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Introduction

Let F: S?>-»S"(1) be a full minimal isometric immersion of the 2-dimen-
sional sphere S? into the m-dimensional unit sphere S™(1). Let N(S?) be the
normal bundle of S% and T'(IV(S?) the space of all C* cross-sections of N(.S?).
We denote by J the Jacobi operator acting on T(N(S?). The operator [ is
diagonalisable (Simons [6]).

The 2-dimensional sphere S? may be considered as the homogeneous
space SU(2)/S(U(1)x U(1)). Then the isometric immersion F is SU(2)-
equivariant (Calabi [1], Do Carmo & Wallach [2]). Let V, be the complexi-
fication of the n-eigenspace of J. Then V, is a SU(2)-module and the multi-
plicities of any complex irreducible SU(2)-modules contained in V, are all
equal to 2 (Nagura [4]).

In this paper we show that the normal bundle N(S? has a holomorphic
vector bundle structure (Proposition 2). Therefore T'(IN(S?) is a complex
vector space. Secondly we show that the Jacobi operator J is complex linear
(Proposition 3). Hence every eigenspace of J is a complex linear subspace of
T'(NV(S?). Thirdly we show that if we decompose an eigenspace of J into a
direct sum of complex irreducible SU(2)-modules, then any pairs of the com-
ponents are not SU(2)-isomorphic (Proposition 4). This result explains the
above fact on the multiplicities.

1. Preliminaries

We denote by G (resp. by K) the special unitary group SU(2) of degree 2
(resp. the subgroup S(U(1)x U(1)) of SU(2)), i.e.

K= {(b 0)- bec, |b| =1
- O 5 b b - b

where b is the complex conjugate of b. Let g be the Lie algebra of G and t
the Lie subalgebra of g corresponding to the subgroup K of G, i.e.
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Then tis a Cartan subalgebra of §. We define an Ad(G)-invariant inner pro-
duct ( , ) on g by

(X, )= —é—Tr(XY) for X, Yeg,

where T7(XY) denotes the trace of the matrix XY. Let b be the orthogonal

complement of £. Then
(s o)ecl
—\-5 o) '

We may consider p as the tangent space Ty(S?) of S? at o=n(e), where = is
the natural projection of G onto S*=G/K. The inner product ( , ) defines
a G-invariant Riemannian metric on S? which coincides with the inner product
(,) on p=Ty(S?. We also denote by (, ) this G-invariant Riemannian
metric. Then the Riemannian manifold (S?% (, )) is of constant sectional
curvature 4.

We choose an orthonormal basis {4, x, y} of g as follows:

(T ) (S )
VLo —vIi) TT\v=1 0)’ M 0)'

An irreducible orthogonal representation p: G—GL(V) is said to be a real
spherical representation of the pair (G, K), if there exists a unit vector vEV
such that p(k)v=v for any kK. We have

Lemma 1 (cf. Serre [5]). Let p: G—GL(V) be a real spherical repre-
sentation of (G, K). Then

(1) The complexification p: G—GL(VC) of p is a complex irreducible re-
presentation with highest weight 2nh, where V € is the complexification of the vector
space V and n is a non-negative integer.

(2) We can choose an orthogonal basis {u, v;, w;; i=1, 2, ---,n} of V with
the following properties:

do(hyu =0, dph)v;, = 2iw;, dph)w; = —2iv,,
i=12+n.
dp(x)u = 2nv,, dp(y)u = —2nw,.

If i is even,
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dp(x)v; = (n+0)v; ., +(1—12)0; 41,
dp(x)w; = (n+i)w;_,+(n—i)w;,,,
dp(y)v; = (n+)u;_,—(n—1)w;s, ,
dp(yyw; = —(n+2)v;_;+(n—12)v;4, .

If i s odd,

dp(#)0; = [—(+1u—(n—1)v, =1,
Tl ivia—(r—i)i, i>1,
dp(x)w, = {—(n—l)wz =1,
l —(n+1)e0; ., —(n—10)w;4, i>1,
(n—1)w, =1,

d : =
Py {—(n+i)wi-1+(n—i)w,~+1 i>1,
dp(y)w; = {(”+?)u-(n—1)7.;2 =1,
(n+8)v;1—(n—1i)v;y,y il

Here dp: g—gl(V) is the differential of the representation p.

For

e 10 0
k= ( ,O)EK, /=R,

0 eV
we have by the above lemma

p(R)v; = cos(2i0)v;+sin(2:0)w; ,

(1) {p(k)w,» — —sin(240)v;+cos(2i0)w; .

Let (M, g) (resp. (M, 2)) be a Riemannian manifold of dimension k (resp.
of dimension m). Let F: M— M be an isometric immersion of M into M.
We identify the tangent space T,(M) of M at peM with a linear subspace of
the tangent space T'r(,(M) of M at F(p)=M. We denote by N, (M) the ortho-
gonal complement of T,(M) in Try(M). Let T(M) (resp. N(M)) be the tan-
gent bundle (resp. the normal bundle) of M. We denote by x(M) (resp. by
T(N(M))) the space of all C> cross-sections of T(M) (resp. of N(M)). Let
V (resp. V) be the Riemannian connection of M (resp. of M). Let D be the
normal connection of F. Let B: T,(M)Xx T,(M)—N,M) be the second funda-
mental form of F, and 4: N(M)x T,(M)—T,M) the Weingarten form of F.
For any vector fields X, Y (M) and for any normal vector field £ eT'(/V(M)),
we have the followings (cf. Kobayashi & Nomizu [3] Vol. 11 Chap. 7 section 3):

VY = VyY+B(X, Y),
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We denote by H the mean curvature of F. Let {e, e, -, ¢,} be an ortho-
normal basis of T,(M). Then we have

Hi’ = iB(e,-, ei) .

The isometric immersion F: M—>M is said to be minimal, if the mean curva-

ture H of F vanishes identically.
Let R be the curvature tensor of M. We define linear mappings A, R,

of N,(M) as follows:

(12) A(v) = 338(, Bles e))Bles <)),
(1.3) Rw) = 3V (R(e, v)e)Y  for veN,(M),

i=1
where {e, €, -, ¢;} is an orthonormal basis of 7,(M) and (E(e,-, v)e;)V denotes
the normal component of R(e; v)e;, The linear mappings 4 and R are in-
dependent of the choice of an orthonormal basis. We denote by A the Laplace
operator on N(M). Let {E,, E,, ---, E;} be an orthonormal local basis of T(M)
on a neighborhood of p&M. Then we have

Af(P) = 33 (D Ds YD)~ (Dopsf () for fETIN(M)).
The Jacobi operator J is the operator on N(M) defined by
(1.4) J=—-A—A4+R.

2. A complex structure on the normal bundle N(S?)

In the rest of this paper we assume that F: S2—>S"(1) is a full minimal
isometric immersion of (S?% ¢( , )), ¢>0, into the m-dimensional unit sphere
S™(1). We may consider S™(1) as the unit sphere of an (m-+1)-dimensional
Euclidean vector space V' with the center 0. Then the following results are
known (Calabi [1] p. 123, Do Carmo & Wallach [2] p. 103): The minimal
immersion F is rigid, and there exist a real spherical representation p: G—
GL(V) of (G, K) and a unit vector u,& V such that

F(gK) = p(g)u, for any geG'.

Let {u, v;, w;; i=1, 2, .-+, n} (m=2n) be the orthogonal basis of ¥ in Lemma 1.
We identify the tangent space of V" with V itself in a canonical way. Then we
have
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TS = fou w}a,
Ny(S? = {v,, wi51=2,3, -, n}p,
where Ny(S?) is the normal space of S? at o in the unit sphere S™(1). Put
Vo= Ruy= Ru, VT =Ty(S?, V¥=NyS?.
Then we have the following orthogonal decomposition:
(2.1) T, V)=V'+VT+V¥.

REMARK. The number ¢ can be explicitely computed (cf. Nagura [4] I
p. 128). We have

¢ =2n(n+1).
Let ¢: K—GL(V") be the representation of K defined by
o(R) = p(k)yx for keK.

Let GX ¢V*¥ be the vector bundle associated to G by ¢. The vector bundle
homomorphism ¢: G X xV¥— N(S?) defined by

«(gov) = p(g)v for g&€G and vV

is isomorphic (Nagura [4] I p. 123). Here xov is the image of (x, v)EGX VY
by the natural projection of GX V¥ onto GX (VV. Put

C(G; V")x = {f: G=V*" C= mapping; f(gk) = ¢(k)"f(g)}
for g&G and k€K |~

The isomorphism ¢: G X xV¥—N(S?) induces an isomorphism of C~(G; V)
onto I'(N(S?). We also denote by ¢ this isomorphism

We denote by G the complex special linear group SL(2, C) of degree 2.
Let U be the subgioup of G defined by

o L
\ a

a b
U= ( s a, bel, a0

The 2-dimensional sphere S? may be considered as the 1-dimensional complex
projective space. In fact, the mapping i: S2=G/K—PYC)=G/U, i(gK)=gU
for g €G, gives this identification. We define a complex structure I on V¥ by

Iv,=w;, Iw,= —v, 1=2,3m.

We denote by V¥ this complex vector space (V'", I). We have by
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(L.1) P(R)ol = Top(R) for keK.

Therefore the bundle G X V¥ has a complex vector bundle structure. In
addition the following proposition asserts that G X £V~ is a holomorphic vector
bundle.

Proposition 2. Let F: (S% ¢(, ))—>S"(1), ¢>0, be a full minimal iso-
metric immersion. Then the normal bundle N(S?) has a holomorphic vector bundle
structure.

Proof. We shall show that G X V¥ has a holomorphic vector bundle
structure. We define a mapping v»: U—GL(V?¥) by

Y(#)v; = (Re a*)v;+(Im a*)w; ,
Y(#)yw; = —(Im a*)v;+(Re a*)w;

a b

for @ = l)e(j,
0 =
a

where Re a* (resp. Im a*) is the real part (resp. the imagenary part) of a*&C.
Since V(ty#,) = (t)(1,) for @, @, U, + is a holomorphic representation
of U Let Gx V" be the vector bundle associated to G by . This vector
bundle Gx V¥ is a holomorphic vector tundle. Since the restriction rx
of 4 to K coincides with ¢, the bundle homomorphism i: Gx (V-G x zV?,
{(xov)=x0v, is an isomorphism as C= vector bundle. Hence G X xV* has a
holomorphic vector bundle structure. Q.E.D.

3. On the Jacobi operator J

We also derote by I the complex structure on C=(G; V), induced from

the complex structure  on V. Let I be the complex structure on T'(IV(S?))
corresponding to this complex structure I on C~(G; V"), under the isomor-
phism ¢: C*(G; VV)—T(N(S?)). We define an action L (resp. an action o)
of G on C=(G; V¥)k (resp. on T(N(S?)) as follows:

(L f)(h) = flg™'h) for g, heG and f€C~(G; V),

(o, HIRK) = d(p(2))f(RK)  for g, hREG and fET(N(S?),
where d(p(g)) is the differential of the isometry p(g) of S™(1). Then we have
(Nagura [4] I p. 124)

toL, = o ot for geG.

We have easily
(3.1) IoL,= Lyol, Iog,= gl for geG.
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The above result shows that the action L (resp. &) is a complex representation
of G with representation space (C~(G; V"), I) (resp. (T(N(S?), 1)).

Let J be the operator on C=(G; V'¥), corresponding to the Jacobi operator
J. We have (Nagura [4] I p. 131)

(2 I =~ L[ DEES 223 BN

+23 {dp(E) (BN} |
for feC=(G; V¥,

where E,=h, E,=x, E;=y, ¢;,=—2c¢ and (v)" denotes the V/¥-component of
veV with respect to the decomposition (2.1). In (3.2) we consider g as the
Lie algebra of left invariant vector fields on G.

Proposition 3.  The Jacobi operator J is complex linear on (T(N(S?), I).

Proof. We shall show that Jol=Io]. Since Zol=IoZ for Z&g, it is
sufficient to show that

(3.3) {dp(Z)1(v))}¥ = I(dp(Z)v)¥ for Z&g and ve V.
Applying Lemma 1, we have
{dp(Z)I(2)}* = I(dp(Z)v)"
for Z="h,x,y and v =v,, w;, i =2,3, .-, n.
This proves (3.3). Q.E.D.

Let U, be the \-eigenspace of J in I'(N(S?)). Since the space U, is G-
invariant (Nagura [4] I p. 119), U, is a complex G-invariant subspace of
(T(IV(S?), I) by Proposition 3. Therefore we have the following proposition
by Nagura [4] (III (2) of Theorem 12.3.3).

Proposition 4. If we decompose an eigenspace of J into a direct sum of
complex irreducible G-modules, then any pairs of the irreducible components are
not G-isomorphic.

Let L be the space of Killing vector fields on the unit sphere S™(1). Put
W= {(ks)"; keL},

where (ks2)" is an element of T'(N(S?) obtained by the normal projection of
keL. This space W is a G-module. A cross-section f&TI'(N(S?) is called
a Jacobi field, if it satisfied the equation Jf=0. An element of W is a Jacobi
field (Simons [6] p. 74). Let W be the complexification of the space W. Then
the multiplicities of any complex irreducible G-modules contained in W€ are
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equal to 1 (Nagura [4] III Lemma 12.4.2). Hence we have
(3.4) Iwnw= {0} .

Let U, be the space of all Jacobi fields. Then we have by (3.4) and Nagura
[4] (IIT Theorem 12.4.1 and Lemma 12.4.2)

U, = W--IW (direct sum) .

Thus we could obtain the space U,. However the author does not know the
geometric meaning of this decomposition.
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