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0. Introduction

This paper is concerned with the following one-dimensional one-phase
Stefan problems with the unilateral boundary condition on the fixed boundary:
Given the data, / and φ(x), find two functions s~s(t) and u=u(x, t) such that the
pair (ί, u) satisfies

(0.1) M^-M, = 0 (0<*<ί(ί), f>0),

(0.2) Ml(0, ί)ey(β(0, ί)) (ί>0),

(0.3) u(S(t),t) =

(0.4) u(x, 0) = φ

(0.5) i(ί) - -ux(S(t), t)

(S)

Here Ύ is a maximal monotone graph in R2 such that γ J(0) Π [0, oo [ is not an
empty set. We put this assumption from the physical reasoning, that is, there
is a kind of heater at the fixed boundary #=0. The physical meaning of this
equation is explained in [6].

In the previous paper [6], the author proved the existence and uniqueness
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of the classical solution of (S). Left unanswered however were several questions
as to the existence of the solution in the case where 1=0 and 7(0) is an empty
set, and the asymptotic behavior of the solution. The present paper resolves
these problems. Cannon & Hill [3] and Cannon & Primicerio [5] investigated
the asymptotic behaviour of the solutions of one-phase Stefan problems with the

linear boundary condition on the fixed boundary in detail. We will use these
results efficiently for our problems. The main difficulties concerning our pro-
blems arise from the fact that the informations about w(0, ΐ) or ux(Q, ΐ) are not
given different from the usual Stefan problems considered in [3] and [5].

The plan of the paper is as follows. In § 1 we state main results. § 2
collects several results concerning the moving boundary problem which is
auxiliary for the original one. §3 collects properties of the solutions of the
Stefan problem (S). In §4 we give the proof of Theorem 1 and Theorem 2.
§5 collects several properties of the unilateral problems. §6 investigates the
Stefan problem with Signorini boundary condition on the fixed boundary. In
§7 we give the proof of Theorem 3. In §8 we give the proof of Theorem 4.

The author would like to express his gratitude to Professor H. Tanabe for
his useful advice and encouragements.

1. Statements of main results

The assumptions required on the Stefan data are as follows.

(A) φ(x) is non-negative, bounded and continuous for a.e. #e[0, /].

REMARK 1.1. The assumption φϊ^O results from the physical background.

REMARK 1.2. If /=0 there is no φ. We do not need (A).

We introduce the notations,

D= {(*,*)

D= {(*,*)

Ds = {(x, t)\ 0<x^s(t) , t>0} ,

Z = {#e[0, /]; x is a discontinuous point of φ} X {0}.

DEFINITION 1.1. The pair (j. u) is a solution of the Stefan problem (S) if

i) j(0) = /, f(ί)>0 for_*>0, j€=C([0, oo [) n C"(]0, oo[),
ii) u is bounded on D, u<=C(D—Z) Π C°°(DS),

J τ Γs(t)
\ ut(x, t)2dxdt<oo for each 0<σ<Γ<oo ,

σ Jθ

iii) (0.1), (0.3), (0.4) and (0.5) hold,
iv) for a.e. t>0, w^O, t) exists and satisfies (0.2).



STEFAN PROBLEMS ON THE FIXED BOUNDARY III 847

REMARK 1.3. If /=0, we omit (0.4).

We put H— Projγ-ι(0) 0, that is, H is the element of J~\ϋ) which has the
minimum absolute value.

This is well-defined and

by the assumption that γ is the maximal monotone graph in R2 such that

Ύ~\Q) Π [0, oo [ is not an empty set.
We will use the notations of the spaces of functions introduced in [6], if

necessary.

We can now state existence and uniqueness theorems.

Theorem 1. Let />0 and φ(x) satisfies (A). Then there exists the unique
solution (s, u) of (S) satisfying

(1.1) *eC([0, oo[)nC°°(]0, <χ>[),XO is non-decreasing in t.

(1.2) 0^κ^max(| |φ|U« ( 0 i /), H) on D,

(1.3) \u(x',t)-u(x,t)\£Cσ\x'-x\ on DΠ{ί^σ},

where Cσ is a positive constant depending on σ.

Theorem 2. Let l=Q. Suppose that 7 satisfies the following assumption

(Γ) in addition to the original one,

(Γ) γ(0)c]-oo,θ[.

Then there exists the unique solution (s,u) of (S) satisfying (1.1), (1.2) and (1.3),

where we define ||φ|lιeβ(0,o)==0

REMARK 1 .4. We needed that Z)(γ) 3 0 and γ(0) c ] — oo , 0[ in [6, Theorem

3 and theorem 4]. However we do not need the assumption D(r/)3θ in Theo-

rem 2. In particular we may suppose that 7(0) is an empty set. Hence

Theorem 2 is an improvement of [6, Theorem 3 and Theorem 4].

REMARK 1.5. The assumption (Γ) is equivalent to the assumption H>0.

REMRAK 1.6. The assumption (Γ) guarantees that the solid melts. For

example, if 7 = 0, then the solid could not melt.

We describe the asymptotic behavior, as 2->oo, of the solution (s, u) of

(S). We suppose that the assumptions of Theorem 1 and Theorem 2 are sat-

isfied for γ and the data φ.

Theorems. Let H>0 (/^O). Then we have
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(1.4) lirn u(x, t) — H uniformly on any compact subset of [0, °o [ ,
/•*«»

(1.5) limφ)/\/T = /3,
t-+<*>

where β is given by the unique solution of

(1.6) ^n^[n\/(2n)l]β^ = H.

Theorem 4. Let H=Q (/>0). Then it follows that

(1.7) lim u(xy t) = 0 uniformly on [0, ί*] ,
/-»•<»

(1.8) **:=lims(0 exists,
t+oo

(1.9) 7^ί*^/+('φ(*K*
Jo

REMARK 1.7. We define u(x, t)=0 for #^

REMARK 1.8. We see also that the condition (Γ) (i.e. H>0) is necessary
for us to guarantee the melting of the solid in case /=0 from Theorem 4. In
fact, we can not expect that s(t)>Q for t>0 if H= 0 and 7—0 by (1.9).

2. Moving boundary problems

We investigate the moving boundary problems which are auxiliary for the
Stefan problems.

Consider the following moving boundary problem: Given the data φ(x)
and the given non- decreasing function s(£)eC([0, oo [) η C^QO, oo[), that is

positive for £>0, find a function u=u(x, t) such that

( (2.1) uxx-ut = 0 (0<x<s(t),

(2.2) (̂0, ί)eτ(ιι(0f ί)) (ί>0),

(2.3) ^0,0 = 0 (ί>0),

(2.4) «(Λ?, 0) = φ(Λ?) (0<Λr<ί(0) = /)

(M)

Here is γ a maximal monotone graph in R2 such that T^^O) is not an empty set.
We put #=Profy-ιCo) 0.

REMARK 2.1. If 1=0, we omit (2.4).

DEFINITION 2.1. u=u(x, t) is the solution of the moving boundary problem
(M)if

i) u is bounded on D. u(ΞC(D—Z) Π C~(Z)),

5 T fs(t)
\ ut(x, t)2dxdt< + oo for each 0<σ< T< oo ,

<τ JO
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where Z), D and Z are the sets defined in § 1,
ii) (2.1), (2.3) and (2.4) hold,

iii) for a.e. £>0, ux(Q, t) exists and satisfies (2.2).

REMARK 2.2. The above definition is slightly different from [6, Definition
9.1] (see (2.5)). However it is easily seen that [6, Proposition 10.1] and [6, Pro-
position 10.2] hold in this case.

Proposition 2.1. Let />0 with φ(x) which is bounded and continuous for
a.e. #e(0, 1], or 1=0. Then there exists the unique solution of the moving boundary
problem (M). In addition

(2.6) K*,Ol^max(||φ||L~ ( M ), | f f | ) on

(2.7) \u(x\ t)-u(x, t)\^Cσ\x'-x\1/2 on

where Cff is a constant depending on σ, and we define HφlL^co./j^O when 1=

Proof. We get the uniqueness by [6, Proposition 10.1]. We know the
existence when />0 from [6, Proposition 9.1]. We shall show the existence
when /=0. We put sm(t)=s(t)-}-l/m. Hence the sequence {sm}m is a mono-
tonically decreasing one of increasing continuous functions in ί, and sm(i)-*>s(i)
uniformly on any compact subset of [0, oo[ as w— *°o. Let um be the solution
of (M) corresponding to the initial data 0 and the moving boundary sm. Thus
each um is constructed by the finite difference method stated in [6, §9]. Hence
we have

(2.8) \um(x9 t)\^

using the proof of [6, Lemma 5.1].

Let us fix 0<σ<T<oo. We can regard um as the solution of the moving
boundary problem (M) with the initial time σ, the initial data um( , σ ) and the
moving boundary sm(t) (σ^t^T). Therefore we have

!

T f s m ( t ) fsm(t)
\ (t-σ) (u?Y dxdt+(lβ}(t-σ} \ u?(x, (fdX^C(σ, T, <σ))

σ JO JO

using (2.8), sm(σ)^s(σ)>Q and [6, Lemma 9.2], where O(σ, T, s(σ)) is a positive
constant depending only on σ, T and s(σ). Hence we have

J T fs^co
(ii?)

σ Jo

ί
*m(0

u?(x, t)2dx£C.t0

for any 0<cr^ Γ<CXD. Thus we have easily
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I *•"(*', t')-um(x, t)\^Citτ[\^-x\

using (2.9), (2.10) and [6, Lemma 16.4], where we define um(x, t)=Q (x^sm(t)y

t^O). Consequently there exists a subsequence of {um}m (which we denote

again by the same symbol), and a function z/eC(<7), G— [0, °o[χ]0, oo[ such

that

um -> u uniformly on any compact subset of G

by Ascoli-Arzela's theorem. We shall examine that u\ 0 is the solution of (M).

We get (2.3) using um(sm(t),t)=Q(t>0). We note u?x—u?=0(Q<x<sm(t), *>0).

Thus it is easily seen that uxx— ut — 0 (0<x<s(t), t>0) in the distribution's

sense. Hence we have weC°°(Z>)n C(DΓ\ {*>0}) and (2.1) in view of the
well-known result concerning the heat equation. We get also easily

J T Γs(ί)
I ut

2 dxdt^C^r (0<σ <Γ<oo).
<r Jo

We shall show (2.2). Let us fix 0<σ< T< oo. It follows from [6, (8.10)] that

S T p s m ( t ) PT PT
u?(w-um)x dxdt+ \ θ(η)dt-\ θ(um(Q,t))dt

<r Jo Jσ Jσ

S T f s m ( t )
u?x(zv-um)dxdt .

cr Jo

where η^D(θ)y θ is a lower semicontinuous convex θ function from R into
]— oo, oo] such that 0ΞjΞ + oo, 0^0, Θ(H)=0 and dθ=γ, and

η(l-xls(σ)) for

0 for

Hence it is easily seen from u™y—u™, um-*u as m-^co, (2.9) and (2.10) that

S T f s ( t ) PT PT
\ u,(w-u)Idxdt+\ θ(η )dt-\ θ(u(0,t))dt

<r JO Jσ Jσ

!

T Γ«(ί)
I uxx(w—u)dxdt .

σ Jo

Therefore we get (2.2) by the arguments used in the last part of the proof of [6,
Lemma 8.4]. Consequently we have shown that u is the solution of (M).

We shall show (2.6) and (2.7). We get (2.6) noting [6, Lemma 9.1 and

5.1] if />0, and (2.8) if /=0. Let us fix σ>0. Then s(σ)>Q. We regard

u as the solution of the moving boundary problem with the initial time σ and

the initial data u(x, σ). Thus u(x, t) (t ̂  σ) is constructed by the finite dif-

ference method stated in [6, §9]. Hence it follows from [6, Lemma 9.2, 7.4]

and (2.6) that for t^σ
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J s(t)
ux(x, tfdx

0

(u(x, σ)—v(x))2dx

where Z;(Λ:) is a linear function such that v(Q) = H and v(s(σ)) = 0. Con-
sequently we have

J s(t)
ux(x,

o

where C£ is a constant depending on σ. Thus we get (2.7) using the Schwarz's
inequality. q.e.d.

We shall state the comparison theorems. We introduce the following
notations.

7+(«>) = max {#; Z^<Y(V)}, y~(v) = min {#; ^eγ(ϊ )} if

γ+(τ;) = γ"(ϋ) == +00 if 0 $(7) and e;^ sup D(7) ,

7+(v) = 7"(v) = —oo if ϋφZ)(7) and ^^ inf D(y) .

Proposition 2.2. For i—\, 2, let uf be the solution of the moving boundary
problem (M) corresponding to the moving boundary Sj(t), the initial condition
φi(x) and the boundary condition

(2.11) «,,(0, tJe yMO, «)) (00).

Suppose that

(2.12)

(2.13) «,(*,(«), ί)^M2(ί1, (ί), ί) (00),

(2.14) 7Ϊ(v)^Ύϊ(v) for any v<=R .

Then we have

(2.15) u^x, t)^u2(x, t) (Q^x^s^t),

Proof. We get

(2.16) (̂ (0, ί)

In fact, if M^MJ, let ul>ξ>u2. Then we have
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Hence we have (2.15) from (2.12), (2.13), (2.16) and [6, Lemma 10.1]. q.e.d.

Proposition 2.3. Let u be the solution of (M). Suppose that H^O and

u(x, 0) = φ(#)^0 (0<#<α(0) = /)

especially when />0. Then we have

O^w^ max (AT, ||φlL~((M)) on D,

where we define llφlli-fo./^O when 1=0.

Proof. See [6, Proposition 10.2]. q.e.d.

We consider the following moving boundary problem (MD) with Dirichlet
boundary condition on the fixed boundary.

( (2.17) uxx-ut = 0 (0<*<j(0ι

(2.18) u(0,t)=f(t) (ί>0),

(2.19)

(2.20)

where /(f)eC(]0, oo[).

REMARK 2.3. The solution of (MD) is defined by the way analogous to
Definition 2.1.

Proposition 2.4. For i=l, 2, let u{ be the solution of (MD) corresponding

to the moving boundary sfa), the initial condition φi(x) and the boundary condition

(2.21) «,(

Suppose thai

(2.22)

(2.23) u1(s1(t), t^u^t^t), t)

(2.24) /.W^^ί) (ί>0).

(2.25) »,(*, ί)^«2ί*. *) (O^Λ^s^t), ί>0).

Proof. We get

(2.26) («u(0, O-MO, ί))(«ι(0, ί)-«2(0, ί))+

= («u(0, ί)-MO, ί))σι(*)-/2(0)+ = 0 (a e. ί>0) .

Hence we have (2.25) from (2.22), (2.23), (2.26) and [6, Lemma 10.1]. q.e.d.



STEFAN PROBLEMS ON THE FIXED BOUNDARY III 853

3. Properties of the solutions of (S)

We return to the general situations of the Stefan problem (S). First we

state useful results concerning the reformations of the Stefan's condition.

Proposition 3.1. Let (s, u) be a solution of (S). Then it follows that for
any σ, £e]0, oo[

(3.1) s(t) = s(σ)+ ( ( } u(x, σ)dx— ( (° u(x, t)dx— Γ ux(Q, r)dτ ,
Jθ Jo Jσ

!

s(σ) fs(') f t
xu(x, <r)dx-2 \ xu(x, t)dx+2 \ «(0, r)dr .

0 Jθ J<r

Proof. See [6, Lemma 11.1 and 11.2]. q.e.d.

Consider two sets {/,-, φ, } (i=l,2) of Stefan data. If /,>0 we require

that φi satisfies (A), and if /t=0 there is no φ, .

Proposition 3.2. For ί=l,2, let ( s i } U i ) be solutions of (S) corresponding

to the data •{/,-, φ, } and the boundary condition uix(Q, ί)eγ, (ttf (0, t)). Suppose that

(3.3)

(3.4) 7ί(^)^7Γ(^) /orαwj t e/Z.

Then we have

(3.5) MO^^W (ί>0)f

(3.6) u^u2 (O^x^stf), t>0).

Proof. We note that the existence of the solution of (S) under the assump-

tion /, >0 and (A) is shown by [6, Theorem 1]. Thence we can show the con-

clusion using Proposition 2.2, Proposition 2.3 and the proof of [6, Lemma 12.1].

q.e.d.

Proposition 3.3. The solution of (S) is uniquely determined.

Proof. If (sl9 uλ) and (s2, u2) are two solutions of the Stefan problem (S)

then $!— s2 by Proposition 3.2. Hence ul=u2 by Proposition 2.2. q.e.d.

We state the results concerning the Stefan problem with the Drichlet

boundary condition on the fixed boundary. The following proposition is es-

sentially due to [2, Theorem 6] and [4, Result 2], so we omit the proof.

Proposition 3.4. For i— 1, 2, lei (si9 ut) be the solution of the Stefan problem

corresponding to the data {/,, φ,} and the Dirichlet boundary condition w,(0, /)=

/,-(/), where /f (f ) ̂  0 and /,-(*) e C(]0, oo [) . Suppose that

(3.7)
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(3.8) /,(/)£/#) (ί>0).

Then we have

(3.9) sM^t) (ί>0),

(3.10) κ^ι/2 (O^*^*), t>Q).

In particular if φ^x) = <f>2(x) = 0, /:(ί) =f2(t), then we have

The following result is due to [2, p. 13].

Proposition 3.5. Let (s, u) be the unique solution of the Stefan problem cor-
responding to the data 1=0 and the Dirichlet boundary conditoin u(Q,t) =
(f>0). Then

I
where β is the unique solution of p=Σ^-ι — —β2n .

(2n)\

The aymptotic behavior of the solution of the Stefan problem with the
Dirichlet boundary condition is shown in [3], We state [3, Theorem 7],

Proposition 3.6. Let (s, u) be the solution of the Stefan problem correspond-
ing to the data {I, φ} and the Dirichlet boundary condition u(0, t)=f(t), where
f(t) ^ 0 andf(t) <Ξ CQO, oo [) . Suppose that

\imf(t) = p>0 .
*-><»

Then we have

lims(t)/\/~T = β,/•><»
I

where β is the unique solution of p=Σ~-ι ~τrτ\β2n -
(2n)\

4. Proof of Theorem 1 and Theorem 2

In this section we give the proof of Theorem 1 and Theorem 2.

Proof of Theorem 1. We can get the existence and the uniqueness of the
solution of (S) from [6, Theorem 1 and Theorem 2]. We have (1.1) and (1.2)
using (0.5) and Proposition 2.3. We shall show (1.3). Let us fix σ->0. Since

5<r f s ( t )
Uxx(θC,t)2dxdt<oo ,

σ/2 JO

there exists a time /Oe ]<r/2, σ] such that u( t t0) satisfies the assumption (A.2)
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and (H.I) introduced in [6, §6 and §8]. We regard (s, u) as the solution of
(S) with the initial time t0 and the initial data {s(tQ)y **(•> £0)}. Thus (sy u) is
constructed by the finite difference method stated in [6, §2]. Hence we see that
there exists a constant C£0 depending on tQ such that

from [6, Lemma 6.2]. Therefore we get (1.3). q.e.d.

We shall prove Theorem 2. We note that we know the existence of the
solution of (S) under the assumption that /=0, D(γ)Z)[0, H] and γ(0)c] — oo, 0[
by [6, Theorem 3]. Hence we may treat the case Z)(γ)$0.

We define a maimxal monotone graph γ in R2 by

, -1); *eγ(z;)} for

for t ,s£infZ)(r).

Hence £>Cy)=)[0, H], tf(0)c]-oo, Q[ and f +(i0^7'(») for any vtΞR. Let (p,v)
be the solution of (S) with the initial data p(0)=0 and the boundary condition
^(0, t) e tf(v(0, t)). This is well-defined, and we get p(t) e C0ίl([0, ooQn
C°°(]0, oo[), p(0)=0 and p(f)>0 for ί>0 by [6, Theorem 3].

Consider the sequence {($*, wm)}w of the solution of the Stefan problem (S)
corresponding to the data {(l/m,ϋ)}m. The sequence {SM} is a monotonically
decreasing one of increasing functions in t by Proposition 3.2 and Theorem 1.
The sequence {um} is a monotonically decreasing sequence of continuous func-
tions by Proposition 3.2. Set s(t) = lim sm(t) and u(x, t) .= lim um(x, t). We

m^.03 m^.oo

shall show that (ί, u) is the solution of (S).

Lemma 4.1. For any m^N we have

(4.2)

(4.3)

/? w ̂  unique solution o/2^-i — —β2n~H
(2n)\

Proof. We have (4.2) by Theorem 1 easily. We get p^ίw by Proposi-
tion 3.2. We shall show the right side of (4.3). Let (pw, vm) be the solution
of the Stefan problem with the initial condition {l/m, 0} and the Dirichlet bound-
ary condition 0m(0, ΐ)=H. Then we have sm(t)^ρm(t) using (4.2) and Proposi-
tion 3.4. On the other hand we get ρm(t)^βtl/2+m~l/2 by Proposition 3.4 and
3.5. Hnece we complete the proof. q.e.d.

Lemma 4.2. jeC([0, oo[)nC0il(]0, oo[), s(t)>Q for ί>0, and as m^^

(4.4) ίm(2)-->ί(ί) uniformly on any compact subset 0/]0, °°[.
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Proof. We have by (4.3)

Hence s(ΐ) is continuous at t=Q and s(t)>0 for t>0. It follows from
um^H, Proposition 2.3 and Proposition 2.4 arguing as in §13 of [6] that

where Kσ=H/ρ(σ). Since um(sm(t), *)=0, we have

Hence we have for all

Consequently we get ίeC0flQO, °o[) and (4.4) using Ascoli-Arzela's theorem.

q.e.d.

Lemma 4.3. (sf u) is the solution of (S).

Proof. We see that ί/eC(5-{0, 0})nC°°(Z)) and u satisfies (0.1), (0.2),
(0.3) using Lemma 4.2 and the proof of Proposition 2.1. We can investigate
the Stefan's condition (0.5) and u&C°°(Ds) using the arguments of the last
part of [6, §13]. q.e.d.

Consequently we have shown the existence of the solution of (S) when
/=0. We can show (1.1), (1.2), (1.3) easily. The uniqueness is obtained from
Proposition 3.3. Thus we complete the proof of Theorem 2.

5. Unilateral problem

We investigate the asymptotic behavior of the solution of a parabolic uni-
lateral problem (Pk) which are useful to get the several estimates for the solu-
tion of (S).

/ vxx-vt = 0

v(k, t) = 0 (*>0),

v(x, 0) = ψ(*)

Here 7 is a maximal monotone graph in R2 such that 7 *(0) is not the empty set,
and k is a positive parameter. We put ί/=Projy-i(0) 0.

Lemma 5.1. Let i/r be bounded and continuous for a.e. #€Ξ[0, k]. Then
there exists a unique solution vk(x, t) of (Pk). In addition
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(5.1) |^max(|/fUhHL~co,*)) (0^*£Λ, f>0) ,

(5.2) \vk(x',t)-vk(x,t)\^0kt<r\x'-x\1'2 (O^x'^x^

where Ckt(r is a constant depending on k and σ.

Proof. It is obvious from Proposition 2.1. q.e.d.

We introduce an elliptic unilateral problem (Ek) corresponding to (PΛ),

( (5.3) wxx = 0 (0<*<*),

(Ek) (5.4) ^(O)eτKO)),

( (5.5) w(k) = G.

Lemma 5.2. There exists a unique solution wk(x) of (Ek) such that wk(x)=
ak(l—x/k), where ak=(

Proof. wk(x) is a linear function by (5.3). Hence we can put wk(x)=
ak(l — x/k). Substituting wk in (5.4), we have —ak/k^rγ(ak). Hence ak =

(0). q.e.d.

The following result is essentially due to [1, Theorem 3.9]. However we
give the proof of it for the sake of completeness.

Proposition 5.1. Let vk(x, i) and wk(x) be the solution of (Pk) and (Ek)
respectively. Then we have

lim vk(x, t) = wk(x) uniformly on [0, k] .
/->.<*>

Proof. We put k'=k—d, a=2k~2, u=uk and v=vk. We have

// r*' ck/
2~ — \ (v(x, t)-w(x))2dx = \ (v-w)(vt-wt)dx

dt Jd Jd

= (v—w)(vxx—wxx)dx
«' d

J d

by vxx=vt and wxx—wt (=ϋ). Hence we get

— {eat2-1 (k (v(x, t)-w(x))2dx}
dt Jd

Ck' Ck'
— eat\ (vx-wx)

2dx+eat2-la\ (v-w)2dx .
J d J dJ d J d

Integrate over [σ, t] and let rf— *0, then we have
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eat2~l (k MX, i)-w(x))2dx-ea<r2-1 (* MX, σ)-w(x))2dx^ ,
Jo Jo

where we used v(k, t)=w(k)=Q, vx(0, *)eγ(ϋ(0, ί))(a.e. t\ «0(0)eγ(«;(0)), the

S*
(vx—wx)

2dx^

r °# I (v—w)2dx. Letting σ->0, we obtain
Jo

(* (v(x, t)-tv(x))2dx^e-at (* (ψ(x)-w(x))2dx .
Jo Jo

Thus v( , ΐ)->w( ) in L2(0, £) as *-> oo . Hence we get the conclusion using (5.1),
(5.2) and Ascoli-Arzela's theorem. q.e.d.

We prepare a simple lemma concerning the maximal monotone graph and
state a useful proposition.

Lemma 5.3. lim (I+kγWQ^H
*->«»

Proof. We put a^I+ky-1)^). It follows from <γ(ak)^—aklk, 7(H)Ξ*Q
and the monotonicity of 7 that

(5.6) ak(ah-H)^.

Hence we get \ak\ ^\H\. Thus there exists a real number α* and the sub-
sequence {akj}j such that akj-*a* asy~>oo. Therefore we have γ(#*) B 0 using
j(ak) B — ak/k and the closedness of γ. Consequently α* e T-1(0) and | α* | ̂  | H \ .
Thus a*=H by the definition of H. Hence we get ak-^>H without taking the
subsequence. q.e.d.

Proposition 5.2. lim wk(x)=H (0<x<°°)
*-*><»

Proof. It is obvious from wk(x)=ak—(ak/k)x (Q^x^k) and lim ak=H.
*-><*>

q.e.d.
We state a simple lemma related to Lemma 5.3.

Lemma 5.4. Let H>Q. Then fork>Q

Proof, we put ak = (/+&γ)~1(0). We can get (5.6). Hence we have
H. Assume that ak~0. Then we get γ(0)Bθ, which is in contradiction

to H>0. q.e.d.

Lemma 5.5. Let H=0. Then for k>0

(I+k7Γ\0) - 0

Proof. It is obvious from γ(0)Bθ. q.e.d
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6. Signorini type's problem

We investigate the asymptotic behavior of the solution of a Stefan problem
with a Signorini type's boundary condition on the fixed boundary.

Let us fix H>G. We introduce a maximal monotone graph ΎH in R2 such
that 7ff(v)=] — oo, 0] for v=Hy =0 for v>H. We call the boundary condition
ux(Qy t)^ 7ff(u(09 1)) of Signorini type. We shall show the following proposition.

Proposition 6.1. Let (j*, UH) be the solution of the Stefan problem (S) with

Ύ=ΎH' Then there exists ί*^0 such that

We give several lemmas to prove the proposition above. We put P=l-\-l

and ^\x)=-—M(x—ll) (Q^x^l1), where M=max (||φlL~(o,/), H). Let (*> u) be

the solution of the Stefan problem (S) with fY=Ύff corresponding to the initial
data {/*, ijr1}. We get the following lemma by Proposition 3.2.

Lemma 6.1.

Lemma 6.2. lim sH(t) = lim s(t) = oo .
*-*«*» /->•<»

Proof. We get u*(Q,t)^H (t>Q) from nf(0, t)tΞ7H(uH(Q, t)). Hence we
have the conclusion using Proposition 3.4, Proposition 3.6 and Lemma 6.1.

q.e.d.

We estimate u instead of uH

y since we can get several estimates of the former
owing to the simplicity of the initial data.

Lemma 6.3. ux(x, t)<*0 (Q<x<s(t), ί^O).

Proof. We note that the initial data {/*, -x/r1} satisfies the condition (H.I)
in [6, §8]. Hence (s, u) is constructed as the limit of the solutions {(sn, u")} of
the difference equation introduced in [6, §2]. Consequently we shall show

My*^SO to get the conclusion. It is easily seen that (u*s)xϊ— (u"x)t=Qj u%=
— M^O, ι/o*(e7 ̂ ^(wo))^0, and ifjn_ltX=u*Hn£Q by [6, Lemma 5.2]. Hence we
have t/y^^0(0^y^/w, w^O) using the maximum principle. q.e.d.

Lemma 6.4. There exists £*^0 such that

Proof. We note that w(0, t)^H (t>0) by f*,(0, *)^ ?*(«((), f)), Assume
that u(Q,t)>H (for any ί>0). Then ux(Q, t) = Q (a.e. ί>0). Thus we get

r/'
)^Γ+ \ -\lr(x)dx (£sέO) using (3.1). This is in contradiction to Lemma 6.2.

Jo
q.e.d.

Lemma 6.5. u(x,t)<^H (t^t*).
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Proof. We get u(x, t*)^H by Lemma 6.3 and 6.4. We regard (s, u) as

the solution of (S) with 7=7ff corresponding to the initial time ί* and the initial

data {?(£*), u( , £*)}. Hence we have the conclusion by u( y t*)^H and (1.2).

q.e.d.

Thus we complete the proof of Proposition 6.1 by Lemma 6.1 and 6.5.

7. Proof of Theorem 3

We shall show the proof of Theorem 3. We assume that H>0 in this

section.

Let (s, u) be the solution of (S).

Lemma 7.1. lim s(t)= oo
/->*»

Proof. Let us fix σ>0. Then we have

We regard u(xy t) (t^σ) as the solution of the moving boundary problem (M)

with the moving boundary s(t) (t^σ) corresponding to the initial time σ and the

initial data u( , σ). Let vk(xt ΐ) (O^x^s(σ), t^σ) be the solution of the

parabolic unilateral problem (Pk) corresponding to the initial time σ and the

initial data u( y σ). Thus it follows from Proposition 2.2 that

(7.1) u(x, t)^vk(x, t) (O^

Hence we get by Proposition 5.1

(7.2) lim ϊnfuίx, t)^wk(x)
/->«

where wk(x) is the solution of the elliptic unilateral problem (Ek). In particular

we have

(7.3) lim inf n(0, f)^w*(0) = (7+*r)-1(0)>0
ί-ί oβ

by Lemma 5.2 and Lemma 5.4. Consequently we obtain the conclusion using

(7.3) and Proposition 3.4 and 3.5.

Lemma 7.2. lim inf u(x, t)^H (0<#<oo).
/->oo

Proof. It follows from Lemma 7.1 that for any k>l there exists σ>0

such that s(σ)=k. Thus we get by repeating the proof of Lemma 7.1,

(7.2) lim inf u(x, t) ̂  w\x) (0 ̂  x ̂  K) .
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Hence we get the conclusion by Proposition 5.2. q.e.d.

We shall show the estimate from above.

Lemma 7.3. lim sup u(x> t)^H

Proof. Let (SH, UH) be the solution of the Stefan problem (S) with 7— 7#,
where ΎH *s the maximal monotone graph defined in §6. It follows from Pro-
position 3.2 and the definition of 7H that

U(x, t)^UH(x, t)

Hence we get the conlcusion by Proposition 6.1. q.e.d.

Consequently we get (1.4) using Lemma 7.2, Lemma 7.3, (1.2), (1.3) and
Ascoli-Arzela's theorem. We obtain (1.5) from (1.4) and Proposition 3.6.
Thus we complete the proof of Theorem 3.

8. Proof of Theorem 4

We shall show the proof of Theorem 4. We assume that H=Q in this
section.

Let (s, u) be the solution of (S).

S i
φ(x)dx

o

Proof. We shall show

(8.1) ux(0, t)^0 (a.e. ί>0).

We note z/^0 by (1.2). Consider the case tf(0, £)>0. We have (8.1) by virtue
of (0.2) and H^Q. For the case w(0, f)=0, we get (8.1) by ι/(#, ί)^0 (*>0).

Thus we obtain the conclusion using w^O, (8.1) and (3.1). q.e.d.

Lemma 8.2. There exists s* such that

lim s(t) — 5* ,

' φ(x)dx.

Proof. Since s(ΐ) is increasing in t, we get the conclusion by Lemma
8.1. q.e.d.

Lemma 8.3.

lim u(x, t) = 0 uniformly on [0, 5*] ,
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where we define u=Q (s(t)^*x^s*, t>0).

Proof. We put k= s*. Let vk be the solution of the parabolic unilateral
problem (Pk) corresponding to the initial data φ(x). Then it follows from
Lemma 8.2 and Proposition 2.2 that

(8.2) Q^u(x, t)^vk(x, t)

On the other hand it follows from Proposition 5.1 that

(8.3) lim vk(x, t) = wk(x) uniformly on [0, k] ,
/•*•<»

where wk(x) is the solution of the elliptic unilateral problem (Ek). We see that
wk(x) = Q, since (I-\-krγ)"\Q)= 0 holds by Lemma 5.5. Consequently we get
the conclusion from (8.2) and (8.3). q.e.d.

Thus we complete the proof of Theorem 4 by Lemma 8.2 and 8.3.
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