CLASSIFICATION OF INVARIANT COMPLEX STRUCTURES ON IRREDUCIBLE COMPACT SIMPLY CONNECTED COSET SPACES

Musubi NISHIYAMA

(Received July 12, 1982)

Introduction

A compact simply connected homogeneous Kahler manifold is represented as a Kähler coset space G / U, where G is a compact connected semisimple Lie group and U is the centralizer of a toral subgroup S in G. Conversely, let G be a compact connected semisimple Lie group and U the centralizer of a toral subgroup in G. Then, G / U is a compact simply connected C^{∞}-manifold and carries a G-invariant complex structure. Moreover any G-invariant complex structure on G / U admits a G-invariant Kähler metric. In this paper, we shall consider the problem of classifying, up to equivalence, all G-invariant complex structures on the coset space G / U. Borel-Hirzebruch [2] showed that G-invariant complex structures on G / U are unique up to equivalence if U is a maximal torus of G or if U is a subgroup with one-dimensional center.

We shall consider exclusively the case where G is a simple compact Lie group and in this case we say that the coset space G / U is irreducible. We shall classify all G-invariant complex structures on an irreducible compact simply connected coset space G / U up to equivalence. An equivalence class of G-invariant complex structures on G / U gives rise to a pair of a simple roct systems (π, π_{0}) such that π_{0} is a subsystem of π and this pair is determined uniquely up to equivalence. Here two pairs $\left(\pi, \pi_{0}\right)$ and $\left(\pi^{\prime}, \pi_{0}^{\prime}\right)$ are said to be equivalent if there is an isomorphism between the systems π and π^{\prime} which maps π_{0} to π_{0}^{\prime}. Our classification will then be reduced to that of classifying, up to equivalence, all pairs $\left(\pi, \pi_{0}\right)$ associated to G / U and in this way we shall count up the number of equivalence classes of G-invariant complex structures on G / U.

The author expresses her hearty thanks to Professor S. Murakami who suggested her the problem and encouraged her during the preparation of this paper. She also thank to Professor M. Takeuchi who read the manuscript and gave her valuable advice.

1. G-invariant complex structures

Let G be a Lie group and U a closed subgroup of G. We denote by g
the Lie algebra of G and \mathfrak{u} the Lie subalgebra corresponding to U in g, and we write \mathfrak{g}^{c} and \mathfrak{u}^{c} to denote their complexifications. Let M be the coset space G / U. Let $T_{0} M$ denote the tangent vector space of M at the point $0=U$ in M and $T_{0} M^{C}$ its complexification. Suppose I is a G-invariant complex structure on M. Then I defines a linear transformation I_{0} on $T_{0} M^{c}$. Let $T_{0} M^{+}$ (resp. $T_{0} M^{-}$) be the eigenspace of I_{0} with eigenvalue $\sqrt{-1}$ (resp. $-\sqrt{-1}$) of I_{0}. Then we have

$$
T_{0} M^{C}=T_{0} M^{+}+T_{0} M^{-} \quad(\text { direct sum })
$$

On the other hand, identifying g with the tangent vector space of G at the unit element, the projection $\pi: G \rightarrow G / U$ induces a complex linear map $d \pi^{c}: \mathrm{g}^{c} \rightarrow$ $T_{0} M^{c}$. Let $\mathfrak{a}^{+}=\left(d \pi_{0}^{c}\right)^{-1}\left(T_{0} M^{+}\right)$. Then, \mathfrak{a}^{+}is Lie subalgebras of \mathfrak{g}^{c} and we have

$$
\begin{equation*}
\mathfrak{g}^{c}=\mathfrak{a}^{+}+\overline{\mathfrak{a}^{+}}, \quad \mathfrak{u}^{c}=\mathfrak{a}^{+} \cap \overline{\mathfrak{a}^{+}} \tag{1}
\end{equation*}
$$

where - means the complex conjugation in g^{c} with respect to \mathfrak{g}. Conversely any subalgebra \mathfrak{a}^{+}satisfying (1) is obtained from a unique G-invariant complex structure on M in this way. Thus the classification of G-invariant complex structures on M reduces to that of subalgebras \mathfrak{a}^{+}satisfying (1). (Fröhlicher [4]).

Now, let G be a compact connected semisimple Lie group, U the centralizer of a toral subgroup S of G. Then U contains the center of G. If G acts on G / U effectively, the center of G should be trivial. In the rest of this paper, we always assume that the center of G is trivial. Let T be a maximal torus containing S. Then it is a maximal torus of U. Let \mathfrak{b} be the Lie algebra of T and \mathfrak{G}^{c} its complexification. Then \mathfrak{G}^{c} is a Cartan subalgebra of \mathfrak{g}^{c}. Let Δ be the root system of g^{C} with respect to \mathfrak{H}^{C}, and

$$
\mathfrak{g}^{c}=\mathfrak{G}^{c}+\sum_{\boldsymbol{w} \in \Delta} \mathfrak{g}_{\infty}
$$

the decomposition of \mathfrak{g}^{c} to the sum of eigenspaces of roots. Because \mathfrak{t}^{c} contains \mathfrak{h}^{c}, there is a subset Δ_{0} of Δ such that

$$
\mathfrak{H}^{c}=\mathfrak{b}^{c}+\sum_{a \in \Delta_{0}} \mathfrak{g}_{a} .
$$

Then, Δ_{0} is a root system contained in Δ.
Now suppose I be a G-invariant complex structure on M and \mathfrak{a}^{+}its defining Lie subalgebra of \mathfrak{g}^{c} satisfying (1). Then $\mathfrak{a}^{+} \supset \mathfrak{u}^{c} \supset \mathfrak{h}^{c}$, so there is a subset Δ^{+}of Δ such that

$$
\mathfrak{a}^{+}=\mathfrak{u}^{c}+\sum_{a \in \Delta^{+}} \mathfrak{g}_{a}
$$

Then Δ^{+}satisfies the following conditions.

$$
\begin{equation*}
\Delta=\Delta_{0} \cup \Delta^{+} \cup \Delta^{-} \quad \text { (disjoint union) } \tag{2}
\end{equation*}
$$

where Δ^{-}denotes $-\Delta^{+}=\left\{-\alpha \mid \alpha \in \Delta^{+}\right\}$.
(3) If $\alpha \in \Delta_{0} \cup \Delta^{+}, \beta \in \Delta^{+}$and $\alpha+\beta \in \Delta$ then $\alpha+\beta \in \Delta^{+} \quad$ (Koszul [8]). Conversely if Δ^{+}satisfies (2) and (3), then $\mathfrak{a}^{+}=\mathfrak{u}^{c}+\sum_{\Delta \in \Delta^{+}} g_{\infty}$ satisfies (1). Thus to count G-invariant complex structures on M, we may look for subsets Δ^{+}of satisfying (2) and (3).

Lemma 1. Let Δ be a root system in an Euclidean vector space ($E,($,$)),$ and Δ_{0} a root system contained in Δ. Suppose that a subset Δ^{+}of Δ satisfies (2) and (3). Then the element $s=\sum_{\alpha \in \Delta^{+}} \alpha$ satisfies $(s, \alpha)=0$ if $\alpha \in \Delta_{0}$ and $(s, \alpha)>0$ if $\alpha \ni \Delta^{+}$.

Proof. See Koszul [8].
It is well known that a simple root system π of a root system Δ is given as the set of all simple roots in a certain positive root system (with respect to a given linear order), and we have a bijection between simple root systems and positive root systems in a root system. In general, for a subset π_{0} of $\pi,\left[\pi_{0}\right]$ (resp. $\left[\pi_{0}\right]^{+}$) denotes the set of roots which are represented as a linear combination of elements of π_{0} with integral (resp. non-negative integral) coefficients. The positive root system with respect to π coincides with $[\pi]^{+}$.

Theorem 1. Let Δ be a root system in an Euclidean vector space ($E,($,$))$ and Δ_{0} a root system contained in Δ. Suppose that a subset Δ^{+}of Δ satisfies (2) and (3). Then there exists a simple root system π such that $\pi_{0}=\pi \cap \Delta_{0}$ is a simple root system of Δ_{0} and $\Delta^{+}=[\pi]^{+}-\left[\pi_{0}\right]^{+}$.

Conversely if π is a simple root system of Δ such that $\pi_{0}=\pi \cap \Delta_{0}$ is a simple root system of Δ_{0}, then $\Delta^{+}=[\pi]^{+}-\left[\pi_{0}\right]^{+}$satisfies (2) and (3).

Proof. Let s be as in Lemma 1, and $\left\{v_{1}, \cdots, v_{l}\right\} \quad(l=\operatorname{dim} E)$ a basis of E such that $v_{1}=s$. Define $\lambda>\mu$ if $\left(\lambda-\mu, v_{1}\right)=\cdots=\left(\lambda-\mu, v_{i-1}\right)=0$ and $\left(\lambda-\mu, v_{i}\right)>0$ for some $i(1 \leqq i \leqq l)$. Then the simple roots with respect to this order in E form a simple root system π for which the positive root system contains Δ^{+}. Let $\pi_{0}=\pi \cap \Delta_{0}$. We prove that π_{0} is a simple root system of Δ_{0}. The simple roots in Δ_{0} with respect to the above order form a simple root system π_{0}^{\prime} of Δ_{0}. Because each element of π_{0} is a simple root in Δ_{0}, we have $\pi_{0}^{\prime} \supset \pi_{0}$. Suppose $\pi_{0}^{\prime} \supsetneq \pi_{0}$. Take $\alpha \in \pi_{0}^{\prime}-\pi_{0}$. Thus we take $\alpha=\beta+\gamma$ where β and γ are positive roots in Δ. Then from Lemma 1 follows that $0=(\alpha, s)=$ $(\beta, s)+(\gamma, s)$ and $(\beta, s) \geqq 0,(\gamma, s) \geqq 0$. Thus we have $(\beta, s)=(\gamma, s)=0$ and we conclude $\beta, \gamma \in \Delta_{0} \cap[\pi]^{+}$, which contradicts our assumption. Therefore $\pi_{0}=\pi_{0}^{\prime}$ and π_{0} is a simple root system of Δ_{0}. Combining Lemma 1 and the definition
of order, we see

$$
\Delta^{+}=[\pi]^{+}-[\pi]^{+} \cap \Delta_{0} .
$$

Hence to get $\Delta^{+}=[\pi]^{+}-\left[\pi_{0}\right]^{+}$, it suffices to prove $[\pi]^{+} \cap \Delta_{0}=\left[\pi_{0}\right]^{+}$. Put $\pi=$ $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ and assume $\pi_{0}=\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$. If $\alpha \in[\pi]^{+} \cap \Delta_{0}$, then $\alpha=n_{1} \alpha_{1}+\cdots$ $+n_{l} \alpha_{l}$ for some $n_{1} \geqq 0, \cdots, n_{l} \geqq 0$. Since $0=(\alpha, s)=n_{1}\left(\alpha_{1} s\right)+\cdots+n_{l}\left(\alpha_{l}, s\right)$ and $\left(\alpha_{1}, s\right)=\cdots=\left(\alpha_{k}, s\right)=0,\left(\alpha_{k+1}, s\right)>0, \cdots,\left(\alpha_{l}, s\right)>0$, we have $n_{k+1}=\cdots=n_{l}=0$. Thus we have $\alpha=n_{1} \alpha_{1}+\cdots+n_{k} \alpha_{k} \in\left[\pi_{0}\right]^{+}$. If $\alpha \in\left[\pi_{0}\right]^{+}$, then $\alpha=n_{1} \alpha_{1}+\cdots+n_{k} \alpha_{k}$ with $n_{1} \geqq 0, \cdots, n_{k} \geqq 0$. Since $(\alpha, s)=n_{1}\left(\alpha_{1}, s\right)+\cdots+n_{k}\left(\alpha_{k}, s\right)=0$, it follows that $\alpha \in \Delta_{0} \cap[\pi]^{+}$. Thus we have $\left[\pi_{0}\right]^{+}=\Delta_{0} \cap[\pi]^{+}$.

Conversely, let π be a simple root system of Δ such that $\pi_{0}=\pi \cap \Delta_{0}$ is a simple root system of Δ_{0}. Let $\Delta^{+}=[\pi]^{+}-\left[\pi_{0}\right]^{+}$. We prove first that Δ^{+}satisfies (2). By the definition of $\Delta^{+}, \Delta=\left[\pi_{0}\right] \cup \Delta^{+} \cup \Delta^{-}$(disjoint union) where Δ^{-} denotes $-\Delta^{+}$. It is sufficient to prove $\Delta_{0}=\left[\pi_{0}\right]$. Let $\pi=\left\{\alpha_{1}, \cdots, \alpha_{1}\right\}$ and $\pi_{0}=\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$. Suppose $\alpha \in\left[\pi_{0}\right]^{+}$. Then α is represented as $\alpha=n_{1} \alpha_{1}+\cdots$ $+n_{k} \alpha_{k}$ with $n_{1} \geqq 0, \cdots, n_{k} \geqq 0$. The property of the root system yields that α is represented as $\alpha=\alpha_{i_{1}}+\cdots+\alpha_{i_{p}}$ with $\alpha_{i_{1}}, \cdots, \alpha_{i_{p}} \in \pi_{0}$ where $\alpha_{i_{1}}+\cdots+\alpha_{i_{j}} \in \Delta$ for any $j=1, \cdots, p$. Because Δ_{0} is a root subsystem of Δ, if $\alpha, \beta \in \Delta_{0}, \alpha+\beta \in \Delta$ then $\alpha+\beta \in \Delta_{0}$. Hence we have $\alpha=\alpha_{i_{1}}+\cdots+\alpha_{i_{p}} \in \Delta_{0}$. Therefore $\left[\pi_{0}\right]^{+} \subset \Delta_{0}$. Clearly $\Delta_{0} \subset\left[\pi_{0}\right]$. So we have $\Delta_{0}=\left[\pi_{0}\right]$. The property (3) of Δ^{+}follows from the fact: A root $\alpha=n_{1} \alpha_{1}+\cdots+n_{l} \alpha_{l}$ is in Δ^{+}if and only if $n_{i}>0$ for some $i>k$. This proves Theorem 1.

Now, let $M=G / U, \Delta$ and Δ_{0} be as before. We denote by \mathcal{G}_{0} the set of all G-invariant complex structures on M. Also we write \mathcal{S}_{1} for the set of all simple root systems π of Δ such that $\pi \cap \Delta_{0}$ is a simple root system of Δ_{0}. Then we get a surjection from \mathcal{S}_{1} onto \mathcal{J}_{0}. Namely, for a given $\pi \in \mathcal{S}_{1}$, we define Δ^{+}as in Theorem 1 and, putting $\mathfrak{a}^{+}=\mathfrak{1}^{c}+\sum_{a \in \Delta^{+}} g_{a}$, we make correspond to π the G-invariant complex structure on M defined by \mathfrak{a}^{+}. We denote $\mathscr{W}(\Delta)$ and $\mathscr{W}\left(\Delta_{0}\right)$ the Weyl groups of Δ and Δ_{0} respectively. We may consider $\mathscr{V}\left(\Delta_{0}\right) \subset$ $\mathscr{W}(\Delta)$.

Theorem 2. Let π_{0} be a simple root system of Δ_{0}. We denote by \mathcal{S}_{0} the set of all simple root systems π of Δ such that $\pi \cap \Delta_{0}=\pi_{0}$. Then the mapping $\mathcal{S}_{1} \rightarrow \mathcal{J}_{0}$ defined above induces a bijection $\mathcal{S}_{0} \rightarrow \mathcal{J}_{0}$.

Proof. First we see that the mapping is surjective. For a given $I \in \mathcal{J}_{0}$, we get a unique Δ^{+}satisfying (2) and (3). By Theorem 1, there corresponds to Δ^{+}an element $\pi^{\prime} \in \mathcal{S}_{1}$. Let $\pi_{0}^{\prime}=\pi^{\prime} \cap \Delta_{0}$. Because π_{0}^{\prime} is a simple root system of Δ_{0}, there exists $\sigma \in \mathscr{W}\left(\Delta_{0}\right)$ such that $\sigma \pi_{0}^{\prime}=\pi_{0}$. Let $\pi=\sigma \pi^{\prime}$. Then $\pi \in \mathcal{S}_{0}$. Now we claim $\sigma \Delta^{+}=\Delta^{+}$. Let σ_{∞} be the reflection defined by $\alpha \in \Delta$. For $\alpha \in \pi_{0}$, we have $\sigma_{\omega} \Delta^{+} \subset\left[\pi^{\prime}\right]^{+}$because $\sigma_{\alpha}\left(\left[\pi^{\prime}\right]^{+}-\{\alpha\}\right)=\left[\pi^{\prime}\right]^{+}-\{\alpha\}$ and $\alpha \notin \Delta^{+}$.

Furthermore since $\sigma_{\infty} \Delta_{0}=\Delta_{0}$, we get $\sigma_{\omega} \Delta^{+} \cap \Delta_{0}=\phi$. Hence we have $\sigma_{a} \Delta^{+}=\Delta^{+}$. Since $\sigma_{\omega}\left(\alpha \in \pi_{0}\right)$ generate $\mathscr{W}\left(\Delta_{0}\right)$, we have $\sigma \Delta^{+}=\Delta^{+}$. Since $[\pi]^{+}-\left[\pi_{0}\right]^{+}=$ $\left[\sigma \pi^{\prime}\right]^{+}-\left[\sigma \pi_{0}^{\prime}\right]^{+}=\sigma\left(\left[\pi^{\prime}\right]^{+}-\left[\pi_{0}^{\prime}\right]^{+}\right)=\sigma \Delta^{+}$, we have $\Delta^{+}=[\pi]^{+}-\left[\pi_{0}\right]^{+}$. Therefore the mapping is surjective.

Next we see that the mapping is injective. Since $\Delta^{+}=[\pi]^{+}-\left[\pi_{0}\right]^{+},[\pi]^{+}=$ $\Delta^{+} U\left[\pi_{0}\right]^{+}$. Therefore π is the simple root system with respect to the positive root system $\left[\pi_{0}\right]^{+} \cup \Delta^{+}$. Thus Δ^{+}defines π uniquely. This proves that the mapping is injective, and we get Theorem 2.

We note that by a theorem of H.C. Wang [1], \mathscr{I}_{0} is not an empty set, and so \mathcal{S}_{0} is not empty.

Remark. We may choose and fix π belonging to \mathcal{S}_{0}, and put $\pi_{0}=\pi \cap \Delta_{0}$. Let

$$
\mathscr{W}_{0}=\left\{\sigma \in \mathscr{W}\left(\Delta_{0}\right) \mid \sigma \pi \supset \pi_{0}\right\} .
$$

Then we have a natural bijection from \mathcal{S}_{0} to \mathscr{W}_{0}. Thus we can count the number of the elements in \mathcal{J}_{0} by counting of the cardinality of \mathscr{W}_{0}. Hou-Tze-sin [6] counted it when G is a simple Lie group of classical type.

2. Equivalent complex structures

Let $M=G / U$ be as in section 1. For a given G-invariant complex structures I on M, let (M, I) denote the complex manifold defined by I. Let A be the complex Lie group of biholomorphic automorphisms on (M, I). (See Bochner and Montgomery [1].) Let $H(M, I)$ be the maximal connected subgroup of A. Because G is supposed to be semisimple and have a trivial center, we have $G=G_{1} \times \cdots \times G_{m}$ (direct sum), where G_{1}, \cdots, G_{m} are compact simple Lie subgroups of G. Let S be a center of U. Then U coincides with the centralizer of S in G. Let T be a maximal torus in G containing S. Let $S_{i}=G_{i} \cap S$, $U_{i}=G_{i} \cap U$ and $T_{i}=G_{i} \cap T(i=1, \cdots, m)$. Then S_{i} is a torus in G_{i}, U_{i} is a centralizer of S_{i} in G_{i}, T_{i} is a torus which is maximal in both U_{i} and G_{i} and contains S_{i}. Let $M_{i}=G_{i} / U_{i}$. We have $M=M_{1} \times \cdots \times M_{m}$ (direct product). Moreover the complex structure I on M defines G_{i}-invariant complex structure I_{i} on M_{i} for each i. Then we have $(M, I)=\left(M_{1}, I_{1}\right) \times \cdots \times\left(M_{m}, I_{m}\right)$ (direct product). The following theorem is due to Oniščik [10].

Theorem 3. In the above situation, we have $H(M, I)=H\left(M_{1}, I_{1}\right) \times \cdots \times$ $H\left(M_{m}, I_{m}\right)$. Furthermore if the group G is simple, then except the three cases indicated in Table 1, the Lie algebra \mathfrak{g} of G is a compact real form of $\tilde{\mathfrak{g}}$, where $\tilde{\mathfrak{g}}$ denotes the complex Lie algebra of $H(M, I)$.

Table 1

Case	g	\mathfrak{u}	$\tilde{\mathrm{g}}$
1	$C_{l}(l>1)$	$C_{l-1}+\mathrm{t}$	$A_{2 l-1}^{\sigma}$
2	G_{2}	$A_{1}+\mathrm{t}$	B_{3}^{σ}
3	$B_{l}(l>2)$	$A_{l-1}+\mathrm{t}$	D_{l+1}^{σ}

Here t denotes the real one dimensional abelian Lie algebra, and the Lie algebra \mathfrak{n} of U is unique up to inner automorphisms of \mathfrak{g}.

From now on, we assume always that G is simple.
Definition. Two elements I and I^{\prime} in \mathcal{G}_{0} are said to be equivalent, noted $I \sim I^{\prime}$, if the complex manifolds $\left(M, I^{\prime}\right)$ and (M, I) are biholomorphic.

Denoting by (π, π_{0}) a pair of simple root systems with $\pi \supset \pi_{0}$, two pairs (π, π_{0}) and $\left(\pi^{\prime}, \pi_{0}^{\prime}\right)$ are said to be equivalent, if there exists a simple root system somorphism ψ from π onto π^{\prime} such that $\psi \pi_{0}=\pi_{0}^{\prime}$. We write $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}^{\prime}\right)$ in this case. Let $\left[\pi, \pi_{0}\right]$ denote the equivalence class containing a pair $\left(\pi, \pi_{0}\right)$.

For $M=G / U$, let Δ and Δ_{0} be as in section 1 , and $\tau(g)$ denotes the action of $g \in G$ on M. Fix a root system π_{0} of Δ_{0}, and define \mathcal{S}_{0} as in section 1 .

Theorem 4. For two complex structures I and I^{\prime} belonging to \mathcal{I}_{0}, let π and π^{\prime} be the elements of \mathcal{S}_{0} corresponding to I and I^{\prime} respectively (Theorem 2). Then $I \sim I^{\prime}$ if and only if $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}\right)$.

Proof. Suppose $I \sim I^{\prime}$. We show $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}\right)$ first when $\tau(G)$ is a compact real form of $H(M, I)$. Let f be a biholomorphic mapping from (M, I) onto (M, I^{\prime}). Then we have $d f \circ I=I^{\prime} \circ d f$ and $d f^{-1} \circ I^{\prime}=I \circ d f^{-1}$. We may assume $f(0)=0$ since f can be replaced by $\tau\left(g^{-1}\right) \cdot f$ for $g \in G$ such that $\tau(g) 0=f(0)$. For $g \in G$, let $\eta(g)$ be the automorphism of M defined by $\eta(g) x=f^{-1} \cdot \tau(g) \cdot f(x)$ for $x \in M$. Then $\eta(G)$ acts on M. By the definition of η, we have $d \eta(g) \circ I=I \circ d \eta(g)$. Thus it follows that $\eta(G) \subset H(M, I)$. Since $\tau(G)$ is a compact real form of $H(M, I)$, so is $\eta(G)$. Since all compact real forms of $H(M, I)$ are conjugate, there exists $a \in H(M, I)$ such that $a^{-1} \eta(G) a=\tau(G)$. We may assume $a 0=0$ since a can be replaced by $\eta\left(g^{-1}\right) \cdot a$ for $g \in G$ such that $\eta(g) 0=a 0$. Then we have $\tau(U)=a^{-1} \eta(U) a$. Thus $a^{-1} \eta(T) a$ is a maximal torus of $\tau(U)$. Since all maximal tori in $\tau(U)$ are conjugate, there exists $b \in \tau(U)$ such that $b^{-1}\left(a^{-1} \eta(T) a\right) b=$ $\tau(T)$. Since $\tau(G)=a^{-1} \eta(G) a$, there exists an automorphism ϕ of G such that $\tau(\phi(g))=a^{-1} \eta(g) a$ for all $g \in G$. Then we have $\phi(U)=U$. Thus ϕ induces an automorphism $\tilde{\phi}$ on $M=G / U$. By the property of $\tilde{\phi}, \tilde{\phi}=a^{-1} \circ f^{-1}$, and hence
(4) $\quad d \widetilde{\phi} \circ I^{\prime}=I \circ d \widetilde{\phi}$.

Moreover we have $\phi(T)=T$. Thus ϕ induces an automorphism ψ^{\prime} of Δ such that $d \phi^{C}\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{\psi^{\prime}(\alpha)}$ for all $\alpha \in \Delta$. Since $d \phi^{C}\left(\mathfrak{u}^{c}\right)=\mathfrak{u}^{c}$, we have $\psi^{\prime}\left(\Delta_{0}\right)=\Delta_{0}$. Let $\Delta^{+}=[\pi]^{+}-\left[\pi_{0}\right]^{+}$and $\Delta^{\prime+}=\left[\pi^{\prime}\right]^{+}-\left[\pi_{0}\right]^{+}$. Let $\alpha \in \Delta^{\prime+}$. For any $X \in g_{a}$ with $X \neq 0$, we have $d \phi^{c}(X) \in g_{\psi^{\prime}(a)}$ and

$$
\begin{equation*}
I^{\prime}\left(d \pi^{c}(X)\right)=\sqrt{-1} d \pi^{c}(X) . \tag{5}
\end{equation*}
$$

Combining (4) and (5) we have $I\left(d \pi^{c}\left(d \phi^{c}(X)\right)\right)=\sqrt{-1} d \pi^{c}\left(d \phi^{c}(X)\right)$. Thus $\psi^{\prime}(\alpha) \in \Delta^{+}$. Therefore we see that $\psi^{\prime} \Delta^{\prime+}=\Delta^{+}$. Since $\psi^{\prime} \Delta_{0}=\Delta_{0}, \psi^{\prime} \pi_{0}$ and π_{0} are simple root systems of Δ_{0}, and hence there exists $\mu \in \mathscr{W}\left(\Delta_{0}\right)$ such that $\mu \psi^{\prime} \pi_{0}=\pi_{0}$. By the same argument as in the proof of Theorem 2 we see that $\mu \Delta^{+}=\Delta^{+}$. Let $\psi=\left(\mu \psi^{\prime}\right)^{-1}$. Then ψ is an automorphism of Δ such that $\psi \pi_{0}=\pi_{0}$ and $\psi \Delta^{+}=\Delta^{\prime+}$. Thus we have $\psi \pi=\pi^{\prime}$ and $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}\right)$.

We show $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}\right)$ when $\tau(G)$ is not a compact real form of $H(M, I)$. By Theorem 3, it suffices to prove this in three cases in Table 1. We denote by $D(\pi)$ the Dynkin diagram of a simple root system π.

Case 1. Let $\alpha_{1}, \cdots, \alpha_{l}$ be the elements of π such that

In this case we have $\pi_{0}=\left\{\alpha_{2}, \cdots, \alpha_{l}\right\}$. For any simple root system $\pi^{\prime} \in \mathcal{S}_{0}$, there exists $\sigma \in \mathscr{W}(\Delta)$ such that $\sigma \pi=\pi^{\prime}$. Since the longer root α_{l} in π is in π_{0}, we have $\sigma \alpha_{l}=\alpha_{l}$. Thus $\sigma \pi_{0}=\pi_{0}$ and $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}\right)$.

Case 2. Let α_{1}, α_{2} be the elements of π such that

$$
D(\pi): \stackrel{\alpha_{1}}{\stackrel{\alpha_{2}}{\Longrightarrow}} \stackrel{\alpha_{2}}{\Longrightarrow}
$$

Also in this case we have $\pi_{0}=\left\{\alpha_{2}\right\}$. By the same argument as for Case 1, it follows that $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}\right)$.

Case 3. Let $\alpha_{1}, \cdots, \alpha_{l}$ be the elements of π such that

In this case we have $\pi_{0}=\left\{\alpha_{1}, \cdots, \alpha_{l-1}\right\}$. For any π^{\prime} in \mathcal{S}_{0}, the set of longer roots in π^{\prime} coincides with π_{0}. Thus for $\sigma \in \mathscr{W}(\Delta)$ with $\sigma \pi=\pi^{\prime}$, it follows that $\sigma \pi_{0}=\pi_{0}$. Therefore we have $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}\right)$. Thus we have proved for all cases that $I \sim I^{\prime}$ yields $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}\right)$.

Conversely suppose $\left(\pi, \pi_{0}\right) \sim\left(\pi^{\prime}, \pi_{0}\right)$. Then there exists an isomorphism ψ from π onto π^{\prime} such that $\psi \pi_{0}=\pi_{0}$. We may extend ψ as an automorphism of Δ naturally. Then ψ induces an automorphism ϕ of \mathfrak{g}^{c} such that $\phi(\mathfrak{h})=\mathfrak{h}$,
$\phi\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{\psi(\boldsymbol{\alpha})}$ and $\phi(\mathfrak{g})=\mathfrak{g}$. And thus we have $\phi(\mathfrak{l})=\mathfrak{t}$ and $\phi\left(\mathfrak{a}^{+}\right)=\mathfrak{a}^{\prime+}$, where \mathfrak{a}^{+}and $\mathfrak{a}^{\prime+}$ are the subalgebras of g^{c} corresponding to I and I^{\prime} respectively. Since G is connected, $\left.\phi\right|_{\mathfrak{g}}$ induces an automorphism f of G. Let \tilde{f} and $\tilde{\phi}$ denote the automorphisms on M and $T_{0} M$ respectively induced from f and ϕ. Then $d \tilde{f}_{0}=\tilde{\phi}$ and $d \tilde{f}_{0}\left(d \pi^{c}\left(\mathfrak{a}^{+}\right)\right)=d \pi^{c}\left(\mathfrak{a}^{\prime+}\right)$. Thus we have $d \tilde{f}_{\circ} I^{\prime}=I \circ d \tilde{f}$. It follows that $I \sim I^{\prime}$, which completes the proof.

3. The number of the elements in $\boldsymbol{g}_{0} / \sim$

For a given $M=G / U$, we shall count the number of elements in \mathcal{G}_{0} / \sim. We shall denote this number by n. Let

$$
\mathscr{D}_{0}=\left\{\left[\pi, \pi \cap \Delta_{0}\right] \mid \pi \in \mathcal{S}_{1}\right\} .
$$

If we choose a simple root system π_{0} of Δ_{0}, then

$$
\mathscr{D}_{0}=\left\{\left[\pi, \pi_{0}\right] \mid \pi \in \mathcal{S}_{0}\right\} .
$$

By Theorem 4, we get a bijection between \mathscr{D}_{0} and \mathscr{I}_{0} / \sim. Thus the number n is equal to the number of elements in \mathscr{D}_{0}. Let l denote the rank of Δ and k the rank of Δ_{0}. Let $(E,()$,$) denote the Euclidean vector space in which \Delta$ is defined. Note that the inner product (,) in E is defined uniquely up to scalar multiplication, since Δ is assumed to be irreducible root system. We shall regard E as a subspace of the Euclidean space R^{m} of an appropriate dimension m. Let $\left\{\varepsilon_{1}, \cdots, \varepsilon_{m}\right\}$ be the canonical basis of R^{m} with the usual inner product.

Fix $\pi \in \mathcal{S}_{1}$, and let $\pi_{0}=\pi \subset \Delta_{0}$. Let \mathscr{D}_{1} denote the set of $\left[\pi, \phi \pi_{0}\right]$ wnere ϕ is ahy mapping from π_{0} into π with the following condition:
(*) ϕ is injective and $(\phi \alpha, \phi \beta)=(\alpha, \beta)$ for all $\alpha, \beta \in \pi_{0}$.
Then \mathscr{D}_{1} does not depend on the choice of $\pi \in \mathcal{S}_{1}$. Obviously we have $\mathscr{D}_{0} \subset \mathscr{D}_{1}$.

Lemma 2. Suppose Δ is of type A_{l}, B_{l} or C_{l}. Then we have $\mathscr{D}_{1}=\mathscr{D}_{0}$.
Proof. If $\Delta_{0}=\phi$, there is nothing to prove. Suppose $\Delta_{0} \neq \phi$. Fix $\pi \in \mathcal{S}_{1}$ and let $\pi_{0}=\pi \cap \Delta_{0}(\neq \phi)$. It suffices to show that $\left[\pi, \phi \pi_{0}\right] \in \mathscr{D}_{0}$ for any ϕ with (*). Let first Δ be of type A_{l}. Then π may be assumed to consist of $\varepsilon_{1}-\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{3}, \cdots, \varepsilon_{l}-\varepsilon_{l+1}$. For any irreducible component π_{0}^{\prime} of π_{0}, there are i and p with $0 \leqq p \leqq l-i \leqq l-1$ such that $\pi_{0}^{\prime}=\left\{\varepsilon_{i}-\varepsilon_{i+1}, \cdots, \varepsilon_{i+p}-\varepsilon_{i+p+1}\right\}$. Let ϕ be a mapping from π_{0} into π with (*). Since we have $\phi \pi_{0}^{\prime} \subset \pi$ and $\phi \pi_{0}^{\prime}$ is an irreducible component of $\phi \pi_{0}^{\prime}$, there is j with $j+p \leqq l$ such that $\phi \pi_{0}^{\prime}=$ $\left\{\varepsilon_{j}-\varepsilon_{j+1}, \cdots, \varepsilon_{j+p}-\varepsilon_{j+p+1}\right\}$. Thus ϕ may be assumed to satisfy $\phi\left(\varepsilon_{i+q}-\varepsilon_{i+q+1}\right)=$ $\varepsilon_{j+q}-\varepsilon_{j+q+1}$ for $q=0, \cdots, p$. Then it is easily seen that there exists $\sigma \in \mathscr{S}_{l+1}$ (the symmetric group of $l+1$ letters which is identified with $\mathscr{W}(\Delta))$ such that $\sigma(j)=i$
whenever $\phi\left(\varepsilon_{i}-\varepsilon_{i+1}\right)=\varepsilon_{j}-\varepsilon_{j+1}$. Also we obtain $\sigma \pi \supset \pi_{0}$, and hence $\sigma \pi \in \mathcal{S}_{0}$. Therefore we have $\left[\pi, \phi \pi_{0}\right]=\left[\sigma \pi, \pi_{0}\right] \in \mathscr{D}_{0}$.

Now let Δ be of type B_{1}. Then π may be assumed to consist of $\varepsilon_{1}-\varepsilon_{2}$, $\varepsilon_{2}-\varepsilon_{3}, \cdots, \varepsilon_{l-1}-\varepsilon_{l}, \varepsilon_{l}$. If $\pi_{0} \nexists \varepsilon_{l}$, then $\phi \pi_{0} \nexists \varepsilon_{l}$. Thus we have $\pi_{0} \subset\left\{\varepsilon_{1}-\varepsilon_{2}\right.$, $\left.\cdots, \varepsilon_{l-1}-\varepsilon_{l}\right\}$ and the image of ϕ is contained in $\left\{\varepsilon_{1}-\varepsilon_{2}, \cdots, \varepsilon_{l-1}-\varepsilon_{l}\right\}$. By the same argument as for the previous case, it follows that $\left[\pi, \phi \pi_{0}\right]$ is an element of \mathscr{D}_{0}. Now suppose $\pi_{0} \ni \varepsilon_{l}$. Then we have $\phi \varepsilon_{l}=\varepsilon_{l}$. Let π_{0}^{\prime} be the irreducible component of π_{0} containing ε_{l}. Then we have $\phi \pi_{0}^{\prime}=\pi_{0}^{\prime}$. We denote by $\varepsilon_{1}-\varepsilon_{2}$, $\cdots, \varepsilon_{p}-\varepsilon_{p+1}$ the elements of $\pi-\pi_{0}^{\prime}$. Let $\pi_{0}^{\prime \prime}$ denote $\pi_{0}-\pi_{0}^{\prime}$. Then we have $\pi^{\prime \prime} \subset\left\{\varepsilon_{1}-\varepsilon_{2}, \cdots, \varepsilon_{p-1}-\varepsilon_{p}\right\}$ and the image of the restriction of ϕ to $\pi_{0}^{\prime \prime}$ is contained in $\left\{\varepsilon_{1}-\varepsilon_{2} \cdots, \varepsilon_{p-1}-\varepsilon_{p}\right\}$. Let \mathscr{S}_{p} be considered as the subgroup of $\mathscr{W}(\Delta)$ which is generated by the reflections of $\left\{\varepsilon_{1}-\varepsilon_{2}, \cdots, \varepsilon_{p-1}-\varepsilon_{p}\right\}$. By the same argument as for the case of A_{l}, we see there exists $\sigma \in \mathscr{S}_{p}$ with $\sigma \phi \pi_{0}^{\prime \prime}=\pi_{0}^{\prime \prime}$. Since π_{0}^{\prime} is contained in $\left\{\varepsilon_{p+1}-\varepsilon_{p+2}, \cdots, \varepsilon_{l}\right\}$, we have $\sigma \pi_{0}^{\prime}=\pi_{0}^{\prime}$, and hence we obtain $\sigma \phi \pi_{0}=\pi_{0}$. Thus we have $\left[\pi, \phi \pi_{0}\right]=\left[\sigma \pi, \pi_{0}\right] \in \mathscr{D}_{0}$. The same argument as in the case of B_{l} works for the case of C_{l}. Thus we have $\mathscr{D}_{0}=\mathscr{D}_{1}$ for all cases.

By counting the number of the elements in \mathscr{D}_{1}, we get the following theorem. To state the theorem, we need some notations. If k_{1}, \cdots, k_{p} are positive integers, we write $\alpha\left(k_{1}, \cdots, k_{p}\right)$ for the number of the permutations of $\left\{k_{1}, \cdots, k_{p}\right\}$. And we write $\beta\left(k_{1}, \cdots, k_{p}\right)$ for the number of the permutations σ of $\left\{k_{1}, \cdots, k_{p}\right\}$ such that $k_{\sigma(q)}=k_{\sigma(p-q)}$ for $q=1, \cdots,[p / 2]$.

Theorem 5. (i) Suppose Δ is of type A_{l} and Δ_{0} is of type $A_{k_{1}}+\cdots+A_{k_{p}}$. (Note that $0 \leqq p \leqq k_{1}+\cdots+k_{p}=k \leqq k+p \leqq l+1$). Then the number n of elements in \mathcal{G}_{0} / \sim is given by the following formula.

If both ($l-k$) and p are odd number, then

$$
n=\frac{1}{2}\binom{l-k+1}{p} \cdot \alpha\left(k_{1}, \cdots, k_{p}\right) .
$$

In other cases, if $p \neq 0$

$$
n=\frac{1}{2}\left\{\binom{l-k+1}{p} \cdot \alpha\left(k_{1}, \cdots, k_{p}\right)+\binom{\left[\frac{l+p-k-1}{2}\right]}{\left[\frac{p}{2}\right]} \cdot \beta\left(k_{1}, \cdots, k_{p}\right)\right\}
$$

If $p=0$, then $n=1$.
(ii) Suppose Δ is of type B_{l} (resp. C_{l}) and Δ_{0} is of type $B_{t}+A_{k_{1}}+\cdots+A_{k_{p}}$ (resp. $C_{t}+A_{k_{1}}+\cdots+A_{k_{p}}$). Here $B_{t}\left(\right.$ resp. $\left.C_{t}\right)$ denotes the type of the irreducible component of Δ_{0} containing shorter roots (resp. longer roots). Note that $B_{0}=C_{0}=\phi$, $B_{1} \cong C_{1} \cong A_{1}, \quad B_{2} \cong C_{2}$, and $0 \leqq p \leqq k_{1}+\cdots+k_{p}+t=k \leqq k+p \leqq l+1$. Then we get

$$
\begin{aligned}
& \text { If } p \neq 0, \text { then } n=\binom{l-k}{p} \cdot \alpha\left(k_{1}, \cdots, k_{p}\right) . \\
& \text { If } p=0, \text { then } n=1
\end{aligned}
$$

Before to give a theorem for the case of type D_{l}, we need some notations. Suppose Δ is of type D_{l}. Fix $\pi \in \mathcal{S}_{1}$ and let $\pi_{0}=\pi \cap \Delta_{0}$. Let $\alpha_{1}, \cdots, \alpha_{l}$ denote the elements of π such that

We may assume that $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}$ for $i=1, \cdots, l-1$, and $\alpha_{l}=\varepsilon_{l-1}+\varepsilon_{l}$. Then $\mathscr{W}(\Delta)$ consists of such elements as $\sigma=\left(\tau, a_{1}, \cdots, a_{l}\right)$ where $\tau \in \mathfrak{S}_{l}, a_{i}=1$ or -1 , and the number of -1 in $\left\{a_{1}, \cdots, a_{l}\right\}$ is even, whose action is given by $\sigma\left(\varepsilon_{i} \pm \varepsilon_{j}\right)=$ $a_{i} \varepsilon_{\sigma(i)} \pm a_{j} \varepsilon_{\sigma(j)}$. Put

$$
\pi_{0}^{\prime}=\left\{\begin{array}{l}
\phi, \text { if } \pi_{0} \supset\left\{\alpha_{l-1}, \alpha_{l}\right\} \\
\left\{\alpha_{l-1}, \alpha_{l}\right\}, \text { if } \pi_{0} \supset\left\{\alpha_{l-1}, \alpha_{l}\right\} \text { and } \pi_{0} \nexists \alpha_{l-2} \\
\text { the irreducible component of } \pi_{0} \text { containing } \\
\left\{\alpha_{l-2}, \alpha_{l-1}, \alpha_{l}\right\}, \text { if } \pi_{0} \supset\left\{\alpha_{l-2}, \alpha_{l-1}, \alpha_{l}\right\}
\end{array}\right.
$$

and

$$
\begin{aligned}
& \mathscr{D}_{2}=\left\{[\pi, \phi \pi] \mid \phi \text { is any mapping from } \pi_{0} \text { into } \pi \text { with }(*)\right. \text { such that } \\
& \\
& \text { if } \left.\pi_{0}^{\prime} \neq \phi \pi_{0}^{\prime}=\pi_{0}^{\prime}\right\}, \\
& \mathscr{D}_{3}=\left\{\left[\pi, \phi \pi_{0}\right] \mid \phi \text { is any mapping from } \pi_{0} \text { into } \pi\right. \text { with such that } \\
& \left.\quad \phi \pi_{0} \mp\left\{\alpha_{l-1}, \alpha_{l}\right\}\right\}, \\
& \text { if } \pi_{0}^{\prime}=\phi .
\end{aligned}
$$

Lemma 3. Suppose $\Delta_{0} \neq \phi$. If $\pi_{0}^{\prime} \neq \phi$, we have $\mathscr{D}_{0}=\mathscr{D}_{2}$. If $\pi^{\prime}=\phi$, we have $\mathscr{D}_{0}=\mathscr{D}_{3}$.

Proof. First we consider the case where $\pi_{0}^{\prime} \neq \phi$. For any $\left[\pi^{\prime}, \pi_{0}\right] \in \mathscr{D}_{0}$, there exists $\sigma \in \mathscr{W}(\Delta)$ with $\sigma \pi=\pi^{\prime}$. Let $\sigma=\left(\tau, a_{1}, \cdots, a_{l}\right)$. Since $\left\{\varepsilon_{l-1} \pm \varepsilon_{l}\right\}$ is contained in π_{0}, it is also contained in $\sigma \pi=\left\{a_{1} \varepsilon_{\tau(1)}-a_{2} \varepsilon_{\tau(2)}, \cdots, a_{l-1} \varepsilon_{\tau(l-1)}-\right.$ $\left.a_{l} \varepsilon_{\tau(l)}, a_{l-1} \varepsilon_{\tau(l-1)}+a_{l} \varepsilon_{\tau(l)}\right\}$. We can show easily that $\left\{a_{l-1} \varepsilon_{\tau(l-1)} \pm a_{l} \varepsilon_{\tau(l)}\right\}=$ $\left\{\varepsilon_{l-1} \pm \varepsilon_{l}\right\}$. Thus we obtain $\sigma\left\{\alpha_{l-1}, \alpha_{l}\right\}=\left\{\alpha_{l-1}, \alpha_{l}\right\}$, and hence we have $\sigma \pi_{0}^{\prime}=\pi_{0}^{\prime}$. Therefore $\left[\pi^{\prime}, \pi_{0}\right]=\left[\pi, \sigma^{-1} \pi_{0}\right] \in \mathscr{D}_{2}$. Conversely, let ϕ satisfy the condition as in \mathscr{D}_{2}. We denote by $\varepsilon_{1}-\varepsilon_{2}, \cdots, \varepsilon_{p}-\varepsilon_{p+1}$ the elements of $\pi-\pi_{0}^{\prime}$. Put $\pi_{0}^{\prime \prime}=$ $\pi_{0}-\pi_{0}^{\prime}$. Then we have $\pi_{0}^{\prime \prime} \subset\left\{\varepsilon_{1}-\varepsilon_{2}, \cdots, \varepsilon_{p-1}-\varepsilon_{p}\right\}$ and the image of the restriction of ϕ to $\pi_{0}^{\prime \prime}$ is contained in $\left\{\varepsilon_{1}-\varepsilon_{2}, \cdots, \varepsilon_{p-1}-\varepsilon_{p}\right\}$. Then by the same argument as in the Case B_{l}, we see that there exists an element $\sigma \in \mathscr{W}(\Delta)$ with
$\sigma \phi \pi_{0}=\pi_{0}$. Thus we obtain $\left[\pi, \phi \pi_{0}\right]=\left[\sigma \pi, \pi_{0}\right] \in \mathscr{D}_{0}$. And hence we have $\mathscr{D}_{0}=\mathscr{D}_{2}$. Next we consider the case where $\pi_{0}^{\prime}=\phi$. For any $\left[\pi^{\prime}, \pi_{0}\right] \in \mathscr{D}_{0}$ there exists $\sigma \in \mathscr{W}(\Delta)$ with $\sigma \pi=\pi^{\prime}$. Since $\left\{\varepsilon_{l-1} \pm \varepsilon_{l}\right\}$ is not contained in $\pi_{0}, \sigma^{-1} \pi_{0}$ does not contain $\left\{\varepsilon_{l-1} \pm \varepsilon_{l}\right\}$. Therefore $\left[\pi^{\prime}, \pi_{0}\right]=\left[\pi, \sigma^{-1} \pi_{0}\right] \in \mathscr{D}_{3}$. Conversely let ϕ satisfy the condition as in \mathscr{D}_{3}. Let f denote the following automorphism of π.

$$
f(\alpha)= \begin{cases}\alpha_{l} & \text { if } \quad \alpha=\alpha_{l-1} \\ \alpha_{l-1} & \text { if } \alpha=\alpha_{l} \\ \alpha & \text { otherwise }\end{cases}
$$

Since $\left[\pi, f \pi_{0}\right]=\left[\pi, \pi_{0}\right]$, it is sufficient to prove the case where $\alpha_{l} \notin \pi_{0}$. Suppose $\phi \pi_{0} \nexists \alpha_{l}$. Then we have $\pi_{0} \subset\left\{\alpha_{1}, \cdots, \alpha_{l-1}\right\}$ and the image of ϕ is contained in $\left\{\alpha_{1}, \cdots, \alpha_{l-1}\right\}$. Thus by the same argument as in the case where Δ is A_{l}, we have $\left[\pi, \phi \pi_{0}\right] \in \mathscr{D}_{0}$. Suppose $\phi \pi_{0} \ni \alpha_{l}$. Then we have $\phi \pi_{0} \nexists \alpha_{l-1}$. Since $\left[\pi, f \circ \phi \pi_{0}\right]=\left[\pi, \pi_{0}\right]$ and $f \circ \phi \pi_{0} \neq \alpha_{l}$, we obtain $\left[\pi, f \circ \phi \pi_{0}\right] \in \mathscr{D}_{0}$. Thus we have $\mathscr{D}_{0}=\mathscr{D}_{3}$ and we have proved the lemma.

From Lemma 3, by counting the number of elements in \mathscr{D}_{2} or \mathscr{D}_{3}, we get
Theorem 6. Suppose that Δ is of type D_{l} and Δ_{0} is of type $D_{t}+A_{k_{1}}+\cdots$ $+A_{k_{p}}$. Here D_{t} denotes the type of π_{0}^{\prime}. Note that $D_{0}=\phi, D_{1} \cong A_{1}, D_{3} \cong A_{1}+A_{1}$, $D_{3} \cong A_{3}$ and $0 \leqq p \leqq k_{1}+\cdots+k_{p}+t=k \leqq k+p \leqq l+1$. Then we have following formula for the number n of elements in \mathcal{I}_{0} / \sim.

$$
\begin{aligned}
& \text { If } p \neq 0, \text { then } n=\binom{l-k}{p} \cdot \alpha\left(k_{1}, \cdots, k_{p}\right) \\
& \text { If } p=0, \text { then } n=1
\end{aligned}
$$

Before giving our theorems for the cases where Δ are of types E, F or G, we need a lemma. Fix an irreducible root system Δ. For a subset π_{0} of Δ, put
$\mathscr{D}\left(\pi_{0}\right)=\left\{\left[\pi^{\prime}, \pi_{0}\right] \mid \pi^{\prime}\right.$ is any simple root system containing $\left.\pi_{0}\right\}$.
Lemma 4. In above notation, let π_{0}^{\prime} be another subset of Δ. If $\mathscr{D}\left(\pi_{0}\right) \cap$ $\mathscr{D}\left(\pi_{0}^{\prime}\right) \neq \phi$ then we have $\mathscr{D}\left(\pi_{0}\right)=\mathscr{D}\left(\pi_{0}^{\prime}\right)$.

Proof. Suppose $\left[\pi, \pi_{0}^{\prime \prime}\right] \in \mathscr{D}\left(\pi_{0}\right) \cap \mathscr{D}\left(\pi_{0}^{\prime}\right)$. Then there exist simple root systems π^{\prime} and $\pi^{\prime \prime}$ of Δ such that $\left(\pi^{\prime}, \pi_{0}\right) \sim\left(\pi, \pi_{0}^{\prime \prime}\right)$ and ($\left.\pi^{\prime \prime}, \pi_{0}^{\prime}\right) \sim\left(\pi, \pi_{0}^{\prime \prime}\right)$. Thus we have $\left(\pi^{\prime}, \pi_{0}\right) \sim\left(\pi^{\prime \prime}, \pi_{0}^{\prime}\right)$, and hence there exists $\sigma \in \operatorname{Aut}(\Delta)$ with $\sigma \pi_{0}=\pi_{0}^{\prime}$. Therefore we obtain $\mathscr{D}\left(\pi_{0}\right)=\mathscr{D}\left(\pi_{0}^{\prime}\right)$.

Remark. For a given Δ and Δ_{0}, let \mathscr{D}_{0} and \mathscr{D}_{1} denote the sets defined before. Fix $\left[\pi, \pi_{0}\right] \in \mathscr{D}_{1}$. If we show $\mathscr{D}_{1}=\mathscr{D}\left(\pi_{0}\right)$, then we obtain $\mathscr{D}_{0}=\mathscr{D}_{1}$. In fact, we have $\mathscr{D}_{0} \cap \mathscr{D}\left(\pi_{0}\right) \neq \phi$. On the other hand, for $\pi^{\prime} \in \mathcal{S}_{1}$, let $\pi_{0}^{\prime}=\pi^{\prime} \cap \Delta_{0}$. Then we have $\mathscr{D}_{0}=\mathscr{D}\left(\pi_{0}^{\prime}\right)$. Since $\mathscr{D}_{0} \cap \mathscr{D}_{1} \neq \phi$, by Lemma 4, $\mathscr{D}_{0}=\mathscr{D}\left(\pi_{0}\right)$. Thus we obtain $\mathscr{D}_{0}=\mathscr{D}_{1}$.

In the case where Δ is of type E, F or G, this argument yields $\mathscr{D}_{0}=\mathscr{D}_{1}$.
Theorem 7. Suppose that Δ is of type F_{4}. Then we have $\mathscr{D}_{0}=\mathscr{D}_{1}$ and we get the following table for the number n of elements in \mathcal{I}_{0} / \sim.

Table 2

type of Δ_{0}	n	type of Δ_{0}	n
ϕ	1	$A_{1}+A_{1}$	3
A_{1}	2	B_{3}	1
A_{2}	1	C_{3}	1
B_{2}	1	$A_{1}+A_{2}$	1

Proof. We may assume that π consists of $\varepsilon_{2}-\varepsilon_{3}, \varepsilon_{3}-\varepsilon_{4}, \varepsilon_{4}, \frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}\right)$. For each element [π, π_{0}^{\prime}] in $\mathscr{D}_{1}, D\left[\pi, \pi_{0}^{\prime}\right]$ denotes the Dynkin diagram of π whose vertices not belonging to π_{0}^{\prime} are marked by X. Fix $\left[\pi, \pi_{0}\right] \in \mathscr{D}_{1}$ and for any $\left[\pi, \pi_{0}^{\prime}\right] \in \mathscr{D}_{1}$, we can find a simple root system π^{\prime} such that $\left[\pi^{\prime}, \pi_{0}\right]=$ $\left[\pi, \pi_{0}\right]$ as in the following table. Thus we have $\mathscr{D}_{1}=\mathscr{D}\left(\pi_{0}\right)$ and, by above remark, $\mathscr{D}_{0}=\mathscr{D}_{1}$.

type of π_{0}	$D\left[\pi, \pi_{0}^{\prime}\right]$ and π^{\prime}	n
A_{1}	$\pi \underset{\varepsilon_{2}-\varepsilon_{3}}{\stackrel{\circ}{\longrightarrow}} X \Longrightarrow X — X$	2
	$\pi^{\prime} \quad \underset{\varepsilon_{4}-\varepsilon_{2} \varepsilon_{2}-\varepsilon_{3}}{\circ} \Longrightarrow X-\frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}\right)$	
A_{1}	$\pi \quad X-X \Longrightarrow \underset{\varepsilon_{4}}{0}-X$	2
	$\pi^{\prime} \quad \underset{\varepsilon_{1}-\varepsilon_{2} \varepsilon_{2}-\varepsilon_{3} \frac{2 j}{}\left(-\varepsilon_{1}-\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{4}\right)}{X — X}$	
A_{2}	$\pi \quad \circ-\bigcirc \Longrightarrow X-X$	1
A_{2}	$\pi \quad X-X \Longrightarrow 0-$ 。	1
B_{2}	$\pi \quad X-\bigcirc \Longrightarrow 0-X$	1
$A_{1}+A_{1}$	$\pi \quad \underset{\varepsilon_{2}-\varepsilon_{3}}{\circ} X \Longrightarrow{ }_{\varepsilon_{4}}^{0}-X$	3
	$\pi^{\prime} \underset{\varepsilon_{2}-\varepsilon_{3} \varepsilon_{1}-\varepsilon_{2} \frac{12}{2}\left(\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}\right)}{X \Longrightarrow}$	
	$\pi^{\prime} \quad \underset{\varepsilon_{1}-\varepsilon_{2} \varepsilon_{2}-\varepsilon_{3} \frac{1}{2}\left(-\varepsilon_{1}-\varepsilon_{2}+\varepsilon_{3}-\varepsilon_{4}\right)}{\Longrightarrow} X \underset{\varepsilon_{4}}{\Longrightarrow}$	

Table continued

Type of π_{0}		$D\left[\pi_{0}, \pi_{0}^{\prime}\right]$ and π^{\prime}	n
B_{3}	π	$\circ-\circ \Longrightarrow \circ-X$	1
C_{3}	π	$X-\circ \Longrightarrow \circ$	\circ
$A_{1}+A_{2}$	π	$\circ-X \Longrightarrow \circ$	1
$A_{1}+A_{2}$	π	\circ	$\circ \Longrightarrow X — \circ$

Theorem 8. Suppose that Δ is of type G_{2}. Then we have $\mathscr{D}_{0}=\mathscr{D}_{2}$ and the following table holds.

Table 3

type of Δ_{0}	n
ϕ	1
A_{1}	1

Proof. Obviously \mathscr{D}_{1} contains only one element in any case. Since $\mathscr{D}_{0} \subset \mathscr{D}_{1}$, we obtain the theorem.

Theorem 9. Suppose that Δ is of type E. Then we have $\mathscr{D}_{0}=\mathscr{D}_{1}$ and get the following table for the number n of elements in $\mathcal{I}_{0} \sim$.

Table 4

type of Δ_{0}	n			type of Δ_{0}	n		
	E_{6}	E_{7}	E_{8}		E_{6}	E_{7}	E_{8}
ϕ	1	1	1	$A_{1}+A_{1}+A_{1}+A_{1}$	-	2	7
A_{1}	4	7	8	A_{5}	1	3	4
A_{2}	3	6	7	D_{5}	1	2	2
$A_{1}+A_{1}$	6	15	21	$A_{4}+A_{1}$	1	5	12
A_{3}	3	6	7	$A_{2}+A_{2}+A_{1}$	1	3	8
$A_{2}+A_{1}$	5	18	28	$D_{4}+A_{1}$	-	1	2
$A_{1}+A_{1}+A_{1}$	4	11	21	$A_{3}+A_{2}$	-	3	10
A_{4}	2	5	6	$A_{3}+A_{1}+A_{1}$	-	3	10
D_{4}	1	1	1	$A_{2}+A_{1}+A_{1}+A_{1}$	-	1	8
$A_{3}+A_{1}$	2	11	20	A_{6}	-	1	3
$A_{2}+A_{2}$	1	4	8	D_{6}	-	1	1
$A_{2}+A_{1}+A_{1}$	3	12	28	E_{6}	-	1	1

Table 4 continued

type of Δ_{0}	n			type of Δ_{0}	n		
	E_{6}	E_{7}	E_{8}		E_{6}	E_{7}	E_{8}
$A_{5}+A_{1}$	-	-	3	A_{7}	-	-	1
$D_{5}+A_{1}$	-	1	3	D_{7}	-	-	1
$A_{4}+A_{2}$	-	-	4	E_{7}	-	-	1
$A_{4}+A_{1}+A_{1}$	-	1	4	$E_{6}+A_{1}$	-	-	1
$D_{4}+A_{2}$	-	1	1	$D_{5}+A_{2}$	-	-	1
$A_{3}+A_{3}$	-	1	2	$D_{5}+A_{1}+A_{1}$	-	-	1
$A_{3}+A_{2}+A_{1}$	-	-	4	$A_{4}+A_{3}$	-	-	1
$A_{2}+A_{2}+A_{1}+A_{1}$	-	-	2	$A_{4}+A_{2}+A_{1}$	-	-	1

Proof. Since root systems of type E_{6} and E_{7} are canonically root subsystems of that of type E_{8}, it is sufficient to show our assertion for the case of E_{8}. The system π may be assumed to consists of $\varepsilon_{7}-\varepsilon_{8}, \varepsilon_{6}-\varepsilon_{5}, \varepsilon_{5}-\varepsilon_{4}, \varepsilon_{4}-\varepsilon_{3}$, $\varepsilon_{3}-\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{1}, \varepsilon_{2}+\varepsilon_{1}, \frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{8}-\left(\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{6}+\varepsilon_{7}\right)\right)$. The following table is as in the case of F_{4}. In the table, each equivalence class [π, π_{0}^{\prime}] is numbered. Suppose that $\left[\pi, \pi_{a}\right],\left[\pi, \pi_{b}\right],\left[\pi, \pi_{c}\right]$ and $\left[\pi, \pi_{d}\right]$ are numbered by a, b, c and d. Then " $a \rightarrow b$ " has the following meaning: " $\left[\pi, \pi_{a}\right] \in \mathscr{D}_{1}$ has already been proved. Suppose π_{a} do not contain the element $\varepsilon_{1}+\varepsilon_{2}$. Let π_{a}^{\prime} be all irreducible components contained in $\left\{\varepsilon_{7}-\varepsilon_{6}, \cdots, \varepsilon_{2}-\varepsilon_{1}\right\}$ and put $\pi_{a}^{\prime \prime}=\pi-\pi_{a}^{\prime}$. Moreover suppose there exist a mapping ϕ from π_{a} onto π_{b} with (*) such that $\phi \pi_{a}^{\prime \prime}=\pi_{a}^{\prime \prime}$ and $\phi \pi_{a}^{\prime} \subset\left\{\varepsilon_{7}-\varepsilon_{6}, \cdots, \varepsilon_{2}-\varepsilon_{1}\right\}$. Then we can show $\left[\pi, \pi_{b}\right] \in \mathscr{D}_{1}$ by the same argument as in the case of A_{l}." " $a \rightarrow b(c \rightarrow d)$ " has the following meaning: $"\left[\pi, \pi_{a}\right] \in \mathscr{D}_{1}$ has already been proved. And the existence of π^{\prime} such that $\left[\pi, \pi_{d}\right]=\left[\pi^{\prime}, \pi_{c}\right]$ has already been shown. Suppose π_{a} and π_{b} are subsets of π_{c} and π_{d} respectively. Moreover suppose for $\sigma \in \mathscr{W}(\Delta)$ with $\sigma \pi=\pi^{\prime}$ (note that then $\sigma \pi_{d}=\pi_{c}$), we have $\sigma \pi_{a}=\pi_{b}$. Then we can show $\left[\pi, \pi_{b}\right] \in \mathscr{D}_{1}$."

number	type of π_{0}	$D\left[\pi, \pi_{0}^{\prime}\right]$ and π^{\prime} such that $D\left[\pi, \pi_{0}^{\prime}\right]=D\left[\pi^{\prime}, \pi_{0}\right]$	n
1	A_{7}	π	1
2	D_{7}		1
3	E_{7}	π	1

continued

number	type of π_{0}	$D\left[\pi, \pi_{0}^{\prime}\right]$ and π^{\prime} such that $D\left[\pi, \pi_{0}^{\prime}\right]=D\left[\pi^{\prime}, \pi_{0}\right]$	n
4	$E_{6}+A_{1}$		1
5	$A_{6}+A_{1}$		1
6	$D_{5}+A_{2}$		1
7	$A_{4}+A_{3}$		1
8	$A_{4}+A_{2}+A_{1}$	π	1
9	A_{6}	π	3
10			
11		$\begin{array}{r} \left.\pi^{-\varepsilon_{8}-\varepsilon_{7}, \varepsilon_{7}-\varepsilon_{6}} \circ \stackrel{\cdots}{\square} \circ \frac{\varepsilon_{4}-\varepsilon_{3} \cdots}{\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{8}-\left(\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{6}+\varepsilon_{7}\right)\right)} \circ \stackrel{\varepsilon_{2}-\varepsilon_{1}}{\square} \circ \right\rvert\, \end{array}$	
12	D_{6}		1
13	E_{6}		1
14	$A_{5}+A_{1}$		3
15			
16			

continued

number	type of π_{0}	$D\left[\pi, \pi_{0}^{\prime}\right]$ and π^{\prime} such that $D\left[\pi, \pi_{0}^{\prime}\right]=D\left[\pi^{\prime}, \pi_{0}\right]$	\boldsymbol{n}
17	$D_{5}+A_{1}$		3
18			
19			
20	$A_{4}+A_{2}$	π	4
21			
22			
23		$\begin{gathered} -\pi_{8}-\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{1} \\ X-\frac{-\varepsilon_{8}-\varepsilon_{5}, \varepsilon_{5}-\varepsilon_{4}}{} \circ \cdots-\varepsilon_{7}-\varepsilon_{6} \\ \stackrel{1}{2}\left(\varepsilon_{1}+\varepsilon_{8}-\left(\varepsilon_{2}+\cdots+\varepsilon_{7}\right)\right) \\ \varepsilon_{4}-\varepsilon_{3} \end{gathered}$	
24	$A_{4}+A_{1}+A_{1}$	π	4
25			
26			
27			

continued

number	type of π_{0}	$D\left[\pi, \pi_{0}^{\prime}\right]$ and π^{\prime} such that $D\left[\pi, \pi_{0}^{\prime}\right]=D\left[\pi^{\prime}, \pi_{0}\right]$	n
28	$D_{4}+A_{2}$		1
29	$A_{3}+A_{3}$	π	2
30			
31	$A_{1}+A_{2}+A_{1}$		4
32		$\begin{array}{cc} \pi^{\prime} \varepsilon_{7}-\varepsilon_{6} \cdots \varepsilon_{5}-\varepsilon_{4} \\ \pi^{\prime}-X-X & \varepsilon_{2}+\varepsilon_{1}, \varepsilon_{3}-\varepsilon_{2} \\ \frac{1}{2}\left(\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{8}-\left(\varepsilon_{1}+\varepsilon_{5}+\varepsilon_{6}+\varepsilon_{7}\right)\right) \\ \frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{8}-\left(\varepsilon_{2}+\cdots+\varepsilon_{7}\right)\right) & \begin{array}{l} \frac{1}{2}\left(\varepsilon_{4}+\cdots+\varepsilon_{7}-\right. \\ \left.\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{8}\right)\right) \end{array} \end{array}$	
33		$\begin{gathered} \pi^{-\varepsilon_{8}-\varepsilon_{7}, \varepsilon_{7}-\varepsilon_{6}} \stackrel{\cdots \varepsilon_{5}-\varepsilon_{4}, \varepsilon_{4}-\varepsilon_{1}, \varepsilon_{2}+\varepsilon_{1}, \varepsilon_{3}-\varepsilon_{2}}{ } \circ \stackrel{-}{\circ} \circ \\ \stackrel{1}{2}\left(\varepsilon_{1}+\varepsilon_{8}-\left(\varepsilon_{2}+\cdots+\varepsilon_{7}\right)\right) \end{gathered}$	
34			
35	$A_{2}+A_{2}+A_{1}+A_{1}$	π	2
36		$\begin{aligned} & \pi^{\prime} \\ & \varepsilon_{4}-\varepsilon_{3}, \varepsilon_{3}-\varepsilon_{7}, \varepsilon_{7}-\varepsilon_{6}, \varepsilon_{6}-\varepsilon_{5}, \varepsilon_{5}-\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{1} \\ & \circ \circ \\ & \circ \circ \\ & \varepsilon_{2}+\varepsilon_{1} \circ \\ & \frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{8}-\left(\varepsilon_{2}+\cdots+\varepsilon_{7}\right)\right) \end{aligned}$	
37	A_{5}		4
38			
39		$\begin{aligned} & X-\circ-\circ-\circ-\circ-X-X \\ 37 \rightarrow 39(14 \rightarrow 15) & ! \end{aligned}$	
40		$\begin{aligned} & x-X-\circ-\circ-\circ-\circ-\circ \\ & 37 \rightarrow 40(14 \rightarrow 16) \quad X \end{aligned}$	

continued

number	type of π_{0}	$D\left[\pi, \pi_{0}^{\prime}\right]$ and π^{\prime} such that $D\left[\pi, \pi_{0}^{\prime}\right]=D\left[\pi^{\prime}, \pi_{0}\right]$	n
41	D_{5}	$\pi \quad X-X-\circ-\circ-\circ-\circ-X$	2
42		$\begin{aligned} & X-X-X-\circ-\circ-\circ-\circ \\ 41 \rightarrow 42(17 \rightarrow 18) & \circ \end{aligned}$	
43	$A_{4}+A_{1}$		12
44			
45			
46			
47			
48			
49			
50		$\underset{46 \rightarrow 50(14 \rightarrow 15)}{ } \quad \underset{\circ}{ }$	
51		${ }_{47 \rightarrow 51(9 \rightarrow 10)}^{\circ-X-\circ-\circ-\infty-X}$	
52		$\stackrel{\circ-X-X-X-\circ-\circ-\circ}{48 \rightarrow 52(21 \rightarrow 22)}$	
53		$\begin{aligned} & X-\circ-X-X-\circ-\circ-\circ \\ & 52 \rightarrow 53(18 \rightarrow 19) \end{aligned}$	
54			

number	type of π_{0}	$D\left[\pi, \pi_{0}^{\prime}\right]$ and π^{\prime} such that $D\left[\pi, \pi_{0}^{\prime}\right]=D\left[\pi^{\prime}, \pi_{0}\right]$	n
55	$D_{4}+A_{1}$		2
56		$\begin{aligned} & X-\circ-X-\circ-\circ-\circ-X \\ & 55 \rightarrow 56(18 \rightarrow 19) \end{aligned}$	
57	$A_{3}+A_{2}$	π	10
58			
59			
60		$\stackrel{\circ-\circ-\circ-X-\circ-X-X}{57 \rightarrow 60(9 \rightarrow 10)}$	
61			
62		$\begin{aligned} & \circ-\circ-X-\circ-\circ-X-X \\ & 61 \rightarrow 62(9 \rightarrow 10) \end{aligned}$	
63		$\underset{61 \rightarrow 63(21 \rightarrow 22)}{\circ-\circ-X-X-\circ-\circ-X}$	
64		$\begin{aligned} & X-\circ-\circ-X-\circ-\circ-X \\ & 63 \rightarrow 64(22 \rightarrow 23) \end{aligned}$	
65		$\stackrel{\circ-\circ-X-X-\circ-\circ-\circ}{63 \rightarrow 65(30 \rightarrow 29) \quad \mid}$	
66			

We omit the rest of this table because we may write it in the same way.
From Theorems 5, 6, 7, 8 and 9, we get the next corollary which has been shown by Borel-Hirzebruch [2] in a different way.

Corollary. If U is a maximal torus of G or if U has one-dimensional center, then G-invariant complex structures on G / U are unique up to biholomorphism.

Proof. Suppose that U is a maximal torus of G. Then we have $\Delta_{0}=\phi$.

Thus we obtain $n=1$. Let S be the center of U. Then we have rank $[U, U]=$ $\operatorname{rank} U-\operatorname{dim} S$. Suppose $\operatorname{dim} S=1$. Then we have $\operatorname{rank} \Delta_{0}=\operatorname{rank}[U, U]=$ $l-1$. From above theorems we obtain $n=1$.

References

[1] S. Bochner and_D. Montgomery: Groups on analytic manifold, Ann. of Math. (2) 48 (1947), 659-669.
[2] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[3] N. Bourbaki: Groupes et algèbres de Lie, Chap. 4-6, Hermann, Paris, 1968.
[4] A. Fröhlicher: Zur Differential Geometric der Komplexen Structuren, Math. Ann. 129 (1955), 50-95.
[5] S. Helgason: Differential geometry, Lie groups, and symmetric spaces, 2-nd ed., Academic Press, New York, 1979.
[6] T. Hou: The classification of complex structures on certain important homogeneous spaces, Report at 2-nd. DD symposium 1981.
[7] J. Humphreys: Introduction to Lie algebras and representation theory, Spring-er-Verlag, New York-Heiderberg-Berlin, 1972.
[8] J.L. Koszul: Sur la forme hermitienne canonique des espaces homogenes complexes, Canad. J. Math. 7 (1955), 562-576.
[9] S. Murakami: Lectures on homogeneous spaces, to be published (in Chinese).
[10] A.L. Oniščik: Inclusion relations among transitive compact transformation groups, Trudy Moskov Math. Obsc. 11 (1962), 119-242.
[11] H.C. Wang: Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1-32.

[^0]
[^0]: Matsushita Electric Industrial Co., Ltd. 3-15 Yagumo-Nakamachi, Moriguchi Osaka 570, Japan

