Ku, H.-T., Ku M.-C. and Mann, L. N. Osaka J. Math. 20 (1983), 793-801

Í

NEWMAN'S THEOREM FOR PSEUDO-SUBMERSIONS

HSU-TUNG KU, MEI-CHIN KU AND L.N. MANN

(Received June 4, 1982)

1. Introduction. In 1931 M.H.A. Newman [N] proved the following result.

Theorem (Newman). If M is a connected topological manifold with metric d, there exists a number $\mathcal{E} = \mathcal{E}(M, d) > 0$, depending only upon M and d, such that every finite group G acting effectively on M has at least one orbit of diameter at least \mathcal{E} .

P.A. Smith [S] in 1941 proved a version of Newman's Theorem in terms of coverings of M and Dress [D] in 1969 gave a simplified proof of Newman's Theorem based on Newman's original approach and using a modern version of local degree.

In another direction Cernavskii [C] in 1964 generalized Newman's Theorem to the setting of finite-to-one open mappings on manifolds. His techniques were based upon those of Smith. Recently McAuley and Robinson [M-R] and Deane Montgomery [MO] have expanded upon Cernavskii's results. In fact McAuley and Robinson, using the techniques of Dress, have obtained the following version of Cernavskii's result. [M-R, Theorem 3].

Theorem (Cernavskii-McAuley-Robinson). If M is a compact connected topological manifold with metric d, there exists a number $\mathcal{E} = \mathcal{E}(M, d) > 0$ such that if Y is a metric space and $f: M \rightarrow Y$ a continuous finite-to-one proper open surjective mapping which is not a homeomorphism, then there is at least one $y \in Y$ such that diam $f^{-1}(y) \geq \mathcal{E}$.

In [H-M] we gave estimates of the ε in Newman's Theorem for *Rie-mannian* manifolds M in terms of convexity and curvature invariants of M. In this note we apply the techniques of [H-M] to obtain estimates of ε for the Cernavskii-McAuley-Robinson result for the case where M is a Riemannian manifold. In particular, if S^n is the standard unit sphere with standard metric, we show $\varepsilon > \pi/2$, i.e. if $f: S^n \to Y$ is as above, there exists $y \in Y$ with diam $f^{-1}(y) > \pi/2$. We also obtain a cohomology version of Newman's Theorem for compact orientable Riemannian manifolds which generalizes Theorem 3 of [H-M].

We wish to thank McAuley and Robinson for sending us [M-R] prior to its publication.

2. Generalized Newman's theorem for Riemannian manifolds. We shall call an open finite-to-one proper surjective map $f: M \rightarrow Y$, Y a metric space, which is not a homeomorphism, a *pseudo-submersion*, and $f^{-1}(f(x))$ an orbit of f at x and denoted by $O_f(x)$.

Now let M be a connected Riemannian manifold with a metric induced from the Riemannian metric of M. Assume that there exists at least one pseudo-submersion $f: M \rightarrow Y$. Define the Newman's diameter $d^{T}(M)$ of M by

$$d^{T}(M) = \sup \left\{ \varepsilon \middle| \begin{array}{l} \text{for every pseudo-submersion } f \colon M \to Y. \\ \text{there exists } x \in M \text{ such that diam } O_{f}(x) \ge \varepsilon \end{array} \right\}$$

Define the cardinality of f by Card $f=\max \{ \text{card } O_f(x): x \in M \}$. Suppose there exists at least one pseudo-submersion $f: M \to Y$ with Card f=p>1; we define the mod p Newman's diameter $d_p^T(M)$ as the supremum of the numbers $\varepsilon > 0$ such that for every pseudo-submersion $g: M \to Y$ with Card g=p, there exists an orbit of diameter at least ε .

We call a subset S of a Riemannian manifold M convex if for every pair of points in S there exists a unique distance measuring geodesic in S joining them. For $x \in M$, the radius of convexity of M at x, which we denote by r_x , is defined as the supremum of the radii of all convex embedded open balls centered at x.

The following result is based upon Lemma 3 in [D] and appears as Theorem 2 in [M-R].

Proposition 2.1 (Dress-McAuley-Robinson). Let U be an open, connected, relatively compact subset of \mathbb{R}^n and $f: \overline{U} \to Y$ a pseudo-submersion. Then

$$D = \max \{ \min \{ ||x-y|| : y \in \partial \overline{U} \} : x \in U \}$$

$$\leq C = \max \{ \operatorname{diam} O_f(x) : x \in \partial \overline{U} \} .$$

Here ||x-y|| is the euclidean norm.

It is well-known that the exponential map locally stretches distances for manifolds of nonpositive curvature. In [H-M] the following analogous result was obtained for manifolds of bounded curvature.

Proposition 2.2. Suppose $K \le b^2$, b > 0, (respectively $K \le 0$) on a Riemannian manifold M with distance function d. Let $B_r(z) = \{y: d(y, z) < r\}$ be a convex embedded ball centered at z in M. Suppose further that $r < \pi b^{-1}/2$ (respectively $0 < r < \infty$ when $K \le 0$). For any $x, y \in B_r(z)$, if $\hat{x} = \exp_z^{-1}x$ and $\hat{y} = \exp_z^{-1}y$, then

794

 $d(x, y) \ge (2/\pi) ||\hat{x} - \hat{y}||$ (respectively $d(x, y) \ge ||\hat{x} - \hat{y}||$ when $K \le 0$). Here $||\hat{x} - \hat{y}||$ is the euclidean norm in the tangent space M_z .

Using Propositions 2.1 and 2.2 and the techniques of [H-M] we are able to prove the main result of this section.

Theorem 2.3. Let

$$\vec{r} = \sup_{x \in \mathcal{M}} r_x.$$

(1) If $K \le 0$, $d^{T}(M) \ge \overline{r}/2$. In particular if $\overline{r} = +\infty$, there exist point inverses of arbitrarily large diameters.

(2) If $K \leq b^2$, and $a = Min \{ \pi/2b, \vec{r} \}$, $d^T(M) \geq 2a/(\pi+2)$.

Proof. Fix any $z \in M$ and let r_z =the radius of convexity at z. For any r > 0 satisfying

$$r < \begin{cases} r_z & \text{if } K \le 0 \\ \min\{r_z, \pi b^{-1}/2\} & \text{if } K \le b^2, \end{cases}$$

and any α , $\frac{1}{2} \leq \alpha < 1$, suppose that

(H) diam $O_f(x) < (1-\alpha)r$, all $x \in M$.

Define $U=f^{-1}[f(B_{\alpha r}(z))]$. Clearly U is open. We claim U is connected. Let V be a component of U. Now it is known [C], [MO] that V maps onto $f(U)=f(B_{\alpha r}(z))$. Hence, V intersects $O_f(z)$. But since

diam
$$O_f(z) < (1-\alpha)r \le \alpha r$$
,
 $O_f(z) \subset B_{\alpha r}(z)$. Furthermore by (H) ,
 $B_{\alpha r}(z) \subset U \subset B_r(z)$.

Let $U_{\wedge} = \exp_{z}^{-1}U$. Then U_{\wedge} is an open and connected subset of $R^{n} = M_{z}$. It can be varified that

$$\bar{U}_{\wedge} = \exp_z^{-1} \circ f^{-1}[f(\bar{B}_{ar}(z))]$$

Consequently we can apply Proposition 2.1 to $f_{\wedge} = f \circ \exp_{a}: \overline{U}_{\wedge} \to Y$. Now

$$\begin{aligned} \left\{ \hat{x} \in M_z \, \middle| \, \|\hat{x}\| \leq \alpha r \right\} &= \exp_z^{-1} \bar{B}_{\alpha r}(z) \subset \bar{U}_{\wedge} \\ &\subset \exp_z^{-1} \bar{B}_r(z) = \left\{ \hat{x} \in M_z \, \middle| \, \|\hat{x}\| \leq r \right\} \end{aligned}$$

The left-hand inclusion implies

$$D = \operatorname{Max} \{ \operatorname{Min} \{ || \hat{x} - \hat{y} || \mid \hat{y} \in \partial \overline{U}_{\wedge} \mid \hat{x} \in U_{\wedge} \} \ge \alpha r \quad (\text{Simply let } \hat{x} = 0)$$

Since $\overline{B}_r(z)$ is a convex, embedded ball with $r < \pi b^{-1}/2$ when $K \le b^2$ ($r < \infty$ when $K \le 0$), we may apply Proposition 2.2. So

$$C = \operatorname{Max} \{\operatorname{diam} O_f(\hat{x}) | \hat{x} \in \partial \bar{U}_{\wedge} \}$$

$$\leq \begin{cases} \operatorname{Max} \{\operatorname{diam} O_f(x) | x \in \partial \bar{U} \} & \text{if } K \leq 0 \\ \pi/2 \operatorname{Max} \{\operatorname{diam} O_f(x) | x \in \partial \bar{U} \} & \text{if } K \leq b^2 \end{cases}$$

$$< \begin{cases} (1-\alpha)r & \text{if } K \leq 0 \\ (1-\alpha)\pi r/2 & \text{if } K \leq b^2 \end{cases}$$

by (*H*).

By Proposition 2.1, $D \leq C$. Consequently

$$\alpha r < \begin{cases} (1-\alpha)r & \text{if } K \leq 0\\ (1-\alpha)\pi r/2 & \text{if } K \leq b^2 \end{cases}$$

or

$$lpha < egin{cases} 1/2 & ext{if } K \leq 0 \ \pi/(\pi+2) & ext{if } K \leq b^2 \end{cases}$$

Consequently, (H) is *false* for

$$a = \begin{cases} 1/2 & \text{if } K \le 0\\ \pi/(\pi+2) & \text{if } K \le b^2 \end{cases}$$

So there exists an $x \in M$ with diam $O_f(x) \ge r/2$ if $K \le 0$; $2r/(\pi+2)$ if $K \le b^2$.

It is possible to obtain a version of Theorem 2.3 in terms of *injectivity* radius. For a complete connected Riemannian manifold M define the *injectivity radius* i(M) by

$$i(M) = \sup \{ d(x, C(x)) \colon x \in M \}$$

where C(x) denotes the cut locus of x.

Theorem 2.4.

(1) If $K \leq 0$, $d^{T}(M) \geq i(M)/2$.

(2) If $K \leq b^2$, M is compact and $a = Min \{\pi/2b, i(M)/2\}, d^T(M) \geq 2a/\pi$.

3. Estimate of Newman's diameter $d^{T}(S^{n})$ and related topics. We use the notion of *degree of a map* defined by Dress [D].

Let $f: M^n \to Y$ be a pseudo-submersion. The branch set B_f of f is defined as $B_f = \{x \in M: f \text{ is not a local homeomorphism at } x\}$. By [C] or [M-R], $M - f^{-1}(f(B_f))$ is a dense open subset of M^n .

Lemma 3.1: Newman's Lemma (Dress [D], McAuley-Robinson [M-R]). Let $f: M \rightarrow Y$ be a pseudo-submersion, X a locally compact metric space, g: $M \rightarrow X$ and j: $Y \rightarrow X$ be a proper map such that $g=j \circ f$. Let $x \in X$ be such that

$$g^{-1}(x) \cap f^{-1}(f(B_f)) = \phi$$
,

796

and $y \in j^{-1}(x)$. If Card $f^{-1}(y) = p$, then g is inessential at x for Z_p ; that is, the degree of g at x, d(g, x), is zero (with Z_p as coefficients).

Theorem 3.2. Let M be a compact connected oriented topological *n*-manifold and $f: M^n \rightarrow Y$ be a pseudo-submersion with Card $O_f(x_0) = p > 1$ for some $x_0 \in M - f^{-1}(f(B_f))$. Suppose $\varphi: M \rightarrow S^n$ is a map such that the deg $\varphi \equiv 0 \mod p$. If we denote $\varphi(z)$ by \overline{z} , then there exists $x \in M$ such that the following holds:

(1)
$$\sum_{z \in O_f(x)} \bar{z} = c\bar{x} \text{ in } R^{n+1} \text{ for some } c \leq 0.$$
(2)
$$\angle \bar{x}o\bar{z} = \pi \text{ if } \operatorname{Card} O_f(x) = 2$$

$$\geq 2\pi/3, \text{ and } \angle \bar{x}o\bar{z} = \angle \bar{x}o\bar{y}, \text{ if } \operatorname{Card} O_f(x) = 3 \text{ and}$$

$$O_f(x) = \{x, y, z\}.$$

$$\geq \pi - \cos^{-1}(1/(p-1)) > \pi/2 \text{ if } \operatorname{Card} O_f(x) \geq 4$$

for some $z \in O_f(x)$, where $\angle x \circ \overline{z}$ denotes the angle between $\circ \overline{x}$ and $\circ \overline{z}$, $\circ \in \mathbb{R}^{n+1}$ the origin, and S^n the standard unit sphere in \mathbb{R}^{n+1} .

Proof. (1) Suppose on the contrary, then $\sum_{z \in O_f(x)} \bar{z} \neq 0$ for all x in M. Define a map $g: M^n \to S^n$ by

$$g(x) = \sum_{z \in O_f(x)} \bar{z} / |\sum_{z \in O_f(x)} \bar{z}|.$$

Then for any $z \in O_f(x)$, g(z)=g(x). Hence g induces a map $j: Y \to S^n$ such that $g=j \circ f$. It follows from Lemma 3.1 that g is inessential at g(x) for Z_p .

On the other hand, by hypothesis there is a well defined homotopy $H: M \times [0, 1] \rightarrow S^n$ between φ and g defined by

$$H(x, t) = \{t\varphi(x) + (1-t)g(x)\} / |t\varphi(x) + (1-t)g(x)| .$$

Hence, deg $\varphi = \deg g = d(g, g(x)) = 0 \mod p$. This is a contradiction.

(2) For any $y, z \in O_f(x)$, set $\theta_{yz} = \angle \bar{y}o\bar{z}$. Let \langle , \rangle be the standard inner product in \mathbb{R}^{n+1} . From (1) there exists an element x in M such that

$$\langle \bar{x}, \bar{x} \rangle + \sum_{z \neq x, z \in O_f(x)} \langle \bar{x}, \bar{z} \rangle = c \langle \bar{x}, \bar{x} \rangle$$

for some $c \leq 0$; that is,

(**)
$$\sum_{x \neq z, z \in O_f(x)} \cos \theta_{xz} = c - 1 \le -1$$

If Card f=2, it is easy to see from (**) that c=0, and $\theta_{xz}=\pi$. If Card f=3, then $\cos \theta_{xy} + \cos \theta_{xz} = c-1$. From (1) we have

$$|(1-c)\bar{x}+\bar{z}|^2 = |-\bar{y}|^2.$$

Hence $\cos \theta_{xy} = \cos \theta_{xz} = (c-1)/2$. That is, $\theta_{xy} = \theta_{xz} \ge 2\pi/3$. If Card $f = p \ge 4$, there exists at least one $z \in O_f(x)$ such that $\cos \theta_{xz} \le -1/(p-1)$; that is, $\theta_{xz} \ge \pi$

 $-\cos^{-1}(1/(p-1)) > \pi/2.$

Theorem 3.2 implies the following:

Corollary 3.3. (1) $d_2^T(S^n) = \pi$, i.e., for any pseudo-submersion $f: S^n \to Y$ with Card f=2, there exists $x \in S^n$ such that $f^{-1}(f(x)) = \{x, -x\}$.

(2) $d_3^T(S^n) = 2\pi/3.$

(3) $(p-1)\pi/p \ge d_p^T(S^n) \ge \pi - \cos^{-1}(1/(p-1)) > \pi/2$ if $p \ge 4$.

(4) $2\pi/3 \ge d^T(S^n) > \pi/2.$

Proof. In [K], the equivariant diameter D(M) and modulo p equivariant diameter $D_p(M)$ have been defined. They are precisely defined by the pseudosubmetsions $\pi: M \to M/G$ which are orbit maps of isometric actions of compact Lie groups G or $G=Z_p$ on M respectively. Hence $D(M) \ge d^T(M)$ and $D_p(M) \ge d_p^T(M)$ for some p. But $D(S^n) = 2\pi/3$ and $D_p(S^n) = (p-1)\pi/p$ if $p \ge 3$ by [K]. Hence, the result follows from Theorem 3.2 by applying it to the identity map $S^n \to S^n$.

REMARKS. (i) The statement (1) extends the following well known result: For any non-trivial involution g of S^n , there exists $x \in S^n$ such that gx = -x. (ii) By using the arguments of Milnor in [MI] we can also show the following: Let $f: M^n \to Y$ and $\tilde{f}: \tilde{M} \to \tilde{Y}$ be pseudo-submersions with Card $f = \text{Card } \tilde{f} = 2$, $B_f = B_{\tilde{f}} = \phi$, where M is a compact connected oriented *n*-manifold and \tilde{M} a mod 2 homology *n*-sphere. Suppose there exists a map $\varphi: M \to \tilde{M}$ of odd degree. Then there exists x in M such that $\varphi O_f(x) = O_{\tilde{f}}(\varphi x)$.

Theorem 3.4. Let M be a compact connected n-dimensional submanifold of \mathbb{R}^{n+1} , $n \ge 2$, and let $y \in \mathbb{R}^{n+1} - M$ be in a bounded component. Suppose $f: M \rightarrow Y$ is a pseudo-submersion. Then there exists $x \in M$ such that

- (1) If Card f=2, $\{O_f(x), y\}$ lies on a line in \mathbb{R}^{n+1} .
- (2) If Card f=3, and $O_f(x) = \{x, u, v\}$, then

$$\angle xyu = \angle uyv = \angle vyx = 2\pi/3$$
.

In particular $\{O_f(x), y\}$ lies in a 2-plane in \mathbb{R}^{n+1} . (3) If Card $f=p\geq 4$, then $\angle uyv \geq \pi - \cos^{-1}(1/(p-1)) > \pi/2$ for some $u, v \in O_f(x)$, and $\{O_f(x), y \in \mathbb{R}^{p-1} \cap M, \text{ for some } (p-1)\text{-plane } \mathbb{R}^{p-1} \text{ of } \mathbb{R}^{n+1} (\text{if } n \geq p-2) \text{ passing through the origin.}$

Proof. Apply Theorem 3.2 to the map $\varphi: M \to S^n$ defined by $\varphi(x) = (y-x)/||y-x||$ because deg $\varphi = \pm 1$. The equality in (2) follows from Corollary 3.3 (2).

4. Cohomology version of Newman's theorem for pseudo-submersions

Let $f: M \rightarrow Y$ be a pseudo-submersion. A subset A of M is called satur-

798

ated if $A=O_f(A)$, where $O_f(A)=\cup \{O_f(x): x\in A\}$, or equivalently $A=f^{-1}(f(A))$. Let $x\in M-f^{-1}(f(B_f))$. Then there exists an open neighborhood V of x which is homeomorphic to R^* and $f | V: V \to f(V)$ is a homeomorphism. Hence by excision we have

$$H_n(Y, Y-f(x); Z_p) \approx H_n(f(V), f(V)-f(x); Z_p) \approx Z_p,$$

where $p = \text{Card } O_f(x)$.

We shall say a pseudo-submersion $f: M \to Y$ satisfies the (LOA) (local orientable condition for A) if A is a closed saturated subset of M, B=f(A) is closed in Y and such that the inclusion $i_B: (Y, B) \to (Y, Y-x)$ induces an isomorphism

$$i_{B^*}: H_n(Y, B; Z_p) \rightarrow H_n(Y, Y-f(x); Z_p)$$

for some $x \in M - f^{-1}(f(B_f))$, Card $O_f(x) = p$.

The following result extends the cohomology version of Newman's Theorem for group actions [B], [S] due to Smith.

Theorem 4.1. Let A be a closed subspace of a compact oriented n-manifold M such that $H_n(M, A; Z_p) \approx Z_p$. Let U be any open covering of M such that

 $H^{n}(K(\mathcal{U}), K(\mathcal{U}|A); Z_{p}) \rightarrow H^{n}(M, A; Z_{p})$

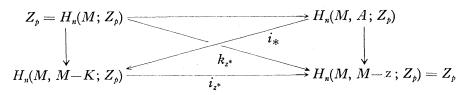
is surjective, where K(U) denotes the nerve of the covering U. Then there does not exist a pseudo-submersion $f: M \rightarrow Y$ satisfying (LOA) and such that each orbit of f is contained in some open set in U.

Proof. Suppose the conclusion is false. Then there exists a pseudosubmersion $f: M \to Y$ satisfying (LOA) and each orbit $O_f(x)$ is contained in a saturated open set V_x which is contained in some member of \mathcal{U} . Let $\mathcal{CV} =$ $\{f(V_x): x \in V\}$. Then $f^{-1}\mathcal{CV}$ is a refinement of \mathcal{U} . By [B, p. 154], $f^*: H^n(Y, B; Z_p) \to H^n(M, A; Z_p)$ is an epimorphism. But the Kronecker product induces a canonical epimorphism [G, p. 132]

$$\alpha: H^{n}(M, A; Z_{p}) \rightarrow H_{n}(M, A; Z_{p})^{*} = \operatorname{Hom}(H_{n}(M, A; Z_{p}); Z_{p});$$

hence we have an isomorphism $f_*: H_n(M, A; Z_p) \rightarrow H_n(Y, B; Z_p)$.

Let $K=O_f(x)$, and $O_K \in H_n(M, M-K; Z_p)$ be the fundamental class which is the element such that for any $z \in K$, the inclusion $i_z: (M, M-K) \to (M, M-z)$ z) satisfies $i_{z^*}(O_K)=1_z$, the identity element of $H_n(M, M-z; Z_p) \approx Z_p$ (cf. [D]). We have the following commutative diagram



where all homomorphisms are induced by inclusions. Since k_{z^*} is an isomorphism for all z in K, there exists an element a in $H_n(M, A; Z_p)$ such that $i_*(a) = O_K$. Now we consider the following commutative diagram

$$\begin{array}{c|c} H_n(M, A; Z_p) & & \xrightarrow{f_*} & & H_n(Y, B; Z_p) \\ & & \approx & & & \\ i_* & & & & \\ i_* & & & & \\ H_n(M, M-K; Z_p) & & & & & \\ f_* & & & & & \\ H_n(Y, Y-f(x); Z_p) \end{array}$$

By definition, $d(f, f(x)) = f_*(O_K)$ (cf. [D]). It follows that

$$d(f, f(x)) = f_*i_*(a) = i_{B^*}f_*(a) \neq 0.$$

On the other hand, we can apply Lemma 3.1 to the map f, with $f=j\circ f$, to obtain d(f, f(x))=0, where j is the identity map. This is an obvious contradiction and the proof of the theorem is complete.

Corollary 4.2. Let M be a compact connected oriented n-manifold, and U an open covering of M such that

(*)
$$H^{q}(|\sigma|; Z_{p})=0$$
 for any $\sigma \in K(\mathcal{U})$ and any $q \geq 1$.

Then there does not exist a pseudo-submersion $f: M \rightarrow Y$ such that

(1) $i_{x^*}: H_n(Y; Z_p) \xrightarrow{\approx} H_n(Y, Y-x; Z_p)$, where $i_x: Y \rightarrow (Y, Y-x)$ is inclusion, $x \in M - f^{-1}(f(B_f))$, Card $O_f(x) = p$, and

(2) Each orbit of f is contained in some member of U.

Proof. The hypothesis (*) implies that

$$H^{q}(K(\mathcal{O}); Z_{p}) \xrightarrow{\approx} H^{q}(M; Z_{p})$$

for all $q \ge 0$ by Leray's Theorem [G-R, p. 189].

As an example, if M is a compact connected oriented Riemannian manifold, and U consists of all open convex proper subsets of M, then the condition (*) of Corollary 4.2 is satisfied.

References

- [B] G.E. Bredon: Introduction to compact transformation groups, Academic Press, New York, 1972.
- [C] A.V. Černavskii: Finite-to-one open mappings of manifolds, Mat. Sb. (N.S.)
 65 (107) (1964), 357-369; English transl., Amer. Math. Soc. Transl. (2)
 100 (1972), 253-267.
- [D] A. Dress: Newman's theorems on transformation groups, Topology 8 (1969), 203-207.

- [G] M. Greenberg: Lectures on algebraic topology, Benjamin, New York, 1967.
- [G-R] R.C. Gunning and H. Rossi: Analytic functions of several complex variables, Prentice-Hall, Englewood, N.J., 1965.
- [H-M] D. Hoffman and L.N. Mann: Continuous actions of compact Lie groups on Riemannian Manifolds, Proc. Amer. Math. Soc. 60 (1976), 343-348.
- [K] M.C. Ku: Newman's theorem for compact Riemannian manifolds, Proc. Amer. Math. Soc. 58 (1976), 343-346.
- [MI] J. Milnor: Groups which act on S^n without fixed points, Amer. J. Math. **79** (1957), 623-630.
- [MO] D. Montgomery: Remark on continuous collections, preprint.
- [M-R] L.F. McAuley and Eric E. Robinson: On Newman's theorem for finite-toone open mappings on manifolds, preprint.
- [N] M.H.A. Newman: A theorem on periodic transformations of spaces, Quart. J. Math. 2 (1931), 1-9.
- [S] P.A. Smith: Transformations of finite period. III: Newman's theorem, Ann. of Math. (2) 42 (1941), 446–458.

Department of Mathematics University of Massachusetts Amherst, MA 01003 U.S.A.