LOCALIZATION OF BP-MODULE SPECTRA WITH RESPECT TO BP-RELATED HOMOLOGIES

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

Zen-ichi YOSIMURA

(Received September 17, 1982)

1. Introduction

$B P$ is the Brown-Peterson spectrum for a fixed prime p. It is an associative and commutative ring spectrum whose homotopy is $B P_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{n}, \cdots\right]$. Following Ravenel [9] we denote by L_{n} the localization with respect to $v_{n}^{-1} B P_{*^{-}}$ homology and by L_{∞} that with respect to $\underset{n}{\oplus} v_{n}^{-1} B P_{*}$-homology. Then there is a tower

$$
X \rightarrow L_{\infty} X \cdots \rightarrow L_{n} X \rightarrow L_{n-1} X \rightarrow \cdots \rightarrow L_{0} X
$$

for each $C W$-spectrum X. A $C W$-spectrum X is said to be harmonic if $X=L_{\infty} X$, and s-harmonic if $X=\hat{L}_{\infty} X$ where we put $\hat{L}_{\infty} X={\underset{\leftarrow}{n}}_{\lim _{n}} L_{n} X . \quad X$ is harmonic whenever it is s-harmonic. In this paper we study some properties of s-harmonic spectra. Especially we discuss $\hat{L}_{\infty} E$ when E is an associative $B P$-module spectrum which satisfies one or two of the following conditions:
I) E_{*} is v_{m}-torsion for any $m<n$,
II) E_{*} is v_{m}-torsion for any $m>n$,
III) $B P_{*} / I_{m_{B P *}} \otimes_{*} E_{*}$ is v_{m}-torsion free for any $m \leqq n$,
IV) $\operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / I_{m}, E_{*}\right)$ is v_{m}-divisible for any $m<n$, and
V) hom $\operatorname{dim}_{B P_{*}} E_{*} \leqq n$.

As such associative $B P$-module spectra we have $P(n), k(n), B P\langle n\rangle, N_{n} B P$ and so on.

We show that an associative $B P$-module spectrum E is s-harmonic if hom $\operatorname{dim}_{B P *} E_{*}$ is finite (Theorem 4.8). This implies Ravenel's result ([9, Theorem 4.4] or [6, Theorem 1.3]) that a p-local connective $C W$-spectrum X is harmonic if hom $\operatorname{dim}_{B P_{*}} B P_{*} X$ is finite (Corollary 4.9). However the finiteness assumption is not necessarily essential because $L_{\infty} B P\langle n\rangle$ is s-harmonic although hom $\operatorname{dim}_{B P_{*}} L_{\infty} B P\langle n\rangle_{*}$ is infinite for $n \geqq 1$ (Proposition 4.12).

We intend to describe elementary properties of s-harmonic spectra corresponding to those of harmonic spectra. The product of harmonic spectra is
always harmonic. But its property is not valid for s-harmonic spectra. By computing $\underset{m}{\lim ^{1}} N_{m+1}\left(\Pi_{n \geq m} E_{n}\right)_{*}$ where $E_{n}=N_{n+1} B P$ or $N_{n+1} B P\langle n\rangle$, we finally show that neither $\prod_{n} N_{n+1} B P$ nor $\prod_{n} L_{\infty} B P\langle n\rangle$ is s-harmonic (Theorems 6.3 and 6.4). This says that \hat{L}_{∞} is never a localization functor, and hence $L_{\infty} X \neq \hat{L}_{\infty} X$ in general.

2. Associative $B P$-module spectra $N_{n} E$ and $M_{n} E$

Let us denote by L_{n} the localization functor with respect to the $\left(v_{n}^{-1} B P\right)_{*^{-}}$ homology, and by L_{∞} and L_{ω} those with respect to the $\left({ }_{n} v_{n}^{-1} B P\right)_{*^{-}}$and $\left(\Pi v_{n}^{-1} B P\right)_{*}$-homologies respectively. Then there is a tower

$$
L_{S}=\mathrm{id} \rightarrow L_{B P}=L_{\omega} \rightarrow L_{\infty} \rightarrow \cdots \rightarrow L_{n} \rightarrow \cdots \rightarrow L_{0}=L_{S Q}
$$

consisting of localization functors.
Define cofibrations

$$
\begin{equation*}
N_{n} X \rightarrow M_{n} X \rightarrow N_{n+1} X \tag{2.1}
\end{equation*}
$$

inductively by setting $N_{0} X=X$ and $M_{n} X=L_{n} N_{n} X$. Then there is a commutative diagram

involving four cofibrations [9, Theorem 5.10].
Lemma 2.1. i) If E is an (associative) BP-module spectrum, then $L_{n} E$, $N_{n} E$ and $M_{n} E$ are all so.
ii) If $f: E \rightarrow F$ is a BP-module map of BP-module spectra, then $L_{n} f, N_{n} f$ and $M_{n} f$ are all so.

Proof. i) Consider the following diagram

with cofibering rows. There is a unique map $B P_{\lambda} L_{n} E \rightarrow L_{n} E$ making the left square commutative since $B P_{\wedge} N_{n+1} E$ is $v_{n}^{-1} B P_{*}$-acyclic. Thus $L_{n} E$ inherits a $B P$-module structure from that of E. The associativity of $L_{n} E$ is assured
by the uniqueness of induced maps. Moreover there is a unique map $B P_{\wedge} N_{n+1} E \rightarrow N_{n+1} E$ making the other squares commutative. This also gives a $B P$-module structure on $N_{n+1} E$.
ii) It is easy to show ii) along the above line.

Let E be an associative $B P$-module spectrum such that
(I) ${ }_{n} \quad E_{*}$ is v_{m}-torsion for each $m<n$.

Notice that $B P_{*} E \cong B P_{*} B P{\underset{B P}{*}}^{\otimes} E_{*}$ is also v_{m}-torsion for each $m<n$. As is easily seen, the multiplications

$$
\begin{aligned}
& 1 \otimes v_{n}: v_{n}^{-1} B P_{*} B P \otimes_{B P_{*}}^{\otimes} E_{*} \rightarrow v_{n}^{-1} B P_{*} B P{ }_{B P_{*}}^{\otimes} E_{*} \\
& v_{n} \otimes 1: B P_{*} B P \underset{B P_{*}}{\otimes} v_{n}^{-1} E_{*} \rightarrow B P_{*} B P{\underset{B P}{*}}^{\otimes_{n}} v_{n}^{-1} E_{*}
\end{aligned}
$$

are isomorphisms. This means that both of the maps

$$
1_{\wedge} v_{n}: v_{n}^{-1} B P_{\wedge} E \rightarrow v_{n}^{-1} B P_{\wedge} E \quad \text { and } \quad v_{n \wedge} 1: B P_{\wedge} v_{n}^{-1} E \rightarrow B P_{\wedge} v_{n}^{-1} E
$$

are homotopy equivalences. Hence the canonical maps

$$
\begin{equation*}
v_{n}^{-1} B P_{\wedge} E \rightarrow v_{n}^{-1} B P_{\wedge} v_{n}^{-1} E \leftarrow B P_{\wedge} v_{n}^{-1} E \tag{2.3}
\end{equation*}
$$

are homotopy equivalences, too.
Proposition 2.2. Let E be an associative BP-module spectrum whose homotopy E_{*} is v_{m}-torsion for any $m<n$. Then $L_{m} E=p t$ for any $m<n$, and $L_{n} E=v_{n}^{-1} E$.

Proof. The canonical map $E \rightarrow v_{n}^{-1} E$ is a $v_{n}^{-1} B P_{*}$-equivalence. On the other hand, we consider the commutative diagram

for any map $f: W \rightarrow v_{n}^{-1} E$. The map f is trivial whenever W is $v_{n}^{-1} B P_{*}$-acyclic. This says that $v_{n}^{-1} E$ is $v_{n}^{-1} B P_{*}$-local. Therefore $L_{n} E=v_{n}^{-1} E$, and hence $L_{m} E=$ $v_{m}^{-1} E=p t$ for any $m<n$.

Theorem 2.3. Let E be an associative BP-module spectrum. Then the $C W$-spectra $N_{n} E$ and $M_{n} E$ are associative $B P$-module spectra, and moreover $M_{n} E=v_{n}^{-1} N_{n} E$. (Cf., [9, Theorem 6.1]).

Proof. By induction on n we will show that $N_{n} E$ is an associative $B P$ module spectrum whose homotopy $N_{n} E_{*}$ is v_{m}-torsion for any $m<n$. By using

Proposition 2.2 the induction hypothesis implies that $M_{n} E=v_{n}^{-1} N_{n} E$. Hence $N_{n+1} E_{*}$ is clearly v_{m}-torsion for any $m \leqq n$. From Lemma 2.1 it follows that $M_{n} E$ and $N_{n+1} E$ are associative $B P$-module spectra. Therefore $N_{n+1} E$ has the desired property.

Corollary 2.4. Let E be an associative $B P$-module spectrum. Then $L_{n} E_{\wedge} X=$ $L_{n}\left(E_{\wedge} X\right)$ and $N_{n} E_{\wedge} X=N_{n}\left(E_{\wedge} X\right)$.

Proof. Assume that the $B P$-module map $N_{n} E_{\wedge} X \rightarrow N_{n}\left(E_{\wedge} X\right)$ is a homotopy equivalence. Then it follows from Theorem 2.3 that the $B P$-module map $M_{n} E_{\wedge} X \rightarrow M_{n}\left(E_{\wedge} X\right)$ is so, and hence the $B P$-module map $N_{n+1} E_{\wedge} X \rightarrow$ $N_{n+1}\left(E_{\wedge} X\right)$ is so, too. Moreover the $B P$-module map $L_{n} E_{\wedge} X \rightarrow L_{n}\left(E_{\wedge} X\right)$ is also a homotopy equivalence.

Similarly we obtain
Corollary 2.5. Let $E_{\lambda}, \lambda \in \Lambda$, be associative BP-module spectra. Then $\underset{\lambda}{\vee} L_{n} E_{\lambda}=L_{n}\left(\underset{\lambda}{\vee} E_{\lambda}\right)$ and $\underset{\lambda}{\vee} N_{n} E_{\lambda}=N_{n}\left(\bigvee_{\lambda} E_{\lambda}\right)$.

Let E be an associative $B P$-module spectrum such that
(II) $n_{n} \quad E_{*}$ is v_{m}-torsion for each $m>n$.

Then $N_{n+1} E_{*}$ is v_{m}-torsion for every $m \geqq 0$. So we have
Proposition 2.6. Let E be an associative BP-module spectrum whose homotopy E_{*} is v_{m}-torsion for any $m>n$. Then $L_{\infty} E=L_{n} E$.

Putting Propositions 2.2 and 2.6 together we obtain
Corollary 2.7. Let E be an associative BP-module spectrum whose homotopy E_{*} is v_{m}-torsion except for $m=n$. Then $L_{\infty} E=v_{n}^{-1} E$.

The associative $B P$-module spectra $P(n)$ and $k(n)$ satisfy the condition $(\mathrm{I})_{n}$, and both $B P\langle n\rangle$ and $k(n)$ satisfy the condition (II) $)_{n}$. So we have

$$
\begin{align*}
& L_{n} P(n)=v_{n}^{-1} P(n)=B(n), \quad L_{\infty} k(n)=v_{n}^{-1} k(n)=K(n) \quad \text { and } \tag{2.4}\\
& L_{\infty} B P\langle n\rangle=L_{n} B P\langle n\rangle .
\end{align*}
$$

3. $\boldsymbol{v}_{\boldsymbol{m}}$-torsion free and $\boldsymbol{v}_{\boldsymbol{m}}$-divisible

Let $A=\left(a_{0}, a_{1}, \cdots, a_{i}, \cdots\right)$ be an infinite sequence of positive integers. Denote by $B P J_{n} A$ the associative $B P$-module spectrum with $B P J_{n} A_{*} \simeq B P_{*} /$ $J_{n} A$ where $J_{n} A=\left(p^{a_{0}}, v_{1}^{a_{1}}, \cdots, v_{n-1}^{a_{n-1}}\right)$. There is a cofibering

$$
\Sigma^{2\left(p^{n}-1\right) a_{n}} B P J_{n} A \rightarrow B P J_{n} A \rightarrow B P J_{n+1} A
$$

which induces the short exact sequence $0 \rightarrow B P_{*} / J_{n} A \xrightarrow{v_{n}^{a_{n}}} B P_{*} / J_{n} A \rightarrow B P_{*} / J_{n+1} A \rightarrow 0$
of $B P_{*}$-modules. The composite $B P J_{n} A \rightarrow \Sigma^{2\left(p^{n-1-1}\right) a_{n-1}+1} B P J_{n-1} A \rightarrow \cdots \rightarrow$ $\Sigma^{\mid J_{n}^{A \mid+n} B P}$ yields a $B P$-module map

$$
\eta_{A}: B P J_{n} A \rightarrow \Sigma^{\left|J_{n} A\right|} N_{n} B P
$$

where $\left|J_{n} A\right|=\Sigma_{1 \leqq i<n} 2\left(p^{i}-1\right) a_{i}$. The induced homomorphism $\eta_{A^{*}}: B P_{*} \mid J_{n} A \rightarrow$ $N_{n} B P_{*}$ carries 1 to $p^{-a_{0} v_{1}^{-a_{1}} \cdots v_{n-1}^{-a_{n}-1}}$.

For any two sequences $A=\left(a_{0}, a_{1}, \cdots, a_{i}, \cdots\right)$ and $A^{\prime}=\left(a_{0}^{\prime}, a_{1}^{\prime}, \cdots, a_{i}^{\prime}, \cdots\right)$ with $1 \leqq a_{i} \leqq a_{i}^{\prime}$, we write $A \leqq A^{\prime}$. For such a pair $A \leqq A^{\prime}$ the triangle

is commutative where the left vertical arrow is just the multiplication by $p^{b_{0} v_{1}^{b_{1}}}$ $\cdots v_{n-1}^{b}{ }_{n-1}$ with $b_{i}=a_{i}^{\prime}-a_{i}$. So we have an isomorphism

$$
\begin{equation*}
\xrightarrow{\lim } B P_{*} / J_{n} A \rightarrow N_{n} B P_{*} \tag{3.1}
\end{equation*}
$$

of $B P_{*}$-modules.
Let N be a $B P_{*}$-module. There is an exact sequence $0 \rightarrow \operatorname{Tor}_{n}^{B P_{*}}\left(B P_{*}\right)$ $\left.J_{n} A, N\right) \xrightarrow{\partial_{A}} \operatorname{Tor}_{n-1}^{B P_{*}}\left(B P_{*} / J_{n-1} A, N\right) \xrightarrow{v_{n-1}^{a_{n-1}}} \operatorname{Tor}_{n-1}^{B P_{*}}\left(B P_{*} / J_{n-1} A, N\right)$. Hence we verify that $\operatorname{Tor}_{n}^{B P_{*}}\left(B P_{*} \mid J_{n} A, N\right) \cong\left\{x \in N ; v_{k}^{a_{k}} x=0\right.$ for each $\left.k<n\right\}$. The projection $B P_{*} / J_{n} A^{\prime} \rightarrow B P_{*} / J_{n} A$ induces a homomorphism

$$
\rho_{A, A^{\prime}}: \operatorname{Tor}_{n}^{B P *}\left(B P_{*} / J_{n} A^{\prime}, N\right) \rightarrow \operatorname{Tor}_{n}^{B P_{*}}\left(B P_{*} / J_{n} A, N\right)
$$

$$
\mu_{A^{\prime}, A}: \operatorname{Tor}_{n}^{B P_{*}}\left(B P_{*} / J_{n} A, N\right) \rightarrow \operatorname{Tor}_{n}^{B P_{*}}\left(B P_{*} / J_{n} A^{\prime}, N\right)
$$

which is the inclusion. As is easily checked, we have

$$
\begin{equation*}
\partial_{A} \rho_{A, A^{\prime}}=v_{n-1}^{b_{n}^{n-1}} \rho_{A, A^{\prime}} \partial_{A^{\prime}} \quad \text { and } \quad \partial_{A^{\prime}} \mu_{A^{\prime}, A}=\mu_{A^{\prime}, A} \partial_{A} \tag{3.2}
\end{equation*}
$$

Notice that $\operatorname{Tor}_{n}^{B P_{*}}\left(N_{n} B P_{*}, N\right) \cong\left\{x \in N ; x\right.$ is v_{k}-torsion for each $\left.k<n\right\}$. The $B P$-module map $\eta_{A}: B P J_{n} A \rightarrow \Sigma^{\left|J_{n} A\right|} N_{n} B P$ yields the inclusion

$$
\lambda_{A}: \operatorname{Tor}_{n}^{B P_{*}}\left(B P_{*} \mid J_{n} A, N\right) \rightarrow \operatorname{Tor}_{n}^{B P_{*}}\left(N_{n} B P_{*}, N\right)
$$

Obviously we see

$$
\begin{equation*}
\lambda_{A^{\prime}} \mu_{A^{\prime}, A}=\lambda_{A} \quad \text { and } \quad \lambda_{A} \partial_{A}=\lambda_{A} \tag{3.3}
\end{equation*}
$$

Let E be an associative $B P$-module spectrum such that (III) $n_{n} \quad B P_{*} / I_{m} \otimes_{B P_{*}} E_{*}$ is v_{m}-torsion free for each $m \leqq n$.

For example, take $B P\langle n\rangle$ as E satisfying (III) $)_{n}$. Given a sequence $A=$ $\left(a_{0}, a_{1}, \cdots, a_{i}, \cdots\right)$ with $a_{i} \geqq 1$ we can show by induction on $\Sigma_{0 \leqq i} \leqq_{n} a_{i} \geqq n+1$ that for any $m \leqq n$,
(3.4) $B P_{*} / J_{m} A \underset{B P_{*}}{\otimes} E_{*}$ is v_{m}-torsion free, and $\operatorname{Tor}_{k}^{B P_{*}}\left(B P_{*} / J_{m+1} A, E_{*}\right)=0$ for each
$k \geqq 1$.

Moreover we have an isomorphism

$$
\begin{equation*}
B P_{*} \mid J_{m+1} A \otimes_{B P_{*}} B P_{*} X \rightarrow B P J_{m+1} A_{*} X \tag{3.5}
\end{equation*}
$$

of $B P_{*}$-modules for any $m \leqq n$, when $E=B P_{\wedge} X$ satisfies (III) ${ }_{n}$.
Lemma 3.1. Let E be an associative BP-module spectrum such that $B P_{*} / I_{m P_{*}} \otimes E_{*}$ is v_{m}-torsion free for any $m \leqq n$. Then the BP-module map $N_{m+1} B P_{\wedge} E \rightarrow N_{m+1} E$ induces an isomorphism $N_{m+1} B P_{*}{\underset{B P}{*}}^{\otimes} E_{*} \rightarrow N_{m+1} E_{*}$ of $B P_{*^{-}}$ modules for each $m \leqq n$. And the sequence $0 \rightarrow N_{m} E_{*} \rightarrow M_{m} E_{*} \rightarrow N_{m+1} E_{*} \rightarrow 0$ of $B P_{*}$-modules is exact for each $m \leqq n$.

Proof. In the commutative diagram

with exact rows, we observe from (3.1) and (3.4) that $\operatorname{Tor}_{1}^{B P_{*}}\left(N_{m+1} B P_{*}, E_{*}\right)=0$. Apply induction on m to obtain our result.

Corollary 3.2. Let E be an associative BP-module spectrum as in Lemma 3.1. Then we have an isomorphism $N_{n+1} B P J_{m} A_{*} \otimes_{B P_{*}} E_{*} \rightarrow \operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / J_{m} A, N_{n+1} E_{*}\right)$ for each $m \leqq n+1$ where $A=\left(a_{0}, a_{1}, \cdots, a_{i}, \cdots\right)$ with $a_{i} \geqq 1$.

Proof. Proceed induction on $m \geqq 0$, the $m=0$ case being immediate from Lemma 3.1.

Lemma 3.3. Let E be an associative $B P$-module spectrum such that $B P_{*} /$ $I_{m} \otimes_{B P_{*}} E_{*}$ is v_{m}-torsion free for any $m \leqq n$. Then $B P_{*} / I_{n+1} \otimes_{B P_{*}} E_{*}=0$ if and only if $N_{n+1} E=p t$.

Proof. If $B P_{*} / I_{n+1} \otimes_{B P_{*}} E_{*}=0$, then $B P_{*} / J_{n+1} A \underset{B P_{*}}{\otimes} E_{*}=0$, and hence
$N_{n+1} B P_{*} \otimes_{B P_{*}} E_{*}=0$. By Lemma 3.1 this means that $N_{n+1} E=p t$. On the other hand, the canonical map $B P_{*} / I_{n+1} \otimes_{B P_{*}} E_{*} \rightarrow N_{n+1} B P_{*_{B P *}} \otimes_{*}$ is monic since the map $B P_{*} / I_{n+1} \otimes_{B P_{*}} E_{*} \rightarrow B P_{*} / J_{n+1} A \underset{B P *}{\otimes} E_{*}$ is so. The converse is now clear.

Proposition 3.4. Let E be an associative $B P$-module spectrum such that $B P_{*} / I_{m} \otimes \otimes_{B *} E_{*}$ is v_{m}-torsion free for any $m \leqq n$. Then $L_{0} E_{*}=E_{*} \otimes Q$ and the short exact sequence $0 \rightarrow E_{*} \rightarrow L_{m} E_{*} \rightarrow N_{m+1} E_{*} \rightarrow 0$ is split as a $B P_{*}$-module for each m, $1 \leqq m \leqq n$. (Cf., [9, Theorem 6.2]).

Proof. Consider the commutative diagram

with exact rows and columns. Define the splitting $\phi_{m}: N_{m+1} E_{*} \rightarrow L_{m} E_{*}$ by setting $\phi_{m}(z)=k_{m}(y)$ where $z=j_{m}(y)$.

Corollary 3.5. Let E be an associative BP-module spectrum as in Proposition 3.4. Then we have an exact sequence $0 \rightarrow N_{n+1} E_{*} \rightarrow L_{n} E_{*} \rightarrow L_{m} E_{*} \rightarrow N_{m+1} E_{*} \rightarrow 0$ of $B P_{*}$-modules for each $m<n$.

Proof. Use the fact that the composition $N_{m+2} E_{*} \xrightarrow{\phi_{m+1}} L_{m+1} E_{*} \rightarrow L_{m} E_{*}$ is trivial.

Let E be an associative $B P$-module spectrum such that $(\mathrm{IV})_{n+1} \operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / I_{m}, E_{*}\right)$ is v_{m}-divisible for each $m \leqq n$.

For example, take $N_{n+1} B P$ as E satisfying (IV) n_{n+1}. As is easily shown, it follows that for any $m \leqq n$,
(3.6) $\operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / J_{m} A, E_{*}\right)$ is v_{m}-divisible, and $\operatorname{Tor}_{k}^{B P_{*}}\left(B P_{*} / J_{m+1} A, E_{*}\right)=0$ for each $k \neq m+1$,
where $A=\left(a_{0}, a_{1}, \cdots, a_{i}, \cdots\right)$ with $a_{i} \geqq 1$. Moreover there is an isomorphism

$$
\begin{equation*}
B P J_{m+1} A_{*} X \rightarrow \operatorname{Tor}_{m+1}^{B P *}\left(B P_{*} / J_{m+1} A, B P_{*} X\right) \tag{3.7}
\end{equation*}
$$

of $B P_{*}$-modules for any $m \leqq n$, when $E=B P_{\wedge} X$ satisfies (IV) $)_{n+1}$.
Lemma 3.6. Let E be an associative BP-module spectrum such that $\operatorname{Tor}_{m}^{B P *}\left(B P_{*} / I_{m}, E_{*}\right)$ is v_{m}-divisible for any $m \leqq n$. Then there is an isomorphism $N_{m+1} E_{*} \rightarrow \operatorname{Tor}_{m+1}^{B P *}\left(N_{m+1} B P_{*}, E_{*}\right)$ of $B P_{*}$-modules for each $m \leqq n$. And the sequence $0 \rightarrow N_{m+1} E_{*} \rightarrow N_{m} E_{*} \rightarrow M_{m} E_{*} \rightarrow 0$ of $B P_{*}$-modules is exact for each $m \leqq n$.

Proof. Since $\operatorname{Tor}_{m}^{B P_{*}}\left(N_{m+1} B P_{*}, E_{*}\right)=0$ by (3.1) and (3.6), we have a commutative diagram

with exact rows. Apply induction on m.
Lemma 3.7. Let E be an associative BP-module spectrum such that $\operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / I_{m}, E_{*}\right)$ is v_{m}-divisible for any $m \leqq n$. Then $\operatorname{Tor}_{n+1}^{B P_{*}}\left(B P_{*} \mid I_{n+1}, E_{*}\right)=0$ if and only if $N_{n+1} E=p t$.

Proof. If $\operatorname{Tor}_{n+1}^{B P_{*}}\left(B P_{*} / I_{n+1}, E_{*}\right)=0$, then we observe that $\operatorname{Tor}_{n+1}^{B P_{*}}$ $\left(N_{n+1} B P_{*}, E_{*}\right)=0$ and hence $N_{n+1} E=p t$ by Lemma 3.6. The converse is also valid since $\operatorname{Tor}_{n+1}^{B P_{*}^{*}}\left(B P_{*} / I_{n+1}, E_{*}\right) \rightarrow \operatorname{Tor}_{n+1}^{B P_{*}}\left(N_{n+1} B P_{*}, E_{*}\right)$ is monic.

4. Harmonic spectra and s-harmonic spectra

A $C W$-spectrum X is said to be harmonic if it is $\left(\vee_{n} v_{n}^{-1} B P\right)_{*}$-local, thus if $X=L_{\infty} X . \quad X$ is said to be s-harmonic if $X=\underset{\underbrace{}_{n}}{\lim _{n}} L_{n} X$.

We first list elementary results on harmonic spectra [3].
(4.1) If $X \rightarrow Y \rightarrow Z$ is a cofibering and only two of X, Y and Z are harmonic, then so is the third.
(4.2) A retract of a harmonic spectrum is also harmonic.
(4.3) The product of a set of harmonic spectra is harmonic.
(4.4) An s-harmonic spectrum is always harmonic.

Lemma 4.1. Let E be an associative BP-module spectrum which is connective. Then E is harmonic if and only if so is $B P_{\wedge} E$.

Proof. Recall that $E_{*} B P \cong E_{*}\left[t_{1}, \cdots, t_{n}, \cdots\right]$. Put $t^{A}=t_{1}^{a_{1} \cdots t_{n}^{a_{n}}: \Sigma^{|A|} \rightarrow B P_{\lambda} B P=1}$ for a finite sequence $A=\left(a_{1}, \cdots, a_{n}, 0, \cdots\right)$ where $|A|=\Sigma_{1 \leq i \leq n} 2\left(p^{i}-1\right) a_{i}$. All the maps t^{A} give rise to a $B P$-module map $t: \vee \Sigma^{|A|} E \rightarrow E_{\wedge} B P$, which is a homotopy equivalence. Under our assumption that E is connective, $\vee \Sigma^{|A|} E=$
$\Pi \Sigma^{|A|} E$. Therefore $B P_{\wedge} E$ is a product of suspensions of E. So our result is evident.

Lemma 4.2. Assume that a $C W$-spectrum X is connective. If $B P_{\wedge} X$ is harmonic, then $X Z_{(p)}$ is harmonic, too.

Proof. Let $\overline{B P}=B P / S$ be the cofiber of the unit $S \rightarrow B P$ and put $\overline{B P}^{n}=$ $\overline{B P}_{\wedge} \cdots \overline{B P}, n$-times. By induction on n using Lemma 4.1 we can show that $B P_{\wedge} \overline{B P}^{n}{ }^{n} X$ is harmonic. Let $K_{n} X$ be the cofiber of $\Sigma^{-n} \overline{B P}^{n}{ }_{\wedge} X \rightarrow X$. Then we have a cofibering $K_{n+1} X \rightarrow K_{n} X \rightarrow \Sigma^{-n} B P_{\wedge} \overline{B P}^{n}{ }_{\wedge} X$. Therefore $K_{n} X$ becomes harmonic for every $n \geqq 0$. When X is connective, it follows that $X Z_{(p)}=$ ${\underset{\leftarrow}{t}}_{\lim _{n}} K_{n} X$, and hence it is harmonic.

We next discuss elementary results on s-harmonic spectra. Put $\hat{L}_{\infty} X=$

Lemma 4.3. $A C W$-spectrum X is s-harmonic if and only if ${\underset{\sim}{~} \lim _{n}}^{N_{n+1}} X_{*}=$ $0=\lim _{{ }_{n}^{1}}{ }^{1} N_{n+1} X_{*}$.

Proof. By applying Verdier's lemma [1] we see that $X=\hat{L}_{\infty} X$ if and only if $\hat{N}_{\infty} X=p t$.

Lemma 4.4. Let $X \rightarrow Y \rightarrow Z$ be a cofibering of $C W$-spectra. If any two of X, Y and Z are s-harmonic, then so is the third.

Proof. By Verdier's lemma we obtain that $\hat{N}_{\infty} X=\hat{N}_{\infty} Y$ if and only if $\hat{N}_{\infty} Z=p t$.

Lemma 4.5. Let X be a retract of a $C W$-spectrum Y. If Y is s-harmonic, then so is X.

Proof. The composition $\hat{N}_{\infty} X \rightarrow \hat{N}_{\infty} Y \rightarrow \hat{N}_{\infty} X$ is a homotopy equivalence if the composition $X \rightarrow Y \rightarrow X$ is just the identity. Hence $\hat{N}_{\infty} Y=p t$ implies $\hat{N}_{\infty} X=p t$.

Corollary 4.6. Let E be a BP-module spectrum. Then E is s-harmonic if so is $B P_{\wedge} E$.

A $C W$-spectrum X is said to be dissonant if it is $\left(\vee_{n} v_{n}^{-1} B P\right)_{*}$-acyclic.
Lemma 4.7. Let C be the cofiber of $X \rightarrow \hat{L}_{\infty} X$. Then $L_{\infty} X$ is s-harmonic if and only if C is dissonant.

Proof. Note that $\hat{L}_{\infty}\left(L_{\infty} X\right)=\hat{L}_{\infty} X$. It is easy to show that $L_{\infty} X=\hat{L}_{\infty} X$ if and only if C is dissonant.

For a $B P_{*}$-module N we define $\mathrm{w} \operatorname{dim}_{\mathcal{B} \mathscr{P}} N \leqq n$ if $\operatorname{Tor}_{k}^{B P_{*}}(N, M)=0$ for all $k>n$ and all associative $B P_{*} B P$-comodules M. Notice that $\mathrm{w} \operatorname{dim}_{\mathscr{G} \mathcal{P}} v_{n}^{-1} N \leqq n$ for any $B P_{*}$-module $N[6]$.

Theorem 4.8. Let E be an associative BP-module spectrum such that $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P}} E_{*}$ is finite. Then E is s-harmonic.

Proof. By induction on $d=\mathrm{w} \operatorname{dim}_{\mathcal{B} \mathscr{P}} E_{*}$. We first assume that E_{*} is $\mathscr{B} \mathscr{P}$-flat. By use of Lemma 3.1 we see that the sequence $0 \rightarrow N_{n} E_{*} \rightarrow M_{n} E_{*} \rightarrow$ $N_{n+1} E_{*} \rightarrow 0$ are exact for all $n \geqq 0$. This implies that $\lim _{\longleftrightarrow} N_{n+1} E_{*}=0=\lim ^{1} N_{n+1} E_{*}$. Therefore E is s-harmonic by Lemma 4.3. Next, take a cofibering $Y \rightarrow W \rightarrow E$ which induces a short exact sequence $0 \rightarrow B P_{*} Y \rightarrow B P_{*} W \rightarrow B P_{*} E \rightarrow 0$ of $B P_{*^{-}}$ modules such that $B P_{*} W$ is $B P_{*}$-free. Note that $\mathrm{w} \operatorname{dim}_{\mathcal{B} \mathcal{P}} B P_{*} E=\mathrm{w} \operatorname{dim}_{\mathcal{G} \mathscr{P}} E_{*}$. By induction hypothesis, $B P_{\wedge} Y$ and $B P_{\wedge} W$ are both s-harmonic. Hence $B P_{\wedge} E$ and therefore E are s-harmonic.

Combining Theorem 4.8 with (4.4) and Lemma 4.2 we have
Corollary 4.9 [9, Theorem 4.4]. Let X be a connective $C W$-spectrum such that $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathcal{P}} B P_{*} X$ is finite. Then $X Z_{(p)}$ is harmonic.

Remark that $\mathrm{w} \operatorname{dim}_{\mathscr{G} \mathscr{P}} B P_{*} X$ is the same as the $B P_{*}$-projective dimension of $B P_{*} X$ when X is connective.

Lemma 4.10. Let E be an associative $B P$-module spectrum such that $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathcal{P}} E_{*} \leqq n$. Then $0 \rightarrow E_{*} \rightarrow L_{n} E_{*} \rightarrow N_{n+1} E_{*} \rightarrow 0$ is a short exact sequence of $B P_{*}$-modules.

Proof. Consider the commutative square

where the bottom is isomorphic. Since $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P}} B P_{*} E \leqq n$, it follows from [8, Lemma 3.4] that $B P_{*} E$ is v_{n}-torsion free. So the left arrow is monic, and hence the top one is monic.

By using Proposition 2.2 and Lemma 4.10 together we have
Corollary 4.11. Let E be an associative $B P$-module spectrum such that E_{*} is v_{m}-torsion for any $m<n$ and $\mathrm{w} \operatorname{dim}_{\mathscr{G} \mathscr{P}} E_{*} \leqq n$. Then E_{*} is v_{n}-torsion free. (Cf., [8, Lemma 3.4]).

Proposition 4.12. Let $n \geqq 1$ and E be an associative BP-module spectrum such that $B P_{*} / I_{n+1} \otimes_{B P_{*}} E_{*} \neq 0$. Assume that $B P_{*} / I_{m_{B P}} \otimes_{*} E_{*}$ is v_{m}-torsion free
for any $m \leqq n$ and E_{*} is v_{k}-torsion for any $k>n$. Then $L_{\infty} E$ is s-harmonic but $\mathrm{w} \operatorname{dim}_{\mathcal{B} \mathcal{P}} L_{\infty} E_{*}$ is infinite.

Proof. From Proposition 2.6 it follows that $L_{\infty} E$ is s-harmonic and moreover that $N_{n+1} E \neq p t$ is dissonant, thus $N_{n+1} E_{*}$ is v_{m}-torsion for all $m \geqq 0$. Assume that $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P}} E_{*}<\infty$. Because of Lemma 3.1 it is easily checked that $\mathrm{w} \operatorname{dim}_{\mathcal{B} \mathscr{P}} N_{n+1} E_{*}<\infty$, which contradicts to Corollary 4.11. Therefore $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathcal{P}}$ $E_{*}=\infty$, and hence also $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P}} L_{\infty} E_{*}=\infty$ by Proposition 3.4.

The $\mathscr{B P}$-weak dimensions of $P(n)_{*}, K(n)_{*}$ and $N_{n} B P_{*}$ are just n, but that of $L_{\infty} B P\langle n\rangle_{*}$ is infinite when $n \geqq 1$. By Theorem 4.8 and Proposition 4.12 we obtain

$$
\begin{equation*}
P(n), \quad K(n), \quad N_{n} B P \quad \text { and } \quad L_{\infty} B P\langle n\rangle \text { are all s-harmonic. } \tag{4.5}
\end{equation*}
$$

5. Cofiber of $\boldsymbol{E} \rightarrow \hat{\boldsymbol{L}}_{\infty} \boldsymbol{E}=\underset{\longleftrightarrow}{\lim } \boldsymbol{L}_{\boldsymbol{m}} \boldsymbol{E}$

For associative $B P$-module spectra E_{n} the wedge sum $\vee E_{n}$ and the product $\prod_{n} E_{n}$ are both associative $B P$-module spectra. Denote by $\underset{n}{\omega} E_{n}=$ $\Pi E_{n}{ }^{n} \vee E_{n}$ the cofiber of the canonical map $\vee E_{n} \rightarrow \Pi E_{n}$. This is a ${ }^{n}$ weak associative $B P$-module spectrum. We now study $\hat{L}_{\infty}\left(\vee E_{n}\right)$ and $\hat{L}_{\infty}\left(\Pi E_{n}\right)$ for suitable $B P$-module spectra E_{n}.

Proposition 5.1. Let E_{n} be associative $B P$-module spectra such that $\mathrm{w} \operatorname{dim}_{\mathcal{G} \mathscr{P}} E_{n^{*}} \leqq n$.
i) If $E_{n^{*}}$ is v_{m}-torsion for any $m<n$, then $\hat{L}_{\infty}\left(\vee E_{n}\right)=\Pi E_{n}$.
ii) If $\Pi_{k \geqq n} E_{k^{*}}$ is v_{m}-torsion for any $m<n$, then $L_{\infty}\left(\vee E_{n}\right)=\Pi E_{n}$ and it is s harmonic.

Proof. i) Put $E=\vee E_{m}$. From Proposition 2.2 and Corollary 2.5 we observe that $L_{n} E=L_{n} E_{0} \vee \cdots \vee L_{n} E_{n}$. Consider the commutative diagram

where two rows are exact by Lemma 4.10. By induction on $n \geqq m$ we show that $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P}} N_{n} E_{m^{*}} \leqq n$. Assume that $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P}} N_{n} E_{m^{*}} \leqq n$, then Lemma 4.10 says that the sequence $0 \rightarrow N_{n} E_{m^{*}} \rightarrow M_{n} E_{m^{*}} \rightarrow N_{n+1} E_{m^{*}} \rightarrow 0$ is exact. Since $\mathrm{w} \operatorname{dim}_{\mathcal{B} \mathscr{P}} M_{n} E_{m^{*}} \leqq n$, the induction hypothesis implies that $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathscr{P}} N_{n+1} E_{m^{*}} \leqq$ $n+1$. Hence the right vertical arrow is trivial in the above diagram. So we obtain that $\Pi E_{n *} \simeq \lim L_{n} E_{*}$ and $\lim ^{1} L_{n} E_{*}=0$. This yields that $\Pi E_{n}=$ $\underset{\longleftrightarrow}{\lim \left(E_{1} \vee \cdots \vee E_{n}\right)=\lim _{\longleftrightarrow} L_{n} E . ~ . ~ . ~}$
ii) Note that ωE_{n} is clearly dissonant. Therefore $L_{\infty}\left(\vee E_{n}\right)=L_{\infty}\left(\Pi E_{n}\right)=$ ΠE_{n}, and it is s-harmonic by i) and Lemma 4.7.

Corollary 5.2. Let E_{n} be associative BP-module spectra.
i) If $E_{n^{*}}$ is v_{m}-torsion for any $m<n$, then $\hat{L}_{\infty}\left(\vee L_{n} E_{n}\right)=\Pi L_{n} E_{n}$.
ii) If $\Pi_{k \geq n} E_{k^{*}}$ is v_{m}-torsion for any $m<n$, then $L_{\infty}\left(\vee L_{n} E_{n}\right)=\Pi L_{n} E_{n}$ and it is s-harmonic.

Proof. Since $L_{n} E_{n}=v_{n}^{-1} E_{n}$ by Proposition 2.2, it satisfies the conditions stated in the above proposition.

Corollary 5.3. Let E_{n} be associative BP-module spectra whose homotopy $E_{n^{*}}$ are v_{k}-torsion for any $k>n$.
i) If $E_{n^{*}}$ is v_{m}-torsion for any $m<n$, then $\hat{L}_{\infty}\left(\vee E_{n}\right)=\Pi L_{n} E_{n}$.
ii) If $\Pi_{k \geqq n} E_{k^{*}}$ is v_{m}-torsion for any $m<n$, then $L_{\infty}\left(\vee E_{n}\right)=L_{\infty}\left(\Pi E_{n}\right)=\hat{L}_{\infty}\left(\Pi E_{n}\right)=$ $\Pi L_{n} E_{n}$.

Proof. i) Observe that $\hat{L}_{\infty}\left(\vee E_{n}\right)=\hat{L}_{\infty}\left(\vee L_{n} E_{n}\right)$ because of Proposition 2.6, then use Corollary 5.2 i).
ii) Remark that $L_{\infty}\left(\vee E_{n}\right)=L_{\infty}\left(\Pi E_{n}\right), \quad L_{\infty}\left(\vee E_{n}\right)=L_{\infty}\left(\vee L_{n} E_{n}\right) \quad$ and $\hat{L}_{\infty}\left(\vee E_{n}\right)=\hat{L}_{\infty}\left(\Pi E_{n}\right)$. Apply Corollary 5.2 ii) and the above i) to obtain that $\hat{L}_{\infty}\left(\vee E_{n}\right)=\Pi L_{n} E_{n}=L_{\infty}\left(\vee L_{n} E_{n}\right)$.

Applying Proposition 5.1, Corollary 5.3 and Lemma 4.7 we obtain some examples.
(5.1) $\mathcal{L}_{\infty}\left(\vee N_{n} B P\right)=\Pi N_{n} B P$ and $L_{\infty}\left(\vee N_{n} B P\right)$ is not s-harmonic.
(5.2) $L_{\infty}(\vee P(n))=\hat{L}_{\infty}(\vee P(n))=\Pi P(n)$ and it is s-harmonic.
(5.3) $L_{\infty}(\vee K(n))=\hat{L}_{\infty}(\vee K(n))=\Pi K(n)$ and it is s-harmonic.
(5.4) $L_{\infty}(\vee k(n))=L_{\infty}(\Pi k(n))=\hat{L}_{\infty}(\vee k(n))=\hat{L}_{\infty}(\Pi k(n))=\Pi K(n)$, and it is $s-$ harmonic.

Proposition 5.4. Let E_{n} be associative $B P$-module spectra such that $B P_{*} /$ $I_{m} \otimes \otimes_{B P_{*}} E_{n^{*}}$ are v_{m}-torsion free for any $m \leqq n$ and $E_{n^{*}}$ are v_{k}-torsion for any $k>n$.
Then there is a cofibering $\vee E_{n} \rightarrow \hat{L}_{\infty}\left(\vee E_{n}\right) \rightarrow \Pi N_{n+1} E_{n}$, and $\hat{L}_{\infty}\left(\Pi E_{n}\right)=\Pi L_{n} E_{n}$.
Proof. Put $E=\vee E_{n}$. The cofibering $E \rightarrow L_{m} E \rightarrow N_{m+1} E$ gives us a short exact sequence $0 \rightarrow E_{*} \rightarrow L_{m} E_{*} \rightarrow N_{m+1} E_{*} \rightarrow 0$. This yields that $0 \rightarrow E_{*} \rightarrow \lim _{\leftarrow} L_{m} E_{*}$ $\rightarrow \lim N_{m+1} E_{*} \rightarrow 0$ is exact and $\lim ^{1} L_{m} E_{*} \cong \lim ^{1} N_{m+1} E_{*}$. Here we consider the commutative diagram

$$
\begin{array}{cc}
0 \rightarrow N_{m+1}\left(\vee_{n>m} E_{n}\right)_{*} \rightarrow N_{m+1} E_{*} \rightarrow \oplus_{n \leq m} N_{n+1} E_{n^{*}} \rightarrow 0 \\
\downarrow & \downarrow \\
0 \rightarrow N_{m}\left(\vee_{n>m-1} E_{n}\right)_{*} \rightarrow & N_{m} E_{*} \rightarrow \oplus_{n \leq m-1} N_{n+1} E_{n^{*}} \rightarrow 0
\end{array}
$$

with exact rows. Since the left vertical arrow is trivial by Lemma 3.1, it is immediate that $\lim _{n+1} N_{*} \simeq \Pi N_{m+1} E_{m^{*}}$ and $\lim ^{1} N_{m+1} E_{*}=0$. Obviously the composition $E \rightarrow \overleftarrow{L_{\infty}} E \rightarrow \Pi L_{m} E \rightarrow \Pi N_{m+1} E \rightarrow \Pi \overleftarrow{N_{m+1}} E_{m}$ is trivial and it induces a short exact sequence $0 \rightarrow E_{*} \rightarrow \hat{L}_{\infty} E_{*} \rightarrow \Pi N_{m+1} E_{m^{*}} \rightarrow 0$. Hence it is easily verified that the sequence $E \rightarrow \hat{L}_{\infty} E \rightarrow \Pi N_{m+1} E_{m}$ is a cofibering.

Next, put $\bar{E}=\Pi E_{n}$. By a similar discussion to the above we can show that the sequence $\bar{E} \rightarrow \dot{L}_{\infty} \bar{E} \rightarrow \Pi N_{m+1} E_{m}$ is also a cofibering, since $B P_{*} / I_{m} \otimes_{B P *}$ ($\Pi_{k>n} E_{k^{*}}$) is v_{m}-torsion free for any $m \leqq n+1$. Consider the commutative diagram

where all the rows are cofiberings. Taking the homotopy groups and using Five lemma we obtain that $\hat{L}^{\infty} \bar{E}=\Pi L_{m} E_{m}$.

Proposition 5.5. Let E_{n} be associative BP-module spectrum such that $B P_{*} / I_{m} \otimes_{B P_{*}} E_{n^{*}}$ are v_{m}-torsion free for any $m \leqq n$. Then there is a cofibering $\vee L_{n} E_{n} \rightarrow \stackrel{1}{L}_{\infty}\left(\vee L_{n} E_{n}\right) \rightarrow \Pi N_{n+1} E_{n} / \vee N_{n+1} E_{n}$.

Proof. Put $L E=\vee L_{n} E_{n}$ and $N E=\vee N_{n+1} E_{n}$. By applying Corollary 3.5 we obtain a commutative diagram
with exact rows. Then it is easily checked that the sequence $0 \rightarrow L E_{*} \rightarrow$ $\lim _{\longleftrightarrow} L_{m} L E_{*} \rightarrow \lim ^{1} N_{n+1}\left(\vee_{n>m} E_{n}\right)_{*} \rightarrow 0$ is exact and $\lim ^{1} L_{m} L E_{*}=0$, because the right arrow is trivial. Obviously the composition $L E \rightarrow \hat{L}_{\infty} L E \rightarrow \Pi L_{m} L E \rightarrow$ $\Pi N_{m+1} E_{m} \rightarrow \omega N_{m+1} E_{m}$ is trivial. Consider the commutative diagram

$$
\begin{aligned}
& \begin{array}{c}
0 \rightarrow N_{n+1}\left(\vee_{n>m} E_{n}\right)_{*} \rightarrow L E_{*} \longrightarrow L_{m} L E_{*} \longrightarrow N_{m+1}\left(\vee_{n>m} E_{n}\right)_{*} \rightarrow 0 \\
\downarrow
\end{array} \\
& 0 \rightarrow N_{n+1}\left(\vee_{n>m} E_{n}\right)_{*} \rightarrow N E_{*} \rightarrow \oplus_{n \leqq m} N_{n+1} E_{n^{*}} \rightarrow 0
\end{aligned}
$$

with exact rows. Taking the inverse limits we have the following commutative diagram

$$
\begin{gathered}
0 \rightarrow L E_{*} \longrightarrow \hat{L}_{\infty} L E_{*} \longrightarrow \underset{\downarrow}{\downarrow} \longrightarrow \lim ^{1} N_{m+1}\left(\vee_{m>n} E_{m}\right)_{*} \rightarrow 0 \\
0 \rightarrow N E_{*} \rightarrow \Pi N_{n+1} E_{n^{*}} \rightarrow \lim ^{1} N_{m+1}\left(\vee_{m>n} E_{m}\right)_{*} \rightarrow 0
\end{gathered}
$$

with exact rows. This means that the sequence $L E \rightarrow \hat{L}_{\infty} L E \rightarrow \omega N_{n+1} E_{n}$ induces a short exact sequence $0 \rightarrow L E_{*} \rightarrow \hat{L}_{\infty} L E_{*} \rightarrow \Pi N_{n+1} E_{n^{*}} \mid \oplus N_{n+1} E_{n^{*}} \rightarrow 0$. Therefore the sequence $L E \rightarrow \hat{L}_{\infty} L E \rightarrow \omega N_{n+1} E_{n}$ is a cofibering.

Notice that $\Pi N_{n+1} B P\langle n\rangle_{*}$ is not v_{m}-torsion for every $m \geqq 0$. Combining Propositions 5.4 and 5.5 with Lemma 4.7 we have

$$
\begin{equation*}
L_{\infty}(\vee B P\langle n\rangle), L_{\infty}(\Pi B P\langle n\rangle) \text { and } L_{\infty}\left(\vee L_{n} B P\langle n\rangle\right) \text { are not s-harmonic. } \tag{5.5}
\end{equation*}
$$

We next discuss $\Pi E_{n} / \vee E_{n}$ for suitable E_{n}.
Proposition 5.6. Let E_{n} be associative $B P$-module spectra such that $B P_{*} \mid$ $I_{m} \otimes_{B P_{*}} E_{n^{*}}$ are v_{m}-torsion free for any $m \leqq n$. Then $\Pi E_{n} / \vee E_{n}$ is s-harmonic.

Proof. $\quad \mathrm{BP}_{*} \mid I_{m} \underset{B P_{*}}{\otimes}\left(\Pi E_{n^{*}} \mid \oplus E_{n^{*}}\right)$ is v_{m}-torsion free for each $m \geqq 0$, so $\Pi E_{n^{*}} \mid$ $\oplus E_{n^{*}}$ is $\mathscr{B P}$-flat. Since $B P_{*} \omega E_{n} \cong B P_{*} B P{\underset{B P}{*}}_{\otimes}\left(\Pi E_{n^{*}} \mid \oplus E_{n^{*}}\right)$ is also $\mathscr{B P}$-flat, $B P_{\wedge} \omega E_{n}$ is s-harmonic by Theorem 4.8 and hence ωE_{n} itself is s-harmonic by Corollary 4.6.

Combining Proposition 5.6 with Lemma 4.4 we have
Corollary 5.7. Let E_{n} be associative BP-module spectra as in the above proposition. Then $L_{\infty}\left(\vee E_{n}\right)$ is s-harmonic if and only if so is $L_{\infty}\left(\Pi E_{n}\right)$.

Proposition 5.8. Let E_{n} be associative BP-module spectra such that $\operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / I_{m}, E_{n *}\right)$ are v_{m}-divisible for any $m \leqq n$. Then $\Pi E_{n} / \vee E_{n}$ is non -harmonic if $\vee N_{n+1} E_{n} \neq \Pi N_{n+1} E_{n}$.

Proof. Consider the composite map $B P I_{n+1} E_{n} \rightarrow \Sigma^{k_{n}} B P_{\wedge} E_{n} \rightarrow E_{n}$ where $k_{n}=\Sigma_{1 \leq i \leq n} 2\left(p^{i}-1\right)+n+1$. In the following commutative diagram

the left vertical arrow is isomorphic by (3.7) and the bottom one is epic. Moreover the diagonal is obviously monic. So the upper composition is non-trivial if $N_{n+1} E_{n} \neq p t$. This shows that the induced map $\omega B P I_{n+1_{\wedge}} E_{n} \rightarrow \omega E_{n}$ is nontrivial. Therefore ωE_{n} is not harmonic, because $\omega B P I_{n+1 \wedge} E_{n}$ is dissonant.

Corollary 5.9. Let E_{n} be associative $B P$-module spectra such that $B P_{*} \mid$ $I_{m} \otimes_{B P_{*}} E_{n^{*}}$ are v_{m}-torsion free for any $m \leqq n$. If $\Pi N_{n+1} E_{n} / \vee N_{n+1} E_{n} \neq p t$, then it is non-harmonic.

Proof. By Corollary 3.2 we observe that for each $m \leqq n \operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / I_{m}\right.$,
$\left.N_{n+1} E_{n^{*}}\right) \simeq N_{n+1} B P I_{m^{*}} \otimes_{B P *} E_{n^{*}}$ and it is v_{m}-divisible.

6. Harmonic but not s-harmonic spectra

Let E_{n} be associative $B P$-module spectra such that $\operatorname{Tor}_{m}^{B P *}\left(B P_{*} / I_{m}, E_{n^{*}}\right)$ are v_{m}-divisible for any $m \leqq n$. For each $A=\left(a_{0}, a_{1}, \cdots, a_{i}, \cdots\right)$ with $a_{i} \geqq 1$ the $B P$-module map $\Pi B P J_{m+1} A_{\wedge} E_{n} \rightarrow \Pi \Sigma^{a} B P_{\wedge} E_{n} \rightarrow \Pi \Sigma^{\infty} E_{n}$ has a factorization

$$
\Pi B P J_{m+1} A_{\wedge} E_{n} \rightarrow \Sigma^{-m-1+\infty} N_{m+1}\left(\Pi E_{n}\right) \rightarrow \Sigma^{\infty} \Pi E_{n}
$$

where the product Π runs through all $n \geqq m+s, s \geqq 0$ and $\alpha=\left|J_{m+1} A\right|+m+1=$ $\Sigma_{1 \leq i \leq m} 2\left(p^{i}-1\right) a_{i}+m+1$. Consider the commutative diagram
in which the left vertical arrow is isomorphic by (3.7), the bottom is epic and the diagonal is monic. Note that every homomorphism $\left.\Pi \operatorname{Tor}_{m_{+1}}^{B P_{*}(}\right) B P_{*} \mid$ $\left.J_{m+1} A, E_{n^{*}}\right) \rightarrow L_{m}\left(\Pi E_{n}\right)_{*}$ is trivial because $\Pi B P J_{m+1} A_{*} E_{n}$ is v_{k}-torsion for any $k \leqq m$. So there exists a dotted arrow

$$
\begin{equation*}
\gamma_{A}: \Pi_{n \geqq m+s} \operatorname{Tor}_{m+1}^{B P *}\left(B P_{*} \mid J_{m+1} A, E_{n^{*}}\right) \rightarrow N_{m+1}\left(\Pi_{n \geqq m+s} E_{n}\right)_{*} \tag{6.1}
\end{equation*}
$$

making the square and the triangle commutative in the above diagram. As is easily seen, the triangle

$$
\begin{array}{ll}
\Pi \operatorname{Tor}_{m+1}^{B P *}\left(B P_{*} / J_{m+1} A, E_{n^{*}}\right) \tag{6.2}\\
\Pi \operatorname{Tor}_{m+1}^{B P_{*}}\left(B P_{*} / J_{m+1} A^{\prime}, E_{n^{*}}\right)
\end{array} \stackrel{\xrightarrow[\gamma_{A^{\prime}}]{\gamma_{A}}}{\underset{m+1}{ }\left(\Pi E_{n}\right)_{*}}
$$

is commutative for any pair $A \leqq A^{\prime}$.
Lemma 6.1. Let E_{n} be associative $B P$-module spectra such that $\operatorname{Tor}_{m}^{B P_{*}}$ $\left(B P_{*} \mid I_{m}, E_{n^{*}}\right)$ are v_{m}-divisible for any $m \leqq n$. The homomorphisms γ_{A} induce an isomorphism

$$
\gamma: \underset{A}{\lim } \Pi_{n \geqq m+s} \operatorname{Tor}_{m+1}^{B P *}\left(B P_{*} / J_{m+1} A, E_{n^{*}}\right) \rightarrow N_{m+1}\left(\Pi_{n \geqq m+s} E_{n}\right)_{*}
$$

for every $m \geqq 0$ where $s \geqq 0$.
Proof. There is a short exact sequence $0 \rightarrow \operatorname{Tor}_{m+1}^{B P_{*}}\left(B P_{*} / J_{m+1} A, E_{n^{*}}\right) \rightarrow$ $\operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / J_{m} A, E_{n^{*}}\right) \xrightarrow{v_{m}^{a_{m}}} \operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / J_{m} A, E_{n^{*}}\right) \rightarrow 0$ for any $n \geqq m$. So we consider the following commutative diagram

$$
\begin{aligned}
& \begin{aligned}
& 0 \rightarrow \xrightarrow{\lim } \Pi \operatorname{Tor}_{m+1}^{B P_{*}}\left(B P_{*} / J_{m+1} A, E_{n^{*}}\right) \rightarrow \xrightarrow{\downarrow} \xrightarrow{\lim } \Pi \operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / J_{m} A, E_{n^{*}}\right) \\
& \downarrow \\
& N_{m+1}\left(\Pi E_{n}\right)_{*} \\
& N_{m}\left(\Pi E_{n}\right)_{*}
\end{aligned} \\
& \begin{array}{c}
\rightarrow \underset{m}{\lim v_{m}^{-1}} \Pi_{\operatorname{Tor}_{m}^{B P *}}\left(B P_{*} / J_{m} A, E_{n^{*}}\right) \rightarrow 0 \\
\left.\stackrel{\downarrow}{\Pi} E_{n}\right)_{*}
\end{array}
\end{aligned}
$$

with exact rows, where the direct limit \lim runs through all sequences $A=$ $\left(a_{0}, \cdots, a_{i}, \cdots, a_{m}, 0, \cdots\right)$ with $a_{i} \geqq 1$ and the product Π does through all $n \geqq m+s+1$. When the central arrow is isomorphic, the right is so and hence the left is also so. Therefore we can show our result by induction on m.

Lemma 6.2. Let E_{n} be associative BP-module spectra such that $\operatorname{Tor}_{m}^{B P_{*}}$ $\left(B P_{*} / I_{m}, E_{n^{*}}\right)$ are v_{m}-divisible for any $m \leqq n$. Then $\underset{\underbrace{}_{m}}{\lim ^{1}} N_{m+1}\left(\Pi_{n \geqq m} E_{n}\right)_{*} \neq 0$ if ${\underset{n}{ }}_{\vee} N_{n+1} E_{n} \neq \Pi N_{n+1} E_{n}$.

Proof. For all $n \geqq 0$ we may assume that $N_{n+1} E_{n} \neq p t$, thus $\operatorname{Tor}_{n+1}^{B P_{*}}$ $\left(B P_{*} / I_{n+1}, E_{n^{*}}\right) \neq 0$. Denote by $\rho_{A}: \operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / J_{m} A, E_{n^{*}}\right) \rightarrow \operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / I_{m}\right.$, $E_{n *}$) the induced homomorphism from the projection $B P_{*} / J_{m} A \rightarrow B P_{*} / I_{m}$. Clearly it is epic for each $m \leqq n+1$. Pick up an element $y_{m, n}$ in $\operatorname{Tor}_{m}^{B P_{*}}$ $\left(B P_{*} / J_{m} A_{m}, E_{n^{*}}\right)$ for each $m \leqq n+1$ such that $\rho_{A_{m}}\left(y_{m, n}\right) \neq 0$ where $A_{m}=(m, \cdots$, $m, \cdots)$. These elements form an element $y_{m}=\left\{y_{m, n}\right\}_{A_{m}}$ in $\xrightarrow[\longrightarrow]{\lim } \Pi_{n \geqq m-1} \operatorname{Tor}_{m}^{B P_{*}}$ $\left(B P_{*} / J_{m} A, E_{n^{*}}\right) \cong N_{m}\left(\Pi_{n \geqq m-1} E_{n}\right)_{*}$.

We here assume that $\lim ^{1} N_{m}\left(\Pi_{n \geqq m-1} E_{n}\right)_{*}=0$. Then there exist elements x_{m} in $N_{m}\left(\Pi_{n \geqq m-1} E_{n}\right)_{*}$ such that $y_{m}=x_{m}-\delta\left(x_{m+1}\right)$ where $\delta: N_{m+1}\left(\Pi_{n \geqq m} E_{n}\right)_{*} \rightarrow$ $N_{m} E_{m-1^{*}} \oplus N_{m}\left(\Pi_{n \geq m} E_{n}\right)_{*}$. Notice that for every m, there is a certain sequence $A_{X}=\left(a_{0}, a_{1}, \cdots, a_{i}, \cdots\right)$ with $a_{i} \geqq 1$ and elements $x_{m, n}$ in $\operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / J_{m} A_{X}, E_{n^{*}}\right)$ such that $x_{m}=\left\{x_{m, n}\right\}_{A_{X}}$ in $\xrightarrow{\lim } \Pi_{n \geqq m-1} \operatorname{Tor}_{m}^{B P^{*}}\left(B P_{*} \mid J_{m} A, E_{n^{*}}\right)$. Using the inclusion $\lambda_{A}: \operatorname{Tor}_{m}^{B P *}\left(B P_{*} / J_{m} A, E_{n^{*}}\right) \rightarrow \operatorname{Tor}_{m}^{B P *}\left(N_{m} B P_{*}, E_{n^{*}}\right) \cong N_{m} E_{n^{*}}$, we obtain the relation that $\lambda_{A_{m}}\left(y_{m, n}\right)=\lambda_{A_{X}}\left(x_{m, n}\right)-\lambda_{A_{Y}}\left(x_{m+1, n}\right)$.

By induction on $n-m \geqq-1$ we will show that there exist elements $x_{m, n}^{\prime}$ in $\operatorname{Tor}_{m}^{B P *}\left(B P_{*} / J_{m} A_{n+1}, E_{n^{*}}\right)$ such that $\lambda_{A_{n+1}}\left(x_{m, n}^{\prime}\right)=\lambda_{A_{X}}\left(x_{m, n}\right)$ and $\rho_{A_{n+1}}\left(x_{m, n}^{\prime}\right) \neq 0$. First put $x_{m, m-1}^{\prime}=y_{m, m-1}$ since $\lambda_{A_{m}}\left(y_{m, m-1}\right)=\lambda_{A_{X}}\left(x_{m, m-1}\right)$. We next suppose that there exists an element $x_{m+1, n}^{\prime}$ in $\operatorname{Tor}_{m+1}^{B P *}\left(B P_{*} / J_{m+1} A_{n+1}, E_{n^{*}}\right)$ such that $\lambda_{A_{n+1}}\left(x_{m+1, n}^{\prime}\right)=\lambda_{A_{Y}}\left(x_{m+1, n}\right)$ and $\rho_{A_{n+1}}\left(x_{m+1, n}^{\prime}\right) \neq 0$. Put $x_{m, n}^{\prime}=\mu_{A_{n+1}, A_{m}}\left(y_{m, n}\right)+$ $\partial_{A_{n+1}}\left(x_{m+1, n}^{\prime}\right)$, using the inclusions $\mu_{A_{n+1}, A_{m}}: \operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / J_{m} A_{m}, E_{n^{*}}\right) \rightarrow \operatorname{Tor}_{m}^{B P_{*}}$ $\left(B P_{*} \mid J_{m} A_{n+1}, E_{n^{*}}\right) \quad$ and $\quad \partial_{A_{n+1}}: \operatorname{Tor}_{m+1}^{B P *}\left(B P_{*} \mid J_{m+1} A_{n+1}, E_{n^{*}}\right) \rightarrow \operatorname{Tor}_{m}^{B P *}\left(B P_{*} \mid\right.$ $\left.J_{m} A_{n+1}, E_{n^{*}}\right)$. By use of (3.3) we see that $\lambda_{A_{X}}\left(x_{m, n}\right)=\lambda_{A_{m}}\left(y_{m, n}\right)+\lambda_{A_{n+1}}\left(x_{m+1, n}^{\prime}\right)=$ $\lambda_{A_{n+1}}\left(x_{m, n}^{\prime}\right)$. Moreover it follows from (3.2) that $v_{m}^{n} \rho_{A_{n+1}}\left(x_{m, n}^{\prime}\right)=\partial_{A_{1}} \rho_{A_{n+1}}\left(x_{m+1, n}^{\prime}\right) \neq$ 0 in $\operatorname{Tor}_{m}^{B P_{*}}\left(B P_{*} / I_{m}, E_{n^{*}}\right)$, because $\rho_{A_{n+1}} \mu_{A_{n+1}, A_{m}}=0$ for $n+1>m$. This says that $\rho_{A_{n+1}}\left(x_{m, n}^{\prime}\right) \neq 0$.

We now set $n=\operatorname{Max}\left(a_{0}, a_{1}, \cdots, a_{m-1}\right)$ for the above A_{X}. Then $\lambda_{A_{X}}\left(x_{m, n}\right)=$ $\lambda_{A_{n+1}} \mu_{A_{n+1}, A_{X}}\left(x_{m, n}\right)$ and $\lambda_{A_{X}}\left(x_{m, n}\right)=\lambda_{A_{n+1}}\left(x_{m, n}^{\prime}\right)$, therefore $x_{m, n}^{\prime}=\mu_{A_{n+1}, A_{X}}\left(x_{m, n}\right)$. This implies that $\rho_{A_{n+1}}\left(x_{m, n}^{\prime}\right)=\rho_{A_{n+1}} \mu_{A_{n+1}, A_{X}}\left(x_{m, n}\right)=0$, which is a contradiction.

At last we can state our main results.
Theorem 6.3. Let E_{n} be associative BP-module spectra such that $\operatorname{Tor}_{m}^{B P_{*}}$ $\left(B P_{*} / I_{m}, E_{n^{*}}\right)$ are v_{m}-divisible for any $m \leqq n$ and $\mathrm{w} \operatorname{dim}_{\mathscr{B} \mathcal{Q}} E_{n^{*}} \leqq n+1$. If $\vee_{n} N_{n+1} E_{n} \neq \prod_{n} N_{n+1} E_{n}$, then
$\left.{ }^{n}\right) \vee E_{n}$ is not harmonic, and
ii) $\prod_{n}^{n} E_{n}$ is harmonic, but not s-harmonic.

Proof. In the cofibering $\vee E_{n} \rightarrow \Pi E_{n} \rightarrow \omega E_{n}, \Pi E_{n}$ is harmonic by Theorem 4.8 and (4.3). However ωE_{n} is not harmonic by Proposition 5.8. Hence $\vee E_{n}$ is not harmonic by (4.1).

Put $\bar{E}=\Pi E_{n}$, then consider the commutative diagram
with exact rows. From Lemma 3.6 it follows immediately that w $\operatorname{dim}_{\mathcal{G} \mathscr{P}} N_{k+1} E_{n^{*}}$ $\leqq n+1$ for each $k \leqq n$, in particular $\mathrm{w} \operatorname{dim}_{\mathcal{B} \mathscr{P}} N_{n+1} E_{n^{*}} \leqq n+1$. Making use of Lemma 4.10 we observe that $\mathrm{w} \operatorname{dim}_{\mathcal{B} \mathscr{P}} N_{m} E_{n^{*}} \leqq m$ and $0 \rightarrow N_{m} E_{n^{*}} \rightarrow M_{m} E_{n^{*}} \rightarrow$ $N_{m+1} E_{n^{*}} \rightarrow 0$ is exact for every $m \geqq n+1$. Hence the right vertical arrow is trivial in the above diagram. So $\lim _{\longleftrightarrow} N_{m+1}\left(\Pi_{n \geqq m} E_{n}\right)=\lim _{\longleftarrow} N_{m+1} \bar{E}$. However Lemma 6.2 shows that $\lim _{\longleftrightarrow} N_{m+1}\left(\Pi_{n \geqq m} E_{n}\right) \neq p t$, and hence \bar{E} is not s-harmonic.

Theorem 6.4. Let E_{n} be associative $B P$-module spectra such that $B P_{*} \mid$ $I_{m} \otimes_{B P_{*}} E_{n^{*}}$ are $v_{m^{\prime}}$-torsion free for any $m \leqq n$ and $E_{n^{*}}$ are v_{k}-torsion for any $k>n$.
i) If $\vee N_{n+1} E_{n}=\prod N_{n+1} E_{n}$, then $\vee L_{n} E_{n}$ and $\Pi L_{n} E_{n}$ are both s-harmonic.
ii) If $\vee_{n} N_{n+1} E_{n} \neq \prod_{n} N_{n+1} E_{n}$, then $\bigvee_{n} L_{n} E_{n}$ is not harmonic, and $\prod_{n} L_{n} E_{n}$ is harmonic but not s-harmonic.

Proof. i) From Proposition 5.5 it follows that $\vee L_{n} E_{n}$ is s-harmonic. Since $\omega E_{n}=\omega L_{n} E_{n}$ and it is s-harmonic by Proposition 5.6, $\Pi L_{n} E_{n}$ is also s-harmonic.
ii) By Proposition 5.5 and Corollary $5.9 \vee L_{n} E_{n}$ is not harmonic. Put $\overline{L E}=\Pi L_{n} E_{n}$, then $N_{m+1}(\overline{L E})=N_{m+1}\left(\Pi_{n \geqq m} L_{n} E_{n}\right)$. So we have a commutative diagram
with cofibering rows. By use of Lemma 3.1 we see that $\lim _{\leftrightarrows} N_{m+1}(\overline{L E})=$ $\lim _{\longleftrightarrow} N_{m+1}\left(\Pi_{n \geq m} N_{n+1} E_{n}\right)$. However Lemma 6.2 insists that $\lim _{\longleftrightarrow} N_{m+1}\left(\Pi_{n \geq m} N_{n+1} E_{n}\right)$ $\neq p t$ because $\operatorname{Tor}_{m}^{B P *}\left(B P_{*} / I_{m}, N_{n+1} E_{n^{*}}\right) \cong N_{n+1} B P I_{m^{*}} \otimes_{B P_{*}} E_{n}^{*}$ is v_{m}-divisible for each $m \leqq n$. Therefore $\overline{L E}$ is not s-harmonic.

By applying Theorems 6.3 and 6.4 we have
(6.3) i) $\vee N_{n+1} B P$ is not harmonic, and
ii) $\Pi N_{n+1} B P$ is harmonic, but not s-harmonic.
i) $\vee L_{n} B P\langle n\rangle$ is not harmonic, and
ii) $\Pi L_{n} B P\langle n\rangle$ is harmonic, but not s-harmonic.

References

[1] J.F. Adams: Stable homotopy and generalized homology, Chicago Lecture in Math., Univ. of Chicago Press, 1974.
[2] A.K. Bousfield: The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), 368-377.
[3] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979), 257-281.
[4] B.I. Gray: Spaces of the same n-type, for all n, Topology 5 (1966), 241-243.
[5] D.C. Johnson and Z. Yosimura: Torsion in Brown-Peterson homology and Hurewicz homomorphisms, Osaka J. Math. 17 (1980), 117-136.
[6] D.C. Johnson, P.S. Landweber and Z. Yosimura: Injective $B P_{*} B P$-comodules and localizations of Brown-Peterson homology, Illinois J. Math. 25 (1981), 599610.
[7] P.S. Landweber: Homological properties of comodules over $M U_{*}(M U)$ and $B P_{*}(B P)$, Amer. J. Math. 98 (1976), 591-610.
[8] P.S. Landweber: New applications of commutative algebra to Brown-Peterson homology, Proc. Algebraic Topology Waterloo 1978, Lecture Notes in Math. 741, Springer-Verlag, 1979.
[9] D.C. Ravenel: Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
[10] U. Würgler: On products in a family of cohomology theories associated to the invariant prime ideals of $\pi *(B P)$, Comment. Math. Helv. 52 (1977), 457-481.
[11] Z. Yosimura: Universal coefficient sequences for cohomology theories of CWspectra, I and II, Osaka J. Math. 12 (1975), 305-323 and 16 (1979), 201-217.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka_ 558, Japan

