ON THE SPECTRUM REPRESENTING ALGEBRAIC K-THEORY FOR A FINITE FIELD

Dedicated to Professor Nobuo Shimada on his sixtieth birthday

Takashi WATANABE

(Received February 20, 1984)

Let r be an odd prime power. Let \boldsymbol{F}_{r} denote the field with r elements. According to [11] and others, there exists a (-1)-connected Ω-spectrum $\boldsymbol{K F}_{\boldsymbol{r}}$ whose 0 -th space is $\boldsymbol{Z} \times B G L \boldsymbol{F}_{r}^{+}$, where $B G L \boldsymbol{F}_{r}^{+}$is the plus construction of the classifying space of $G L \boldsymbol{F}_{r} . \quad \boldsymbol{K} \boldsymbol{F}_{r}$ is a ring spectrum with a unit.

Let p be an odd prime. The object of this paper is the localization of $\boldsymbol{K} \boldsymbol{F}_{r}$ at $p, \boldsymbol{K} \boldsymbol{F}_{r(p)}$, for the case that r gives a generator of the group of units $\left(\boldsymbol{Z} \mid p^{2}\right)^{\times}$. Then the associated generalized cohomology theory $K \boldsymbol{F}_{r}^{*}\left(; \boldsymbol{Z}_{(p)}\right)$ appears as a secondary cohomology theory determined by a certain stable operation in connected complex K-theory localized at p. From this interpretation we deduce some results about the multiplicative structure on $\boldsymbol{K} \boldsymbol{F}_{r(p)}$, which are basic to the study of the ring structure of $K \boldsymbol{F}_{r^{*}}\left(C P^{\infty} ; \boldsymbol{Z}_{(p)}\right)$ etc. In particular we can characterize the product on $\boldsymbol{K} \boldsymbol{F}_{r(p)}$ by a certain property.

For simplicity we write \boldsymbol{A} for $\boldsymbol{K} \boldsymbol{F}_{r(p)}$ (see [8]). We shall work in the homotopy category of $C W$-spectra (see [3, III]).

The paper is organized as follows. In $\S 0$ we collect several results on \boldsymbol{A}. In $\S 1$ we compute $H^{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p)$. In $\S 2$ we compute $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p)$. In §3 we consider the left coaction of \mathcal{A}_{*} on $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ and discuss the \mathscr{B}-module structure of $H^{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p)$, where $\mathscr{B}=\Lambda\left(Q_{0}, Q_{1}\right) \subset \mathcal{A}$. In $\S 4$ we prove our main results, which are Theorems 4.3 and 4.5 .

0. The spectrum A

Let p be a fixed odd prime. Let $\boldsymbol{b} \boldsymbol{u}_{(p)}$ be the Ω-spectrum representing connected complex K-theory localized at p. This is a ring spectrum with a unit and $\pi_{*}\left(\boldsymbol{b} \boldsymbol{u}_{(p)}\right)=\boldsymbol{Z}_{(p)}[u]$ where $|u|=2$. It is known that

$$
\boldsymbol{b} \boldsymbol{u}_{(p)}=\int_{j=1}^{p-1} \Sigma^{2(j-1)} \boldsymbol{G}
$$

for a spectrum $\boldsymbol{G}[6]$. This is a ring spectrum with a unit and $\boldsymbol{\pi}_{\boldsymbol{*}}(\boldsymbol{G})=\boldsymbol{Z}_{(p)}[v]$ where $|v|=2(p-1)$. According to [4], if $\kappa: \boldsymbol{G} \rightarrow \boldsymbol{b} \boldsymbol{u}_{(p)}$ is the injection, then the diagram

commutes, where (by abuse of notation) u, v denote the composites $\boldsymbol{S}^{2} \wedge \boldsymbol{b} \boldsymbol{u}_{(p)}$ $\xrightarrow{u \wedge 1} \boldsymbol{b} \boldsymbol{u}_{(p)} \wedge \boldsymbol{b} \boldsymbol{u}_{(p)} \rightarrow \boldsymbol{b} \boldsymbol{u}_{(p)}$ and $\boldsymbol{S}^{2(p-1)} \wedge \boldsymbol{G} \xrightarrow{v \wedge 1} \boldsymbol{G} \wedge \boldsymbol{G} \rightarrow \boldsymbol{G}$ respectively. Furthermore, for each r prime to p, there exists a map of ring spectra $\psi^{r}: \boldsymbol{G} \rightarrow \boldsymbol{G}$ which makes the diagram

commute, where the lower ψ^{*} is derived from the Adams operation in complex K-theory.

Consider the fibre sequence

$$
\Sigma^{2} \boldsymbol{b} \boldsymbol{u}_{(p)} \xrightarrow{u} \boldsymbol{b} \boldsymbol{u}_{(p)} \xrightarrow{\rho} \boldsymbol{H} \boldsymbol{Z}_{(p)}
$$

(where $\boldsymbol{H} \boldsymbol{Z}_{(p)}$ denotes the Eilenberg-MacLane spectrum for $\boldsymbol{Z}_{(p)}$). This leads to an exact sequence

$$
0 \rightarrow\left[\boldsymbol{b} \boldsymbol{u}_{(p)}, \Sigma^{2} \boldsymbol{b} \boldsymbol{u}_{(p)}\right] \xrightarrow{u_{*}}\left[\boldsymbol{b} \boldsymbol{u}_{(p)}, \boldsymbol{b} \boldsymbol{u}_{(p)}\right] \xrightarrow{\rho_{*}}\left[\boldsymbol{b} \boldsymbol{u}_{(p)}, \boldsymbol{H} \boldsymbol{Z}_{(p)}\right]
$$

where we have used the fact that $H^{-1}\left(\boldsymbol{b} \boldsymbol{u}_{(p)} ; \boldsymbol{Z}_{(p)}\right)=0$. Consider the element $\psi^{r}-1 \in\left[\boldsymbol{b} \boldsymbol{u}_{(p)}, \boldsymbol{b} \boldsymbol{u}_{(p)}\right]$. Since $\rho_{*}\left(\psi^{r}-1\right)=0$, there is a unique $\theta \in\left[\boldsymbol{b} \boldsymbol{u}_{(p)}, \Sigma^{2} \boldsymbol{b} \boldsymbol{u}_{(p)}\right]$ such that $u_{*}(\theta)=\psi^{r}-1$. Denote by \boldsymbol{A} the fibre spectrum of θ; that is,

$$
\begin{equation*}
\boldsymbol{A} \xrightarrow{\eta} \boldsymbol{b} \boldsymbol{u}_{(p)} \xrightarrow{\theta} \Sigma^{2} \boldsymbol{b} \boldsymbol{u}_{(p)} \tag{0.3}
\end{equation*}
$$

is a fibre sequence.
From now on we deal with a case such that r is a generator of $\left(\boldsymbol{Z} / p^{2}\right)^{\times}$. Then \boldsymbol{A} does not depend on the choice of r. In fact, since $\left(\psi^{r}-1\right)_{*}\left(u^{s}\right)=\left(r^{s}-1\right) u^{s}$ in $\boldsymbol{\pi}_{*}\left(\boldsymbol{b} \boldsymbol{u}_{(p)}\right)$, [1, Lemma (2.12)] yields

$$
\pi_{i}(\boldsymbol{A})= \begin{cases}\boldsymbol{Z}_{(p)} & \text { if } i=0 \tag{0.4}\\ \boldsymbol{Z} / p^{1+\nu_{p}(t)} & \text { if } i=2 t(p-1)-1(t>0) \\ 0 & \text { otherwise }\end{cases}
$$

where $\nu_{p}(t)$ is the power of p in t.

Consider the fibre sequence

$$
\Sigma^{2(p-1)} \boldsymbol{G} \xrightarrow{v} \boldsymbol{G} \longrightarrow \boldsymbol{H} \boldsymbol{Z}_{(p)} .
$$

By a similar argument we have a unique lift $\theta^{\prime} \in\left[\boldsymbol{G}, \Sigma^{2(\phi-1)} \boldsymbol{G}\right]$ of $\psi^{r}-1 \in[\boldsymbol{G}, \boldsymbol{G}]$. Let \boldsymbol{A}^{\prime} denote the fibre of θ^{\prime}. Then from (0.1) and (0.2) it follows that there is a commutative diagram of fibre sequences

It is easily verified that the induced map $\kappa^{\prime}: \boldsymbol{A}^{\prime} \rightarrow \boldsymbol{A}$ is an equivalence. So we may identify them.

Choose r to be an odd prime power so that it satisfies our hypothesis. In view of [12, VIII] it seems that there exists a map of ring spectra $B r: \boldsymbol{K F}_{r(p)} \rightarrow$ $\boldsymbol{b} \boldsymbol{u}_{(p)}$ and its lift $\boldsymbol{K} \boldsymbol{F}_{\boldsymbol{r}(p)} \rightarrow \boldsymbol{A}$ in (0.3) becomes an equivalence. We identify them and then η can be regarded as a map of ring spectra (cf. [15, p. 252]). Since κ is a (split injective) map of ring spectra, so is η^{\prime}. In §4 we give a different approach to this fact.

It is not an accident that $\pi_{*}(\boldsymbol{A})$ is isomorphic to $\operatorname{Im} J_{(p)}$ which is a direct summand of $\pi_{*}\left(S^{0}\right)_{(p)}$. In fact, Tornehave [19] showed that
(0.5) The unit $\hat{\imath}: \boldsymbol{S}^{0} \rightarrow \boldsymbol{A}$ realizes the projection of $\pi_{*}\left(\mathbf{S}^{0}\right)_{(p)}$ onto $\operatorname{Im} J_{(p)}$.

Hereafter for brevity we write

$$
\begin{equation*}
\Sigma^{2 p-3} \boldsymbol{G} \xrightarrow{\Delta} \boldsymbol{A} \xrightarrow{\eta} \boldsymbol{G} \xrightarrow{\theta} \Sigma^{2(p-1)} \boldsymbol{G} . \tag{0.6}
\end{equation*}
$$

We will use only this fibre sequence in later sections.

1. The $\bmod p$ cohomology of A

Let \mathcal{A} be the $\bmod p$ Steenrod algebra. As an \mathcal{A}-module,

$$
\begin{equation*}
H^{*}(\boldsymbol{G} ; \boldsymbol{Z} \mid p) \cong \mathcal{A} / \mathcal{A}\left(Q_{0}, Q_{1}\right) \tag{1.1}
\end{equation*}
$$

where $Q_{0}=\delta, Q_{1}=\mathscr{P}^{1} \delta-\delta \mathscr{P}^{1}$ and $\mathcal{A}()$ denotes the left ideal in \mathcal{A} generated by the set in parentheses. Apply the functor $H^{*}(; \boldsymbol{Z} \mid p)$ to (0.6). Then we have

Lemma 1.1. If f is the generator of $H^{0}(\boldsymbol{G} ; \boldsymbol{Z} / p)$, then $\theta^{*}\left(\sigma^{2(p-1)} f\right)=c \cdot \mathscr{P}^{1} f$ for some non-zero $c \in \boldsymbol{Z} \mid p$ (where σ^{i} denotes the increase of degrees by i).

Proof. By (1.1), $H^{2(p-1)}(\boldsymbol{G} ; \boldsymbol{Z} \mid p)=\boldsymbol{Z} \mid p\left\{\mathcal{P}^{1} f\right\}$. Hence we may set $\theta^{*}\left(\sigma^{2(p-1)} f\right)=c \cdot \mathscr{P}^{1} f$ for some $c \in \boldsymbol{Z} / p$. It is sufficient to show that c is non-zero. Suppose $c=0$. Then it follows that $\hat{H}^{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p)=\boldsymbol{Z} / p\left\{\eta^{*}\left(\mathcal{P}^{1} f\right)\right\}$ in degrees less than $2 p(p-1)-1$. On the other hand, by (0.5) or [17], $\hat{\iota}_{*}: \pi_{i}\left(\boldsymbol{S}^{0}\right)_{(p)} \rightarrow \pi_{i}(\boldsymbol{A})$ is an isomorphism for $i<\left|\beta_{1}\right|=2 p(p-1)-2$ (where $\beta_{1} \in \pi_{*}\left(S^{0}\right)_{(p)}$ is the first element which does not belong to $\left.\operatorname{Im} J_{(p)}\right)$. By the Whitehead theorem, $\tilde{H}_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p)=0$ in degrees less than $2 p(p-1)-2$. This is a contradiction.

Remark. As in [5] one can prove this lemma by calculating the Adams spectral sequence for $\pi_{*}(\boldsymbol{A})$ and using (0.4). See also [10, p. 421].

For $a \in \mathcal{A}$ let $L(a): \Sigma^{|a|} \mathcal{A} \rightarrow \mathcal{A}$ and $R(a): \Sigma^{|a|} \mathcal{A} \rightarrow \mathcal{A}$ be defined by $L(a)\left(\sigma^{|a|} b\right)=a b$ and $R(a)\left(\sigma^{|a|} b\right)=b a$ respectively.

Corollary 1.2. The following square commutes:

From this corollary we see that

$$
\operatorname{Coker}\left(\theta^{*}: \Sigma^{2(p-1)} \mathcal{A} / \mathcal{A}\left(Q_{0}, Q_{1}\right) \rightarrow \mathcal{A} / \mathcal{A}\left(Q_{0}, Q_{1}\right)\right) \cong \mathcal{A} / \mathcal{A}\left(Q_{0}, \mathscr{P}^{1}\right)
$$

We also have an isomorphism
(1.2) $\quad \operatorname{Ker}\left(\theta^{*}: \Sigma^{2(p-1)} \mathcal{A} / \mathcal{A}\left(Q_{0}, Q_{1}\right) \rightarrow \mathcal{A} / \mathcal{A}\left(Q_{0}, Q_{1}\right)\right) \simeq \Sigma^{2 p(p-1)} \mathcal{A} / \mathcal{A}\left(Q_{0}, \mathcal{P}^{1}\right)$
the inverse of which is induced by $R\left(\mathscr{P}^{p-1}\right)$. (Although it is easy for a specialist to prove this fact directly, we do it by a different method in $\S 2$.) Combining these, we get a short exact sequence of \mathcal{A}-modules

$$
0 \rightarrow \mathcal{A} / \mathcal{A}\left(Q_{0}, \mathcal{P}^{1}\right) \xrightarrow{\hat{\hat{h}}^{*}} H^{*}(\boldsymbol{A} ; \boldsymbol{Z} / p) \xrightarrow{\hat{\Delta}^{*}} \Sigma^{q} \mathcal{A} / \mathcal{A}\left(Q_{0}, \mathscr{P}^{1}\right) \rightarrow 0
$$

where $q=2 p(p-1)-1$. Put $g=\hat{\eta}^{*}(1) \in H^{0}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ and let $\sigma^{q} h \in H^{q}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ be the element such that $\hat{\Delta}^{*}\left(\sigma^{q} h\right)=\sigma^{q} 1$. Since $\mathcal{A} / \mathcal{A}\left(Q_{0}, \mathcal{P}^{1}\right)^{q+1}=\boldsymbol{Z} / p\left\{\mathcal{P}^{p}\right\}$ and $\mathcal{A} / \mathcal{A}\left(Q_{0}, \mathscr{P}^{1}\right)^{q+2(p-1)}=0$, we may set
$H^{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)=\mathcal{A}\{g\} \oplus \Sigma^{q} \mathcal{A}\{h\} / \mathcal{A}\left(Q_{0} g \oplus 0, \mathscr{P}^{1} g \oplus 0, d \cdot \mathcal{P}^{\downarrow} g \oplus \sigma^{q} Q_{0} h, 0 \oplus \sigma^{q} \mathcal{P}^{1} h\right)$
for some $d \in \boldsymbol{Z} / p$. Here $d \neq 0$. For if $d=0$, then by looking at the cell structure of \boldsymbol{A}, we find that there is a $C W$-spectrum $\left(\boldsymbol{S}^{0} \cup e^{2 p(p-1)}\right)_{(p)}$ in which \mathscr{P}^{p} is non-zero. This contradicts the triviality of the $\bmod p$ Hopf invariant [16].

Theorem 1.3. As a left \mathcal{A}-module $H^{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ is generated by g and $\sigma^{q} h$ subject to the relations

$$
Q_{0}(g)=0, \mathscr{P}^{1}(g)=0, \mathscr{P}^{p}(g)=Q_{0}\left(\sigma^{q} h\right) \quad \text { and } \quad \mathscr{P}^{1}\left(\sigma^{q} h\right)=0 .
$$

Proof. Change $\sigma^{q} h$ for $d \cdot \sigma^{q} h$ if necessary.

2. The $\bmod \boldsymbol{p}$ homology of \boldsymbol{A}

Most of this section is an odd prime version of [14].
Let \mathcal{A}_{*} be the dual of \mathcal{A}. It is the tensor product of an exterior algebra and a polynomial algebra:

$$
\mathcal{A}_{*}=\Lambda\left(\tau_{0}, \tau_{1}, \cdots\right) \otimes \boldsymbol{Z} / p\left[\xi_{1}, \xi_{2}, \cdots\right]
$$

where $\left|\tau_{n}\right|=2 p^{n}-1$ and $\left|\xi_{n}\right|=2 p^{n}-2 . \quad \mathcal{A}_{*}$ is a left and right \mathcal{A}-module; respective actions are given by

$$
\langle a(\alpha), b\rangle=\langle\alpha, b a\rangle \quad \text { and } \quad\langle(\alpha) a, b\rangle=\langle\alpha, a b\rangle
$$

for all $a, b \in \mathcal{A}$ and $\alpha \in \mathcal{A}_{*}$. By abuse of notation, for $a \in \mathcal{A}$ let $L(a): \mathcal{A}_{*} \rightarrow$ $\Sigma^{|a|} \mathcal{A}_{*}$ and $R(a): \mathcal{A}_{*} \rightarrow \Sigma^{|a|} \mathcal{A}_{*}$ be defined by $L(a)(\alpha)=\sigma^{|a|} a(\alpha)$ and $R(a)(\alpha)=$ $\sigma^{|a|}(\alpha) a$ respectively; note that $R(a): \Sigma^{|a|} \mathcal{A} \rightarrow \mathcal{A}$ and $L(a): \mathcal{A}_{*} \rightarrow \Sigma^{|a|} \mathcal{A}_{*}$ are dual. Define $\mathscr{P}(),() \mathscr{P}: \mathcal{A}_{*} \rightarrow \mathcal{A}_{*}$ by $\mathscr{P}(\alpha)=\sum_{i \geq 0} \mathscr{P}^{i}(\alpha)$ and $(\alpha) \mathscr{P}=\sum_{i \geq 0}(\alpha) \mathscr{P}^{i}$ respectively. They are ring homomorphisms, since Cartan formulas $\mathcal{P}^{n}(\alpha \beta)=$ $\sum_{i+j=n} \mathscr{P}^{i}(\alpha) \mathscr{P}^{j}(\beta)$ and $(\alpha \beta) \mathscr{P}^{n}=\sum_{i+j=n}(\alpha) \mathscr{P}^{i}(\beta) \mathscr{P}^{j}$ hold.

Proposition 2.1. The following formulas hold:
(i) $\mathscr{P}\left(\tau_{n}\right)=\tau_{n}$

$$
\left.\mathscr{P}\left(\xi_{n}\right)=\xi_{n}+\xi_{n-1}^{p} \quad \text { (i.e., } \mathscr{P}^{\mathcal{1}}\left(\xi_{n}\right)=\xi_{n-1}^{p}\right)
$$

$$
\delta\left(\tau_{n}\right)=\xi_{n}
$$

$$
\delta\left(\xi_{n}\right)=0
$$

(ii) $\quad\left(\tau_{n}\right) \mathscr{P}=\tau_{n}+\tau_{n-1} \quad$ (i.e., $\left.\left(\tau_{n}\right) \mathscr{P}^{p^{n-1}}=\tau_{n-1}\right)$
$\left(\xi_{n}\right) \mathscr{P}=\xi_{n}+\xi_{n-1} \quad$ (i.e., $\left.\left(\xi_{n}\right) \mathscr{P}^{p^{n-1}}=\xi_{n-1}\right)$
$\left(\tau_{n}\right) \delta=\left\{\begin{array}{lll}0 & \text { if } & n>0 \\ 1 & \text { if } & n=0\end{array}\right.$
$\left(\xi_{n}\right) \delta=0$.
Proof. Recall the definitions of τ_{n} and ξ_{n}.
By abuse of notation, let χ denote the conjugation in \mathcal{A} or \mathcal{A}_{*}; note that $\chi: \mathcal{A} \rightarrow \mathcal{A}$ and $\chi: \mathcal{A}_{*} \rightarrow \mathcal{A}_{*}$ are dual.

Proposition 2.2. For each $a \in \mathcal{A}$ with $\chi a=-a$, the following squares commute:

The proof is immediate.
Remark. This proposition can be applied to the cases $a=Q_{0}, \mathscr{P}^{1}$ and \mathscr{P}^{p} (see [13, §7]).

By Theorem 1.3 there is an exact sequence of \mathcal{A}-modules

$$
\begin{aligned}
& \Sigma \mathcal{A} \oplus \Sigma^{2(p-1)} \mathcal{A} \oplus \Sigma^{q+1} \mathcal{A} \oplus \Sigma^{q+2(p-1)} \mathcal{A} \xrightarrow{R\left(Q_{0} \oplus 0\right) \oplus R\left(\mathscr{P}^{1} \oplus 0\right) \oplus} \\
& \quad \xrightarrow{R\left(-\mathcal{P}^{p} \oplus \sigma^{q} Q_{0}\right) \oplus R\left(0 \oplus \sigma^{q} \mathcal{P}^{1}\right)} \mathcal{A} \oplus \Sigma^{q} \mathcal{A} \xrightarrow{\varepsilon} H^{*}(\boldsymbol{A}: \boldsymbol{Z} \mid p) \rightarrow 0 .
\end{aligned}
$$

Dualizing this gives

$$
\begin{aligned}
& \Sigma \mathcal{A}_{*} \oplus \Sigma^{2(p-1)} \mathcal{A}_{*} \oplus \Sigma^{q+1} \mathcal{A}_{*} \oplus \Sigma^{q+2(p-1)} \mathcal{A}_{*} \stackrel{L\left(Q_{0}\right) \oplus L\left(\mathscr{P}^{1}\right) \oplus}{\longleftrightarrow} \\
& \quad \underline{\left(-L\left(\mathscr{P}^{p}\right)+L\left(\sigma^{q} Q_{0}\right)\right) \oplus L\left(\sigma^{q} \mathscr{P}^{1}\right)} \mathcal{A}_{*} \oplus \Sigma^{q} \mathcal{A}_{*} \stackrel{\varepsilon_{*}}{\leftarrow} H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p) \leftarrow 0
\end{aligned}
$$

Using Proposition 2.2 (i) we get an exact sequence

$$
\begin{aligned}
& \Sigma_{*} \mathcal{A}_{*} \oplus \Sigma^{2(p-1)} \mathcal{A}_{*} \oplus \Sigma^{q+1} \mathcal{A}_{*} \oplus \Sigma^{q+2(p-1)} \mathcal{A}_{*} \leftarrow\left(Q_{0}\right) \oplus R\left(\mathcal{P}^{1}\right) \oplus \\
& \quad \underline{\left(-R\left(\mathcal{P}^{p}\right)+R\left(\sigma^{q} Q_{0}\right)\right) \oplus R\left(\sigma^{q} \mathcal{P}^{1}\right)} \mathcal{A}_{*} \oplus \Sigma^{q} \mathcal{A}_{*} \leftarrow A_{*}(\boldsymbol{H Z} / p) \leftarrow 0
\end{aligned}
$$

(where $A_{*}(\quad)$ denotes the generalized homology theory associated with $\left.\boldsymbol{A}\right)$. In order to describe $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$, we calculate the kernel of $R\left(Q_{0}\right) \oplus R\left(\mathscr{P}^{1}\right) \oplus$ $\left(-R\left(\mathscr{P}^{p}\right)+R\left(\sigma^{q} Q_{0}\right)\right) \oplus R\left(\sigma^{q} \mathscr{P}^{1}\right)$ and apply $\chi \oplus \chi$ to it.

Using Proposition 2.1, we easily see that

$$
\operatorname{Ker}\left(R\left(Q_{0}\right): \mathcal{A}_{*} \rightarrow \Sigma \mathcal{A}_{*}\right)=\Lambda\left(\tau_{1}, \tau_{2}, \cdots\right) \otimes \boldsymbol{Z} / p\left[\xi_{1}, \xi_{2}, \cdots\right]
$$

and

$$
\begin{aligned}
& \operatorname{Ker}\left(R\left(\mathscr{P}^{1}\right): \mathcal{A}_{*} \rightarrow \Sigma^{2(p-1)} \mathcal{A}_{*}\right)= \\
& \quad \boldsymbol{Z}\left|p\left\{1, \tau_{0}, \tau_{0} \xi_{1}-\tau_{1}, \tau_{0} \tau_{1}\right\} \otimes \Lambda\left(\tau_{2}, \tau_{3}, \cdots\right) \otimes \boldsymbol{Z}\right| p\left[\xi_{1}^{p}, \xi_{2}, \xi_{3}, \cdots\right] .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \operatorname{Ker}\left(R\left(Q_{0}\right) \oplus R\left(\mathscr{P}^{1}\right): \mathcal{A}_{*} \rightarrow \Sigma \mathcal{A}_{*} \oplus \Sigma^{2(p-1)} \mathcal{A}_{*}\right)= \\
& \Lambda\left(\tau_{2}, \tau_{3}, \cdots\right) \otimes \boldsymbol{Z} \mid p\left[\xi^{p}, \xi_{2}, \xi_{3}, \cdots\right] .
\end{aligned}
$$

We write B for this kernel.

Lemma 2.3. For any non-zero $\alpha \in B$ there exists a unique $\alpha^{\prime} \in \operatorname{Ker} R\left(\mathscr{P}^{1}\right)$ such that $\left(\alpha^{\prime}\right) Q_{0}=(\alpha) \mathscr{P}^{p}$ (where if $\alpha \in \operatorname{Ker} R\left(\mathscr{P}^{p}\right)$, we take $\alpha^{\prime}=0$).

Proof. Direct calculations using Proposition 2.1.
Henceforth for each non-zero $\alpha \in B$ we use α^{\prime} 'to denote such an element. Define two subsets of $\mathcal{A}_{*} \oplus \Sigma^{q} \mathcal{A}_{*}$ as

$$
\tilde{\boldsymbol{B}}=\left\{\alpha \oplus \sigma^{q} \alpha^{\prime} \mid \alpha \in B\right\} \quad \text { and } \quad \sigma^{q} B=\left\{0 \oplus \sigma^{q} \alpha \mid \alpha \in B\right\}
$$

Then it is evident that $A_{*}(\boldsymbol{H Z} / p) \cong \tilde{B}+\sigma^{q} B$. Thus we obtain
Theorem 2.4. As a $Z \mid p$-module,

$$
H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p) \cong(\chi \oplus \chi)(\tilde{B})+(\chi \oplus \chi)\left(\sigma^{q} B\right)
$$

Proof of (1.2). Starting from (1.1), we go a similar way to the above and get

$$
H_{*}(\boldsymbol{G} ; \boldsymbol{Z} / p) \simeq \Lambda\left(\alpha_{2}, \alpha_{3}, \cdots\right) \otimes \boldsymbol{Z} / p\left[\beta_{1}, \beta_{2}, \cdots\right]
$$

where $\alpha_{n}=\chi \tau_{n}$ and $\beta_{n}=\chi \xi_{n}$. By the dual of Corollary 1.2, θ_{*} can be identified with $c \cdot L\left(\mathcal{P}^{1}\right)$. Using Propositions 2.1 and 2.2 (ii), we see that

$$
\theta_{*}\left(\alpha_{2}^{\ell} 2 \alpha_{3}^{\ell} \cdots \beta_{1}^{r_{1}} \beta_{2}^{r_{2}} \beta_{3}^{r_{3}} \cdots\right)=\left\{\begin{array}{lll}
-c r_{1} \cdot \sigma^{2(p-1)} \alpha_{2}^{2} 2 \alpha_{3}^{\ell} \cdots \beta_{1}^{r_{1}-1} \beta_{2}^{r_{2}} \beta_{3}^{r_{3}} \cdots & \text { if } & r_{1}>0 \\
0 & \text { if } \quad r_{1}=0
\end{array}\right.
$$

where $\varepsilon_{i}=0,1$ and $r_{i} \geq 0$. This shows that

$$
\begin{aligned}
& \operatorname{Coker}\left(\theta_{*}: H_{*}(\boldsymbol{G} ; \boldsymbol{Z} / p) \rightarrow H_{*}\left(\Sigma^{2(p-1)} \boldsymbol{G} ; \boldsymbol{Z} \mid p\right)\right) \cong \\
& \Sigma^{2(p-1)}\left(\Lambda\left(\alpha_{2}, \alpha_{3}, \cdots\right) \otimes \boldsymbol{Z} / p\left[\beta_{1}^{p}, \beta_{2}, \beta_{3}, \cdots\right]\right)\left\{\beta_{1}^{p-1}\right\} .
\end{aligned}
$$

Since the dual of $\mathcal{A} / \mathcal{A}\left(Q_{0}, \mathscr{P}^{1}\right)$ is just

$$
\chi B=\Lambda\left(\alpha_{2}, \alpha_{3}, \cdots\right) \otimes \boldsymbol{Z} \mid p\left[\beta_{1}^{p}, \beta_{2}, \beta_{3}, \cdots\right],
$$

the result follows by dualization.

3. The \mathcal{A}_{*}-coaction on $\boldsymbol{H}_{*}(\boldsymbol{A} ; \boldsymbol{Z} / \boldsymbol{p})$

Let $\phi: H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p) \rightarrow \mathcal{A}_{*} \otimes H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ be the dual of the usual \mathcal{A}-action map $\mathcal{A} \otimes H^{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p) \rightarrow H^{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$. It gives $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ the structure of an \mathcal{A}_{*}-comodule. We study this coaction.

Since $\varepsilon_{*}: H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p) \rightarrow \mathcal{A}_{*} \oplus \Sigma^{q} \mathcal{A}_{*}$ is an injective homomorphism of $\mathcal{A}_{*^{-}}$ comodules, it suffices to determine the \mathcal{A}_{*}-comodule structure of $\mathcal{A}_{*} \oplus \Sigma^{q} \mathcal{A}_{*}$. Let $\phi_{*}: \mathcal{A}_{*} \rightarrow \mathcal{A}_{*} \otimes \mathcal{A}_{*}$ be the coproduct on \mathcal{A}_{*}. It also gives an \mathcal{A}_{*}-comodule structure on \mathcal{A}_{*}. Recall the following properties of ϕ_{*} : for $\alpha, \beta \in \mathcal{A}_{*}$,

$$
\begin{aligned}
& \phi_{*}(\alpha \beta)=\phi_{*}(\alpha) \phi_{*}(\beta) \\
& \phi_{*} \chi=(\chi \otimes \chi) T \phi_{*} \quad \text { where } \quad T(\alpha \otimes \beta)=(-1)^{|\alpha||\beta|} \beta \otimes \alpha \\
& \phi_{*}\left(\xi_{n}\right)=\sum_{i=0}^{n} \xi_{n-i}^{p^{i}} \otimes \xi_{i} \quad \text { and } \quad \phi_{*}\left(\tau_{n}\right)=\tau_{n} \otimes 1+\sum_{i=0}^{n} \xi_{n-i}^{p_{i}^{i}} \otimes \tau_{i}
\end{aligned}
$$

The composite

$$
\Sigma^{q} \mathcal{A}_{*} \xrightarrow{\Sigma^{q} \phi_{*}} \Sigma^{q}\left(\mathcal{A}_{*} \otimes \mathcal{A}_{*}\right) \xrightarrow{\simeq} \mathcal{A}_{*} \otimes \Sigma^{q} \mathcal{A}_{*},
$$

which we denote by $\sigma^{q} \phi_{*}$, gives an \mathcal{A}_{*}-comodule structure on $\Sigma^{q} \mathcal{A}_{*}$. Moreover the composite

$$
\mathcal{A}_{*} \oplus \Sigma^{q} \mathcal{A}_{*} \xrightarrow{\phi_{*} \oplus \Sigma^{q} \phi_{*}}\left(\mathcal{A}_{*} \otimes \mathcal{A}_{*}\right) \oplus\left(\mathcal{A}_{*} \otimes \Sigma^{q} \mathcal{A}_{*}\right) \xrightarrow{\cong} \mathcal{A}_{*} \otimes\left(\mathcal{A}_{*} \oplus \Sigma^{q} \mathcal{A}_{*}\right),
$$

which may be written as $\phi_{*}+\sigma^{q} \phi_{*}$, gives an \mathcal{A}_{*}-comodule structure on $\mathcal{A}_{*} \oplus \Sigma^{q} \mathcal{A}_{*}$. Combining these and Theorem 2.4, one can evaluate $\phi(x)$ for every $x \in H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$.

It is convenient to introduce the following (artificial) multiplication on $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$. For non-zero $\alpha, \beta \in B$ define
(1) $\left(\chi \alpha \oplus \sigma^{q} \chi \alpha^{\prime}\right) \circ\left(\chi \beta \oplus \sigma^{q} \chi \beta^{\prime}\right)=\chi(\alpha \beta) \oplus \sigma^{q} \chi\left(\alpha^{\prime} \beta+\alpha \beta^{\prime}\right)$
(2) $\left(\chi \alpha \oplus \sigma^{q} \chi \alpha^{\prime}\right) \circ\left(0 \oplus \sigma^{q} \chi \beta\right)=0 \oplus \sigma^{q} \chi(\alpha \beta)$
(3) $\left(0 \oplus \sigma^{q} \chi \alpha\right) \circ\left(\chi \beta \oplus \sigma^{q} \chi \beta^{\prime}\right)=0 \oplus \sigma^{q} \chi(\alpha \beta)$
(4) $\left(0 \oplus \sigma^{q} \chi \alpha\right) \circ\left(0 \oplus \sigma^{q} \chi \beta\right)=0$.

This is well defined. To check this assertion we first observe that if $\alpha \in B$ then $(\alpha) Q_{0}=0$ and $(\alpha) \mathscr{P}^{i}=0$ for $0<i<p$. Therefore, if $\alpha, \beta \in B$ we have $\alpha \beta \in B$, $\left(\alpha^{\prime} \beta+\alpha \beta^{\prime}\right) \mathscr{P}^{1}=0$ and

$$
\begin{aligned}
\left(\alpha^{\prime} \beta+\alpha \beta^{\prime}\right) Q_{0} & =\left(\alpha^{\prime}\right) Q_{0} \cdot \beta+\alpha \cdot\left(\beta^{\prime}\right) Q_{0} \\
& =(\alpha) \mathscr{P}^{p} \cdot \beta+\alpha \cdot(\beta) \mathscr{P}^{p} \\
& =(\alpha \beta) \mathscr{P}^{p} .
\end{aligned}
$$

This implies that (1) is well defined. The other cases are obvious.
We now show that the formula

$$
\phi(x \circ y)=\phi(x) \circ \phi(y)
$$

holds for all $x, y \in H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p)$. For example, if $x=\chi \alpha \oplus \sigma^{q} \chi \alpha^{\prime}$ and $y=\chi \beta \oplus$ $\sigma^{q} \chi \beta^{\prime}$, then we have

$$
\begin{aligned}
\phi(x \circ y) & =\phi\left(\chi(\alpha \beta) \oplus \sigma^{q} \chi\left(\alpha^{\prime} \beta+\alpha \beta^{\prime}\right)\right) \\
& =\phi_{*}(\chi \alpha \cdot \chi \beta)+\sigma^{q} \phi_{*}\left(\chi \alpha^{\prime} \cdot \chi \beta+\chi \alpha \cdot \chi \beta^{\prime}\right) \\
& =\phi_{*}(\chi \alpha) \cdot \phi_{*}(\chi \beta)+\sigma^{q}\left(\phi_{*}\left(\chi \alpha^{\prime}\right) \phi_{*}(\chi \beta)+\phi_{*}(\chi \alpha) \phi_{*}\left(\chi \beta^{\prime}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\phi_{*}(\chi \alpha)+\sigma^{q} \phi_{*}\left(\chi \alpha^{\prime}\right)\right) \circ\left(\phi_{*}(\chi \beta)+\sigma^{q} \phi_{*}\left(\chi \beta^{\prime}\right)\right) \\
& =\phi(x) \circ \phi(y) .
\end{aligned}
$$

The other cases are obvious.
Remark. As seen in [9], $\boldsymbol{K} \boldsymbol{F}_{r}$ has a natural product. So it induces a multiplication on $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$. We cannot confirm whether \circ coincides with this one; however, we believe so (cf. Theorem 4.3).

By virtue of Lemma 2.3 we may put

$$
\widetilde{\chi \alpha}=\chi \alpha \oplus \sigma^{q} \chi \alpha^{\prime} \quad \text { and } \quad \sigma^{q} \chi \alpha=0 \oplus \sigma^{q} \chi \alpha
$$

for each non-zero $\alpha \in B$. With this notation the multiplication \circ is given by
(1) $\tilde{x} \circ \tilde{y}=\tilde{x} \tilde{y}$
(2) $\tilde{x} \circ \sigma^{q} y=\sigma^{q} x y$
(3) $\sigma^{q} x \circ \tilde{y}=\sigma^{q} x y$
(4) $\sigma^{q} x \circ \sigma^{q} y=0$
for all $x, y \in \chi B$. Notice that as an algebra $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ is generated by the elements $\sigma^{q} 1, \tilde{\beta}_{1}^{p}, \tilde{\beta}_{n}, \widetilde{\alpha}_{n}$ with $n \geq 2$.

Theorem 3.1. The \mathcal{A}_{*}-coaction on $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ is given by

$$
\begin{aligned}
& \phi\left(\sigma^{q} 1\right)=1 \otimes \sigma^{q} 1 \\
& \phi\left(\tilde{\beta}_{1}^{p}\right)=\chi \xi_{1}^{p} \otimes \tilde{1}+\chi \tau_{0} \otimes \sigma^{q} 1+1 \otimes \tilde{\beta}_{1}^{p} \\
& \phi\left(\tilde{\beta}_{2}\right)=\chi \xi_{2} \otimes \tilde{1}+\chi\left(\tau_{0} \xi_{1}-\tau_{1}\right) \otimes \sigma^{q} 1+\chi \xi_{1} \otimes \tilde{\beta}_{1}^{p}+1 \otimes \tilde{\beta}_{2} \\
& \phi\left(\tilde{\alpha}_{2}\right)=\chi \tau_{2} \otimes \tilde{1}+\chi\left(\tau_{0} \tau_{1}\right) \otimes \sigma^{q} 1+\chi \tau_{1} \otimes \tilde{\beta}_{1}^{p}+\chi \tau_{0} \otimes \tilde{\beta}_{2}+1 \otimes \widetilde{\alpha}_{2} \\
& \phi\left(\tilde{\beta}_{n}\right)=\sum_{i=0}^{n} \chi \xi_{x-i} \otimes \widetilde{\beta}_{i}^{n-i} \quad \text { for } \quad n \geq 3 \\
& \phi\left(\widetilde{\alpha}_{n}\right)=\sum_{i=0}^{n} \chi \tau_{n-i} \otimes \widetilde{\beta}_{i}^{p-i}+1 \otimes \widetilde{\alpha}_{n} \quad \text { for } \quad n \geq 3 .
\end{aligned}
$$

Let \mathscr{B} be the exterior subalgebra of \mathcal{A} generated by Q_{0} and Q_{1}. In the next section we need to know the \mathscr{B}-module structure of $H^{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$. But it can be read off from Theorem 3.1. We give its details.

Define a left action of \mathcal{A} on $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p)$ by

$$
\langle f, a(x)\rangle=(-1)^{|a||x|}\langle(\chi a)(f), x\rangle
$$

for all $a \in \mathcal{A}, x \in H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ and $f \in H^{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)(\mathrm{cf} .[2, \mathrm{p} .76])$.
Corollary 3.2. For $i=0$ or $1, Q_{i}$ acts on $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p)$ as a derivation (with respect to \circ). So the \mathscr{B}-action on $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p)$ is given by

$$
\begin{array}{llll}
Q_{0}\left(\tilde{\beta}_{1}^{p}\right)=\sigma^{q} 1, & Q_{0}\left(\tilde{\alpha}_{n}\right)=\tilde{\beta}_{n} & \text { for } & n \geq 2, \\
Q_{1}\left(\tilde{\beta}_{2}\right)=-\sigma^{q} 1, & Q_{3}\left(\tilde{\alpha}_{n}\right)=\tilde{\beta}_{n-1}^{b} & \text { for } & n \geq 2 .
\end{array}
$$

We define a weight function $w: H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p) \rightarrow \boldsymbol{Z}$ by

$$
\begin{aligned}
& w(\tilde{1})=0, \quad w\left(\tilde{\beta}_{1}^{t}\right)=w\left(\sigma^{q} 1\right)=p, \\
& w\left(\tilde{\alpha}_{n}\right)=w\left(\tilde{\beta}_{n}\right)=p^{n-1} \quad \text { for } \quad n \geq 2
\end{aligned}
$$

together with the rules

$$
\begin{aligned}
& w(x+y)=\max \{w(x), w(y)\} \quad \text { and } \\
& w(x \circ y)=w(x)+w(y)
\end{aligned}
$$

for all $x, y \in H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid \boldsymbol{p})$. By Corollary 3.2 the \mathcal{B}-action preserves weight. For $j \geq 0$ let N_{j} denote the submodule of $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p)$ spanned by elements of weight $j p$. Then $H_{*}(\boldsymbol{A} ; \boldsymbol{Z} / p) \cong \underset{j \geq 0}{\oplus} N_{j}$ as \mathscr{B}-modules. It suffices to examine the \mathscr{B}-module structure of N_{j}. For this purpose the Q_{i}-homology

$$
H_{*}\left(\quad ; Q_{i}\right)=\operatorname{Ker} Q_{i} / \operatorname{Im} Q_{i}
$$

is useful.
Lemma 3.3. For $j \geq 0$ we have
(i)

$$
H_{*}\left(N_{j} ; Q_{0}\right)= \begin{cases}\boldsymbol{Z} / p\{\tilde{1}\} & \text { if } j=0 \\ \boldsymbol{Z} / p\left\{\sigma^{q}\left(\beta_{1}^{p}\right)^{n p-1},\left(\tilde{\beta}_{1}^{p}\right)^{n p}\right\} & \text { if } j=n p(n \geq 1) \\ 0 & \text { otherwise }\end{cases}
$$

(ii)

$$
H_{*}\left(N_{j} ; Q_{1}\right)=\left\{\begin{array}{cl}
\boldsymbol{Z} / p\left\{\sigma^{q} \beta_{2}^{p-1} \cdots \beta_{k+2}^{p-1} \beta_{k+3}^{n_{k}-1} \beta_{k+4}^{n_{k+1} \cdots} \beta_{l+3}^{n_{l}}\right. \\
\tilde{\beta}_{k+3}^{n_{k}} \tilde{\beta}_{k+4}^{\left.n_{k+4} \cdots \tilde{\beta}_{l+3}^{n_{l}}\right\}} & \text { if } j=n p(n \geq 0) \\
0 & \text { otherwise }
\end{array}\right.
$$

where $k=\nu_{p}(n)$ and $n=n_{k} p^{k}+n_{k+1} p^{k+1}+\cdots+n_{l} p^{l}$ is the p-adic expansion of n.
Proof. From $\S 1$ we have a short exact sequence of \mathscr{B}-modules

$$
0 \rightarrow \Sigma^{q} \chi B \rightarrow H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p) \rightarrow \chi B \rightarrow 0
$$

This yields a long exact sequence

$$
\cdots \rightarrow H_{m}\left(H_{*}(\boldsymbol{A} ; \boldsymbol{Z} \mid p) ; Q_{i}\right) \rightarrow H_{m}\left(\chi B ; Q_{i}\right) \xrightarrow{\partial} H_{m-1}\left(\Sigma^{q} \chi B ; Q_{i}\right) \rightarrow \cdots
$$

Since the \mathscr{B}-action on χB is given by

$$
Q_{0}\left(\alpha_{n}\right)=\beta_{n} \quad \text { and } \quad Q_{1}\left(\alpha_{n}\right)=\beta_{n-1}^{p} \quad \text { for } \quad n \geq 2
$$

it follows that

$$
\begin{aligned}
& H_{*}\left(\chi B ; Q_{0}\right)=\boldsymbol{Z} / p\left[\beta_{1}^{p}\right] \quad \text { and } \\
& H_{*}\left(\chi B ; Q_{1}\right)=\otimes_{n \geq 2} \boldsymbol{Z} / p\left[\beta_{n}\right] /\left(\beta_{n}^{p}\right)
\end{aligned}
$$

An inspection of weight shows that to calculate $H_{*}\left(N_{j} ; Q_{i}\right)$ it suffices to determine the behavior of

$$
\begin{aligned}
& H_{2 j(p-1)}\left(\chi B ; Q_{0}\right)=\boldsymbol{Z} / p\left\{\left(\beta_{1}^{p}\right)^{j}\right\} \\
& \downarrow \\
& H_{2 j(p-1)-1}\left(\Sigma^{q} \chi B ; Q_{0}\right)=\boldsymbol{Z} / p\left\{\sigma^{q}\left(\beta_{1}^{p}\right)^{j-1}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& H_{2 v_{p}\left(\left(j_{p}^{2}\right) \mid l\right)(p-1)}\left(\chi B ; Q_{1}\right)=\boldsymbol{Z} / p\left\{\beta_{2}^{j_{0}} \beta_{3}^{j_{1} \cdots} \beta_{s+2}^{j_{s}}\right\} \\
& \int_{H_{2 v_{p}\left(\left(j_{p} p^{2}\right)!\right)(p-1)-(2 p-1)} \partial}\left(\Sigma^{q} \chi B ; Q_{1}\right)=\boldsymbol{Z} / p\left\{\sigma^{q} \beta_{2}^{j_{0}-1} \beta_{3}^{j_{1} \cdots} \beta_{s+2}^{j_{s}}\right\}
\end{aligned}
$$

where $j=j_{0}+j_{1} p+\cdots+j_{s} p^{s}$ is the p-adic expansion of j. By the definition of ∂ and Corollary 3.2, we find that

$$
\begin{aligned}
& \partial\left(\left(\beta_{1}^{p}\right)^{j}\right)=j \cdot \sigma^{q}\left(\beta_{1}^{p}\right)^{j-1} \text { and } \\
& \partial\left(\beta_{2}^{j} \beta_{3}^{j_{1} \cdots} \beta_{s+2}^{j_{s}}\right)= \begin{cases}-j_{0} \cdot \sigma^{q} \beta_{2}^{j_{0}-1} \beta_{3}^{j_{1}} \cdots \beta_{s+2}^{j_{s}} & \text { if } j_{0}>0 \\
0 & \text { if } j_{0}=0 .\end{cases}
\end{aligned}
$$

This gives the result.
It is easy to carry these results to those for the usual \mathscr{B}-action (cf. [7, II]). Hereafter we talk about the usual action.

According to [3,III], there is a classification of finite dimensional \mathcal{B}-modules, which we use implicitly. We fix some notation. Let I be defined by the exact sequence of \mathscr{B}-modules

$$
0 \rightarrow I \rightarrow \mathscr{B} \rightarrow Z \mid p \rightarrow 0
$$

Put $I^{n}=I \otimes_{\mathcal{B}} \cdots \otimes_{\mathcal{R}} I$ (n-factors). Note that $H_{*}\left(I^{n} ; Q_{0}\right)=\boldsymbol{Z} \mid p\left\{{\underset{\beta}{\otimes}}_{\otimes}^{Q_{0}} Q_{0}\right.$ and

The above discussion can be summarized as follows.
Theorem 3.4. As a \mathscr{B}-module, ignoring free summands,

$$
H^{*}(\boldsymbol{A} ; \boldsymbol{Z} / p) \cong \boldsymbol{Z} / p \oplus \oplus_{n \geq 1}\left(\Sigma^{a(n)} I^{b(n)} \oplus \Sigma^{c(n)} I^{d(n)}\right)
$$

where

$$
\begin{aligned}
& a(n)+b(n)=2 n p^{2}(p-1)-1, \\
& b(n)=\nu_{p}\left(\left(n p^{3}\right)!\right)-n p^{2}-\nu_{p}(n)-2, \\
& c(n)+d(n)=2 n p^{2}(p-1), \\
& d(n)=\nu_{p}\left(\left(n p^{3}\right)!\right)-n p^{2} .
\end{aligned}
$$

4. The multiplicative structure on \boldsymbol{A}

The first half of this section is heavily influenced by [18].
Let $\mu: \boldsymbol{G} \wedge \boldsymbol{G} \rightarrow \boldsymbol{G}$ be the product on \boldsymbol{G}. Consider the external product

$$
\times: G^{*}(\boldsymbol{G}) \otimes G^{*}(\boldsymbol{G}) \xrightarrow{\wedge}(G \wedge G)^{*}(\boldsymbol{G} \wedge \boldsymbol{G}) \xrightarrow{\prime \mu_{*}} G^{*}(\boldsymbol{G} \wedge \boldsymbol{G}) .
$$

Lemma 4.1. The element $\theta \in G^{2(\phi-1)}(\boldsymbol{G})$ satisfies

$$
\theta \mu=\left(\Sigma^{2(p-1)} \mu\right)\left(\theta \wedge 1_{G}+1_{G} \wedge \theta+v \theta \wedge \theta\right) .
$$

Proof. Put $1=1_{G} \in G^{0}(\boldsymbol{G})$. By the definition of θ, we have

$$
\psi^{r} *(1 \times 1)=1 \times 1+v_{*} \theta_{*}(1 \times 1)=1 \times 1+v_{*}(\theta \mu) .
$$

On the other hand, since ψ^{r} is multiplicative and \times is bilinear, we have

$$
\begin{aligned}
\psi^{r} *(1 \times 1) & =\psi^{r} * \mu_{*}(1 \wedge 1)=\mu_{*}\left(\psi^{r} \wedge \psi^{r}\right)_{*}(1 \wedge 1) \\
& =\psi^{r} *(1) \times \psi^{r} *(1) \\
& =\left(1+v_{*} \theta_{*}(1)\right) \times\left(1+v_{*} \theta_{*}(1)\right) \\
& =1 \times 1+v_{*}\left(\theta_{*}(1) \times 1+1 \times \theta_{*}(1)+v \theta_{*}(1) \times \theta_{*}(1)\right) \\
& =1 \times 1+v_{*}\left(\left(\Sigma^{2(p-1)} \mu\right)(\theta \wedge 1+1 \wedge \theta+v \theta \wedge \theta)\right) .
\end{aligned}
$$

Since $v_{*}: \boldsymbol{G}^{2(p-1)}(\boldsymbol{G} \wedge \boldsymbol{G}) \rightarrow G^{0}(\boldsymbol{G} \wedge \boldsymbol{G})$ is injective, the result follows.

Lemma 4.2. We have

(i) $\left[\boldsymbol{A}, \Sigma^{2 p-3} \boldsymbol{G}\right]=0$.
(ii) $\left[\boldsymbol{A} \wedge \boldsymbol{A}, \Sigma^{2 p-3} \boldsymbol{G}\right]=0$.

Proof. Consider the Adams spectral sequence $\left\{E_{r}^{s, t}, d_{r}\right\}$ converging to $G^{*}(\boldsymbol{X})$, where $\boldsymbol{X}=\boldsymbol{A}$ or $\boldsymbol{A} \wedge \boldsymbol{A}$. It has the form

$$
E_{2^{s, t}} \cong \operatorname{Ext}_{\mathcal{B}}^{s, t}\left(\boldsymbol{Z} / p, H^{*}(\boldsymbol{X} ; \boldsymbol{Z} / p)\right) \Rightarrow G^{t-s}(\boldsymbol{X})
$$

(For this details see [3, III].) In view of Theorem 3.4 (where a similar result for $\boldsymbol{A} \wedge \boldsymbol{A}$ follows from this and the Künneth theorem), all we need to do is the calculation of $\operatorname{Ext}_{\mathcal{B}}^{*}, *(\boldsymbol{Z} / p, M)$ for $M=\Sigma^{m} \mathscr{B}, \Sigma^{m} \boldsymbol{Z} / p, \Sigma^{m} I^{n}$ and their direct sums. As is well known, for all \mathscr{B}-modules M and N,

$$
\begin{aligned}
& \operatorname{Ext}_{\mathcal{B}}^{s, t}(\boldsymbol{Z} \mid p, M \oplus N) \cong \operatorname{Ext}_{\mathcal{B}}^{s, t}(\boldsymbol{Z} / p, M) \oplus \operatorname{Ext}_{\mathcal{B}}^{s, t}(\boldsymbol{Z} \mid p, N) \\
& \operatorname{Ext}_{\mathcal{B}}^{s, t}\left(\boldsymbol{Z} \mid p, \Sigma^{m} N\right) \cong \operatorname{Ext}_{\mathcal{B}}^{s, m+t}(\boldsymbol{Z} \mid p, N)
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Ext}_{\mathcal{B}}^{*, *}(\boldsymbol{Z} / p, \mathcal{B}) \cong \boldsymbol{Z} / p\{z\} \quad \text { where } \quad|\boldsymbol{z}|=(0,-2 p) \\
& \operatorname{Ext}_{\mathcal{\beta}}^{*, *}(\boldsymbol{Z} / p, \boldsymbol{Z} / p) \cong \boldsymbol{Z} / p\left[q_{0}, q_{1}\right] \quad \text { where } \quad\left|q_{i}\right|=\left(1,2 p^{i}-1\right) \\
& \operatorname{Ext}_{\mathcal{B}}^{s, t}\left(\boldsymbol{Z} / p, I^{n}\right) \cong \operatorname{Ext}_{\mathcal{B}}^{s-n, t}(\boldsymbol{Z} / p, \boldsymbol{Z} / p) .
\end{aligned}
$$

Using these data, one can describe the figure of $E_{2}^{* / *}$; in particular, we have $E_{2}^{s . t}=0$ if $t-s=2 p-3$. This implies the result.

Theorem 4.3. \boldsymbol{A} is a ring spectrum and $\eta: \boldsymbol{A} \rightarrow \boldsymbol{G}$ is a map of ring spectra. The product on \boldsymbol{A} satisfying such property is unique.

Proof. Consider the exact sequence

$$
0 \rightarrow[\boldsymbol{A} \wedge \boldsymbol{A}, \boldsymbol{A}] \xrightarrow{\eta_{*}}[\boldsymbol{A} \wedge \boldsymbol{A}, \boldsymbol{G}] \xrightarrow{\theta_{*}}\left[\boldsymbol{A} \wedge \boldsymbol{A}, \Sigma^{2(p-1)} \boldsymbol{G}\right]
$$

where we have used Lemma 4.2 (ii). By Lemma 4.1 we have

$$
\begin{aligned}
\theta_{*}(\mu(\eta \wedge \eta)) & =\theta \mu(\eta \wedge \eta) \\
& =\left(\Sigma^{2(p-1)} \mu\right)\left(\theta \wedge 1_{G}+1_{G} \wedge \theta+v \theta \wedge \theta\right)(\eta \wedge \eta)
\end{aligned}
$$

which is clearly equal to zero, since $\theta_{\eta}=0$. Hence there exists a unique $\hat{\mu} \in[\boldsymbol{A} \wedge \boldsymbol{A}, \boldsymbol{A}]$ such that $\eta \hat{\mu}=\mu(\eta \wedge \eta)$.

Let $\iota: \mathbf{S}^{0} \rightarrow \boldsymbol{G}$ be the unit on \boldsymbol{G}. Then there is a unique $\hat{\iota} \in\left[\mathbf{S}^{0}, \boldsymbol{A}\right]$ such that $\eta \hat{\imath}=\iota($ see (0.5)). Consider the exact sequence

$$
0 \rightarrow\left[\mathbf{S}^{0} \wedge \boldsymbol{A}, \boldsymbol{A}\right] \xrightarrow{\eta_{*}}\left[\mathbf{S}^{0} \wedge \boldsymbol{A}, \boldsymbol{G}\right]
$$

where we have used Lemma 4.2 (i). Then we have

$$
\begin{aligned}
\eta_{*}\left(\hat{\mu}\left(\hat{\iota} \wedge 1_{A}\right)\right) & =\eta \hat{\mu}\left(\hat{\iota} \wedge 1_{A}\right)=\mu(\eta \wedge \eta)\left(\hat{\iota} \wedge 1_{A}\right) \\
& =\mu(\iota \wedge \eta)=\mu\left(\iota \wedge 1_{G}\right)\left(1_{S^{0}} \wedge \eta\right) \\
& =\eta=\eta_{*}\left(1_{A}\right) .
\end{aligned}
$$

This proves that $\hat{\mu}\left(\hat{\imath} \wedge 1_{A}\right)=1_{A}$. Another equation $\hat{\mu}\left(1_{A} \wedge \hat{\imath}\right)=1_{A}$ is obtained similarly.

Lemma 4.4. Under the above notation we have
(i) $\hat{\mu}\left(1_{A} \wedge \Delta\right)=\Delta\left(\Sigma^{2 p-3} \mu\right)\left(\Sigma^{2 p-3} \eta \wedge 1_{G}\right)$.
(ii) $\hat{\mu}\left(\Delta \wedge 1_{A}\right)=\Delta\left(\Sigma^{2 p-3} \mu\right)\left(\Sigma^{2 p-3} 1_{G} \wedge \eta\right)$.

Proof. Because an argument is quite parallel, we show (ii) only. By smashing (0.6) to the right with \boldsymbol{A}, we have a diagram

in which rows are fibre sequences. Part (2) commutes by Theorem 4.3. To prove the commutativity of part (1), it suffices to show that of part (3). But by Lemma 4.1 we have

$$
\begin{aligned}
\theta \mu\left(1_{G} \wedge \eta\right) & =\left(\Sigma^{2 p-2} \mu\right)\left(\theta \wedge 1_{G}+1_{G} \wedge \theta+v \theta \wedge \theta\right)\left(1_{G} \wedge \eta\right) \\
& =\left(\Sigma^{2 p-2} \mu\right)(\theta \wedge \eta) \\
& =\left(\Sigma^{2 p-2} \mu\right)\left(\Sigma^{2 p-2} 1_{G} \wedge \eta\right)\left(\theta \wedge 1_{A}\right)
\end{aligned}
$$

Let us consider $\tilde{A}_{*}\left(C P^{\infty}\right)$. Since G-theory is complex oriented, $\tilde{G}_{n}\left(C P^{\infty}\right)=0$ if n is odd. From (0.6) we have an exact sequence

$$
0 \rightarrow \tilde{A}_{2 n}\left(C P^{\infty}\right) \xrightarrow{\eta} \widetilde{G}_{2 n}\left(C P^{\infty}\right) \xrightarrow{\theta} \widetilde{G}_{2 n-2(p-1)}\left(C P^{\infty}\right) \xrightarrow{\Delta} A_{2 n-1}\left(C P^{\infty}\right) \rightarrow 0
$$

for all $n \geq 0$ (where of course $\eta=\left(\eta \wedge 1_{C P^{\infty}}\right)_{*}$ etc.). Thus we may use the following notation:

$$
\begin{array}{lll}
\eta(\tilde{x})=x & \text { for } & x \in \operatorname{Ker} \theta \\
\Delta(x)=\bar{x} & \text { for } & x \in \bar{G}_{*}\left(C P^{\infty}\right)
\end{array}
$$

The multiplication $m: C P^{\infty} \times C P^{\infty} \rightarrow C P^{\infty}$ induces a product - on $G^{\kappa} *\left(C P^{\infty}\right)$ and a product $*$ on $\tilde{A}_{*}\left(C P^{\infty}\right)$.

Theorem 4.5. The following formulas hold.
(i) $\tilde{x} * \tilde{y}=x \cdot y$.
(ii) $\tilde{x} * \bar{y}=\overline{x \cdot y}$.
(iii) $\bar{x} * \tilde{y}=\overline{x \cdot y}$.
(iv) $\bar{x} * \bar{y}=0$.

Proof. Since η is multiplicative by Theorem 4.3, (i) follows.
Similarly, using $\eta \Delta=0$, we have

$$
\eta(\bar{x} * \bar{y})=\eta(\bar{x}) * \eta(\bar{y})=\eta \Delta(x) * \eta \Delta(y)=0
$$

which proves (iv).
For (ii), by definition and Lemma 4.4 (i), we have

$$
\begin{aligned}
\tilde{x} * \bar{y} & =m_{*}(\tilde{x} \times \bar{y})=m_{*} \hat{\mu}(\tilde{x} \wedge \bar{y}) \\
& =m_{*} \hat{\mu}\left(\tilde{x} \wedge \Delta\left(\Sigma^{2 p-3} y\right)\right) \\
& =m_{*} \hat{\mu}\left(1_{A} \wedge \Delta\right)\left(\Sigma^{2 p-3} \tilde{x} \wedge y\right) \\
& =m_{*} \Delta\left(\Sigma^{2 p-3} \mu\right)\left(\Sigma^{2 p-3} \eta \wedge 1_{G}\right)\left(\Sigma^{2 p-3} \tilde{x} \wedge y\right) \\
& =m_{*} \Delta\left(\Sigma^{2 p-3} \mu\right)\left(\Sigma^{2 p-3} x \wedge y\right) \\
& =m_{*} \Delta\left(\Sigma^{2 p-3} x \times y\right) \\
& =\Delta\left(\Sigma^{2 p-3} m_{*}(x \times y)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\Delta\left(\Sigma^{2 p-3} x \cdot y\right) \\
& =\overline{x \cdot y} .
\end{aligned}
$$

Similarly (iii) follows from Lemma 4.4 (ii).
Remark. The argument of this section assures us that the same formulas as above hold with respect to the fibre sequences (0.3) and

$$
A Z \mid p \rightarrow b u Z / p \rightarrow \Sigma^{2} b u Z / p
$$

where $\boldsymbol{X} \boldsymbol{Z} / p$ represents the $\bmod p X$-theory $(c f .[15, \mathrm{p} .254])$.

References

[1] J.F. Adams: On the groups $J(X)$-II, Topology 3 (1965), 137-171.
[2] J.F. Adams: Lectures on generalised cohomology, Lecture Notes in Math. vol. 99, Springer, 1969, 1-138.
[3] J.F. Adams: Stable homotopy and generalised homology, Chicago Lectures in Math., Univ. of Chicago Press, 1974.
[4] S. Araki: Typical formal groups in complex cobordism and K-theory, Lectures in Math. vol. 6, Kyoto Univ., Kinokuniya, 1973.
[5] D.M. Davis: The cohomology of the spectrum bJ, Bol. Soc. Mat. Mexicana 20 (1975), 6-11.
[6] D.C. Johnson and W.S. Wilson: Projective dimension and Brown-Peterson homology, Topology 12 (1973), 327-353.
[7] R. Kane: Operations in connective K-theory, Mem. Amer. Math. Soc. no. 254, 1981.
[8] K. Knapp: Some applications of K-theory to framed bordism: e-invariant and transfer, Habilitationsschrift, Univ. of Bonn, 1979.
[9] J.L. Loday: K-théorie algébrique et représentations de groupes, Ann. Sci. École Norm. Sup. 9 (1976), 309-377.
[10] M. Mahowald and R.J. Milgram: Operations which detuct $S q^{4}$ in connective K-thcory and their applications, Quart. J. Math. Oxford 27 (1976), 415-432.
[11] J.P. May: E_{∞}-spaces, group completions and permutative categories, London Math. Soc. Lecture Note Ser. no. 11, Cambridge Univ. Press, 1974, 61-94.
[12] J.P. May: E_{∞}-ring spaces and E_{∞}-ring spectra, Lecture Notes in Math. vol. 577, Springer, 1977.
[13] J.W. Milnor: The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150171.
[14] F.P. Peterson: Lectures on cobordism theory, Lectures in Math. vol. 1, Kyoto Univ., Kinokuniya, 1968.
[15] L. Schwartz: Opérations d'Adams en K-homologie et applications, Bull. Soc. Math. France 109 (1981), 237-257.
[16] N. Shimada and T. Yamanoshita: On triviality of the $\bmod p$ Hopf invariant, Japan. J. Math. 31 (1961), 1-25.
[17] L. Smith: Operations in mod p connective K-theory and the J-homomorphism, Duke Math. J. 39 (1972), 623-631.
[18] L. Smith: Secondary cohomology theories, Indiana Univ. Math. J. 23 (1974), 899-923.
[19] J. Tornehave: The splitting of spherical fibration theory at odd primes, Preprint series no. 28, Aarhus, 1972/73.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan

