ON MAXIMAL SUBMODULES OF A FINITE DIRECT SUM OF HOLLOW MODULES IV

To the memory of Professor Takehiko MIYATA

Manabu HARADA and Yoshito YUKIMOTO
(Received February 8, 1984)

In the previous papers [1] and [2], we have studied conditions under which every maximal submodule of a finite direct sum D of certain hollow modules over a right artinian ring with 1 contains a non-zero direct summand of D. The present objective is to generalize slightly Theorems 3 and 4 of [2] related to the property mentioned above.

Throughout this paper, R will represent a right artinian ring with identity, and every R-module will be assumed to be a unitary right R-module with finite composition length. We denote the Jacobson radical and the length of a composition series of an R-module M by $J(M)$ and $|M|$, respectively. Occasionally, we write $J=J(R)$. If M has a unique maximal submodule $J(M), M$ is called hollow (local). When this is the case, $M \approx e R / A$ for some primitive idempotent e and a right ideal A in $e R$.

Let $\left\{N_{i}\right\}_{i=1}^{n}$ be a family of hollow modules, and $D=\sum_{i=1}^{n} \oplus N_{i}$. We are interested in the following condition [1]:
$\left.{ }^{(* *}\right)$ Every maximal submodule of D contains a non-zero direct summand of D.
As was claimed in [1], [2], whenever we study the conition (**), we may restrict ourselves to the case where R is basic and $N_{i}=e R / A_{i}$ for a fixed primitive idempotent e and a right ideal A_{i} in $e R$. Now, let $N=e R / A$ be a hollow module. Put $\Delta=e R e / e J e=\overline{e R e}=\operatorname{End}_{R}(N / J(N))=\operatorname{End}_{R}(e R / e J)$, and $\Delta(A)(=\Delta(N))=$ $\{\bar{x} \mid x \in e R e$ and $x A \subset A\}$ (see [2]). We denote by $N^{(m)}$ the direct sum of m copies of N. Then $N^{(m+1)}=N \oplus N^{(m)}$. If M is a maximal submodule of $N^{(m)}$ then $N \oplus M$ is a maximal submodule of $N^{(m+1)}$. Thus we get a mapping $\theta(m)$ of the isomorphism classes of maximal submodules in $N^{(m)}$ into the isomorphism classes of maximal submodules in $N^{(m+1)}$.

Theorem 1 (cf. [3], Corollary 2 to Theorem 3). Let $N=e R / A$ be a hollow module. Then the following conditions are equivalent:

1) $[\Delta: \Delta(A)]=k$.
2) If $m>k$, every maximal submodule M in $D=N^{(m)}$ contains a submodule
isomprphic to $N^{(m-k)}$ but not to $N^{(m-k+1)}$. In this case, such a submodule of M is a direct summand of D.
3) $\theta(i)$ is not epic for every $i \leq k-1$, but $\theta(j)$ is epic for every $j \geq k$.

Proof (cf. [2], the proof of Theorem 3).
$1) \rightarrow 2$). Put $D=N^{(m)}=D(k) \oplus D^{\prime}(n)$, where $m=k+n, D(k)$ is the direct sum of the first k copies of N and $D^{\prime}(n)$ the direct sum of the last n copies of N. Let $\left\{\overline{1}, \delta_{2}, \cdots, \delta_{k}\right\}$ be a set of linearly independent elements in Δ over $\Delta(A)$. Set $\beta_{i}=\left(\widetilde{\delta}_{i}, \tilde{0}, \cdots, \stackrel{i}{\tilde{e}}, \tilde{0}, \cdots, \tilde{0}\right)$ in $D(k)$, and $M=\sum_{i=2}^{k} \beta_{i} R+D^{\prime}(n)+J(D)$ in D, where \tilde{x} means the residue class of x in $e R / A$. Then M is a maximal submodule of D. Suppose that $M \supset M_{1} \oplus M_{2} \oplus \cdots \oplus M_{q} \oplus M^{*}$ and $M_{i} \approx N$ for all i. Then

$$
M_{i} \mp J(D) .
$$

Actually, if not, $N \approx M_{i} \subset J(D)=D J$, which is impossible. Since $M_{i} \approx e R / A$, $M_{i}=\rho R$ and $\mathrm{r}_{R}(\rho)=\{r \in e R \mid \rho r=0\}=A$. Now let $\rho=\sum \beta_{i} y_{i}+y+j$, where $y_{i} \in e R e, \quad y \in D^{\prime}(n)$ and $j \in J(D)$. Then $\rho=\left(\sum_{i \geq 2} \widetilde{\delta}_{i} y_{i}, \tilde{y}_{2}, \cdots, \tilde{y}_{k}, \tilde{0}, \cdots, \tilde{0}\right)+$ $\left(\tilde{0}, \tilde{0}, \cdots, \tilde{z}_{k+1}, \cdots, \tilde{z}_{k+n}\right)+\left(\tilde{j}_{1}, \tilde{j}_{2}, \cdots, \tilde{j}_{k+n}\right)$, where $z_{i} \in e R e$ and $j_{i} \in e J . \quad$ By the structure of D and $r_{R}(\rho)=A,\left(y_{i}+j_{i}\right) A \subset A$, and $\left(\sum \delta_{i} y_{i}+j_{i}\right) A \subseteq A$. Noting that $e A=A$, we see that $\bar{y}_{i} \in \Delta(A)$ for $2 \leq i \leq k$, and $\sum_{i \geq 2} \bar{\delta}_{i} \bar{y}_{i} \in \Delta(A)$. Therefore, $\bar{y}_{i}=0$ for $2 \leq i \leq k$, since $\left\{\overline{1}, \bar{\delta}_{2}, \cdots, \bar{\delta}_{k}\right\}$ is linearly independent. Hence

$$
\pi\left(M_{i}\right) \subset J(D(k))
$$

where $\pi: D=D(k) \oplus D^{\prime}(n) \rightarrow D(k)$ is the projection. Let p_{s} be the projection on the s-th component of $D=N^{(k+n)}$. Since $M_{1} \nsubseteq J(D)$ and $\pi\left(M_{1}\right) \subset J(D(k)), p_{j} \mid M_{1}$ is an epimorphism for some $j>k$, say $j=k+1$, and hence an isomorphism for $M_{1} \approx N$. Therefore

$$
D=D(k) \oplus M_{1} \oplus D^{\prime}(n-1)
$$

where $D^{\prime}(n)=N \oplus D^{\prime}(n-1)$. Now assume that $D=D(k) \oplus M_{1} \oplus M_{2} \oplus \cdots \oplus M_{s}$ $\oplus D^{\prime}(n-s)$. Let $\pi_{D^{\prime}(n-s)}$ be the projection of D onto $D^{\prime}(n-s)$ in the above decomposition. Suppose $\pi_{D^{\prime}(n-s)}\left(M_{s+1}\right) \subset J\left(D^{\prime}(n-s)\right)$. Then $\pi_{D(k) \oplus D^{\prime}(n-s)}\left(M_{s+1}\right)$ $\subset J(D)$ by (β). On the other hand, $0=M_{s+1} \cap\left(M_{1} \oplus M_{2} \oplus \cdots \oplus M_{s}\right)=$ $\operatorname{ker}\left(\pi_{D(k) \oplus D^{\prime}(n-s)} \mid M_{s+1}\right)$, so M_{s+1} is monomorphic to a submodule in $J(D)$, which is impossible. Hence $\pi_{D^{\prime}(n-s)}\left(M_{s+1}\right) \nsubseteq J\left(D^{\prime}(n-s)\right)$, and so $D=D(k) \oplus M_{1} \oplus M_{2} \oplus$ $\cdots \oplus M_{s+1} \oplus D^{\prime}(n-s-1)$ by the above argument. Accordingly, $q \leq n$, and hence M does not contain a submodule of D isomorphic to $N^{(n+1)}$. Let M^{\prime} be an arbitrary maximal submodule of D. Then, by induction on m and [2], Theorem $2, M^{\prime}=N^{\prime(m-k)} \oplus M^{*}$, where $N^{\prime} \approx N$.
$2) \rightarrow 1$). Take $m=k+1 . \quad$ By (α) and the argument employed in proving (γ), we see that D contains a direct summand which is isomorphic to N. Hence
$[\Delta: \Delta(A)]=k$ by [2], Theorem 2.
$1) \leftrightarrow 3$). In case $\theta(t)$ is epic, every maximal submodule M of $N^{(t+1)}$ contains a direct summand M_{1} which is isomorphic to N. Then, by 2), M_{1} is also a direct summand of $N^{(t+1)}$. Hence $\theta(t)$ is epic if and only if $N^{(t+1)}$ satisfies $\left(^{* *}\right)$, and the equivalence of 1) and 3) is clear by [2], Theorem 3 (see Remark below).

In Theorem 1, we have studied a direct sum of isomorphic copies of a fixed hollow module. Next, let $N_{1}=e R / A_{1}$ and $N_{2}=e R / A_{2}$. If there exists an epimorphism φ of N_{1} to N_{2} then we write $N_{1}>N_{2}$. Since φ is given by the left-sided multiplication of a unit element x in $e R e$, we have $x A_{1} \subset A_{2}$, and furthermore $N_{1} \approx e R / x A_{1}$. Hence, when we study the direct sum $N_{1} \oplus N_{2}$ with $N_{1}>N_{2}$, we may assume that $A_{1} \subset A_{2}$.

Theorem 2. Let $\left\{N_{i}=e R / A_{i}\right\}_{i=1}^{n}$ be a family of hollow modules ($n \geq 2$). Assume that $\left|A_{1}\right| \geq\left|A_{2}\right| \geq \cdots \geq\left|A_{n}\right|$. Then $D=\sum_{i=1}^{n} \oplus N_{i}$ satisfies (**) if * and only if, for any sequence $\left\{\bar{\delta}_{2}, \cdots, \bar{\delta}_{n}\right\}$ of $n-1$ elements in Δ, there exist an integer $t(2 \leq t \leq n)$ and $\bar{y}_{i} \in \Delta\left(A_{t}, A_{i}\right)(2 \leq i \leq t-1)$ such that

$$
\sum_{i=2}^{t-1} \bar{\delta}_{i} \bar{y}_{i}+\bar{\delta}_{t} \in \Delta\left(A_{t}, A_{1}\right)
$$

where $\Delta\left(A_{t}, A_{i}\right)=\left\{\bar{x} \mid x \in e R e\right.$ and $\left.x A_{t} \subset A_{i}\right\}$.
Proof. We may assume that R is basic. Take the maximal submodule M in D generated by $\beta_{i}=\left(\tilde{\delta}_{i}, \tilde{0}, \cdots, \stackrel{i}{\tilde{e}}, \tilde{0}, \cdots, \tilde{0}\right)(i=2,3, \cdots, n)$. Then M contains a direct summand M_{1} of D, i.e., $D=M_{1} \oplus D_{1}$ and $M_{1} \approx N_{p}$ for some $p ; M_{1}$ is generated by $\alpha=\sum_{i \geq 2} \beta_{i} y_{i}+j$, where $y_{i} \in e R e\left(y_{q} \notin e J e\right.$ for some $\left.q\right)$ and $j \in J(D)$. Now, $\alpha=\left(\sum_{i \geq 2} \widetilde{\delta}_{i} y_{i}+\tilde{j}_{1}, \tilde{y}_{2}+\tilde{j}_{2}, \cdots, \tilde{y}_{n}+\tilde{j}_{n}\right)$. Assume that $\bar{y}_{n}=\bar{y}_{n-1}=\cdots=\bar{y}_{t+1}=0$ and $\bar{y}_{t} \neq 0$. Let π_{t} be the projection of $D=\sum \oplus N_{i}$ onto N_{t}. Then $\pi_{t} \mid M_{1}$ is an epimorphism, so $M_{1}>N_{t}$. On the other hand, let π be the projection of $D=M_{1} \oplus D_{1}$ onto M_{1}. We shall show that $\pi_{t} \mid M_{1}$ is an isomorphism. Suppose, to the contrary, that $\left|M_{1}\right|>\left|N_{t}\right|$. Then, since $\left|N_{k}\right| \leq\left|N_{t}\right|, \pi\left(N_{k}\right) \subset J\left(M_{1}\right)$ for $k \leq t$, and $\alpha=\pi(\alpha)=\pi\left(\sum_{i \geq 2} \widetilde{\delta}_{i} y_{i}+\tilde{j}_{1}, \tilde{0}, \cdots, \tilde{0}\right)+\pi\left(\tilde{0}^{2}, \tilde{y}_{2}+\tilde{j}_{2}, \tilde{0}, \cdots, \tilde{0}\right)+\cdots+\pi(\tilde{0}, \cdots$, $\left.\tilde{y}_{t}+\tilde{j}_{t}, \tilde{0}, \cdots, \tilde{0}\right)+\pi\left(\tilde{0}, \cdots, \tilde{y}_{t+1}+\tilde{j}_{t+1}, \tilde{0}, \cdots, \tilde{0}\right)+\cdots+\pi\left(\tilde{0}, \cdots, \tilde{y}_{n}+\tilde{j}_{n}\right) \in J\left(M_{1}\right) \subset$ $J(D)$, which is a contradiction. Hence $M_{1} \approx N_{t}$. Now, let $\varphi: e R \rightarrow M_{1}$ be a homomorphism given by setting $\varphi(e r)=\alpha e r$. Then, since $y_{t}^{\prime}(\operatorname{ker} \varphi) \subset A_{t}$ and $\left|M_{1}\right|=\left|N_{t}\right|$, we have ker $\varphi=y_{t}^{\prime-1} A_{t}$, where $y_{t}^{\prime}=y_{t}+j_{t} e$. Hence $\left(\sum_{i=2}^{t} \delta_{i} y_{i}+j_{1} e\right)$. $y_{t}^{\prime-1} A_{t} \subset A_{1}$ and $\left(y_{i}+j_{i} e\right) y_{t}^{\prime-1} A_{t} \subset A_{i} \quad(2 \leq i \leq t-1)$. Conversely, assume the above property. Let M be a maximal submodule of D, and put $\bar{D}=D / J(D) \supset$ $\bar{M}=M / J(D)$. If \bar{M} contains some $\overline{e R / A_{i}}$ then $M \supset e R / A_{i}$. Hence we may
assume that $\bar{M}=\sum \bar{\beta}_{i} R$, where $\beta_{i}=\left(\widetilde{\delta}_{i}, \tilde{0}, \cdots, \tilde{\tilde{e}}, \tilde{0}, \cdots, \tilde{0}\right) \in M$. By assumption, there exists $\left\{y_{i}\right\}_{i=2}^{t-1}$ such that $\sum_{i=2}^{t-1} \delta_{i} y_{i}+\bar{\delta}_{t} \in \Delta\left(A_{t}, A_{1}\right)$ and $\bar{y}_{i} \in \Delta\left(A_{t}, A_{i}\right)(i \geq 2)$. We define a homomorphism $\theta: N_{t} \rightarrow \sum_{j=i}^{t-1} \oplus N_{j}$ by setting $\theta(x)=\left(\left(\sum_{i=2}^{t-1} \widetilde{\delta}_{i} y_{i}+\widetilde{\delta}_{t}+\tilde{j}\right) x\right.$, $\left.\tilde{y}_{2} x, \cdots, \tilde{y}_{t-1} x\right)$, where $j \in e J e$ and $\left(\sum \delta_{i} y_{i}+\delta_{t}+j\right) A_{t} \subset A_{1}$. Then $\sum_{i=1}^{t} \oplus N_{i}=$ $\sum_{i=1}^{t-1} \oplus N_{i} \oplus N_{t}(\theta)$ and $N_{t}(\theta)=\left(\theta+1_{N_{t}}\right) N_{t}=\left(\theta+1_{N_{t}}\right) \tilde{e} R=\left(\sum \beta_{i} y_{i}+\tilde{j} e\right) R \subset M$.

Remark. If we put all $A_{i}=A$ in Theorem 2, then we obtain [2], Theorem 2. Next, in [2], Theorem 3, we can take a set of linearly independent elements $\left\{\delta_{i 1}, \cdots, \bar{\delta}_{i s i}\right\}$ in Δ over $\Delta\left(N_{i}\right)$. Apply Theorem 2 for the set $\left\{\delta_{i j}\right\}_{i=1}^{t}$. Then we obtain [2], Theorem 3, because $\Delta\left(N_{i}, N_{j}\right) \neq 0$ implies $N_{i} \approx N_{j}$.

The next is a dual to [3], Corollary to Theorem 4.
Corollary 1. Let N_{1} and N_{2} be hollow modules. Assume that $\left[\Delta: \Delta\left(N_{2}\right)\right]$ $=k<\infty$. Then $N_{1} \oplus N_{2}^{(k)}$ satisfies (**) if and only if $N_{1}>N_{2}$ or $N_{1}<N_{2}$.

Proof. Apply Theorem 2 to a basis $\left\{\bar{e}, \bar{\delta}_{2}, \cdots, \bar{\delta}_{k}\right\}$ of Δ over $\Delta\left(N_{2}\right)$.
For two hollow modules N_{1} and N_{2}, we put $N_{1} \sim N_{2}$ when $N_{1}>N_{2}$ or $N_{1}<N_{2}$. Given a family $\left\{e R / A_{i}\right\}_{i=1}^{n}$ of hollow modules, we set

$$
D=\sum_{i=1}^{n} \oplus e R / A_{i}=\sum_{j=1}^{n_{1}} \oplus e R / A_{1 j} \oplus \sum_{j=2}^{n_{2}} \oplus e R / A_{2 j} \oplus \cdots \oplus \sum_{j=1}^{n_{m}} \oplus e R / A_{m j}
$$

where $\left(e R / A_{i k} \sim e R / A_{i j}\right.$ forsome k and j, and) $e R / A_{i k} \nsim e R / A_{i^{\prime} j}$ for all k and j provided $i \neq i^{\prime}$.

Corollary 2. Let D be as above. Then D satisfies $\left({ }^{* *}\right)$ if and only if so does some $\sum_{j} \oplus e R / A_{i j}$.

Proof. If some $D_{i}=\sum_{j=1}^{n_{i}} \oplus e R / A_{i j}$ satisfies (**), then so does D by [2], Lemma 1. Next, we shall show that D does not satisfy (${ }^{(* *)}$ if none of D_{i} does. We may assume that $\left|A_{i 1}\right| \geqslant A_{i 2} \geqslant \cdots \geqslant\left|A_{i n_{i}}\right|$. Then there exists $\left\{\delta_{i 2}, \delta_{i 3}, \cdots, \delta_{i n_{i}}\right\}$ $\subset \Delta$ for which (\#) never holds if $n_{i} \geq 2$. If D satisfies (**) then there exist B_{t} and $\bar{y}_{h} \in \Delta\left(B_{t}, B_{1}\right)$ such that

$$
\sum_{h=2}^{t-1} \bar{\varepsilon}_{h} \bar{y}_{h}+\bar{\varepsilon}_{t} \in \Delta\left(B_{t}, B_{1}\right),
$$

where B_{p} is equal to some $A_{i j},\left|B_{p}\right| \geq\left|B_{p+1}\right|$ for all p, ε_{p} is equal to some $\delta_{i j}$, and $\delta_{i 1}=e$ for all i. First, assume that $B_{t}=A_{i k}$ and $B_{1}=A_{i 1}$. Since $\Delta\left(A_{i j}, A_{i^{\prime} j^{\prime}}\right)=0$ for $i \neq i^{\prime},(\delta)$ becomes

$$
\bar{\delta}_{i 2} \bar{y}_{i_{2}}+\cdots+\bar{\delta}_{i k-1} \bar{y}_{i_{k-1}}+\delta_{i k} \in \Delta\left(A_{i k}, A_{i 1}\right)
$$

and $\bar{y}_{i_{\phi}} \in \Delta\left(A_{i k}, A_{i_{p}}\right)$, which is a contradiction. Next, assume that $B_{t}=A_{i k}$ and $B_{1}=A_{i^{\prime} 1}$ for $i \neq i^{\prime}$. Then (δ) becomes

$$
\bar{e} \bar{y}_{i_{1}}+\delta_{i 2} \bar{y}_{i_{2}}+\cdots+\delta_{i k-1} \bar{y}_{i_{k-1}}+\delta_{i k}=0
$$

and $\bar{y}_{i_{p}} \in \Delta\left(A_{i k}, A_{i p}\right)$. But, $\bar{e} \bar{y}_{i_{1}}$ being in $\Delta\left(A_{i p}, A_{i 1}\right)$, we have a contradiction. Therefore D does not satisfy (${ }^{* *}$).

Corollary 3. Let $\left\{N_{i}=e R / A_{i}\right\}_{i=1}^{m+1}$ be a family of hollow modules ($m \geq 1$). Assume that $\left[\Delta: \Delta\left(A_{i}\right)\right]=n$ for all i and $A_{i} \supset A_{j}$ for $i<j$. If $n \leq 3$ then $\sum_{i=1}^{n+1} \oplus N_{i}$ satisfies (**).

Proof. If $n=1$, this is clear by [2], Theorem 1. Assume $n=2$. If $\Delta\left(A_{3}, A_{1}\right) \supsetneq \Delta\left(A_{3}\right)$ then $(\#)$ holds trivially. So, we assume that $\Delta\left(A_{3}, A_{1}\right)=$ $\Delta\left(A_{3}\right)$. Since $\Delta\left(A_{3}\right)=\Delta\left(A_{3}, A_{1}\right) \supset \Delta\left(A_{2}, A_{1}\right) \supset \Delta\left(A_{2}\right)$, we get $\Delta\left(A_{3}\right)=\Delta\left(A_{2}\right)=$ $\Delta\left(A_{2}, A_{1}\right)$. In view of $\left[\Delta: \Delta\left(A_{3}\right)\right]=2$, for any $\bar{\delta}_{2}, \bar{\delta}_{3} \in \Delta$ we can find $\bar{z}_{2}, \bar{z}_{3} \in \Delta\left(A_{3}\right)$ such that $\bar{\delta}_{2} \bar{z}_{2}+\bar{\delta}_{3} \bar{z}_{3} \in \Delta\left(A_{3}\right)=\Delta\left(A_{3}, A_{1}\right)$ and $\left\{\bar{z}_{2}, \bar{z}_{3}\right\} \equiv 0$. This shows that $\left\{\bar{z}_{2}, \bar{z}_{3}\right\}$ satisfies (\#). Finally, assume that $n=3$. Let $\bar{\delta}_{2}, \bar{\delta}_{3}$ and $\bar{\delta}_{4}$ be elements in Δ. First assume that $\Delta\left(A_{3}\right) \leftrightarrows \Delta\left(A_{3}, A_{1}\right)$. Then $\left[\Delta / \Delta\left(A_{3}, A_{1}\right): \Delta\left(A_{3}\right)\right] \leq 1$. If δ_{3} is in $\Delta\left(A_{3}, A_{1}\right)$ then (\#) holds trivially. So, assume that $\delta_{3} \notin \Delta\left(A_{3}, A_{1}\right)$. Then there exist $\bar{y}_{3}, \bar{y}_{4} \in \Delta\left(A_{3}\right)$ such that $\bar{\delta}_{3} \bar{y}_{3}+\bar{\delta}_{4} \bar{y}_{4} \in \Delta\left(A_{3}, A_{1}\right)$ and $\left\{\bar{y}_{3}, \bar{y}_{4}\right\} \equiv 0$. Since $\bar{y}_{4} \neq 0$ by $\bar{\delta}_{3} \notin \Delta\left(A_{3}, A_{1}\right), \bar{\delta}_{3} \bar{y}_{3} \bar{y}_{4}^{-1}+\bar{\delta}_{4} \in \Delta\left(A_{3}, A_{1}\right) \subset \Delta\left(A_{4}, A_{1}\right)$, and $\bar{y}_{3} \bar{y}_{4}^{-1} \in \Delta\left(A_{3}\right) \subset \Delta\left(A_{4}, A_{3}\right)$. Hence ($\#$) holds. Next, assume that $\Delta\left(A_{3}\right)=$ $\Delta\left(A_{3}, A_{1}\right)$. Then $\Delta\left(A_{3}\right)=\Delta\left(A_{2}, A_{1}\right)=\Delta\left(A_{2}\right)$, as in the case $n=2$. There exist $\bar{y}_{2}, \bar{y}_{3}, \bar{y}_{4} \in \Delta\left(A_{3}\right)$ such that $\bar{\delta}_{2} \bar{y}_{2}+\bar{\delta}_{3} \bar{y}_{3}+\bar{\delta}_{4} \bar{y}_{4} \in \Delta\left(A_{3}\right) \subset \Delta\left(A_{3}, A_{1}\right) \subset \Delta\left(A_{4}, A_{1}\right)$ and $\left\{\bar{y}_{i}\right\} \neq 0$. Now, by making use of a similar argument as above, we can easily see that $\left\{\bar{y}_{i}\right\}$ satisfies (\#).

By making use of the above argument and Corollary 1, we can prove the following corollary.

Corollary 4. Let $\left\{N_{i}=e R / A_{i}\right\}_{i=1}^{m}$ be a family of hollow modules. Assume that $\Delta\left(A_{i}\right)=\Delta\left(A_{1}\right)$ for all i and $\left[\Delta: \Delta\left(A_{1}\right)\right]=n$. Then all the direct sums $\sum_{i=1}^{n+1} \oplus T_{i}$ with T_{i} isomorphic to some one in $\left\{N_{i}\right\}$ satisfy $\left({ }^{* *}\right)$ if and only if $\left\{N_{i}\right\}$ is linearly ordered with respect to $<$.

Example. Let k be a field and x an indeterminate. Let $L=k(x)$, and $K=k\left(x^{5}\right)$. Consider the ring

$$
R=\left(\begin{array}{cc}
L & L \\
0 & K
\end{array}\right)
$$

Put $A_{4-i}=\left(0, K+K x+\cdots+K x^{i}\right) \subset e_{11} R \quad(0 \leq i \leq 3)$, and $N_{i}=e_{11} R / A_{i}$. Then $A_{1} \supset A_{2} \supset A_{3} \supset A_{4}$ and $\Delta\left(A_{i}\right)=K$. We can show directly the following facts: Both $N_{1} \oplus N_{3} \oplus N_{4}$ and $N_{1} \oplus N_{2} \oplus N_{4}$ satisfy (${ }^{* *}$). But, no direct sum $N_{i} \oplus N_{j}$ ($i \neq j$) satisfies $\left(^{* *}\right.$) and neither $N_{1} \oplus N_{2} \oplus N_{3}$ nor $N_{2} \oplus N_{3} \oplus N_{4}$ does. (Note that
$\Delta\left(A_{4}, A_{1}\right)=K+K x+K x^{2}+K x^{3}$ and $\left.\Delta\left(A_{3}, A_{1}\right)=\Delta\left(A_{4}, A_{2}\right)=K+K x+K x^{2}.\right)$ $N_{1} \oplus N_{2} \oplus N_{3} \oplus N_{4}$ satisfies (${ }^{* *}$), but neither $N_{i}^{(4)}$ nor $N_{i}^{(5)}$ does. If $m \geq 6$ then $\sum_{i=1}^{m} \oplus N_{i}^{\prime}$ with N_{i}^{\prime} isomorphic to some one in $\left\{N_{i}\right\}$ satisfies (**). If we replace $K=k\left(x^{5}\right)$ by $k\left(x^{7}\right)$, none of $N_{1}^{\prime} \oplus N_{2}^{\prime} \oplus N_{3}^{\prime}$ satisfies (${ }^{* *}$).

References

[1] M. Harada: On maximal submodules of a finite direct sum of hollow modules I, Osaka J. Math. 21 (1984), 649-670.
[2] -: On maximal submodules of a finite direct sum of hollow modules II, Osaka J. Math. 21 (1984), 671-677.
[3] -: Simple submodules in a finite direct sum of uniform modules, Methods in Ring Theory, ed. by F. van Oystaeyen, NATO ASI ser. C 129 (1984), 145-159.

Department of Mathematics Osaka City University
Sumiyoshi-ku, Osaka 558
Japan

