Yosimura, Z. Osaka J. Math. 21 (1984), 419-436

LOCALIZATION OF BP-MODULE SPECTRA WITH RESPECT TO BP-RELATED HOMOLOGIES

Dedicated to Professor Minoru Nakaoka on his sixtieth birthday

ZEN-ICHI YOSIMURA

(Received September 17, 1982)

1. Introduction

BP is the Brown-Peterson spectrum for a fixed prime p. It is an associative and commutative ring spectrum whose homotopy is $BP_* = Z_{(p)}[v_1, \dots, v_n, \dots]$. Following Ravenel [9] we denote by L_n the localization with respect to $v_n^{-1}BP_*$ -homology and by L_∞ that with respect to $\bigoplus_n v_n^{-1}BP_*$ -homology. Then there is a tower

$$X \to L_{\infty}X \cdots \to L_nX \to L_{n-1}X \to \cdots \to L_0X$$

for each *CW*-spectrum *X*. A *CW*-spectrum *X* is said to be *harmonic* if $X = L_{\infty}X$, and *s*-harmonic if $X = \hat{L}_{\infty}X$ where we put $\hat{L}_{\infty}X = \varprojlim_{n}L_{n}X$. *X* is harmonic whenever it is *s*-harmonic. In this paper we study some properties of *s*-harmonic spectra. Especially we discuss $\hat{L}_{\infty}E$ when *E* is an associative *BP*-module spectrum which satisfies one or two of the following conditions:

- I) E_* is v_m -torsion for any m < n,
- II) E_* is v_m -torsion for any m > n,
- III) $BP_*/I_m \bigotimes_{BP_*} E_*$ is v_m -torsion free for any $m \leq n$,
- IV) $\operatorname{Tor}_{m}^{BP}(BP_{*}|I_{m}, E_{*})$ is v_{m} -divisible for any m < n, and
- V) hom $\dim_{BP_*}E_* \leq n$.

As such associative BP-module spectra we have P(n), k(n), $BP\langle n \rangle$, N_nBP and so on.

We show that an associative *BP*-module spectrum *E* is *s*-harmonic if hom dim_{*BP**} E_* is finite (Theorem 4.8). This implies Ravenel's result ([9, Theorem 4.4] or [6, Theorem 1.3]) that a *p*-local connective *CW*-spectrum *X* is harmonic if hom dim_{*BP**} BP_*X is finite (Corollary 4.9). However the finiteness assumption is not necessarily essential because $L_{\infty}BP\langle n \rangle$ is *s*-harmonic although hom dim_{*BP**} $L_{\infty}BP\langle n \rangle_*$ is infinite for $n \ge 1$ (Proposition 4.12).

We intend to describe elementary properties of s-harmonic spectra corresponding to those of harmonic spectra. The product of harmonic spectra is

always harmonic. But its property is not valid for s-harmonic spectra. By computing $\lim_{m} N_{m+1}(\prod_{n\geq m} E_n)_*$ where $E_n = N_{n+1}BP$ or $N_{n+1}BP\langle n \rangle$, we finally show that neither $\prod_n N_{n+1}BP$ nor $\prod_n L_{\infty}BP\langle n \rangle$ is s-harmonic (Theorems 6.3 and 6.4). This says that \hat{L}_{∞} is never a localization functor, and hence $L_{\infty}X \neq \hat{L}_{\infty}X$ in general.

2. Associative BP-module spectra $N_n E$ and $M_n E$

Let us denote by L_n the localization functor with respect to the $(v_n^{-1}BP)_*$ -homology, and by L_{∞} and L_{ω} those with respect to the $(\bigvee_n v_n^{-1}BP)_*$ - and $(\prod v_n^{-1}BP)_*$ -homologies respectively. Then there is a tower

$$L_s = \mathrm{id} \rightarrow L_{BP} = L_\omega \rightarrow L_\omega \rightarrow \cdots \rightarrow L_n \rightarrow \cdots \rightarrow L_0 = L_{SQ}$$

consisting of localization functors.

Define cofibrations

.

$$(2.1) N_n X \to M_n X \to N_{n+1} X$$

inductively by setting $N_0X=X$ and $M_nX=L_nN_nX$. Then there is a commutative diagram

(2.2)

$$\Sigma^{-n}M_{n}X = \Sigma^{-n}M_{n}X$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \longrightarrow L_{n}X \longrightarrow \Sigma^{-n}N_{n+1}X$$

$$\parallel \qquad \qquad \downarrow$$

$$X \rightarrow L_{n-1}X \longrightarrow \Sigma^{-n+1}N_{n}X$$

involving four cofibrations [9, Theorem 5.10].

Lemma 2.1. i) If E is an (associative) BP-module spectrum, then L_nE , N_nE and M_nE are all so.

ii) If $f: E \rightarrow F$ is a BP-module map of BP-module spectra, then $L_n f$, $N_n f$ and $M_n f$ are all so.

Proof. i) Consider the following diagram

$$\begin{array}{ccc} BP_{\frown}E \to BP_{\frown}L_{n}E \to BP_{\frown}\Sigma^{-n}N_{n+1}E \to BP_{\frown}\Sigma^{1}E \\ \downarrow & \downarrow & \downarrow \\ E \longrightarrow L_{n}E \longrightarrow \Sigma^{-n}N_{n+1}E \longrightarrow \Sigma^{1}E \end{array}$$

with cofibering rows. There is a unique map $BP_{\frown}L_{n}E \rightarrow L_{n}E$ making the left square commutative since $BP_{\frown}N_{n+1}E$ is $v_{n}^{-1}BP_{*}$ -acyclic. Thus $L_{n}E$ inherits a *BP*-module structure from that of *E*. The associativity of $L_{n}E$ is assured

by the uniqueness of induced maps. Moreover there is a unique map $BP_{N_{n+1}}E \rightarrow N_{n+1}E$ making the other squares commutative. This also gives a *BP*-module structure on $N_{n+1}E$.

ii) It is easy to show ii) along the above line.

Let E be an associative BP-module spectrum such that

 $(I)_n$ E_* is v_m -torsion for each m < n.

Notice that $BP_*E \cong BP_*BP \bigotimes_{BP_*} E_*$ is also v_m -torsion for each m < n. As is easily seen, the multiplications

$$1 \otimes v_n: v_n^{-1}BP_*BP \underset{BP_*}{\otimes} E_* \to v_n^{-1}BP_*BP \underset{BP_*}{\otimes} E_*$$
$$v_n \otimes 1: BP_*BP \underset{BP_*}{\otimes} v_n^{-1}E_* \to BP_*BP \underset{BP_*}{\otimes} v_n^{-1}E_*$$

are isomorphisms. This means that both of the maps

$$1_{x_n}: v_n^{-1}BP_{x_n} \to v_n^{-1}BP_{x_n} \to and \quad v_n \to BP_{x_n} v_n^{-1} \to BP_{x_n} v_n^{-1} E$$

are homotopy equivalences. Hence the canonical maps

(2.3)
$$v_n^{-1}BP_{\mathcal{A}}E \to v_n^{-1}BP_{\mathcal{A}}v_n^{-1}E \leftarrow BP_{\mathcal{A}}v_n^{-1}E$$

are homotopy equivalences, too.

Proposition 2.2. Let E be an associative BP-module spectrum whose homotopy E_* is v_m -torsion for any m < n. Then $L_m E = pt$ for any m < n, and $L_n E = v_n^{-1} E$.

Proof. The canonical map $E \rightarrow v_n^{-1}E$ is a $v_n^{-1}BP_*$ -equivalence. On the other hand, we consider the commutative diagram

for any map $f: W \to v_n^{-1}E$. The map f is trivial whenever W is $v_n^{-1}BP_*$ -acyclic. This says that $v_n^{-1}E$ is $v_n^{-1}BP_*$ -local. Therefore $L_nE = v_n^{-1}E$, and hence $L_mE = v_m^{-1}E = pt$ for any m < n.

Theorem 2.3. Let E be an associative BP-module spectrum. Then the CW-spectra N_nE and M_nE are associative BP-module spectra, and moreover $M_nE=v_n^{-1}N_nE$. (Cf., [9, Theorem 6.1]).

Proof. By induction on n we will show that $N_n E$ is an associative *BP*-module spectrum whose homotopy $N_n E_*$ is v_m -torsion for any m < n. By using

Proposition 2.2 the induction hypothesis implies that $M_n E = v_n^{-1} N_n E$. Hence $N_{n+1}E_*$ is clearly v_n -torsion for any $m \le n$. From Lemma 2.1 it follows that $M_n E$ and $N_{n+1}E$ are associative *BP*-module spectra. Therefore $N_{n+1}E$ has the desired property.

Corollary 2.4. Let E be an associative BP-module spectrum. Then $L_n E_{\Lambda} X = L_n(E_{\Lambda}X)$ and $N_n E_{\Lambda} X = N_n(E_{\Lambda}X)$.

Proof. Assume that the *BP*-module map $N_n E_{\Lambda} X \to N_n(E_{\Lambda} X)$ is a homotopy equivalence. Then it follows from Theorem 2.3 that the *BP*-module map $M_n E_{\Lambda} X \to M_n(E_{\Lambda} X)$ is so, and hence the *BP*-module map $N_{n+1}E_{\Lambda} X \to N_{n+1}(E_{\Lambda} X)$ is so, too. Moreover the *BP*-module map $L_n E_{\Lambda} X \to L_n(E_{\Lambda} X)$ is also a homotopy equivalence.

Similarly we obtain

Corollary 2.5. Let E_{λ} , $\lambda \in \Lambda$, be associative BP-module spectra. Then $\bigvee L_n E_{\lambda} = L_n(\bigvee E_{\lambda})$ and $\bigvee N_n E_{\lambda} = N_n(\bigvee E_{\lambda})$.

Let E be an associative BP-module spectrum such that

 $(II)_n$ E_* is v_m -torsion for each m > n.

Then $N_{n+1}E_*$ is v_m -torsion for every $m \ge 0$. So we have

Proposition 2.6. Let E be an associative BP-module spectrum whose homotopy E_* is v_m -torsion for any m > n. Then $L_{\infty}E = L_n E$.

Putting Propositions 2.2 and 2.6 together we obtain

Corollary 2.7. Let E be an associative BP-module spectrum whose homotopy E_* is v_m -torsion except for m=n. Then $L_{\infty}E=v_n^{-1}E$.

The associative *BP*-module spectra P(n) and k(n) satisfy the condition $(I)_n$, and both $BP \langle n \rangle$ and k(n) satisfy the condition $(II)_n$. So we have

(2.4)
$$L_n P(n) = v_n^{-1} P(n) = B(n), \quad L_\infty k(n) = v_n^{-1} k(n) = K(n)$$
 and $L_\infty BP \langle n \rangle = L_n BP \langle n \rangle.$

3. v_m -torsion free and v_m -divisible

Let $A = (a_0, a_1, \dots, a_i, \dots)$ be an infinite sequence of positive integers. Denote by BPJ_nA the associative BP-module spectrum with $BPJ_nA_* \cong BP_*/J_nA$ where $J_nA = (p^{a_0}, v_1^{a_1}, \dots, v_{n-1}^{a_{n-1}})$. There is a cofibering

$$\Sigma^{2(p^n-1)a_n}BPJ_nA \to BPJ_nA \to BPJ_{n+1}A$$

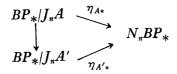
which induces the short exact sequence $0 \rightarrow BP_*/J_n A \xrightarrow{v_n^{a_n}} BP_*/J_n A \rightarrow BP_*/J_{n+1} A \rightarrow 0$

of BP_* -modules. The composite $BPJ_nA \to \Sigma^{2(p^{n-1}-1)a_{n-1}+1}BPJ_{n-1}A \to \cdots \to \Sigma^{|J_nA|+n}BP$ yields a BP-module map

$$\eta_A: BPJ_nA \to \Sigma^{|J_nA|}N_nBP$$

where $|J_nA| = \sum_{1 \le i < n} 2(p^i - 1)a_i$. The induced homomorphism $\eta_A \colon BP_* | J_nA \to N_nBP_*$ carries 1 to $p^{-a_0}v_1^{-a_1} \cdots v_{n-1}^{-a_{n-1}}$.

For any two sequences $A=(a_0, a_1, \dots, a_i, \dots)$ and $A'=(a'_0, a'_1, \dots, a'_i, \dots)$ with $1 \leq a_i \leq a'_i$, we write $A \leq A'$. For such a pair $A \leq A'$ the triangle



is commutative where the left vertical arrow is just the multiplication by $p^{b_0}v_1^{b_1}$ $\cdots v_{n-1}^{b_{n-1}}$ with $b_i = a'_i - a_i$. So we have an isomorphism

 $(3.1) \qquad \qquad \lim BP_*/J_nA \to N_nBP_*$

of BP_* -modules.

Let N be a BP_* -module. There is an exact sequence $0 \to \operatorname{Tor}_n^{BP_*}(BP_*/J_nA, N) \xrightarrow{\partial_A} \operatorname{Tor}_{n-1}^{BP_*}(BP_*/J_{n-1}A, N) \xrightarrow{v_{n-1}^{a_{n-1}}} \operatorname{Tor}_{n-1}^{BP_*}(BP_*/J_{n-1}A, N)$. Hence we verify that $\operatorname{Tor}_n^{BP_*}(BP_*/J_nA, N) \cong \{x \in N; v_k^{a_k}x = 0 \text{ for each } k < n\}$. The projection $BP_*/J_nA' \to BP_*/J_nA$ induces a homomorphism

$$\rho_{A,A'}$$
: $\operatorname{Tor}_{n}^{BP_{*}}(BP_{*}/J_{n}A', N) \to \operatorname{Tor}_{n}^{BP_{*}}(BP_{*}/J_{n}A, N)$

which is just the multiplication by $p^{b_0}v_1^{b_1}\cdots v_{n-1}^{b_{n-1}}$, and the multiplication $p^{b_0}v_1^{b_1}\cdots v_{n-1}^{b_{n-1}}$: $BP_*/J_nA \rightarrow BP_*/J_nA'$ induces a homomorphism

$$\mu_{A',A}: \operatorname{Tor}_{n}^{BP*}(BP_{*}/J_{n}A, N) \to \operatorname{Tor}_{n}^{BP*}(BP_{*}/J_{n}A', N)$$

which is the inclusion. As is easily checked, we have

(3.2)
$$\partial_A \rho_{A,A'} = v_{n-1}^{b_{n-1}} \rho_{A,A'} \partial_{A'} \quad and \quad \partial_{A'} \mu_{A',A} = \mu_{A',A} \partial_A.$$

Notice that $\operatorname{Tor}_{n}^{BP_{*}}(N_{n}BP_{*}, N) \cong \{x \in N; x \text{ is } v_{k} \text{-torsion for each } k < n\}$. The *BP*-module map $\eta_{A}: BPJ_{n}A \to \Sigma^{|J_{n}A|}N_{n}BP$ yields the inclusion

$$\lambda_A$$
: Tor^{BP}_n (BP_{*}/J_nA, N) \rightarrow Tor^{BP}_n (N_nBP_{*}, N).

Obviously we see

$$(3.3) \qquad \qquad \lambda_{A'}\mu_{A',A} = \lambda_A \quad and \quad \lambda_A\partial_A = \lambda_A.$$

Let E be an associative BP-module spectrum such that

(III)_n
$$BP_*/I_m \bigotimes_{BP_*} E_*$$
 is v_m -torsion free for each $m \leq n$.

For example, take $BP\langle n \rangle$ as E satisfying $(III)_n$. Given a sequence $A = (a_0, a_1, \dots, a_i, \dots)$ with $a_i \ge 1$ we can show by induction on $\sum_{0 \le i \le n} a_i \ge n+1$ that for any $m \le n$,

(3.4) $BP_*/J_mA \bigotimes_{BP_*} E_*$ is v_m -torsion free, and $\operatorname{Tor}_k^{BP_*}(BP_*/J_{m+1}A, E_*)=0$ for each $k \ge 1$.

Moreover we have an isomorphism

$$(3.5) BP_*/J_{m+1}A \bigotimes_{BP_*} BP_*X \to BPJ_{m+1}A_*X$$

of BP_* -modules for any $m \leq n$, when $E = BP_X$ satisfies $(III)_n$.

Lemma 3.1. Let E be an associative BP-module spectrum such that $BP_*/I_m \bigotimes_{BP_*} E_*$ is v_m -torsion free for any $m \leq n$. Then the BP-module map $N_{m+1}BP_{\sim}E \rightarrow N_{m+1}E$ induces an isomorphism $N_{m+1}BP_* \bigotimes_{BP_*} E_* \rightarrow N_{m+1}E_*$ of BP_* modules for each $m \leq n$. And the sequence $0 \rightarrow N_m E_* \rightarrow M_m E_* \rightarrow N_{m+1}E_* \rightarrow 0$ of BP_* -modules is exact for each $m \leq n$.

Proof. In the commutative diagram

with exact rows, we observe from (3.1) and (3.4) that $\operatorname{Tor}_{1}^{BP*}(N_{m+1}BP_{*}, E_{*})=0$. Apply induction on *m* to obtain our result.

Corollary 3.2. Let E be an associative BP-module spectrum as in Lemma 3.1. Then we have an isomorphism $N_{n+1}BPJ_mA_* \bigotimes_{BP_*} E_* \rightarrow \operatorname{Tor}_{m}^{BP_*}(BP_*/J_mA,N_{n+1}E_*)$ for each $m \leq n+1$ where $A = (a_0, a_1, \dots, a_i, \dots)$ with $a_i \geq 1$.

Proof. Proceed induction on $m \ge 0$, the m=0 case being immediate from Lemma 3.1.

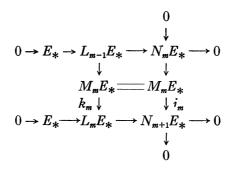
Lemma 3.3. Let E be an associative BP-module spectrum such that $BP_*/I_m \bigotimes_{BP_*} E_*$ is v_m -torsion free for any $m \le n$. Then $BP_*/I_{n+1} \bigotimes_{BP_*} E_* = 0$ if and only if $N_{n+1}E = pt$.

Proof. If $BP_*/I_{n+1} \underset{BP_*}{\otimes} E_* = 0$, then $BP_*/J_{n+1}A \underset{BP_*}{\otimes} E_* = 0$, and hence

 $N_{n+1}BP_* \underset{BP_*}{\otimes} E_* = 0$. By Lemma 3.1 this means that $N_{n+1}E = pt$. On the other hand, the canonical map $BP_*/I_{n+1} \underset{BP_*}{\otimes} E_* \to N_{n+1}BP_* \underset{BP_*}{\otimes} E_*$ is monic since the map $BP_*/I_{n+1} \underset{BP_*}{\otimes} E_* \to BP_*/J_{n+1}A \underset{BP_*}{\otimes} E_*$ is so. The converse is now clear.

Proposition 3.4. Let E be an associative BP-module spectrum such that $BP_*/I_m \bigotimes_{BP_*} E_*$ is v_m -torsion free for any $m \le n$. Then $L_0E_*=E_*\otimes Q$ and the short exact sequence $0 \rightarrow E_* \rightarrow L_mE_* \rightarrow N_{m+1}E_* \rightarrow 0$ is split as a BP*-module for each m, $1 \le m \le n$. (Cf., [9, Theorem 6.2]).

Proof. Consider the commutative diagram



with exact rows and columns. Define the splitting $\phi_m: N_{m+1}E_* \to L_mE_*$ by setting $\phi_m(z) = k_m(y)$ where $z = j_m(y)$.

Corollary 3.5. Let E be an associative BP-module spectrum as in Proposition 3.4. Then we have an exact sequence $0 \rightarrow N_{n+1}E_* \rightarrow L_nE_* \rightarrow L_mE_* \rightarrow N_{m+1}E_* \rightarrow 0$ of BP_{*}-modules for each m < n.

Proof. Use the fact that the composition $N_{m+2}E_* \xrightarrow{\phi_{m+1}} L_{m+1}E_* \rightarrow L_mE_*$ is trivial.

Let E be an associative BP-module spectrum such that

(IV)_{n+1} Tor^{BP*}_m (BP*/I_m, E*) is v_m -divisible for each $m \leq n$.

For example, take $N_{n+1}BP$ as E satisfying $(IV)_{n+1}$. As is easily shown, it follows that for any $m \leq n$,

(3.6) $\operatorname{Tor}_{m}^{BP_{*}}(BP_{*}|J_{m}A, E_{*})$ is v_{m} -divisible, and $\operatorname{Tor}_{k}^{BP_{*}}(BP_{*}|J_{m+1}A, E_{*})=0$ for each $k \neq m+1$,

where $A=(a_0, a_1, \dots, a_i, \dots)$ with $a_i \ge 1$. Moreover there is an isomorphism

$$(3.7) \qquad BPJ_{m+1}A_*X \to \operatorname{Tor}_{m+1}^{BP_*}(BP_*/J_{m+1}A, BP_*X)$$

of BP_* -modules for any $m \leq n$, when $E = BP_X$ satisfies $(IV)_{n+1}$.

Lemma 3.6. Let E be an associative BP-module spectrum such that $\operatorname{Tor}_{m}^{BP*}(BP_{*}/I_{m}, E_{*})$ is v_{m} -divisible for any $m \leq n$. Then there is an isomorphism $N_{m+1}E_{*} \rightarrow \operatorname{Tor}_{m+1}^{BP*}(N_{m+1}BP_{*}, E_{*})$ of BP_{*} -modules for each $m \leq n$. And the sequence $0 \rightarrow N_{m+1}E_{*} \rightarrow N_{m}E_{*} \rightarrow M_{m}E_{*} \rightarrow 0$ of BP_{*} -modules is exact for each $m \leq n$.

Proof. Since $\operatorname{Tor}_{m}^{BP_{*}}(N_{m+1}BP_{*}, E_{*})=0$ by (3.1) and (3.6), we have a commutative diagram

with exact rows. Apply induction on m.

Lemma 3.7. Let E be an associative BP-module spectrum such that $\operatorname{Tor}_{m}^{BP*}(BP_*/I_m, E_*)$ is v_m -divisible for any $m \leq n$. Then $\operatorname{Tor}_{n+1}^{BP*}(BP_*/I_{n+1}, E_*)=0$ if and only if $N_{n+1}E=pt$.

Proof. If $\operatorname{Tor}_{n+1}^{BP_*}(BP_*/I_{n+1}, E_*) = 0$, then we observe that $\operatorname{Tor}_{n+1}^{BP_*}(N_{n+1}BP_*, E_*) = 0$ and hence $N_{n+1}E = pt$ by Lemma 3.6. The converse is also valid since $\operatorname{Tor}_{n+1}^{BP_*}(BP_*/I_{n+1}, E_*) \to \operatorname{Tor}_{n+1}^{BP_*}(N_{n+1}BP_*, E_*)$ is monic.

4. Harmonic spectra and s-harmonic spectra

A CW-spectrum X is said to be harmonic if it is $(\bigvee v_n^{-1}BP)_*$ -local, thus if $X=L_{\infty}X$. X is said to be s-harmonic if $X=\underset{n}{\underset{n}{\lim}}L_nX$.

We first list elementary results on harmonic spectra [3].

(4.1) If $X \rightarrow Y \rightarrow Z$ is a cofibering and only two of X, Y and Z are harmonic, then so is the third.

(4.2) A retract of a harmonic spectrum is also harmonic.

(4.3) The product of a set of harmonic spectra is harmonic.

(4.4) An s-harmonic spectrum is always harmonic.

Lemma 4.1. Let E be an associative BP-module spectrum which is connective. Then E is harmonic if and only if so is $BP_{A}E$.

Proof. Recall that $E_*BP \cong E_*[t_1, \dots, t_n, \dots]$. Put $t^A = t_1^{a_1} \dots t_n^{a_n} \colon \Sigma^{|A|} \to BP_ABP$ for a finite sequence $A = (a_1, \dots, a_n, 0, \dots)$ where $|A| = \sum_{1 \le i \le n} 2(p^i - 1)a_i$. All the maps t^A give rise to a *BP*-module map $t \colon \bigvee \Sigma^{|A|}E \to E_ABP$, which is a homotopy equivalence. Under our assumption that *E* is connective, $\bigvee \Sigma^{|A|}E =$

 $\prod \Sigma^{|A|} E$. Therefore BP_{E} is a product of suspensions of E. So our result is evident.

Lemma 4.2. Assume that a CW-spectrum X is connective. If BP_X is harmonic, then $XZ_{(p)}$ is harmonic, too.

Proof. Let $\overline{BP} = BP/S$ be the cofiber of the unit $S \to BP$ and put $\overline{BP}^n = \overline{BP}, \dots, \overline{BP}$, *n*-times. By induction on *n* using Lemma 4.1 we can show that BP, \overline{BP}^n, X is harmonic. Let $K_n X$ be the cofiber of $\Sigma^{-n} \overline{BP}^n, X \to X$. Then we have a cofibering $K_{n+1}X \to K_n X \to \Sigma^{-n} BP, \overline{BP}^n, X$. Therefore $K_n X$ becomes harmonic for every $n \ge 0$. When X is connective, it follows that $XZ_{(p)} = \lim_{n \to \infty} K_n X$, and hence it is harmonic.

We next discuss elementary results on *s*-harmonic spectra. Put $\hat{L}_{\infty}X = \underset{k=1}{\lim} L_n X$ and $\hat{N}_{\infty}X = \underset{k=1}{\lim} \Sigma^{-n} N_{n+1} X$.

Lemma 4.3. A CW-spectrum X is s-harmonic if and only if $\varprojlim_{n} N_{n+1}X_{*} = 0 = \varprojlim_{n} N_{n+1}X_{*}$.

Proof. By applying Verdier's lemma [1] we see that $X = \hat{L}_{\infty}X$ if and only if $\hat{N}_{\infty}X = pt$.

Lemma 4.4. Let $X \rightarrow Y \rightarrow Z$ be a cofibering of CW-spectra. If any two of X, Y and Z are s-harmonic, then so is the third.

Proof. By Verdier's lemma we obtain that $\hat{N}_{\infty}X = \hat{N}_{\infty}Y$ if and only if $\hat{N}_{\infty}Z = pt$.

Lemma 4.5. Let X be a retract of a CW-spectrum Y. If Y is s-harmonic, then so is X.

Proof. The composition $\hat{N}_{\infty}X \rightarrow \hat{N}_{\infty}Y \rightarrow \hat{N}_{\infty}X$ is a homotopy equivalence if the composition $X \rightarrow Y \rightarrow X$ is just the identity. Hence $\hat{N}_{\infty}Y = pt$ implies $\hat{N}_{\infty}X = pt$.

Corollary 4.6. Let E be a BP-module spectrum. Then E is s-harmonic if so is BP_{E} .

A CW-spectrum X is said to be *dissonant* if it is $(\bigvee v_n^{-1}BP)_*$ -acyclic.

Lemma 4.7. Let C be the cofiber of $X \rightarrow \hat{L}_{\infty}X$. Then $L_{\infty}X$ is s-harmonic if and only if C is dissonant.

Proof. Note that $\hat{L}_{\infty}(L_{\infty}X) = \hat{L}_{\infty}X$. It is easy to show that $L_{\infty}X = \hat{L}_{\infty}X$ if and only if C is dissonant.

For a BP_* -module N we define w dim $\mathfrak{BP} N \leq n$ if $\operatorname{Tor}_k^{BP_*}(N, M) = 0$ for all k > n and all associative BP_*BP -comodules M. Notice that w dim $\mathfrak{BP} v_n^{-1} N \leq n$ for any BP_* -module N [6].

Theorem 4.8. Let E be an associative BP-module spectrum such that $w \dim_{\mathcal{BP}} E_*$ is finite. Then E is s-harmonic.

Proof. By induction on $d = w \dim_{\mathscr{BP}E} E_*$. We first assume that E_* is \mathscr{BP} -flat. By use of Lemma 3.1 we see that the sequence $0 \to N_n E_* \to M_n E_* \to N_{n+1}E_* \to 0$ are exact for all $n \ge 0$. This implies that $\lim_{K \to 0} N_{n+1}E_* = 0 = \lim_{K \to 0} N_{n+1}E_*$. Therefore E is s-harmonic by Lemma 4.3. Next, take a cofibering $Y \to W \to E$ which induces a short exact sequence $0 \to BP_*Y \to BP_*W \to BP_*E \to 0$ of BP_* -modules such that BP_*W is BP_* -free. Note that w $\dim_{\mathscr{BP}}BP_*E = w \dim_{\mathscr{BP}}E_*$. By induction hypothesis, $BP_{\wedge}Y$ and $BP_{\wedge}W$ are both s-harmonic. Hence $BP_{\wedge}E$ and therefore E are s-harmonic.

Combining Theorem 4.8 with (4.4) and Lemma 4.2 we have

Corollary 4.9 [9, Theorem 4.4]. Let X be a connective CW-spectrum such that w dim \mathfrak{BP} BP_{*}X is finite. Then $XZ_{(p)}$ is harmonic.

Remark that w dim $\mathcal{BP}BP_*X$ is the same as the BP_* -projective dimension of BP_*X when X is connective.

Lemma 4.10. Let E be an associative BP-module spectrum such that $w \dim_{\mathcal{BP}} E_* \leq n$. Then $0 \rightarrow E_* \rightarrow L_n E_* \rightarrow N_{n+1} E_* \rightarrow 0$ is a short exact sequence of BP_{*}-modules.

Proof. Consider the commutative square

$$E_* \longrightarrow L_n E_* \\ \downarrow \qquad \qquad \downarrow \\ v_n^{-1} BP_* E \to v_n^{-1} BP_* L_n E$$

where the bottom is isomorphic. Since $\operatorname{w} \dim_{\mathscr{B}} \mathcal{B} P_* E \leq n$, it follows from [8, Lemma 3.4] that BP_*E is v_n -torsion free. So the left arrow is monic, and hence the top one is monic.

By using Proposition 2.2 and Lemma 4.10 together we have

Corollary 4.11. Let E be an associative BP-module spectrum such that E_* is v_m -torsion for any m < n and $w \dim_{\mathcal{BP}} E_* \leq n$. Then E_* is v_n -torsion free. (Cf., [8, Lemma 3.4]).

Proposition 4.12. Let $n \ge 1$ and E be an associative BP-module spectrum such that $BP_*/I_{n+1} \bigotimes_{BP_*} E_* \neq 0$. Assume that $BP_*/I_m \bigotimes_{BP_*} E_*$ is v_m -torsion free

for any $m \leq n$ and E_* is v_k -torsion for any k > n. Then $L_{\infty}E$ is s-harmonic but $w \dim_{\mathcal{B}\mathcal{P}}L_{\infty}E_*$ is infinite.

Proof. From Proposition 2.6 it follows that $L_{\infty}E$ is *s*-harmonic and moreover that $N_{n+1}E \neq pt$ is dissonant, thus $N_{n+1}E_*$ is v_m -torsion for all $m \ge 0$. Assume that $\operatorname{wdim}_{\mathscr{B}\mathscr{D}}E_* < \infty$. Because of Lemma 3.1 it is easily checked that $\operatorname{wdim}_{\mathscr{B}\mathscr{D}}N_{n+1}E_* < \infty$, which contradicts to Corollary 4.11. Therefore $\operatorname{wdim}_{\mathscr{B}\mathscr{D}}E_* = \infty$, and hence also $\operatorname{wdim}_{\mathscr{B}\mathscr{D}}L_{\infty}E_* = \infty$ by Proposition 3.4.

The \mathscr{BP} -weak dimensions of $P(n)_*$, $K(n)_*$ and $N_n BP_*$ are just n, but that of $L_{\infty} BP \langle n \rangle_*$ is infinite when $n \geq 1$. By Theorem 4.8 and Proposition 4.12 we obtain

(4.5) P(n), K(n), $N_n BP$ and $L_{\infty} BP \langle n \rangle$ are all s-harmonic.

5. Cofiber of $E \rightarrow \hat{L}_{\infty}E = \lim L_m E$

For associative *BP*-module spectra E_n the wedge sum $\lor E_n$ and the product $\prod_n E_n$ are both associative *BP*-module spectra. Denote by $\omega E_n = \prod_n E_n / \lor E_n$ the cofiber of the canonical map $\lor E_n \to \prod_n E_n$. This is a weak associative *BP*-module spectrum. We now study $\hat{L}_{\infty}(\lor E_n)$ and $\hat{L}_{\infty}(\prod_n E_n)$ for suitable *BP*-module spectra E_n .

Proposition 5.1. Let E_n be associative BP-module spectra such that $w \dim_{\mathcal{BP}} E_{n^*} \leq n$.

i) If E_{n^*} is v_m -torsion for any m < n, then $\hat{L}_{\infty}(\vee E_n) = \prod E_n$.

ii) If $\prod_{k\geq n} E_{k^*}$ is v_m -torsion for any m < n, then $L_{\infty}(\vee E_n) = \prod E_n$ and it is s-harmonic.

Proof. i) Put $E = \bigvee E_m$. From Proposition 2.2 and Corollary 2.5 we observe that $L_n E = L_n E_0 \lor \cdots \lor L_n E_n$. Consider the commutative diagram

$$\begin{array}{cccc} 0 \to \bigoplus_{m \leq n} E_{m^*} \longrightarrow L_n E_* \longrightarrow \bigoplus_{m \leq n} N_{n+1} E_{m^*} \to 0 \\ \downarrow & \downarrow & \downarrow \\ 0 \to \bigoplus_{m \leq n-1} E_{m^*} \to L_{n-1} E_* \longrightarrow \bigoplus_{m \leq n-1} N_n E_{m^*} \to 0 \end{array}$$

where two rows are exact by Lemma 4.10. By induction on $n \ge m$ we show that w dim $\mathfrak{g}_{\mathfrak{P}} N_n E_{m^*} \le n$. Assume that w dim $\mathfrak{g}_{\mathfrak{P}} N_n E_{m^*} \le n$, then Lemma 4.10 says that the sequence $0 \to N_n E_{m^*} \to M_n E_{m^*} \to N_{n+1} E_{m^*} \to 0$ is exact. Since w dim $\mathfrak{g}_{\mathfrak{P}} M_n E_{m^*} \le n$, the induction hypothesis implies that w dim $\mathfrak{g}_{\mathfrak{P}} N_{n+1} E_{m^*} \le$ n+1. Hence the right vertical arrow is trivial in the above diagram. So we obtain that $\prod E_{n^*} \simeq \lim_{n \to \infty} L_n E_*$ and $\lim_{n \to \infty} L_n E_* = 0$. This yields that $\prod E_n =$ $\lim_{n \to \infty} (E_1 \lor \cdots \lor E_n) = \lim_{n \to \infty} L_n E$. ii) Note that ωE_n is clearly dissonant. Therefore $L_{\infty}(\vee E_n) = L_{\infty}(\prod E_n) = \prod E_n$, and it is s-harmonic by i) and Lemma 4.7.

Corollary 5.2. Let E_n be associative BP-module spectra. i) If E_{n*} is v_m -torsion for any m < n, then $\hat{L}_{\infty}(\vee L_n E_n) = \prod L_n E_n$. ii) If $\prod_{k \ge n} E_{k*}$ is v_m -torsion for any m < n, then $L_{\infty}(\vee L_n E_n) = \prod L_n E_n$ and it is s-harmonic.

Proof. Since $L_n E_n = v_n^{-1} E_n$ by Proposition 2.2, it satisfies the conditions stated in the above proposition.

Corollary 5.3. Let E_n be associative BP-module spectra whose homotopy E_{n*} are v_k -torsion for any k > n.

i) If E_{n^*} is v_m -torsion for any m < n, then $\hat{L}_{\infty}(\vee E_n) = \prod L_n E_n$.

ii) If $\prod_{k \ge n} E_{k^*}$ is v_m -torsion for any m < n, then $L_{\infty}(\vee E_n) = L_{\infty}(\prod E_n) = \hat{L}_{\infty}(\prod E_n) = \prod L_n E_n$.

Proof. i) Observe that $\hat{L}_{\infty}(\vee E_n) = \hat{L}_{\infty}(\vee L_n E_n)$ because of Proposition 2.6, then use Corollary 5.2 i).

ii) Remark that $L_{\infty}(\vee E_n) = L_{\infty}(\prod E_n)$, $L_{\infty}(\vee E_n) = L_{\infty}(\vee L_n E_n)$ and $\hat{L}_{\infty}(\vee E_n) = \hat{L}_{\infty}(\prod E_n)$. Apply Corollary 5.2 ii) and the above i) to obtain that $\hat{L}_{\infty}(\vee E_n) = \prod L_n E_n = L_{\infty}(\vee L_n E_n)$.

Applying Proposition 5.1, Corollary 5.3 and Lemma 4.7 we obtain some examples.

(5.1) $\hat{L}_{\infty}(\vee N_n BP) = \prod N_n BP$ and $L_{\infty}(\vee N_n BP)$ is not s-harmonic. (5.2) $L_{\infty}(\vee P(n)) = \hat{L}_{\infty}(\vee P(n)) = \prod P(n)$ and it is s-harmonic. (5.3) $L_{\infty}(\vee K(n)) = \hat{L}_{\infty}(\vee K(n)) = \prod K(n)$ and it is s-harmonic. (5.4) $L_{\infty}(\vee k(n)) = L_{\infty}(\prod k(n)) = \hat{L}_{\infty}(\vee k(n)) = \prod K(n)$, and it is s-harmonic.

Proposition 5.4. Let E_n be associative BP-module spectra such that $BP_*/I_m \bigotimes_{BP_*} E_{n^*}$ are v_m -torsion free for any $m \leq n$ and E_{n^*} are v_k -torsion for any k > n. Then there is a cofibering $\forall E_n \rightarrow \hat{L}_{\infty}(\forall E_n) \rightarrow \prod N_{n+1}E_n$, and $\hat{L}_{\infty}(\prod E_n) = \prod L_n E_n$.

Proof. Put $E = \bigvee E_n$. The cofibering $E \to L_m E \to N_{m+1}E$ gives us a short exact sequence $0 \to E_* \to L_m E_* \to N_{m+1}E_* \to 0$. This yields that $0 \to E_* \to \lim_m L_m E_*$ $\to \lim_m N_{m+1}E_* \to 0$ is exact and $\lim_m L_m E_* \cong \lim_m N_{m+1}E_*$. Here we consider the commutative diagram

$$\begin{array}{ccc} 0 \to N_{m+1}(\bigvee_{n>m} E_n)_* \to N_{m+1} E_* \to \bigoplus_{n \le m} N_{n+1} E_{n*} \to 0 \\ \downarrow & \downarrow & \downarrow \\ 0 \to N_m(\bigvee_{n>m-1} E_n)_* \to N_m E_* \to \bigoplus_{n \le m-1} N_{n+1} E_{n*} \to 0 \end{array}$$

with exact rows. Since the left vertical arrow is trivial by Lemma 3.1, it is immediate that $\lim_{m\to\infty} N_{m+1}E_* \cong \prod N_{m+1}E_{m^*}$ and $\lim_{m\to\infty} N_{m+1}E_* = 0$. Obviously the composition $E \to \hat{L}_{\infty}E \to \prod L_mE \to \prod N_{m+1}E \to \prod N_{m+1}E_m$ is trivial and it induces a short exact sequence $0 \to E_* \to \hat{L}_{\infty}E_* \to \prod N_{m+1}E_{m^*} \to 0$. Hence it is easily verified that the sequence $E \to \hat{L}_{\infty}E \to \prod N_{m+1}E_m$ is a cofibering.

Next, put $\overline{E} = \prod E_n$. By a similar discussion to the above we can show that the sequence $\overline{E} \rightarrow \hat{L}_{\infty} \overline{E} \rightarrow \prod N_{m+1} E_m$ is also a cofibering, since $BP_*/I_m \bigotimes_{BP_*} (\prod_{k>n} E_{k^*})$ is v_m -torsion free for any $m \leq n+1$. Consider the commutative diagram

where all the rows are cofiberings. Taking the homotopy groups and using Five lemma we obtain that $\hat{L}^{\infty} \bar{E} = \prod L_m E_m$.

Proposition 5.5. Let E_n be associative BP-module spectrum such that $BP_*|I_m \bigotimes_{BP_*} E_{n^*}$ are v_m -torsion free for any $m \leq n$. Then there is a cofibering $\vee L_n E_n \rightarrow \hat{L}_{\infty}(\vee L_n E_n) \rightarrow \prod N_{n+1} E_n / \vee N_{n+1} E_n$.

Proof. Put $LE = \bigvee L_n E_n$ and $NE = \bigvee N_{n+1}E_n$. By applying Corollary 3.5 we obtain a commutative diagram

with exact rows. Then it is easily checked that the sequence $0 \rightarrow LE_* \rightarrow \lim_{m \to \infty} L_m LE_* \rightarrow \lim_{m \to \infty} N_{n+1} (\bigvee_{n > m} E_n)_* \rightarrow 0$ is exact and $\lim_{m \to \infty} L_m LE_* = 0$, because the right arrow is trivial. Obviously the composition $LE \rightarrow \hat{L}_{\infty} LE \rightarrow \prod L_m LE \rightarrow \prod N_{m+1}E_m \rightarrow \omega N_{m+1}E_m$ is trivial. Consider the commutative diagram

$$\begin{array}{cccc} 0 \to N_{n+1}(\bigvee_{n>m} E_n)_* \to LE_* \longrightarrow L_m LE_* \longrightarrow N_{m+1}(\bigvee_{n>m} E_n)_* \to 0 \\ & & & & \\ & & & \downarrow & & \\ 0 \to N_{n+1}(\bigvee_{n>m} E_n)_* \to NE_* \to \bigoplus_{n \leq m} N_{n+1}E_{n^*} \to 0 \end{array}$$

with exact rows. Taking the inverse limits we have the following commutative diagram

$$\begin{array}{cccc} 0 \to LE_{*} \longrightarrow \hat{L}_{\infty}LE_{*} \longrightarrow & \varprojlim^{1}N_{m+1}(\bigvee_{m>n}E_{m})_{*} \to 0 \\ \downarrow & \downarrow & || \\ 0 \to NE_{*} \to & \prod N_{n+1}E_{n^{*}} \to & \varprojlim^{1}N_{m+1}(\bigvee_{m>n}E_{m})_{*} \to 0 \end{array}$$

with exact rows. This means that the sequence $LE \rightarrow \hat{L}_{\infty}LE \rightarrow \omega N_{n+1}E_n$ induces a short exact sequence $0 \rightarrow LE_* \rightarrow \hat{L}_{\infty}LE_* \rightarrow \prod N_{n+1}E_{n*}/\oplus N_{n+1}E_{n*} \rightarrow 0$. Therefore the sequence $LE \rightarrow \hat{L}_{\infty}LE \rightarrow \omega N_{n+1}E_n$ is a cofibering.

Notice that $\prod N_{n+1}BP\langle n \rangle_*$ is not v_m -torsion for every $m \ge 0$. Combining Propositions 5.4 and 5.5 with Lemma 4.7 we have

(5.5) $L_{\infty}(\vee BP\langle n \rangle)$, $L_{\infty}(\prod BP\langle n \rangle)$ and $L_{\infty}(\vee L_n BP\langle n \rangle)$ are not s-harmonic.

We next discuss $\prod E_n / \bigvee E_n$ for suitable E_n .

Proposition 5.6. Let E_n be associative BP-module spectra such that $BP_*/I_m \bigotimes_{n \in D} E_{n^*}$ are v_m -torsion free for any $m \leq n$. Then $\prod E_n / \vee E_n$ is s-harmonic.

Proof. $BP_*/I_m \bigotimes_{BP_*} (\prod E_{n^*}/\oplus E_{n^*})$ is v_m -torsion free for each $m \ge 0$, so $\prod E_{n^*}/\oplus E_{n^*}$ is \mathscr{BP} -flat. Since $BP_*\omega E_n \cong BP_*BP \bigotimes_{BP_*} (\prod E_{n^*}/\oplus E_{n^*})$ is also \mathscr{BP} -flat, $BP_{\sim}\omega E_n$ is s-harmonic by Theorem 4.8 and hence ωE_n itself is s-harmonic by Corollary 4.6.

Combining Proposition 5.6 with Lemma 4.4 we have

Corollary 5.7. Let E_n be associative BP-module spectra as in the above proposition. Then $L_{\infty}(\forall E_n)$ is s-harmonic if and only if so is $L_{\infty}(\prod E_n)$.

Proposition 5.8. Let E_n be associative BP-module spectra such that $\operatorname{Tor}_m^{BP*}(BP_*/I_m, E_{n*})$ are v_m -divisible for any $m \leq n$. Then $\prod E_n | \vee E_n$ is non -harmonic if $\vee N_{n+1}E_n \neq \prod N_{n+1}E_n$.

Proof. Consider the composite map $BPI_{n+1} E_n \to \Sigma^{k_n} BP_{\mathcal{L}} E_n \to E_n$ where $k_n = \Sigma_{1 \leq i \leq n} 2(p^i - 1) + n + 1$. In the following commutative diagram

$$BPI_{n+1*}E_n \longrightarrow BP_*E_n \longrightarrow E_{n*}$$

$$\downarrow \qquad \qquad \nearrow$$

$$Tor_{n+1}^{BP_*}(BP_*/I_{n+1}, BP_*E_n) \rightarrow Tor_{n+1}^{BP_*}(BP_*/I_{n+1}, E_{n*})$$

the left vertical arrow is isomorphic by (3.7) and the bottom one is epic. Moreover the diagonal is obviously monic. So the upper composition is non-trivial if $N_{n+1}E_n \neq pt$. This shows that the induced map $\omega BPI_{n+1} \ge E_n \Rightarrow \omega E_n$ is nontrivial. Therefore ωE_n is not harmonic, because $\omega BPI_{n+1} \ge E_n$ is dissonant.

Corollary 5.9. Let E_n be associative BP-module spectra such that $BP_*/I_m \bigotimes_{BP_*} E_{n^*}$ are v_m -torsion free for any $m \le n$. If $\prod N_{n+1}E_n / \vee N_{n+1}E_n \neq pt$, then it is non-harmonic.

Proof. By Corollary 3.2 we observe that for each $m \leq n \operatorname{Tor}_{m}^{BP*}(BP_{*}|I_{m})$

 $N_{n+1}E_{n*} \cong N_{n+1}BPI_{m*} \bigotimes_{BP_{*}} E_{n*}$ and it is v_m -divisible.

6. Harmonic but not s-harmonic spectra

Let E_n be associative *BP*-module spectra such that $\operatorname{Tor}_m^{B^p*}(BP_*/I_m, E_{n^*})$ are v_m -divisible for any $m \leq n$. For each $A = (a_0, a_1, \dots, a_i, \dots)$ with $a_i \geq 1$ the *BP*-module map $\prod BPJ_{m+1}A_{\sim}E_n \to \prod \Sigma^{a}BP_{\sim}E_n \to \prod \Sigma^{a}E_n$ has a factorization

$$\prod BPJ_{m+1}A_{\mathcal{A}}E_n \to \Sigma^{-m-1+\alpha}N_{m+1}(\prod E_n) \to \Sigma^{\alpha} \prod E_n$$

where the product \prod runs through all $n \ge m+s$, $s \ge 0$ and $\alpha = |J_{m+1}A| + m+1 = \sum_{1 \le i \le m} 2(p^i-1)a_i + m+1$. Consider the commutative diagram

in which the left vertical arrow is isomorphic by (3.7), the bottom is epic and the diagonal is monic. Note that every homomorphism $\prod \operatorname{Tor}_{m+1}^{BP*}(BP_*/J_{m+1}A, E_n*) \rightarrow L_m(\prod E_n)_*$ is trivial because $\prod BPJ_{m+1}A_*E_n$ is v_k -torsion for any $k \leq m$. So there exists a dotted arrow

(6.1)
$$\gamma_A: \prod_{n \ge m+s} \operatorname{Tor}_{m+1}^{BP*}(BP_*/J_{m+1}A, E_{n*}) \to N_{m+1}(\prod_{n \ge m+s} E_n)_*$$

making the square and the triangle commutative in the above diagram. As is easily seen, the triangle

(6.2)
$$\frac{\prod \operatorname{Tor}_{m+1}^{BP*}(BP_*/J_{m+1}A, E_{n^*})}{\prod \operatorname{Tor}_{m+1}^{BP*}(BP_*/J_{m+1}A', E_{n^*})} \xrightarrow{\gamma_A} N_{m+1}(\prod E_n)_*$$

is commutative for any pair $A \leq A'$.

Lemma 6.1. Let E_n be associative BP-module spectra such that $\operatorname{Tor}_m^{BP*}(BP_*|I_m, E_{n^*})$ are v_m -divisible for any $m \leq n$. The homomorphisms γ_A induce an isomorphism

$$\gamma: \varinjlim_{n \ge m+s} \operatorname{Tor}_{m+1}^{BP*}(BP*/J_{m+1}A, E_{n*}) \to N_{m+1}(\prod_{n \ge m+s} E_n)*$$

for every $m \ge 0$ where $s \ge 0$.

Proof. There is a short exact sequence $0 \to \operatorname{Tor}_{m+1}^{BP_*}(BP_*/J_{m+1}A, E_{n*}) \to \operatorname{Tor}_m^{BP_*}(BP_*/J_mA, E_{n*}) \xrightarrow{\mathcal{O}_m^{a_m}} \operatorname{Tor}_m^{BP_*}(BP_*/J_mA, E_{n*}) \to 0$ for any $n \ge m$. So we consider the following commutative diagram

with exact rows, where the direct limit \varinjlim runs through all sequences $A = (a_0, \dots, a_i, \dots, a_m, 0, \dots)$ with $a_i \ge 1$ and the product \prod does through all $n \ge m+s+1$. When the central arrow is isomorphic, the right is so and hence the left is also so. Therefore we can show our result by induction on m.

Lemma 6.2. Let E_n be associative BP-module spectra such that $\operatorname{Tor}_m^{B_{P_*}}(BP_*/I_m, E_{n^*})$ are v_m -divisible for any $m \leq n$. Then $\lim_{m \to \infty} N_{m+1}(\prod_{n \geq m} E_n)_* \neq 0$ if $\bigvee N_{n+1}E_n \neq \prod N_{n+1}E_n$.

Proof. For all $n \ge 0$ we may assume that $N_{n+1}E_n = pt$, thus $\operatorname{Tor}_{n+1}^{BP}(BP_*/I_{n+1}, E_{n*}) = 0$. Denote by $\rho_A: \operatorname{Tor}_m^{BP*}(BP_*/J_mA, E_{n*}) \to \operatorname{Tor}_m^{BP*}(BP_*/I_m, E_{n*})$ the induced homomorphism from the projection $BP_*/J_mA \to BP_*/I_m$. Clearly it is epic for each $m \le n+1$. Pick up an element $y_{m,n}$ in $\operatorname{Tor}_m^{BP*}(BP_*/J_mA_m, E_{n*})$ for each $m \le n+1$ such that $\rho_{A_m}(y_{m,n}) = 0$ where $A_m = (m, \cdots, m, \cdots)$. These elements form an element $y_m = \{y_{m,n}\}_{A_m}$ in $\varinjlim_{n\ge m-1}\operatorname{Tor}_m^{BP*}(BP_*/J_mA, E_{n*}) \cong N_m(\prod_{n\ge m-1}E_n)_*$.

We here assume that $\lim_{n \to \infty} N_m(\prod_{n \ge m-1} E_n)_* = 0$. Then there exist elements x_m in $N_m(\prod_{n \ge m-1} E_n)_*$ such that $y_m = x_m - \delta(x_{m+1})$ where $\delta \colon N_{m+1}(\prod_{n \ge m} E_n)_* \to N_m E_{m-1*} \oplus N_m(\prod_{n \ge m} E_n)_*$. Notice that for every m, there is a certain sequence $A_X = (a_0, a_1, \dots, a_i, \dots)$ with $a_i \ge 1$ and elements $x_{m,n}$ in $\operatorname{Tor}_m^{BP*}(BP_*/J_m A_X, E_{n*})$ such that $x_m = \{x_{m,n}\}_{A_X}$ in $\lim_{n \ge m-1} \operatorname{Tor}_m^{BP*}(BP_*/J_m A, E_{n*})$. Using the inclusion λ_A : $\operatorname{Tor}_m^{BP*}(BP_*/J_m A, E_{n*}) \to \operatorname{Tor}_m^{BP*}(N_m BP_*, E_{n*}) \cong N_m E_{n*}$, we obtain the relation that $\lambda_{A_m}(y_{m,n}) = \lambda_{A_X}(x_{m,n}) - \lambda_{A_Y}(x_{m+1,n})$.

By induction on $n-m \ge -1$ we will show that there exist elements $x'_{m,n}$ in $\operatorname{Tor}_{m}^{B^{P_{*}}}(BP_{*}/J_{m}A_{n+1}, E_{n^{*}})$ such that $\lambda_{A_{n+1}}(x'_{m,n}) = \lambda_{A_{x}}(x_{m,n})$ and $\rho_{A_{n+1}}(x'_{m,n}) \pm 0$. First put $x'_{m,m-1} = y_{m,m-1}$ since $\lambda_{A_{m}}(y_{m,m-1}) = \lambda_{A_{x}}(x_{m,m-1})$. We next suppose that there exists an element $x'_{m+1,n}$ in $\operatorname{Tor}_{m+1}^{B^{P_{*}}}(BP_{*}/J_{m+1}A_{n+1}, E_{n^{*}})$ such that $\lambda_{A_{n+1}}(x'_{m+1,n}) = \lambda_{A_{x}}(x_{m+1,n})$ and $\rho_{A_{n+1}}(x'_{m+1,n}) \pm 0$. Put $x'_{m,n} = \mu_{A_{n+1},A_{m}}(y_{m,n}) + \partial_{A_{n+1}}(x'_{m+1,n})$, using the inclusions $\mu_{A_{n+1},A_{m}}$: $\operatorname{Tor}_{m}^{B^{P_{*}}}(BP_{*}/J_{m}A_{m}, E_{n^{*}}) \to \operatorname{Tor}_{m}^{B^{P_{*}}}(BP_{*}/J_{m}A_{n+1}, E_{n^{*}})$ and $\partial_{A_{n+1}}$: $\operatorname{Tor}_{m+1}^{B^{P_{*}}}(BP_{*}/J_{m}A_{m}, E_{n^{*}}) \to \operatorname{Tor}_{m}^{B^{P_{*}}}(BP_{*}/J_{m}A_{n+1}, E_{n^{*}})$. By use of (3.3) we see that $\lambda_{A_{x}}(x_{m,n}) = \lambda_{A_{m}}(y_{m,n}) + \lambda_{A_{n+1}}(x'_{m+1,n}) = \lambda_{A_{n+1}}(x'_{m,n})$. Moreover it follows from (3.2) that $v_{m}^{n}\rho_{A_{n+1}}(x'_{m,n}) = \partial_{A_{1}}\rho_{A_{n+1}}(x'_{m+1,n}) \pm 0$ in $\operatorname{Tor}_{m}^{B^{P_{*}}}(BP_{*}/I_{m}, E_{n^{*}})$, because $\rho_{A_{n+1}}\mu_{A_{n+1},A_{m}} = 0$ for n+1 > m. This says that $\rho_{A_{n+1}}(x'_{m,n}) = 0$.

We now set $n = Max(a_0, a_1, \dots, a_{m-1})$ for the above A_x . Then $\lambda_{A_x}(x_{m,n}) = \lambda_{A_{n+1}}\mu_{A_{n+1},A_x}(x_{m,n})$ and $\lambda_{A_x}(x_{m,n}) = \lambda_{A_{n+1}}(x'_{m,n})$, therefore $x'_{m,n} = \mu_{A_{n+1},A_x}(x_{m,n})$. This implies that $\rho_{A_{n+1}}(x'_{m,n}) = \rho_{A_{n+1}}\mu_{A_{n+1},A_x}(x_{m,n}) = 0$, which is a contradiction.

At last we can state our main results.

Theorem 6.3. Let E_n be associative BP-module spectra such that $\operatorname{Tor}_m^{B_{P_*}}(BP_*|I_m, E_{n^*})$ are v_m -divisible for any $m \leq n$ and $\operatorname{wdim}_{\mathcal{BP}}E_{n^*} \leq n+1$. If $\bigvee N_{n+1}E_n \neq \prod N_{n+1}E_n$, then

- i) $\bigvee E_n$ is not harmonic, and
- ii) $\prod E_n$ is harmonic, but not s-harmonic.

Proof. In the cofibering $\forall E_n \rightarrow \prod E_n \rightarrow \omega E_n$, $\prod E_n$ is harmonic by Theorem 4.8 and (4.3). However ωE_n is not harmonic by Proposition 5.8. Hence $\forall E_n$ is not harmonic by (4.1).

Put $\overline{E} = \prod E_n$, then consider the commutative diagram

with exact rows. From Lemma 3.6 it follows immediately that w dim $\mathfrak{g}_{\mathcal{D}}N_{k+1}E_{n*} \leq n+1$ for each $k \leq n$, in particular w dim $\mathfrak{g}_{\mathcal{D}}N_{n+1}E_{n*} \leq n+1$. Making use of Lemma 4.10 we observe that w dim $\mathfrak{g}_{\mathcal{D}}N_mE_{n*} \leq m$ and $0 \rightarrow N_mE_{n*} \rightarrow M_mE_{n*} \rightarrow N_{m+1}E_{n*} \rightarrow 0$ is exact for every $m \geq n+1$. Hence the right vertical arrow is trivial in the above diagram. So $\lim_{m \to \infty} N_{m+1}(\prod_{n \geq m} E_n) = \lim_{m \to \infty} N_{m+1}\overline{E}$. However Lemma 6.2 shows that $\lim_{m \to \infty} N_{m+1}(\prod_{n \geq m} E_n) \neq pt$, and hence \overline{E} is not s-harmonic.

Theorem 6.4. Let E_n be associative BP-module spectra such that $BP_*/I_m \bigotimes_{BP_*} E_{n^*}$ are v_m -torsion free for any $m \le n$ and E_{n^*} are v_k -torsion for any k > n. i) If $\bigvee N_{n+1}E_n = \prod_n N_{n+1}E_n$, then $\bigvee L_nE_n$ and $\prod_n L_nE_n$ are both s-harmonic. ii) If $\bigvee_n N_{n+1}E_n \neq \prod_n N_{n+1}E_n$, then $\bigvee_n L_nE_n$ is not harmonic, and $\prod_n L_nE_n$ is harmonic but not s-harmonic.

Proof. i) From Proposition 5.5 it follows that $\bigvee L_n E_n$ is s-harmonic. Since $\omega E_n = \omega L_n E_n$ and it is s-harmonic by Proposition 5.6, $\prod L_n E_n$ is also s-harmonic.

ii) By Proposition 5.5 and Corollary 5.9 $\vee L_n E_n$ is not harmonic. Put $\overline{LE} = \prod L_n E_n$, then $N_{m+1}(\overline{LE}) = N_{m+1}(\prod_{n \ge m} L_n E_n)$. So we have a commutative diagram

with cofibering rows. By use of Lemma 3.1 we see that $\lim_{m \to \infty} N_{m+1}(\overline{LE}) = \lim_{m \to \infty} N_{m+1}(\prod_{n \ge m} N_{n+1}E_n)$. However Lemma 6.2 insists that $\lim_{m \to \infty} N_{m+1}(\prod_{n \ge m} N_{n+1}E_n) = pt$ because $\operatorname{Tor}_{m}^{BP*}(BP_{*}/I_{m}, N_{n+1}E_{n*}) \cong N_{n+1}BPI_{m*} \bigotimes_{BP*} E_{n*}^{*}$ is v_{m} -divisible for each $m \le n$. Therefore \overline{LE} is not s-harmonic.

By applying Theorems 6.3 and 6.4 we have

- (6.3) i) $\vee N_{n+1}BP$ is not harmonic, and
 - ii) $\prod N_{n+1}BP$ is harmonic, but not s-harmonic.
- (6.4) i) $\lor L_n BP \langle n \rangle$ is not harmonic, and
 - ii) $\prod L_n BP \langle n \rangle$ is harmonic, but not s-harmonic.

References

- [1] J.F. Adams: Stable homotopy and generalized homology, Chicago Lecture in Math., Univ. of Chicago Press, 1974.
- [2] A.K. Bousfield: The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), 368-377.
- [3] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979), 257–281.
- [4] B.I. Gray: Spaces of the same n-type, for all n, Topology 5 (1966), 241-243.
- [5] D.C. Johnson and Z. Yosimura: Torsion in Brown-Peterson homology and Hurewicz homomorphisms, Osaka J. Math. 17 (1980), 117–136.
- [6] D.C. Johnson, P.S. Landweber and Z. Yosimura: Injective BP*BP-comodules and localizations of Brown-Peterson homology, Illinois J. Math. 25 (1981), 599-610.
- [7] P.S. Landweber: Homological properties of comodules over MU_{*}(MU) and BP_{*}(BP), Amer. J. Math. 98 (1976), 591-610.
- [8] P.S. Landweber: New applications of commutative algebra to Brown-Peterson homology, Proc. Algebraic Topology Waterloo 1978, Lecture Notes in Math. 741, Springer-Verlag, 1979.
- [9] D.C. Ravenel: Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
- [10] U. Würgler: On products in a family of cohomology theories associated to the invariant prime ideals of $\pi_*(BP)$, Comment. Math. Helv. 52 (1977), 457–481.
- [11] Z. Yosimura: Universal coefficient sequences for cohomology theories of CWspectra, I and II, Osaka J. Math. 12 (1975), 305-323 and 16 (1979), 201-217.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan