambda^{n ; i-n, j-n}\right)=\iota_{i+j-n-1} .
$$

We now take integers i, j and n so that (3) of Theorem 3 is applicable to $\sigma^{n}\left[\lambda_{n-1}\left(\iota^{i-n}, \iota^{j-n}\right)\right] \in H^{i+j-1}\left(G_{n} \Omega^{n} M\left(Z_{p} ; i, j\right)\right)$, where $Y=M\left(Z_{p} ; i, j\right)$. Then $\tau\left(\sigma^{n}\left[\lambda_{n-1}\left(\iota^{i-n}, \iota^{j-n}\right)\right]\right)=\iota^{i} \cup \iota^{j}$, which is equal to zero by the definition of $M\left(Z_{p}\right.$; i, j). So $\sigma^{n}\left[\lambda_{n-1}\left(\iota^{i-n}, \iota^{j-n}\right)\right]$ lies in the image of ν_{n}^{*}. In view of (6.3), we find that

$$
\begin{equation*}
\nu_{n}^{*}\left(\sigma^{n}\left(\lambda^{n ; i-n, j-n}\right)\right)=\sigma^{n}\left[\lambda_{n-1}\left(\iota^{i-n}, \iota^{j-n}\right)\right](u p \text { to a non-zero constant }) . \tag{6.4}
\end{equation*}
$$

Let $X=\Omega^{n} Y$ and suppose that an element $\alpha \in H^{*}(X)$ such that $S q^{s+1}\left({ }^{n} \widetilde{\alpha}\right)$ $=0$ is given. Consider the following diagram
where the row is a fibration. By hypothesis there is a lifting ${ }^{n} \widetilde{\alpha} \wedge$ of ${ }^{n} \widetilde{\alpha}$. Then we have the commutative diagram (5.1) for the case $g={ }^{n} \widetilde{\alpha} \wedge$, and from naturality and (6.2) it follows that

$$
\begin{equation*}
\left(\Omega^{n n} \tilde{\alpha} \wedge\right)^{*}\left(\kappa^{s+1 ;\left|\alpha^{1}\right|}\right)=\left\{Q^{s}(\alpha)\right\} \tag{6.5}
\end{equation*}
$$

Suppose that elements $\alpha, \beta \in H^{*}(X)$ such that ${ }^{n} \widetilde{\alpha} \cup^{n} \tilde{\beta}=0$ are given. Consider the following diagram

where the row is a fibration. By hypothesis there is a lifting $\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta}\right) \wedge$ of $\left({ }^{n} \widetilde{\alpha}\right.$, $\left.{ }^{n} \tilde{\beta}\right)$. Then we have the commutative diagram (5.1) for the case $g=\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta}\right) \wedge$, and from naturality and (6.4) it follows that

$$
\begin{equation*}
\left(\Omega^{n}\left({ }^{n} \widetilde{\alpha},{ }^{n} \widetilde{\beta}\right) \wedge\right)^{*}\left(\lambda^{n ;|\alpha|,|\beta|}\right)=\left\{\lambda_{n-1}(\alpha, \beta)\right\} . \tag{6.6}
\end{equation*}
$$

We enter into the proof of Theorem 7.
Let $\left\{E_{r}, d_{r}\right\}$ be the spectral sequence (3.8). It follows from (2.3) that $E_{2}^{i, j}$ for $i+j<4 m+n-1$ with $i, j>0$ (explicitly speaking, $i \geq m+n$ and $j \geq 2 m$ $+n)$ has a Z_{p}-basis consisting of elements

$$
{ }^{n} \widetilde{\alpha} \otimes \sigma^{n}[\beta * \gamma],,^{n} \widetilde{\alpha} \otimes \sigma^{n}\left[Q^{s}(\beta)\right](p=2) \text { and }{ }^{n} \tilde{\alpha} \otimes \sigma^{n}\left[\lambda_{n-1}(\beta, \gamma)\right] .
$$

By Corollary 4 and the multiplicative properties of the cohomology spectral sequence, if these elements survive to E_{∞}, they represent the following elements of $H^{*}\left(\Sigma^{n} X\right)$:

$$
\begin{aligned}
& \sigma^{n}(\alpha) \cup \sigma^{n}(\beta \cup \gamma), \sigma^{n}(\alpha) \cup \sigma^{n}\left(\left\{Q^{s}(\beta)\right\}\right)(p=2) \text { and } \\
& \sigma^{n}(\alpha) \cup \sigma^{n}\left(\left\{\lambda_{n-1}(\beta, \gamma)\right\}\right)
\end{aligned}
$$

But all cup products in $H^{*}\left(\Sigma^{n} X\right)$ vanish (e.g., see $\left(7.8^{*}\right)$ of [16, III]). This implies that
(6.7) $E_{2}^{i, j}$ for $i+j<4 m+n-1$ with $i, j>0$ is divided into two parts: one part consists of elements which kill certain elements of $E_{2}^{i+j+1,0}$ (following the formulas of Theorem 3) and the other part consists of elements which are killed by some elements of $E_{2}^{0, i+j-1}$.

Consider now the diagram (5.1) and let $\left\{{ }^{\prime} E_{r},{ }^{\prime} d_{r}\right\}$ and $\left\{{ }^{\prime \prime} E_{r},{ }^{\prime \prime} d_{r}\right\}$ be the $\bmod p$ cohomology spectral sequences of the upper and lower fibrations, respectively. Then the naturality of the Serre spectral sequence yields a homomorphism of spectral sequences
(6.8) $g:{ }^{\prime \prime} E \rightarrow{ }^{\prime} E$, which is a system of maps $\left\{g_{r}^{i, j}\right\}, g_{r}^{i, j}:{ }^{\prime \prime} E_{r}^{i, j} \rightarrow{ }^{\prime} E_{r}^{i, j}$, such that ${ }^{\prime} d_{r} g_{r}=g_{r}{ }^{\prime \prime} d_{r}, g_{r+1}$ is induced by g_{r} and the diagram

$$
\begin{gathered}
{ }^{\prime \prime} E_{2}^{i, j} \xrightarrow{g_{2}^{i, j}}{ }^{\prime}{ }^{\prime} E_{2}^{i, j} \\
H^{i}\left(Y^{\prime \prime}\right) \otimes H^{j}\left(G_{n} X^{\prime \prime}\right) \xrightarrow{g^{*} \otimes G_{n} f^{*}}{ }^{*} H^{i}\left(Y^{\prime}\right) \otimes H^{j}\left(G_{n} X^{\prime}\right)
\end{gathered}
$$

commutes.
Proof of (1).
Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \widetilde{\alpha},{ }^{n} \widetilde{\theta}\right): Y \rightarrow K\left(Z_{p} ;|\alpha|\right.$ $+n) \times K\left(Z_{p},|\theta|+n\right)$. Then we see that to show (1) it suffices to prove

$$
\begin{equation*}
\nu_{n}^{*}\left(\sigma^{n}\left(\iota_{|\alpha|} \times \iota_{\theta \mid}\right)\right)=\sigma^{n}\left[\left(\iota_{|\alpha|} \times 1\right) *\left(1 \times \iota_{|\theta|}\right)\right] \tag{1}
\end{equation*}
$$

in the case $Y=K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\theta|+n\right)$.
The rest of the argument is the same as that in the proof of (1) of Theorem 3 , except that one uses the spectral sequence in place of the exact sequence.

Proof of (2).
Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \tilde{\alpha},{ }^{n} \tilde{\beta},{ }^{n} \tilde{\gamma}\right): Y \rightarrow K\left(Z_{p}\right.$, $|\alpha|+n) \times K\left(Z_{p}|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right)$. Then we see that to show (2) it suffices to prove

$$
\begin{equation*}
\nu_{n}^{*}\left(\sigma^{n}\left(\iota_{|\alpha|} \times \iota_{|\beta|} \times \iota_{|\gamma|}\right)\right)=\sigma^{n}\left[\left(\iota_{|\alpha|} \times 1 \times 1\right) *\left(1 \times \iota_{|\beta|} \times \iota_{|\gamma|}\right)\right] \tag{2}
\end{equation*}
$$

in the case $Y=K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right)$.
We use the homomorphisms (6.8) for the cases that $g=\left(\pi_{1}, \pi_{2}\right): K\left(Z_{p}\right.$, $|\alpha|+n) \times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p}, \quad|\gamma|+n\right) \rightarrow K\left(Z_{p}, \quad|\alpha|+n\right) \times K\left(Z_{p}, \quad|\beta|+n\right)$, $g=\left(\pi_{1}, \pi_{3}\right)$ and $g=\left(\pi_{2}, \pi_{3}\right)$. Suppose $n>1$ and consider $\left\{{ }^{\prime} E_{r},{ }^{\prime} d_{r}\right\}$ modulo $\operatorname{Im}\left(\overline{\pi_{1}, \pi_{2}}\right)+\operatorname{Im}\left(\overline{\pi_{1}, \pi_{3}}\right)+\operatorname{Im}\left(\overline{\pi_{2}, \pi_{3}}\right) ;$ then for $i+j=|\alpha|+|\beta|+|\gamma|+n$,

$$
' E_{2}^{i, j}= \begin{cases}Z_{p}\left\{\sigma^{n}\left[\left(\iota_{|\alpha|} \times 1 \times 1\right) *\left(1 \times \iota_{|\beta|} \times \iota_{|\gamma|}\right)\right]\right\} & (i=0) \\ 0 & (i>0)\end{cases}
$$

(recall the relation (3.1)). On the other hand,

$$
\begin{aligned}
& H^{|\alpha|+|\beta|+|\gamma|+n}\left(\Sigma^{n}\left(K\left(Z_{p},|\alpha|\right) \times K\left(Z_{p},|\beta|\right) \times K\left(Z_{p},|\gamma|\right)\right)\right) \\
&= Z_{p}\left\{\sigma^{n}\left(\iota_{|\alpha|} \times \iota_{|\beta|} \times \iota_{i \gamma 1}\right)\right\} \text { modulo } \operatorname{Im}\left(\Sigma^{n}\left(\pi_{1}, \pi_{2}\right)\right)^{*} \\
&+\operatorname{Im}\left(\Sigma^{n}\left(\pi_{1}, \pi_{3}\right)\right)^{*}+\operatorname{Im}\left(\Sigma^{n}\left(\pi_{2}, \pi_{3}\right)\right)^{*} .
\end{aligned}
$$

This observation implies (2)' for $n>1$.

It remains to prove the case $n=1$. But the argument here is analogous to that in the proof of (1) of Theorem 3.

Proof of (3).
Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta} \wedge\right): Y \rightarrow K\left(Z_{2}\right.$, $|\alpha|+n) \times L\left(Z_{2}, s+1 ;|\beta|+n\right)$. Then by (6.5) we see that to show (3) it suffices to prove

$$
\begin{equation*}
\nu_{n}^{*}\left(\sigma^{n}\left(\iota_{|\alpha|} \times \kappa^{s+1 ;|\beta|}\right)\right)=\sigma^{n}\left[\left(\iota_{|\alpha|} \times 1\right) *\left(1 \times \kappa^{s+1 ;|\beta|}\right)\right] \tag{3}
\end{equation*}
$$

in the case $Y=K\left(Z_{2},|\alpha|+n\right) \times L\left(Z_{2}, s+1 ;|\beta|+n\right)$.
We use the homomorphism (6.8) for the case $g=1 \times \zeta_{L}: K\left(Z_{2},|\alpha|+n\right) \times$ $L\left(Z_{2}, s+1 ;|\beta|+n\right) \rightarrow K\left(Z_{2},|\alpha|+n\right) \times K\left(Z_{2},|\beta|+n\right)$. Suppose $n>1$ and consider $\left\{{ }^{\prime} E_{r},{ }^{\prime} d_{r}\right\}$ modulo $\operatorname{Im} \overline{1 \times \zeta_{L}}$; then for $i+j=|\alpha|+|\beta|+n+s$,

$$
' E_{2}^{i, j}= \begin{cases}Z_{2}\left\{\sigma^{n}\left[\left(\iota_{\alpha \alpha \mid} \times 1\right) *\left(1 \times \kappa^{s+1 ;|\beta|}\right)\right]\right\} & (i=0) \\ 0 & (i>0)\end{cases}
$$

On the other hand,

$$
\begin{aligned}
& H^{\left|\alpha_{\mid}+|\beta|+n+s\right.}\left(\sum^{n}\left(K\left(Z_{2},|\alpha|\right) \times L\left(Z_{2}, s+1 ;|\beta|\right)\right)\right) \\
& \quad=Z_{2}\left\{\sigma^{n}\left(\iota_{|\alpha|} \times \kappa^{s+1 ;|\beta|}\right)\right\} \text { modulo } \operatorname{Im}\left(\Sigma^{n}\left(1 \times \zeta_{L}\right)\right)^{*} .
\end{aligned}
$$

This observation implies (3) for $n>1$.
The proof for the case $n=1$ is analogous to that in the proof of (1) of Theorem 3.

Proof of (4).
Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \widetilde{\alpha},\left({ }^{n} \tilde{\beta},{ }^{n} \tilde{\gamma}\right) \wedge\right): Y \rightarrow$ $K\left(Z_{p},|\alpha|+n\right) \times M\left(Z_{p} ;|\beta|+n,|\gamma|+n\right)$. Then by (6.6) we see that to show (4) it suffices to prove

$$
\begin{equation*}
\nu_{n}^{*}\left(\sigma^{n}\left(\iota_{|\alpha|} \times \lambda^{n ;|\beta|, ~|\gamma|}\right)\right)=\sigma^{n}\left[\left(\iota_{|\alpha|} \times 1\right) *\left(1 \times \lambda^{n ;|\beta|,|\gamma|}\right)\right] \tag{4}
\end{equation*}
$$

in the case $Y=K\left(Z_{p},|\alpha|+n\right) \times M\left(Z_{p} ;|\beta|+n,|\gamma|+n\right)$.
We use the homomorphism (6.8) for the case $g=1 \times \zeta_{M}: K\left(Z_{p},|\alpha|+n\right) \times$ $M\left(Z_{p} ;|\beta|+n,|\gamma|+n\right) \rightarrow K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right)$. Suppose $n>1$ and consider $\left\{{ }^{\prime} E_{r},{ }^{\prime} d_{r}\right\}$ modulo $\operatorname{Im} \overline{1 \times \zeta_{M}}$; then for $i+j=|\alpha|$ $+|\beta|+|\gamma|+2 n-1$,

$$
' E_{2}^{i, j}= \begin{cases}Z_{p}\left\{\sigma^{n}\left[\left(\iota_{|\alpha|} \times 1\right) *\left(1 \times \lambda^{n ;|\beta|,|\gamma|}\right)\right]\right\} & (i=0) \\ 0 & (i>0)\end{cases}
$$

On the other hand,

$$
\begin{aligned}
& H^{|\alpha|+|\beta|+|\gamma|+2 n-1}\left(\sum^{n}\left(K\left(Z_{p},|\alpha|\right) \times \Omega^{n} M\left(Z_{p} ;|\beta|+n,|\gamma|+n\right)\right)\right) \\
& \quad=Z_{p}\left\{\sigma^{n}\left(\iota_{|\alpha|} \times \lambda^{n ;|\beta|,|\gamma|}\right)\right\} \text { modulo } \operatorname{Im}\left(\Sigma^{n}\left(1 \times \zeta_{M}\right)\right)^{*} .
\end{aligned}
$$

This observation implies (4)' for $n>1$.
The proof for the case $n=1$ is analogous.
Proof of (5).
This proof is the same as that of (2) of Theorem 3.
Proof of (6).
Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \widetilde{\alpha},{ }^{n} \widetilde{)}\right): Y \rightarrow K\left(Z_{p}\right.$, $|\alpha|+n) \times K\left(Z_{p},|\theta|+n\right)$. Then we see that to show (6) it suffices to prove

$$
\begin{equation*}
\tau\left(\sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \iota_{|\theta|}\right)\right]\right)=\iota_{|\alpha|+n} \times \iota_{|\theta|+n} \tag{6}
\end{equation*}
$$

in the case $Y=K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\theta|+n\right)$.
The rest of the argument is the same as that in the proof of (3) of Theorem 3 , except that one uses the spectral sequence in place of the exact sequence.

Proof of (7).
Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta},{ }^{n} \tilde{\gamma}\right): Y \rightarrow K\left(Z_{p}\right.$, $|\alpha|+n) \times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right)$. Then we see that to show (7) it suffices to prove

$$
\begin{align*}
& d_{|\alpha|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1 \times 1,1 \times \iota_{|\beta|} \times \iota_{i \gamma \mid}\right)\right]\right) \tag{7}\\
& \quad=\left(\iota_{|\alpha|+n} \times 1 \times 1\right) \otimes \sigma^{n}\left[\left(1 \times \iota_{|\beta|} \times 1\right) *\left(1 \times 1 \times \iota_{|\gamma|}\right)\right]
\end{align*}
$$

in the case $Y=K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right)$.
We use the homomorphisms (6.8) for the cases $g=\left(\pi_{1}, \pi_{2}\right): K\left(Z_{p},|\alpha|+n\right)$ $\times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right) \rightarrow K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right), g=\left(\pi_{1}, \pi_{3}\right)$ and $g=\left(\pi_{2}, \pi_{3}\right)$. Then, in ${ }^{\prime} E_{2}^{i, j}$ for $i+j=|\alpha|+|\beta|+|\gamma|+2 n$ with $i, j>0$, there are elements

$$
\begin{aligned}
& \left(\iota_{|\alpha|+n} \times 1 \times 1\right) \otimes \sigma^{n}\left[\left(1 \times \iota_{|\beta|} \times 1\right) *\left(1 \times 1 \times \iota_{|\gamma|}\right)\right], \\
& \left(1 \times \iota_{|\beta|+n} \times 1\right) \otimes \sigma^{n}\left[\left(\iota_{|\alpha|} \times 1 \times 1\right) *\left(1 \times 1 \times \iota_{|\gamma|}\right)\right] \text { and } \\
& \left(1 \times 1 \times \iota_{|\gamma|+n}\right) \otimes \sigma^{n}\left[\left(\iota_{|\alpha|} \times 1 \times 1\right) *\left(1 \times \iota_{|\beta|} \times 1\right)\right] .
\end{aligned}
$$

By (6.7) and (1) of Theorem 3, these elements must be killed by some elements of ${ }^{\prime} E_{2}^{0,|\alpha|+|\beta|+|\gamma|+2 n-1}$. The elements which may kill them are

$$
\begin{aligned}
& 1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1 \times 1,1 \times \iota_{|\beta|} \times \iota_{|\gamma|}\right)\right], \\
& 1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1, \iota_{|\alpha|} \times 1 \times \iota_{|\gamma|}\right)\right] \text { and } \\
& 1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times 1 \times \iota_{|\gamma|}, \iota_{|\alpha|} \times \iota_{|\beta|} \times 1\right)\right],
\end{aligned}
$$

since the behavior of other elements in ' E_{r} has been determined by the formula (2) and the naturality arguments (with respect to the maps $\left(\pi_{1}, \pi_{2}\right),\left(\pi_{1}\right.$, π_{3}) and ($\left.\pi_{2}, \pi_{3}\right)$). So (7)' follows.

Proof of (8).
Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \tilde{\alpha},{ }^{n} \tilde{\beta} \wedge\right): Y \rightarrow K\left(Z_{2}\right.$, $|\alpha|+n) \times L\left(Z_{2}, s+1 ;|\beta|+n\right)$. Then by (6.5) we see that to show (8) it suffices to prove

$$
\begin{align*}
& d_{|\alpha|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \kappa^{s+1 ;|\beta|}\right)\right]\right) \tag{8}\\
& \quad=\left(\iota_{|\alpha|+n} \times 1\right) \otimes \sigma^{n}\left[Q^{s}\left(1 \times \iota^{|\beta|}\right)\right]
\end{align*}
$$

in the case $Y=K\left(Z_{2},|\alpha|+n\right) \times L\left(Z_{2}, s+1 ;|\beta|+n\right)$.
We use the homomorphism (6.8) for the case $g=1 \times \zeta_{L}: K\left(Z_{2},|\alpha|+n\right) \times$ $L\left(Z_{2}, s+1 ;|\beta|+n\right) \rightarrow K\left(Z_{2},|\alpha|+n\right) \times K\left(Z_{2},|\beta|+n\right)$. Then in ${ }^{\prime} E_{2}^{|\alpha|+n,|\beta|+n+s}$ there is an element

$$
\left(\iota_{|\alpha|+n} \times 1\right) \otimes \sigma^{n}\left[Q^{s}\left(1 \times \iota^{|\beta|}\right)\right] .
$$

By (6.7), (2) of Theorem 3 and the definition of $L\left(Z_{2}, s+1 ;|\beta|+n\right)$, this element must be killed by some element of ' $E_{2}^{0,|\alpha|+|\beta|+2 n+s-1}$. The element which may kill it is

$$
1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \kappa^{s+1 ;|\beta|}\right)\right],
$$

since the behavior of other elements in ' E_{r} has been determined by the formula (3) and the naturality argument. So (8)' follows.

Proof of (12).
Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta},{ }^{n} \tilde{\gamma}\right): Y \rightarrow K\left(Z_{p}\right.$, $|\alpha|+n) \times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right)$. Then we see that to show (12) it suffices to prove

$$
\begin{align*}
& d_{|\alpha|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1 \times 1, \lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1,1 \times 1 \times \iota_{|\gamma|}\right)\right)\right]\right) \tag{12}\\
& \quad=\left(\iota_{|\alpha|+n} \times 1 \times 1\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1,1 \times 1 \times \iota_{|\gamma|}\right)\right]
\end{align*}
$$

in the case $Y=K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right)$. (Here we suppose that $\beta<\alpha<\gamma$.)

We use the homomorphisms (6.8) for the cases $g=\left(\pi_{1}, \pi_{2}\right): K\left(Z_{p},|\alpha|+n\right)$ $\times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right) \rightarrow K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right), g=\left(\pi_{1}, \pi_{3}\right)$ and $g=\left(\pi_{2}, \pi_{3}\right)$. Then, in ' $E_{2}^{i, j}$ for $i+j=|\alpha|+|\beta|+|\gamma|+3 n-1$ with $i, j>0$, there are elements

$$
\begin{aligned}
& \left(\iota_{|\alpha|+n} \times 1 \times 1\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1,1 \times 1 \times \iota_{|\gamma|}\right)\right] \\
& \left(1 \times \iota_{|\beta|+n} \times 1\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1 \times 1,1 \times 1 \times \iota_{|\gamma|}\right)\right] \text { and } \\
& \left(1 \times 1 \times \iota_{|\gamma|+n}\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1, \iota_{|\alpha|} \times 1 \times 1\right)\right]
\end{aligned}
$$

On the other hand, in ${ }^{\prime} E_{2}^{0,|\alpha|+|\beta|+|\gamma|+3 n-2}$ there are elements

$$
1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1 \times 1, \lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1,1 \times 1 \times \iota_{|\gamma|}\right)\right)\right] \text { and }
$$

$$
1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times 1 \times \iota_{|\gamma|}, \lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1, \iota_{|\alpha|} \times 1 \times 1\right)\right)\right] .
$$

Furthermore, in ${ }^{\prime} E_{2}^{|\alpha|+|\beta|+|\gamma|+3 n, 0}$ there is an element

$$
\left(\iota_{|\alpha|+n} \times \iota_{|\beta|+n} \times \iota_{|\gamma|+n}\right) \otimes 1
$$

which must be in the image of ' d_{r} (for some r), by (4.6). In view of (6.7) and (3) of Theorem 3, we may conclude that

$$
\begin{aligned}
& \prime d_{|\alpha|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1 \times 1, \lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1,1 \times 1 \times \iota_{|\gamma|}\right)\right)\right]\right) \\
& =\left(\iota_{|\alpha|+n} \times 1 \times 1\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1,1 \times 1 \times \iota_{|\gamma|}\right)\right], \\
& \prime d_{|\gamma|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times 1 \times \iota_{|\gamma|}, \lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1, \iota_{|\alpha|} \times 1 \times 1\right)\right)\right]\right) \\
& \quad=\left(1 \times 1 \times \iota_{|\gamma|+n}\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota_{|\beta|} \times 1, \iota_{|\alpha|} \times 1 \times 1\right)\right] \text { and } \\
& \prime d_{|\alpha|+|\gamma|+2 n}\left(\left(1 \times \iota_{|\beta|+n} \times 1\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1 \times 1,1 \times 1 \times \iota_{|\gamma|}\right)\right]\right) \\
& \quad= \pm\left(\iota_{|\alpha|+n} \times \iota_{|\beta|+n} \times \iota_{|\gamma|+n}\right) \otimes 1,
\end{aligned}
$$

since the behavior of other elements in ' E_{r} has been determined by the formulas (2) and (7) and the naturality arguments.

Remark. It fcllows from (1.10) and (1.13) that any two of

$$
\begin{aligned}
& \lambda_{n-1}\left(\iota_{i} \times 1 \times 1, \lambda_{n-1}\left(1 \times \iota_{j} \times 1,1 \times 1 \times \iota_{k}\right)\right) \\
& \quad\left(= \pm \lambda_{n-1}\left(\iota_{i} \times 1 \times 1, \lambda_{n-1}\left(1 \times 1 \times \iota_{k}, 1 \times \iota_{j} \times 1\right)\right)\right), \\
& \lambda_{n-1}\left(1 \times \iota_{j} \times 1, \lambda_{n-1}\left(1 \times 1 \times \iota_{k}, \iota_{i} \times 1 \times 1\right)\right) \text { and } \\
& \lambda_{n-1}\left(1 \times 1 \times \iota_{k}, \lambda_{n-1}\left(\iota_{i} \times 1 \times 1,1 \times \iota_{j} \times 1\right)\right)
\end{aligned}
$$

constitute a part of a Z_{p}-basis for $\vec{H}^{*}\left(F_{n}\left(K\left(Z_{p}, i\right) \times K\left(Z_{p}, j\right) \times K\left(Z_{p}, k\right)\right)\right)$. Taking this into consideration, we abandon the idea of fixing a Z_{p}-basis for $\ddot{H}^{*}\left(G_{n} X\right)$ and assert that (12) always holds. The reader should refer to the Remark below the proof of (9) (a).

Proof of (9) (a).
Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \widetilde{\alpha},\left({ }^{n} \tilde{\beta},{ }^{n} \tilde{\gamma}\right) \wedge\right): Y \rightarrow$ $K\left(Z_{p},|\alpha|+n\right) \times M\left(Z_{p} ;|\beta|+n,|\gamma|+n\right)$. Then by (6.6) we see that to show (9) (a) it suffices to prove
(9) $(a)^{\prime}$

$$
\begin{aligned}
& d_{|\alpha|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \lambda^{n ;|\beta|,|\gamma|}\right)\right]\right) \\
& \quad=\left(\iota_{|\alpha|+n} \times 1\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota^{|\beta|}, 1 \times \iota^{|\gamma|}\right)\right]
\end{aligned}
$$

in the case $Y=K\left(Z_{p},|\alpha|+n\right) \times M\left(Z_{p} ;|\beta|+n,|\gamma|+n\right)$.
We use the homomorphism (6.8) for the case $g=1 \times \zeta_{M}: K\left(Z_{p},|\alpha|+n\right) \times$ $M\left(Z_{p} ;|\beta|+n,|\gamma|+n\right) \rightarrow K\left(Z_{p},|\alpha|+n\right) \times K\left(Z_{p},|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right)$. Then, in ' $E_{2}^{i, j}$ for $i+j=|\alpha|+|\beta|+|\gamma|+3 n-1$ with $i, j>0$, there are elements

$$
\left(\iota_{|\alpha|+n} \times 1\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota^{|\beta|}, 1 \times \iota^{|\gamma|}\right)\right],
$$

$$
\begin{aligned}
& \left(1 \times \iota^{|\beta|+n}\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \iota^{|\gamma|}\right)\right] \text { and } \\
& \left(1 \times \iota^{|\gamma|+n}\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \iota^{|\beta|}\right)\right] .
\end{aligned}
$$

On the other hand, in ${ }^{\prime} E_{2}^{0,|\alpha|+|\beta|+|\gamma|+3 n-2}$ there are elements

$$
\begin{aligned}
& 1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota^{|\beta|}, \lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \iota^{|\gamma|}\right)\right)\right], \\
& 1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota^{|\gamma|}, \lambda_{n-1}\left(\iota_{\alpha \alpha \mid} \times 1,1 \times \iota^{|\beta|}\right)\right)\right] \text { and } \\
& 1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \lambda^{n ;|\beta|,|\gamma|}\right)\right] .
\end{aligned}
$$

It follows from the naturality argument (cf. the proof of (12)) that

$$
\begin{aligned}
& { }^{\prime} d_{|\beta|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota^{|\beta|}, \lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \iota^{|\gamma|}\right)\right)\right]\right) \\
& \quad=\left(1 \times \iota^{|\beta|+n}\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \iota^{|\gamma|}\right)\right], \\
& \quad d_{|\gamma|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota^{|\gamma|}, \lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \iota^{|\beta|}\right)\right)\right]\right) \\
& \quad=\left(1 \times \iota^{|\gamma|+n}\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \iota^{|\beta|}\right)\right] \text { and } \\
& \prime d_{|\beta|+|\gamma|+2 n}\left(\left(\iota_{|\alpha|+n} \times 1\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota^{|\beta|}, 1 \times \iota^{|\gamma|}\right)\right]\right) \\
& \quad= \pm\left(\left(\iota_{|\alpha|+n} \times 1\right) \cup\left(1 \times \iota^{|\beta|+n}\right) \cup\left(1 \times \iota^{|\gamma|+n}\right)\right) \otimes 1 \\
& \quad=0,
\end{aligned}
$$

since $\iota^{|\beta|+n} \cup \iota^{|\gamma|+n}=0$ by the definition of $M\left(Z_{p} ;|\beta|+n,|\gamma|+n\right)$. Hence, by (6.7), $\left(\iota_{|\alpha|+n} \times 1\right) \otimes \sigma^{n}\left[\lambda_{n-1}\left(1 \times \iota^{|\beta|}, 1 \times \iota^{|\gamma|}\right)\right]$ is killed by some element of ${ }^{\prime} E_{2}^{0,|\alpha|+|\beta|+}$ $|\gamma|+3 n-2$. It must be

$$
1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota_{|\alpha|} \times 1,1 \times \lambda^{n ;|\beta|,|\gamma|}\right)\right],
$$

since the behavior of other elements in ' E_{r} has been determined by the formula (4) and the naturality argument. So (9) (a)' follows.

Remark. In the above proof we have supposed that $\alpha<\beta<\gamma$ and have taken the set of basic λ_{n-1}-products as a part of a Z_{p}-basis for $\tilde{H}^{*}\left(G_{n} X\right)$. But if we take a different order among α, β, γ (e.g., $\beta<\alpha<\gamma$) and work in the same way, we find that (9) (a) does not hold as a formula. This trouble is overcomed by the following idea: we do not specify a Z_{p}-basis for $\tilde{H}^{*}\left(G_{n} X\right)$ and assert that (9) (a) holds in any case.

For the proof of (9) (b) we need some notations.
Let $M^{\prime}\left(Z_{p} ; i, j, k\right)$ denote the mapping fibre of

$$
\begin{aligned}
\left(\iota_{i} \times \iota_{j} \times 1,1 \times \iota_{j} \times \iota_{k}\right): K\left(Z_{p}, i\right) \times K\left(Z_{p}, j\right) \times K\left(Z_{p}, k\right) \rightarrow \\
K\left(Z_{p}, i+j\right) \times K\left(Z_{p}, j+k\right) .
\end{aligned}
$$

Then there is a fibration

$$
K\left(Z_{p}, i+j-1\right) \times K\left(Z_{p}, j+k-1\right) \xrightarrow{\varepsilon_{M^{\prime}}} M^{\prime}\left(Z_{p} ; i, j, k\right) \xrightarrow{\zeta_{M^{\prime}}}
$$

$$
K\left(Z_{p}, i\right) \times K\left(Z_{p}, j\right) \times K\left(Z_{p}, k\right) .
$$

Application of Ω^{n} yields a fibration

$$
\begin{aligned}
K\left(Z_{p}, i+j-n-1\right) & \times K\left(Z_{p}, j+k-n-1\right) \xrightarrow{\varepsilon_{M^{\prime}}} \Omega^{n} M^{\prime}\left(Z_{p} ; i, j, k\right) \\
\xrightarrow{\zeta_{M^{\prime}}} & K\left(Z_{p}, i-n\right) \times K\left(Z_{p}, j-n\right) \times K\left(Z_{p}, k-n\right) .
\end{aligned}
$$

which is induced by $\left(\left(\sigma^{*}\right)^{n}\left(\iota_{i} \times \iota_{j} \times 1\right),\left(\sigma^{*}\right)^{n}\left(1 \times \iota_{j} \times \iota_{k}\right)\right)$ for $n \geq 0$. Put $\iota^{i-n}=$ $\zeta_{M^{\prime}}^{*}\left(\iota_{i-n} \times 1 \times 1\right), \iota^{j-n}=\zeta_{M^{\prime}}^{*}\left(1 \times \iota_{j-n} \times 1\right)$ and $\iota^{k-n}=\zeta_{M^{\prime}}^{*}\left(1 \times 1 \times \iota_{k-n}\right)$.

Suppose $n \geq 1$. Then $\left(\sigma^{*}\right)^{n}\left(\iota_{i} \times \iota_{j} \times 1\right)=\left(\sigma^{*}\right)^{n}\left(1 \times \iota_{j} \times \iota_{k}\right)=0$ and therefore

$$
\begin{aligned}
& \Omega^{n} M^{\prime}\left(Z_{p} ; i, j, k\right) \simeq K\left(Z_{p}, i-n\right) \times K\left(Z_{p}, j-n\right) \times K\left(Z_{p}, k-n\right) \\
& \times K\left(Z_{p}, i+j-n-1\right) \times K\left(Z_{p}, j+k-n-1\right) .
\end{aligned}
$$

Let $\lambda^{n ; i-n, j-n} \in H^{i+j-n-1}\left(\Omega^{n} M^{\prime}\left(Z_{p} ; i, j, k\right)\right)\left(\right.$ resp. $\lambda^{n ; j-n, k-n} \in H^{j+k-n-1}\left(\Omega^{n} M^{\prime}\left(Z_{p}\right.\right.$; $i, j, k)$)) be the element such that

$$
\begin{aligned}
& \varepsilon_{M^{\prime}}^{*}\left(\lambda^{n ; i-n, j-n}\right)=\iota_{i+j-n-1} \times 1 \\
& \left(\text { resp. } \varepsilon_{M^{\prime}}^{*}\left(\lambda^{n ; j-n, k-n}\right)=1 \times \iota_{j+k-n-1}\right)
\end{aligned}
$$

We have fibrations

$$
\begin{align*}
& K\left(Z_{p}, i+j-1\right) \xrightarrow{{ }^{L} \varepsilon_{M^{\prime}}} M^{\prime}\left(Z_{p} ; i, j, k\right) \xrightarrow{L_{M^{\prime}}} K\left(Z_{p}, i\right) \times M\left(Z_{p} ; j, k\right), \tag{6.9}\\
& K\left(Z_{p}, j+k-1\right) \xrightarrow{R}{ }^{R} \varepsilon_{M^{\prime}} \tag{6.10}
\end{align*} M^{\prime}\left(Z_{p} ; i, j, k\right) \xrightarrow{R \zeta_{M^{\prime}}} M\left(Z_{p} ; i, j\right) \times K\left(Z_{p}, k\right), ~ l
$$

such that $\left(1 \times \zeta_{M}\right)^{L} \zeta_{M^{\prime}} \simeq \zeta_{M^{\prime}}$ and $\left(\zeta_{M} \times 1\right)^{R} \zeta_{M^{\prime}} \simeq \zeta_{M^{\prime}}$. Then ${ }^{L} \zeta_{M^{\prime}} *\left(1 \times \lambda^{n ; j-n, k-n}\right)$ $=\lambda^{n ; j-n, k-n}$ and ${ }^{R} \zeta_{M^{\prime}}\left(\lambda^{n ; i-n, j-n} \times 1\right)=\lambda^{n ; i-n, j-n}$.

By the definition of $M^{\prime}\left(Z_{p} ; i, j, k\right), \iota^{i} \cup \iota^{j}=\iota^{j} \cup \iota^{k}=0$. So the Massey product $\left\langle\iota^{i}, \iota^{j}, \iota^{k}\right\rangle\left(=(-1)^{i j+i k+j k+1}\left\langle\iota^{k}, \iota^{j}, \iota^{i}\right\rangle\right)$ is defined. Consider the $\bmod p$ cohomology spectral sequence $\left\{{ }^{L} E_{r},{ }^{L} d_{r}\right\}$ (resp. $\left\{{ }^{R} E_{r},{ }^{R} d_{r}\right\}$) of the fibration (6.9) (resp. (6.10)). Since ${ }^{L} \tau\left(\iota_{i+j-1}\right)=\iota_{i} \times \iota^{j}$ (resp. ${ }^{R} \tau\left(\iota_{j+k-1}\right)=\iota^{j} \times \iota_{k}$, it follows that

$$
\begin{aligned}
& { }^{L} d_{i+j}\left(\left(1 \times \iota^{k}\right) \otimes \iota_{i+j-1}\right)= \pm\left(\iota_{i} \times\left(\iota^{j} \cup \iota^{k}\right)\right) \otimes 1=0 \\
& \left(\text { resp. }{ }^{R} d_{j+k}\left(\left(\iota^{i} \times 1\right) \otimes \iota_{j+k-1}\right)= \pm\left(\left(\iota^{i} \cup \iota^{j}\right) \times \iota_{k}\right) \otimes 1=0\right)
\end{aligned}
$$

Thus we find that $\left(1 \times \iota^{k}\right) \otimes \iota_{i+j-1}\left(\right.$ resp. $\left.\left(\iota^{i} \times 1\right) \otimes \iota_{j+k-1}\right)$ survives to ${ }^{L} E_{\infty}\left(\right.$ resp. $\left.{ }^{R} E_{\infty}\right)$. Let ${ }^{L} \lambda^{i, j, k}\left(\right.$ resp. $\left.{ }^{R} \lambda^{i, j, k}\right) \in H^{i+j+k-1}\left(M^{\prime}\left(Z_{p} ; i, j, k\right)\right)$ be its representative.

Lemma 10. $\left\langle\iota^{i}, \iota^{j}, \iota^{k}\right\rangle= \pm^{R} \lambda^{i, j, k}$ (resp. $\left\langle\iota^{i}, \iota^{j}, \iota^{k}\right\rangle= \pm^{L} \lambda^{i, j, k}$).
Proof. Consider the map

$$
\begin{aligned}
& 1 \times \varepsilon_{M}: K\left(Z_{p}, i\right) \times K\left(Z_{p}, j+k-1\right) \rightarrow K\left(Z_{p}, i\right) \times M\left(Z_{p} ; j, k\right) \\
& \left(\operatorname{resp} . \varepsilon_{M} \times 1: K\left(Z_{p}, i+j-1\right) \times K\left(Z_{p}, k\right) \rightarrow M\left(Z_{p} ; i, j\right) \times K\left(Z_{p}, k\right)\right)
\end{aligned}
$$

Then we have a map

$$
\begin{aligned}
& { }^{L} f: K\left(Z_{p}, i\right) \times K\left(Z_{p}, j+k-1\right) \rightarrow M^{\prime}\left(Z_{p} ; i, j, k\right) \\
& \text { (resp. } \left.{ }^{R}: K\left(Z_{p}, i+j-1\right) \times K\left(Z_{p}, k\right) \rightarrow M^{\prime}\left(Z_{p} ; i, j, k\right)\right)
\end{aligned}
$$

such that ${ }^{L} \zeta_{M^{\prime}}{ }^{L} f \simeq 1 \times \varepsilon_{M}\left(\right.$ resp. $\left.{ }^{R} \zeta_{M^{\prime}}{ }^{R} f \simeq \varepsilon_{M} \times 1\right)$. It is clear that ${ }^{L} f^{*}\left(\iota^{i}\right)=$ $\iota_{i} \times 1$ (resp. ${ }^{R} f^{*}\left(\iota^{i}\right)=0$), ${ }^{L} f^{*}\left(\iota^{j}\right)=0\left(\right.$ resp. ${ }^{R} f^{*}\left(\iota^{j}\right)=0$), ${ }^{L} f^{*}\left(\iota^{k}\right)=0$ (resp. ${ }^{R} f^{*}\left(\iota^{k}\right)=$ $\left.1 \times \iota_{k}\right)$ and for $v \in H^{i+j+k-1}\left(M^{\prime}\left(Z_{p} ; i, j, k\right)\right)$,

$$
\begin{aligned}
& { }^{L} f^{*}(v)= \begin{cases}\iota_{i} \times \iota_{j+k-1} & \text { if } v={ }^{R} \lambda^{i, j, k} \\
0 & \text { otherwise }\end{cases} \\
& \text { (resp. }{ }^{R} f^{*}(v)=\left\{\begin{array}{ll}
\iota_{i+j-1} \times \iota_{k} & \text { if } v={ }^{L} \lambda^{i, j, k} \\
0 & \text { otherwise }
\end{array}\right) .
\end{aligned}
$$

By the same argument as in the proof of Lemma 7 of [15], we have

$$
\begin{aligned}
& { }^{{ }^{L}} f\left\langle\left\langle\iota^{i}, \iota^{j}, \iota^{k}\right\rangle= \pm \iota_{i} \times \iota_{j+k-1}\right. \\
& \text { (resp. } \left.{ }^{R} f^{*}\left\langle\iota^{i}, \iota^{j}, \iota^{k}\right\rangle= \pm \iota_{i+j-1} \times \iota_{k}\right) .
\end{aligned}
$$

So the result follows.
Proof of (9) (b).
By hypothesis there is a lifting of $\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta},{ }^{n} \tilde{\gamma}\right)$, i.e., a map

$$
\left({ }^{n} \widetilde{\alpha},{ }^{n} \widetilde{\beta},{ }^{n} \tilde{\gamma}\right)^{\wedge}: Y \rightarrow M^{\prime}\left(Z_{p} ;|\alpha|+n,|\beta|+n,|\gamma|+n\right)
$$

such that $\zeta_{M^{\prime}}\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta},{ }^{n} \tilde{\gamma}\right)^{\wedge} \simeq\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta},{ }^{n} \tilde{\gamma}\right)$. Consider the homomorphism (6.8) for the case $g=\left({ }^{n} \widetilde{\alpha},{ }^{n} \tilde{\beta},{ }^{n} \tilde{\gamma}\right)^{\wedge}$. Then by (6.6) we see that to show (9) (b) it suffices to prove
$(9)(b)^{\prime}$

$$
\begin{aligned}
& \tau\left(\sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\alpha|}, \lambda^{n ;|\beta|,|\gamma|}\right)\right]+c^{\prime} \cdot \sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\gamma|}, \lambda^{n:|\alpha|,|\beta|}\right)\right]\right) \\
& \quad=\left\langle\iota^{|\alpha|+n}, \iota^{|\beta|+n}, \iota^{|\gamma|+n}\right\rangle
\end{aligned}
$$

in the case $Y=M^{\prime}\left(Z_{p} ;|\alpha|+n,|\beta|+n,|\gamma|+n\right)$.
We use the homomorphism (6.8) for the case $g={ }^{L} \zeta_{M^{\prime}}: M^{\prime}\left(Z_{p} ;|\alpha|+n\right.$, $|\beta|+n,|\gamma|+n) \rightarrow K\left(Z_{p},|\alpha|+n\right) \times M\left(Z_{p} ;|\beta|+n,|\gamma|+n\right)$. Then, in ${ }^{\prime} E_{2}^{0,|\alpha|+|\beta|+|\gamma|+3 n-2}$ there are elements

$$
\begin{aligned}
& 1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\alpha|}, \lambda^{n ;|\beta|,|\gamma|}\right)\right] \text { and } \\
& 1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\gamma|}, \lambda^{n ;|\alpha|,|\beta|}\right)\right]
\end{aligned}
$$

On the other hand, in ' $E_{2}^{|\alpha|+|\beta|+|\gamma|+3 n-1,0}$ there is an element

$$
\left\langle\iota^{|\alpha|+n}, \iota^{|\beta|+n}, \iota^{|\gamma|+n}\right\rangle \otimes 1
$$

(which is non-zero by Lemma 10). By [6], it must be in the image of ' d_{r} (for
some r). It follows from the naturality argument (cf. the proof of (9) (a)) that

$$
\begin{aligned}
& d_{|\alpha|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\alpha|}, \lambda^{n ;|\beta|,|\gamma|}\right)\right]\right) \\
& \quad=\iota^{|\alpha|+n} \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\beta|}, \iota^{|\gamma|}\right)\right] .
\end{aligned}
$$

So we may conclude that

$$
\begin{align*}
& ' \tau\left(\sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\gamma|}, \lambda^{n ;\left|\alpha_{\mid}\right|,|\beta|}\right)\right]+\text { other terms }\right) \tag{6.11}\\
& \quad=\left\langle\iota^{\left|\alpha^{2}\right|+n}, \iota^{|\beta|+n}, \iota^{|\gamma|+n}\right\rangle .
\end{align*}
$$

Similarly from the naturality argument with respect to the map ${ }^{R} \zeta_{M^{\prime}}: M^{\prime}\left(Z_{p} ;|\alpha|+n,|\beta|+n,|\gamma|+n\right) \rightarrow M\left(Z_{p} ;|\alpha|+n,|\beta|+n\right) \times K\left(Z_{p},|\gamma|+n\right)$ it follows that

$$
\begin{gathered}
' d_{|\gamma|+n}\left(1 \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\gamma|}, \lambda^{n ;|\alpha|,|\beta|}\right)\right]\right) \\
=\iota^{|\gamma|+n} \otimes \sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\alpha|}, \iota^{|\beta|}\right)\right]
\end{gathered}
$$

and

$$
\begin{align*}
& \tag{6.12}\\
& \tau\left(\sigma^{n}\left[\lambda_{n-1}\left(\iota^{|\alpha|}, \lambda^{n ;|\beta|,|\gamma|}\right)\right]+\text { other terms }\right) \\
&=\left\langle\iota^{|\alpha|+n}, \iota^{|\beta|+n}, \iota^{|\gamma|+n}\right\rangle .
\end{align*}
$$

Thus equations (6.11) and (6.12) imply (9) (b)'.
Proof of (9) (c).
Let $M^{\prime \prime}\left(Z_{p} ; i, j, k\right)$ denote the mapping fibre of

$$
\begin{aligned}
&\left(\iota_{i} \times \iota_{j} \times 1, \iota_{i} \times 1 \times \iota_{k}, 1 \times \iota_{j} \times \iota_{k}\right): K\left(Z_{p}, i\right) \times K\left(Z_{p}, j\right) \times K\left(Z_{p}, k\right) \\
& \rightarrow K\left(Z_{p}, i+j\right) \times K\left(Z_{p}, i+k\right) \times K\left(Z_{p}, j+k\right) .
\end{aligned}
$$

Then ι^{i}, ι^{j} and ι^{k} are defined similarly. We have fibrations

$$
\begin{aligned}
& K\left(Z_{p}, i+j-1\right) \rightarrow M^{\prime \prime}\left(Z_{p} ; i, j, k\right) \rightarrow M^{\prime}\left(Z_{p} ; j, k, i\right), \\
& K\left(Z_{p}, i+k-1\right) \rightarrow M^{\prime \prime}\left(Z_{p} ; i, j, k\right) \rightarrow M^{\prime}\left(Z_{p} ; i, j, k\right) \text { and } \\
& K\left(Z_{p}, j+k-1\right) \rightarrow M^{\prime \prime}\left(Z_{p} ; i, j, k\right) \rightarrow M^{\prime}\left(Z_{p} ; k, i, j\right)
\end{aligned}
$$

which are induced by $\iota^{j} \cup \iota^{i}, \iota^{i} \cup \iota^{k}$ and $\iota^{k} \cup \iota^{j}$ respectively. By definition, all Massey products $\left\langle\iota^{i}, \iota^{j}, \iota^{k}\right\rangle,\left\langle\iota^{j}, \iota^{k}, \iota^{i}\right\rangle$ and $\left\langle\iota^{k}, \iota^{i}, \iota^{j}\right\rangle$ are defined and non-zero; this follows from the same argument as in Lemma 10. Furthermore, by [15] there is a relation

$$
(-1)^{i k}\left\langle\iota^{i}, \iota^{j}, \iota^{k}\right\rangle+(-1)^{i j}\left\langle\iota^{j}, \iota^{k}, \iota^{i}\right\rangle+(-1)^{j k}\left\langle\iota^{k}, \iota^{i}, \iota^{j}\right\rangle=0 .
$$

Taking this into consideration, we see that (the universal example for (9) (c) is $M^{\prime \prime}\left(Z_{p} ; i, j, k\right)$ and (9) (c) follows from the naturality arguments with respect to the maps $M^{\prime \prime}\left(Z_{p} ; i, j, k\right) \rightarrow M^{\prime}\left(Z_{p} ; j, k, i\right), M^{\prime \prime}\left(Z_{p} ; i, j, k\right) \rightarrow M^{\prime}\left(Z_{p} ; i, j, k\right)$ and so on.

Remark. We can go without (9) (c), because it is essentially a copy of (9) (b).

Proof of (10).
Consider the homomorphism (6.8) for the case $g=^{n} \tilde{\alpha}: Y \rightarrow K\left(Z_{3},|\alpha|+n\right)$. Then we see that to show (10) it suffices to prove

$$
\begin{equation*}
\tau\left(\sigma^{n}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right)=\Delta^{*} \mathfrak{S}^{s}\left(\iota_{|\alpha|+n}\right) \tag{10}
\end{equation*}
$$

in the case $Y=K\left(Z_{3},|\alpha|+n\right)$.
Consider the spectral sequence (3.8) for the case that $Y=K\left(Z_{3}, 2 s+1\right)$ and $n=1$. Since

$$
\begin{aligned}
& \xi_{1}^{*}\left(\Delta^{*} \mathfrak{B}^{s}\left(\iota_{2 s+1}\right)\right)=\Delta^{*} \mathfrak{S}^{s}\left(\xi_{1}^{*}\left(\iota_{2 s+1}\right)\right)=\Delta^{*} \mathfrak{P}^{s}\left(\sigma\left(\iota_{2 s}\right)\right) \\
& \quad=\sigma\left(\Delta^{*} \mathfrak{S}^{s}\left(\iota_{2 s}\right)\right)=\sigma\left(\Delta^{*}\left(\iota_{2 s} \cup \iota_{2 s} \cup \iota_{2 s}\right)\right)=\sigma(0)=0,
\end{aligned}
$$

$\Delta^{*} \mathfrak{S}^{s}\left(\iota_{2 s+1}\right) \otimes 1 \in E_{2}^{6 s+2.0}$ must be in the image of d_{r} (for some r). (Describe $E_{r}^{*, *}$, especially, $E_{2}^{0, *}=H^{*}\left(G_{1} K\left(Z_{3}, 2 s\right)\right)$.) In view of the formulas (1), (6) and (7), we find that the only element which may kill it is $1 \otimes \sigma\left[Q^{s}\left(\iota_{s}\right)\right] \in E_{2}^{0.6 s+1}$; that is,

$$
\tau\left(\sigma\left[Q^{s}\left(\iota_{2 s}\right)\right]\right)=\Delta^{*} \mathfrak{S}^{s}\left(\iota_{2 s+1}\right) .
$$

Consider the diagram (4.4) for the case that $Y=K\left(Z_{3}, 2 s+1\right), n=-|\alpha|+$ $2 s+1$ and $k=n-1=-|\alpha|+2 s$; then we have the commutative diagram (5.4) (where $X=K\left(Z_{3},|\alpha|\right)$ and $\Omega Y=K\left(Z_{3}, 2 s\right)$), and by (2) of Lemma 9,

$$
\begin{aligned}
\tau\left(\sigma^{-\left|\alpha_{\mid}\right|+2 s+1}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) & =\tau\left(\tilde{\xi}_{-|\alpha|+2 s}^{\prime}\right)^{*}\left(\sigma\left[Q^{s}\left(\iota_{2 s}\right)\right]\right) \\
& =\tau\left(\sigma\left[Q^{s}\left(\iota_{2 s}\right)\right]\right) \\
& =\Delta^{*} \mathfrak{P}^{s}\left(\iota_{2 s+1}\right) .
\end{aligned}
$$

Consider the diagram (4.2) for the case that $Y=K\left(Z_{3},|\alpha|+n\right)$ and $k=|\alpha|+n-2 s-1$; then we have the commutative diagram (5.5) (where $X=$ $K\left(Z_{3},|\alpha|\right)$ and $\Omega^{k} Y=K\left(Z_{3}, 2 s+1\right)$), and by (2) of Lemma 8,

$$
\begin{aligned}
\left(\sigma^{*}\right)^{|\alpha|+n-2 s-1} \tau\left(\sigma^{n}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) & =\tau\left(\sigma^{*}\right)^{\left|\alpha_{\mid}\right|+n-2 s-1}\left(\sigma^{n}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& =\tau\left(\tilde{\eta}_{|\alpha|+n-2 s-1}^{\prime}\right)^{*}\left(\sigma^{*}\right)^{|\alpha|+n-2 s-1}\left(\sigma^{n}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& =\tau\left(\sigma^{-\mid \alpha_{\mid+2 s+1}}\left[Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& =\Delta^{*} \mathfrak{B}^{s}\left(\iota_{2 s+1}\right) \\
& =\left(\sigma^{*}\right)^{\mid \alpha_{\mid}+n-2 s-1}\left(\Delta^{*} \mathfrak{P}^{s}\left(\iota_{|\alpha|+n}\right)\right) .
\end{aligned}
$$

Since $\left(\sigma^{*}\right)^{|\alpha|+n-2 s-1}: H^{\left|\alpha_{\mid}\right| n+4 s+1}\left(K\left(Z_{3},|\alpha|+n\right)\right) \rightarrow H^{6 s+2}\left(K\left(Z_{3}, 2 s+1\right)\right)$ is monomorphic (see [4]), (10)' follows.

Proof of (11).
Consider the homomorphism (6.8) for the case $g={ }^{n} \widetilde{\alpha}: Y \rightarrow K\left(Z_{3},|\alpha|+n\right)$. Then we see that to show (11) it suffices to prove

$$
\begin{equation*}
\tau\left(\sigma^{n}\left[\Delta Q^{s}\left(\iota_{|\alpha|}\right)\right]\right)=\mathfrak{S}^{s}\left(\iota_{|\alpha|+n}\right) \tag{11}
\end{equation*}
$$

in the case $Y=K\left(Z_{3},|\alpha|+n\right)$.
Consider the spectral sequence (3.8) for the case that $Y=K\left(Z_{3}, 2 s+1\right)$ and $n=2$. Since

$$
\begin{aligned}
\xi_{2}^{*}\left(\mathfrak{P}^{s}\left(\iota_{2 s+1}\right)\right) & =\mathfrak{B}^{s}\left(\xi_{2}^{*}\left(\iota_{2 s+1}\right)\right)=\mathfrak{S}^{s}\left(\sigma^{2}\left(\iota_{2 s-1}\right)\right) \\
& =\sigma^{2}\left(\mathfrak{F}^{s}\left(\iota_{2 s-1}\right)\right)=\sigma^{2}(0)=0,
\end{aligned}
$$

$\mathfrak{S}^{s}\left(\iota_{2 s+1}\right) \otimes 1 \in E_{2}^{6 s+1,0}$ must be in the image of d_{r} (for some r). (Describe $E_{r}^{*, *}$, especially, $E_{2}^{0, *}=H^{*}\left(G_{2} K\left(Z_{3}, 2 s-1\right)\right)$.) In view of the formulas (1) and (6), we find that the only element which may kill it is $1 \otimes \sigma^{2}\left[\Delta Q^{s}\left(\iota_{2 s-1}\right)\right] \in E_{2}^{0,6 s}$; that is,

$$
\tau\left(\sigma^{2}\left[\Delta Q^{s}\left(\iota_{2 s-1}\right)\right]\right)=\mathfrak{S}^{s}\left(\iota_{2 s+1}\right) .
$$

Consider the diagram (4.4) for the case that $Y=K\left(Z_{3}, 2 s+1\right), n=-|\alpha|+$ $2 s+1$ and $k=n-2=-|\alpha|+2 s-1$; then we have the commutative diagram analogous to (5.4), and by (2) of Lemma 9,

$$
\begin{aligned}
\tau\left(\sigma^{-\left|\alpha_{\mid}\right|+2 s+1}\left[\Delta Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) & =\tau\left(\tilde{\xi}_{-\mid \alpha+2 s-1}^{\prime}\right)^{*}\left(\sigma^{2}\left[\Delta Q^{s}\left(\iota_{2 s-1}\right)\right]\right) \\
& =\tau\left(\sigma^{2}\left[\Delta Q^{s}\left(\iota_{2 s-1}\right)\right]\right) \\
& =\mathfrak{P}^{s}\left(\iota_{2 s+1}\right)
\end{aligned}
$$

Consider the diagram (4.2) for the case that $Y=K\left(Z_{3},|\alpha|+n\right)$ and $k=|\alpha|+n-2 s-1$; then we have the commutative diagram (5.5) (where $X=$ $K\left(Z_{3},|\alpha|\right)$ and $\Omega^{k} Y=K\left(Z_{3}, 2 s+1\right)$), and by (2) of Lemma 8,

$$
\begin{aligned}
\left(\sigma^{*}\right)^{\mid \alpha_{\mid+n-2 s-1} \tau} \tau\left(\sigma^{n}\left[\Delta Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) & =\tau\left(\sigma^{*}\right)^{|\alpha|+n-2 s-1}\left(\sigma^{n}\left[\Delta Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& =\tau\left(\tilde{\eta}_{|\alpha|+n-2 s-1}^{\prime}\right)^{*}\left(\sigma^{*}\right)^{\left|\alpha_{\mid}\right|+n-2 s-1}\left(\sigma^{n}\left[\Delta Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& =\tau\left(\sigma^{-|\alpha|+2 s+1}\left[\Delta Q^{s}\left(\iota_{|\alpha|}\right)\right]\right) \\
& =\mathfrak{P}^{s}\left(\iota_{2 s+1}\right) \\
& =\left(\sigma^{*}\right)^{\mid \alpha_{\mid+n-2 s-1}}\left(\mathfrak{P}^{s}\left(\iota_{|\alpha|+n}\right)\right) .
\end{aligned}
$$

Since $\left(\sigma^{*}\right)^{\mid \alpha_{\mid+n-2 s-1}}: H^{\mid \alpha_{\mid+n+4 s}}\left(K\left(Z_{3},|\alpha|+n\right)\right) \rightarrow H^{6 s+1}\left(K\left(Z_{3}, 2 s+1\right)\right)$ is monomorphic (see [4]), (11)' follows.

Furthering the assertion of the Remark below Theorem 7, we find that, for example, in view of (1.10) and the diagram (5.4) together with Lemma 9 (3), the formula (6) of Theorem 7 should be rewritten as follows:

$$
\tau\left(\sigma^{n}\left[\lambda_{n-1}(\alpha, \theta)\right]\right)=(-1)^{\mid \alpha_{\mid+n} n} \widetilde{\alpha} \cup^{n} \widetilde{\theta}
$$

But here we shall not pursue this discussion.

7. Several remarks

In this section we collect miscellaneous remarks on the results of the previous sections.

First we have
Proposition 11. Let $n \geq 1$ and $i, j>n$. Then
(i) $\operatorname{In} H_{*}\left(L\left(Z_{2}, i ; i-n\right)\right), Q^{i-1}\left(\iota_{*}^{i-n}\right)=\kappa_{*}^{i ; i-n}$.
(ii) $\operatorname{In} H_{*}\left(\Omega^{n} M\left(Z_{p} ; i, j\right)\right), \lambda_{n-1}\left(\iota_{*}^{i-n}, \iota_{*}^{i-n}\right)=\lambda_{*}^{n ; i-n, j-n}$.

Proof. We use induction on n. To prove (i) for $n=1$, we first consider the $\bmod 2$ cohomology spectral sequence $\left\{E_{r}, d_{r}\right\}$ of the path fibration

$$
L\left(Z_{2}, i ; i-1\right) \rightarrow P L\left(Z_{2}, i ; i\right) \rightarrow L\left(Z_{2}, i ; i\right) .
$$

Then by the well-known argument [10, Lemma 3.1.1], $\tau\left(\iota^{i-1}\right)=\iota^{i}$ and $d_{i}\left(1 \otimes \kappa^{i ; i-1}\right)=\iota^{i} \otimes \iota^{i-1}$. We next consider the mod 2 homology spectral sequence $\left\{E^{r}, d^{r}\right\}$ of the same fibration. It follows from the duality between E_{r} and E^{r} that $\tau_{*}\left(\iota_{*}^{i}\right)=\iota_{*}^{i-1}$ and $d^{i}\left(\iota_{*}^{i} \otimes \iota_{*}^{i-1}\right)=1 \otimes \kappa_{*}^{i ; i-1}$. According to [3, Theorem II. 5.A], these equations imply that $\iota_{*}^{i-1} \iota_{*}^{i-1}=\kappa_{*}^{i ; i-1}$ in $H_{*}\left(L\left(Z_{2}, i ; i-1\right)\right)$. By (1.3), this proves (i) for $n=1$.

Assume that $Q^{i-1}\left(\iota_{*}^{i-n+1}\right)=\kappa_{*}^{i ; i-n+1}$ in $H_{*}\left(L\left(Z_{2}, i ; i-n+1\right)\right)$. Consider the $\bmod 2$ homology spectral sequence of the path fibration

$$
L\left(Z_{2}, i ; i-n\right) \rightarrow P L\left(Z_{2}, i ; i-n+1\right) \rightarrow L\left(Z_{2}, i ; i-n+1\right) .
$$

In view of (6.1), we find that ι_{*}^{i-n+1} and $\kappa_{*}^{i ; i-n+1}$ transgress to ι_{*}^{i-n} and $\kappa_{*}^{i ; i-n}$ respectively. So

$$
\begin{aligned}
\kappa_{*}^{i ; i-n} & =\tau_{*}\left(\kappa_{*}^{i ; i-n+1}\right) \\
& =\tau_{*}\left(Q^{i-1}\left(\iota_{*}^{i-n+1}\right)\right) \\
& =Q^{i-1}\left(\tau_{*}\left(\iota_{*}^{i-n+1}\right)\right) \quad(\text { by }(1.16)) \\
& =Q^{i-1}\left(\iota_{*}^{i-n}\right) .
\end{aligned}
$$

To prove (ii) for $n=1$, we first consider the $\bmod p$ cohomology spectral sequence $\left\{E_{r}, d_{r}\right\}$ of the path fibration

$$
\Omega M\left(Z_{p} ; i, j\right) \rightarrow P M\left(Z_{p} ; i, j\right) \rightarrow M\left(Z_{p} ; i, j\right)
$$

Then $\tau\left(\iota^{i-1}\right)=\iota^{i}$ and $\tau\left(\iota^{j-1}\right)=\iota^{j}$. Therefore $d_{i}\left(1 \otimes\left(\iota^{i-1} \cup \iota^{j-1}\right)\right)=\iota^{i} \otimes \iota^{j-1}$ and $d_{i}\left(\iota^{j} \otimes \iota^{i-1}\right)=\left(\iota^{i} \cup \iota^{j}\right) \otimes 1=0$ by the definition of $M\left(Z_{p} ; i, j\right)$. So $\iota^{j} \otimes \iota^{i-1}$ must be in the image of $c_{j}{ }_{j}$. In view of (6.3), we find that

$$
d_{j}\left(1 \otimes \lambda^{1 ; i-1, j-1}+\text { other terms }\right)=\iota^{j} \otimes \iota^{i-1} .
$$

We next consider the $\bmod p$ homology spectral sequence $\left\{E^{r}, d^{r}\right\}$ of the same fibration. It follows from the duality and [3, Theorem II. 5. A] that $d^{i}\left(\iota_{*}^{i} \otimes \iota_{*}^{i-1}\right)=1 \otimes\left(\iota_{*}^{i-1} * \iota_{*}^{j-1}\right)$ and $d^{j}\left(\iota_{*}^{j ; 3} \otimes \iota_{*}^{i-1}\right)=1 \otimes\left(\iota_{*}^{i-1} * \iota_{*}^{i-1}\right)$. This implies that

$$
H_{i+j-2}\left(\Omega M\left(Z_{p} ; i, j\right)\right)=Z_{p}\left\{\iota_{*}^{i-1} * \iota_{*}^{j-1}, \iota_{*}^{j-1} \iota_{*}^{i-1}, \cdots\right\} .
$$

Here $\iota_{*}^{j-1} * \iota_{*}^{i-1}$ can be replaced by $\iota_{*}^{i-1} * \iota_{*}^{j-1}-(-1)^{(i-1)(j-1)} \iota_{*}^{j-1} * \iota_{*}^{i-1}=\lambda_{0}\left(\iota_{*}^{i-1}, \iota_{*}^{j-1}\right)$ (see (1.9)). Since $\lambda_{0}\left(\iota_{*}^{i-1}, \iota_{*}^{j-1}\right)$ is primitive, we may conclude that

$$
\begin{equation*}
\lambda_{0}\left(\iota_{*}^{i-1}, \iota_{*}^{j-1}\right)\left(\text { resp. } \iota_{*}^{i-1} * \iota_{*}^{j-1}\right) \text { is dual to } \lambda^{1 ; i-1, j-1}\left(\text { resp. } \iota^{i-1} \cup \iota^{j-1}\right) \tag{7.1}
\end{equation*}
$$

This proves (ii) for $n=1$.
Assume that $\lambda_{n-2}\left(\iota_{*}^{i-n+1}, \iota_{*}^{j-n+1}\right)=\lambda_{*}^{n-1 ; i-n+1, j-n+1}$ in $H_{*}\left(\Omega^{n-1} M\left(Z_{p} ; i, j\right)\right)$. Consider the $\bmod p$ homology spectral sequence of the path fibration

$$
\Omega^{n} M\left(Z_{p} ; i, j\right) \rightarrow P \Omega^{n-1} M\left(Z_{p} ; i, j\right) \rightarrow \Omega^{n-1} M\left(Z_{p} ; i, j\right)
$$

In view of (6.3), we find that $\iota_{*}^{i-n+1}, \iota_{*}^{j-n+1}$ and $\lambda_{*}^{n-1 ; i-n+1, j-n+1}$ transgress to $\iota_{*}^{i-n}, \iota_{*}^{j-n}$ and $\lambda_{*}^{n ; i-n, j-n}$ respectively. So

$$
\begin{align*}
\lambda_{*}^{n ; i-n, j-n} & =\tau_{*}\left(\lambda_{*}^{n-1 ; i-n+1, j-n+1}\right) \\
& =\tau_{*}\left(\lambda_{n-2}\left(\iota_{*}^{i-n+1}, \iota_{*}^{j-n+1}\right)\right) \\
& =\lambda_{n-1}\left(\tau_{*}\left(\iota_{*}^{i-n+1}\right), \tau_{*}\left(\iota_{*}^{i-n+1}\right)\right) \quad \text { (by (1.16)) } \tag{1.16}\\
& =\lambda_{n-1}\left(\iota_{*}^{i-n}, \iota_{*}^{i-n}\right) .
\end{align*}
$$

Remark. This Proposition assures us that

$$
\left\{Q^{s}(\alpha)\right\}(p=2),\left\{\lambda_{n-1}(\alpha, \beta)\right\} \in H^{*}(X)
$$

are dual to

$$
Q^{s}\left(\alpha_{*}\right)(p=2), \lambda_{n-1}\left(\alpha_{*}, \beta_{*}\right) \in H_{*}(X)
$$

respectively.
Suppose $X=\Omega^{n} Y$ for $n \geq 1$. Let $\mu: X \times X \rightarrow X$ be the loop multiplication. Then

$$
H^{*}(X) \xrightarrow{\mu^{*}} H^{*}(X \times X) \Longleftarrow H^{*}(X) \otimes H^{*}(X)
$$

gives a coproduct in $H^{*}(X)$.
Corollary 12. In the notations of Corollary 4,
(1) $\mu^{*}(\theta)=\theta \otimes 1+1 \otimes \theta$;
(2) $\quad \mu^{*}(\alpha \cup \beta)=(\alpha \cup \beta) \otimes 1+\alpha \otimes \beta+(-1)^{|\alpha||\beta|} \beta \otimes \alpha+1 \otimes(\alpha \cup \beta)$;
(3) $\quad \mu^{*}\left(\left\{Q^{s}(\alpha)\right\}\right)= \begin{cases}\left\{Q^{|\alpha|}(\alpha)\right\} \otimes 1+\alpha \otimes \alpha+1 \otimes\left\{Q^{|\alpha|}(\alpha)\right\} & \text { if } s=|\alpha| \\ \left\{Q^{s}(\alpha)\right\} \otimes 1+1 \otimes\left\{Q^{s}(\alpha)\right\} & \text { if } s>|\alpha| ;\end{cases}$
(4) $\quad \mu^{*}\left(\left\{\lambda_{n-1}(\alpha, \beta)\right\}\right)=\left\{\begin{array}{cc}\left\{\lambda_{0}(\alpha, \beta)\right\} \otimes 1-(-1)^{\mid \alpha_{|||\beta|} \beta} \beta \otimes \alpha & \text { if } n=1 \\ +1 \otimes\left\{\lambda_{0}(\alpha, \beta)\right\} & \\ \left\{\lambda_{n-1}(\alpha, \beta)\right\} \otimes 1+1 \otimes\left\{\lambda_{n-1}(\alpha, \beta)\right\} & \text { if } n>1 .\end{array}\right.$

Proof. (1) is a consequence of

(7.2) Every element of $\operatorname{Im} \sigma^{*}$ is primitive.

(See (3.3*) of [16, VIII].)
For (2), since α and β are primitive, the result follows.
Proposition 11 (i) and (1.5) imply that for $i>j$,

$$
\mu^{*}\left(\kappa^{i ; j}\right)= \begin{cases}\kappa^{j+1 ; j} \otimes 1+\iota^{j} \otimes \iota^{j}+1 \otimes \kappa^{j+1 ; j} & \text { if } i=j+1 \tag{7.3}\\ \kappa^{i ; j} \otimes 1+1 \otimes \kappa^{i ; j} & \text { if } i>j+1\end{cases}
$$

So (3) follows from (6.5).
From (7.1) we deduce that

$$
\begin{aligned}
& \left\langle\mu^{*}\left(\lambda^{1 ; i, j}\right), \iota_{*}^{i} \otimes \iota_{*}^{j}\right\rangle=\left\langle\lambda^{1 ; i, j}, \iota_{*}^{i} * \iota_{*}^{j}\right\rangle=0 \quad \text { and } \\
& \left\langle\mu^{*}\left(\lambda^{1 ; i, j}\right), \iota_{*}^{j} \otimes \iota_{*}^{i}\right\rangle=\left\langle\lambda^{1 ; i, j}, \iota_{*}^{j} * \iota_{*}^{i}\right\rangle=-(-1)^{i j} .
\end{aligned}
$$

This, together with Proposition 11 (ii) and (1.12), implies that for $n \geq 1$,

$$
\mu^{*}\left(\lambda^{n ; i, j}\right)= \begin{cases}\lambda^{1 ; i, j} \otimes 1-(-1)^{i j \iota^{j}} \otimes \iota^{i}+1 \otimes \lambda^{1 ; i, j} & \text { if } n=1 \\ \lambda^{n ; i, j} \otimes 1+1 \otimes \lambda^{n ; i, j} & \text { if } n>1\end{cases}
$$

So (4) follows from (6.6).
Let $X=\Omega^{n} Y$. In certain situations the secondary operation problem in $H^{*}(Y)$ is equivalent to the primary operation problem in $H^{*}(X)$. We describe such situations by the following examples whose origin is [1, Addendum].

Example 1. Throughout this example, coefficients will be Z_{2}. Let Φ be the secondary cohomology operation associated with the relation

$$
S q^{1} S q^{2 s+1}=0
$$

The universal example for Φ consists of pairs $\left(E_{j}, \phi_{j}\right), j \geq 1$, where E_{j} is the total space of the fibration

$$
K\left(Z_{2}, j+2 s\right) \xrightarrow{\varepsilon_{j}} E_{j} \xrightarrow{\zeta_{j}} K\left(Z_{2}, j\right)
$$

which is induced by $S q^{2 s+1}\left(\iota_{j}\right): K\left(Z_{2}, j\right) \rightarrow K\left(Z_{2}, j+2 s+1\right)$, i.e., $E_{j}=L\left(Z_{2}, 2 s+1 ; j\right)$, and ϕ_{j} is an element of $H^{j+2 s+1}\left(E_{j}\right)$ such that
(1) $\left(\sigma^{*}\right)^{n}\left(\phi_{j+n}\right)=\phi_{j}$ for all n, in particular, ϕ_{j} is primitive (by (7.2));
(2) $\varepsilon_{j}^{*}\left(\phi_{j}\right)=S q^{1}\left(\iota_{j+2 s}\right)$.

If $j<2 s+1$, these conditions determine ϕ_{j} uniquely. In fact, from (7.3) and the definition of $\kappa^{2 s+1 ; j}$ it follows that

$$
\phi_{j}= \begin{cases}S q^{1}\left(\kappa^{2 s+1} ; 2 s\right)+\iota^{2 s} \cup S q^{1}\left(\iota^{2 s}\right) & \text { if } j=2 s \tag{7.4}\\ S q^{1}\left(\kappa^{2 s+1 ; j}\right) & \text { if } j<2 s\end{cases}
$$

Suppose that an element $\alpha \in H^{2 s}(X)$ such that $S q^{2 s+1}\left({ }^{n} \widetilde{\alpha}\right)=0$ is given. Then we can consider the element $S q^{1}\left\{Q^{2 s}(\alpha)\right\} \in H^{4 s+1}(X)$. By using (1.7) we see that $\sigma^{n}\left(S q^{1}\left\{Q^{2 s}(\alpha)\right\}\right) \in \operatorname{Ker} \nu_{n}^{*}$ if and only if $S q^{1}(\alpha)=0$. Assume that $S q^{1}(\alpha)=0$. Then

$$
\begin{aligned}
S q^{1}\left\{Q^{2 s}(\alpha)\right\} & \left.=S q^{1}\left(\Omega^{n n} \tilde{\alpha}^{\wedge}\right)^{*}\left(\kappa^{2 s+1 ; 2 s}\right) \quad \text { by }(6.5)\right) \\
& =\left(\Omega^{n n} \tilde{\alpha}^{\wedge}\right)^{*} S q^{1}\left(\kappa^{2 s+1 ; 2 s}\right) \\
& =\left(\Omega^{n n} \widetilde{\alpha}^{\wedge}\right)^{*}\left(\phi_{2 s}+\iota^{2 s} \cup S q^{1}\left(e^{2 s}\right)\right) \quad \text { by (7.4)) } \\
& =\left(\Omega^{n n} \widetilde{\alpha}^{\wedge}\right)^{*}\left(\phi_{2 s}\right)+\alpha \cup S q^{1}(\alpha) \\
& =\left(\Omega^{n n} \tilde{\alpha}^{\wedge}\right)^{*}\left(\phi_{2 s}\right) \\
& =\left(\Omega^{n n} \tilde{\alpha}^{\wedge}\right)^{*}\left(\sigma^{*}\right)^{n}\left(\phi_{n+2 s}\right) \quad(\text { by }(1)) \\
& =\left(\sigma^{*}\right)^{n}\left({ }^{n} \widetilde{\alpha}^{\wedge}\right)^{*}\left(\phi_{n+2 s}\right) \\
& =\left(\sigma^{*}\right)^{n} \Phi\left({ }^{n} \widetilde{\alpha}\right) .
\end{aligned}
$$

Thus $\Phi\left({ }^{n} \widetilde{\alpha}\right)={ }^{n} \widetilde{\theta}$ if and only if $S q^{1}\left\{Q^{2 s}(\alpha)\right\}=\theta$.
Example 2. Throughout this example, coefficients will be Z_{3}. Let Φ be the secondary cohomology operation associated with the relation

$$
-\mathfrak{P}^{2} \Delta^{*}+\mathfrak{P}^{1}\left(\Delta^{*} \mathfrak{S}^{1}\right)-\Delta^{*} \mathfrak{S}^{2}=0 .
$$

The universal example for Φ consists of pairs $\left(E_{j}, \phi_{j}\right), j \geq 1$, where E_{j} is the total space of the fibration

$$
K\left(Z_{3}, j\right) \times K\left(Z_{3}, j+4\right) \times K\left(Z_{3}, j+7\right) \xrightarrow{\varepsilon_{j}} E_{j} \xrightarrow{\zeta_{j}} K\left(Z_{3}, j\right)
$$

which is induced by $\left(\Delta^{*}\left(\iota_{j}\right), \Delta^{*} \mathfrak{F}^{1}\left(\iota_{j}\right), \mathfrak{P}^{2}\left(\iota_{j}\right)\right): K\left(Z_{3}, j\right) \rightarrow K\left(Z_{3}, j+1\right) \times K\left(Z_{3}\right.$, $j+5) \times K\left(Z_{3}, j+8\right)$ (so $\Omega^{n} E_{j+n} \simeq E_{j}$), and ϕ_{j} is an element of $H^{j+8}\left(E_{j}\right)$ such that
(1) $\left(\sigma^{*}\right)^{n}\left(\phi_{j+n}\right)=\phi_{j}$ for all n, in particular, ϕ_{j} is primitive;
(2) $\varepsilon_{j}^{*}\left(\phi_{j}\right)=-\mathfrak{P}^{2}\left(\iota_{j}\right) \times 1 \times 1+1 \times \mathfrak{P}^{1}\left(\iota_{j+4}\right) \times 1-1 \times 1 \times \Delta^{*}\left(\iota_{j+7}\right)$. Put $\alpha_{j}=\zeta_{j}^{*}\left(\iota_{j}\right)$. Then $\left(\sigma^{*}\right)^{n}\left(\alpha_{j+n}\right)=\alpha_{j}$ for all n.

Consider the case $j=2$. Since $\Delta^{*} \mathfrak{P}^{1}\left(\iota_{2}\right)=0$ and $\mathfrak{P}^{2}\left(\iota_{2}\right)=0$ in $H^{*}\left(K\left(Z_{3}, 2\right)\right)$, it follows that

$$
\begin{equation*}
E_{2} \simeq K\left(Z_{9}, 2\right) \times K\left(Z_{3}, 6\right) \times K\left(Z_{3}, 9\right) . \tag{7.5}
\end{equation*}
$$

Let $\beta_{6} \in H^{6}\left(E_{2}\right)$ (resp. $\gamma_{9} \in H^{9}\left(E_{2}\right)$) be the element such that $\varepsilon_{2}^{*}\left(\beta_{6}\right)=1 \times \iota_{6} \times 1$ (resp. $\left.\varepsilon_{2}^{*}\left(\gamma_{9}\right)=1 \times 1 \times \iota_{9}\right)$. Apply (10) of Theorem 7 to the case that $Y=E_{3}, n=1$
(so $X=E_{2}$ and $m=2$), $\alpha=\alpha_{2}$ and $s=1$; then $\tau\left(\sigma\left[Q^{1}\left(\alpha_{2}\right)\right]\right)=\Delta^{*} \mathfrak{P}^{1}\left(\alpha_{3}\right)$, which is equal to zero by the definition of E_{3}. Thus we get an element $\left\{Q^{1}\left(\alpha_{2}\right)\right\}$ of $H^{6}\left(E_{2}\right)$. In view of (7.5), we find that $\beta_{6}=\left\{Q^{1}\left(\alpha_{2}\right)\right\}$ (up to a sign).

Consider the mod 3 cohomology spectral sequence $\left\{E_{r}, d_{r}\right\}$ of the path fibration

$$
E_{2} \rightarrow P E_{3} \rightarrow E_{3} .
$$

Then $\tau\left(\alpha_{2}\right)=\alpha_{3}$. So, by the Kudo transgression theorem [7], $d_{5}\left(\alpha_{3} \otimes\left(\alpha_{2} \cup \alpha_{2}\right)\right)$ $=-\Delta^{*} \mathfrak{F}^{1}\left(\alpha_{3}\right) \otimes 1=0$. Since $\tilde{H}^{*}\left(P E_{3}\right)=0, \alpha_{3} \otimes\left(\alpha_{2} \cup \alpha_{2}\right)$ must be in the image of d_{3}. By (7.5), $H^{6}\left(E_{2}\right)=Z_{3}\left\{\mathfrak{F}^{1}\left(\alpha_{2}\right), \beta_{6}\right\}$ and $\mathfrak{S}^{1}\left(\alpha_{2}\right)$ is transgressive. Hence the only remaining possibility is $d_{3}\left(1 \otimes \beta_{6}\right)=\alpha_{3} \otimes\left(\alpha_{2} \cup \alpha_{2}\right)$. This implies that $Q^{1}\left(\alpha_{2 *}\right)=\beta_{6 *}$ or equivalently,

$$
\begin{equation*}
\mu^{*}\left(\beta_{6}\right)=\beta_{6} \otimes 1-\left(\alpha_{2} \cup \alpha_{2}\right) \otimes \alpha_{2}-\alpha_{2} \otimes\left(\alpha_{2} \cup \alpha_{2}\right)+1 \otimes \beta_{6} . \tag{7.6}
\end{equation*}
$$

The conditions (1) and (2) determine ϕ_{2} uniquely. In fact, by using (7.5) and (7.6), we see that

$$
P H^{10}\left(E_{2}\right)=Z_{3}\left\{\alpha_{2}^{u 5}-\mathfrak{P}^{1}\left(\beta_{6}\right), \Delta^{*}\left(\gamma_{9}\right)\right\}
$$

(where P denotes the primitive module functor), and so

$$
\begin{equation*}
\phi_{2}=-\alpha_{2}^{u 5}+\mathfrak{S}^{1}\left(\beta_{6}\right)-\Delta^{*}\left(\gamma_{9}\right) . \tag{7.7}
\end{equation*}
$$

Let G_{2} be the compact exceptional Lie group of rank 2. As is well known,
(7.9) In dimensions $\leq 10, H^{*}\left(\Omega G_{2}\right)=Z_{3}\left[x_{2}\right] /\left(x_{2}^{U 3}\right) \otimes Z_{3}\left[x_{6}, x_{10}\right]$ where $\left|x_{i}\right|=i$.

$$
\begin{equation*}
\sigma^{*}\left(y_{3}\right)=x_{2} \quad \text { and } \quad \sigma^{*}\left(y_{11}\right)=x_{10} . \tag{7.10}
\end{equation*}
$$

Applying Theorem 7 to the case that $Y=G_{2}$ and $n=1$, we find that $x_{6}=\left\{Q^{1}\left(x_{2}\right)\right\}$. By (7.8) (resp. (7.9)), the map $y_{3}: G_{2} \rightarrow K\left(Z_{3}, 3\right)\left(r e s p . x_{2}: \Omega G_{2} \rightarrow K\left(Z_{3}, 2\right)\right.$) can be lifted to a map y_{3} : $G_{2} \rightarrow E_{3}$ (resp. $x_{2}^{\widehat{ }}: \Omega G_{2} \rightarrow E_{2}$). Furthermore, by (7.10) we may suppose that $\sigma^{*}\left(y_{3}\right)=x_{2}^{\widehat{ }}$. Then we have the commutative diagram (5.1) for the case that $g=y_{3}$ and $n=1$, and it follows that

$$
x_{2}^{\widehat{ }}{ }^{*}\left(\alpha_{2}\right)=x_{2}, x_{2}^{\widehat{ } *}\left(\beta_{6}\right)=x_{6} \quad \text { and } \quad x_{2}^{\wedge *}\left(\gamma_{9}\right)=0 .
$$

Hence

$$
\begin{aligned}
\mathfrak{P}^{1}\left(x_{6}\right) & =\mathfrak{P}^{1} x_{2}^{\wedge *}\left(\beta_{6}\right) \\
& =x_{2}{ }^{*} \mathfrak{P}^{1}\left(\beta_{6}\right) \\
& =x_{2}{ }^{*}\left(\phi_{2}+\alpha_{2}^{U 5}+\Delta^{*}\left(\gamma_{9}\right)\right) \quad(\text { by }(7.7)) \\
& =x_{2}{ }^{*} *\left(\phi_{2}\right)+x_{2}^{U 5} \\
& =x_{2}{ }^{*}\left(\phi_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =x_{2}^{\wedge *} \sigma^{*}\left(\phi_{3}\right) \quad(\text { by }(1)) \\
& =\sigma^{*} y_{3}^{\prime}{ }^{*}\left(\phi_{3}\right) \\
& =\sigma^{*} \Phi\left(y_{3}\right) .
\end{aligned}
$$

Thus $\mathfrak{S}^{1}\left(x_{6}\right)=x_{10}$ is equivalent to $\Phi\left(y_{3}\right)=y_{11}$.
Theorem 7 is applicable to the special case that $Y=G_{n} X$ and $X=F_{n} X$. In this case $H^{*}\left(F_{n} X\right)$ is to be known; it suffices to use (1.17) and Lemma 2. So, since $F_{n} X$ is ($2 m-1$)-connected, by using Theorem 3 (resp. Theorem 7), at least the additive structure of $\tilde{H}^{*}\left(G_{n} X\right)$ in dimensions $<6 m+n-1$ (resp. $8 m+$ $n-1$) ought to be known. We conjecture that, on the Z_{p}-basis obtained as above, there are formulas for the differentials of the spectral sequence (3.8); that is, Theorem 7 will be extended.

References

[1] J.F. Adams: On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
[2] W.D. Barcus and J.P. Meyer: The suspension of a loop space, Amer. J. Math. 80 (1958), 895-920.
[3] R. Bott and H. Samelson: On the Pontryagin product in spaces of paths, Comm. Math. Helv. 27 (1953), 320-337.
[4] H. Cartan: Sur les groupes d'Eilenberg-MacLane H($\pi, n)$, I, II, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 464-471, 704-707.
[5] F. Cohen, T. Lada and J.P. May: The homology of iterated loop spaces, Lecture Notes in Math. 533, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[6] D. Kraines: Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431449.
[7] T. Kudo: A transgression theorem, Mem. Fac. Sci. Kyusyu Univ. 9 (1956), 79-81.
[8] J.P. May: 'The geometry of iterated loop spaces, Lecture Notes in Math. 271, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[9] J.P. May: Infinite loop space theory, Bull. Amer. Math. Soc. 83 (1977), 456-494.
[10] R.J. Milgram: The structure over the Steenrod algebra of some 2-stage Pcstnikov system, Quart. J. Math. 20 (1969), 161-169.
[11] R.J. Milgram: Symmetries and operations in homotopy theory, Amer. Math. Soc. Proc. Sympos. Pure Math. 22 (1971), 203-211.
[12] R.J. Milgram: Unstable homotopy from the stable point of view, Lecture Notes in Math. 368, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
[13] J.P. Serre: Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505.
[14] N.E. Steenrod and D.B.A. Epstein: Cohomology operations, Ann. of Math. Studies 50, Princeton Univ. Press, Princeton, N.J., 1962.
[15] H. Uehara and W.S. Massey: The Jacobi identity for Whitehead products, In:

Algebraic Geometry and Topology, A symposium in Honor of S. Lefschetz, 361-377, Princeton Math. Series 12, Princeton Univ. Press, Princeton, N.J., 1957.
[16] G.W. Whitehead: Elements of homotopy theory, Graduate Texts in Math. 61, Springer-Verlag, Berlin-Heidelberg-New York, 1978.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan

