PSEUDO-RANK FUNCTIONS ON CROSSED PRODUCTS OF FINITE GROUPS OVER REGULAR RINGS

Jiro KADO
(Received November 16, 1984)

Let R be a regular ring with a pseudo-rank function. The collection of all pseudo-rank functions of R (See [2, Ch. 17]) is denoted by $P(R)$ which is a compact convex set, and the extreme boundary of $P(R)$ is denoted by $\partial_{e} P(R)$. Our main objective is to study a crossed product $R^{*} G$ of a finite multiplicative group G over a regular ring R. A crossed product $R^{*} G$ of G over R is an associative ring which is a free left R-module containing an element $x \in R^{*} G$ for each $x \in G$ and the set generated by the symbols $\{x: x \in G\}$ is a basis of $R^{*} G$ as a left R-module. Hence every element $\alpha \in R^{*} G$ can be uniquely written as a sum $\alpha=\sum_{x \in G} r_{x} x$ with $r_{x} \in R$. The addition in $R^{*} G$ is the obvious one and the multiplication is given by the formulas

$$
\bar{x} \bar{y}=t(x, y) \overline{x y} \quad r \bar{x}=\bar{x} r^{\tilde{x}}
$$

for all $x, y \in G$ and $r \in R$. Here the twisting $t: G \times G \rightarrow U(R)$ is a map from $G \times G$ to the group of units of R and for fixed $x \in G$, the map $\tilde{x}: r \rightarrow r^{\tilde{x}}$ is an automorphism of R. We assume throughout this note that the order $|G|$ of G is invertible in R. The Lemma 1.1 of [9] implies that $R^{*} G$ is also a regular ring. First we will study the question whether a pseudo-rank function P of R can be extended to one of $R^{*} G$. We shall show that P is extensible to $R^{*} G$ if and only if P is G-invariant, i.e., $P(r)=P\left(r^{\tilde{x}}\right)$ for all $r \in R$ and $x \in G$. More precisely for a G-invariant pseudo-rank function P, put $P^{G}(\alpha)=|G|^{-1} \sum_{1}^{n} P\left(r_{i}\right)$ for $\alpha \in R^{*} G$ if ${ }_{R}\left(R^{*} G \alpha\right) \cong \oplus_{1}^{n} R r_{i}$, where $r_{i} \in R$. Then P^{G} is a desired one of P.
R admits a pseudo-metric topology induced by each $P \in P(R)$. In [2, Ch. 19], K.R. Goodearl has studied the structure of the completion of R with respect to P-metric. Let \bar{R} be the P-completion of R, let \bar{P} be the extension of P on \bar{R} and let $\phi: R \rightarrow \bar{R}$ be the natural ring map, Our theorems are following:
(1) There exists a crossed product $\bar{R} * G$ and a ring map $\bar{\phi}: R^{*} G \rightarrow \bar{R}^{*} G$ such that the following diagram commute

and \bar{P} is also G-invariant and we have $P^{G}=(\bar{P})^{G} \bar{\phi}$
(2) If P is in $\partial_{e} P(R)$, then $\bar{R}^{*} G$ is a P^{G}-completion of $R^{*} G$ and $(\bar{P})^{G}$ is an extension of P^{G}. We have that $P^{G}=\sum_{1}^{n} \alpha_{i} N_{i}$, where $N_{i} \in \partial_{e} P\left(R^{*} G\right)$ and $0<\alpha_{i}<1$ and $\sum_{1}^{n} \alpha_{i}=1$.

Let $\theta: P\left(R^{*} G\right) \rightarrow P(R)$ be the natural restriction-map and we use $\left.N\right|_{R}$ to denote the image of $N \in P\left(R^{*} G\right)$ by θ. We shall show that for any $N \in$ $\partial_{e} P\left(R^{*} G\right)$, there exists some positive real number $\alpha \leq 1$ and some $N^{\prime} \in P\left(R^{*} G\right)$ such that $\left(\left.N\right|_{R}\right)^{G}=\alpha N+(1-\alpha) N^{\prime}$.

In the second section we study types of crossed products of finite groups G over directly finite, left self-injective, regular rings R. We shall show that $R^{*} G$ is of Type $I I_{f}$ if and only if R is of Type $I I_{f}$.

In the final section we study the fixed ring of a finite group of automorphisms of a regular ring. We shall show that for any $P \in \partial_{e} P(R),\left.P\right|_{R^{\sigma}}$ is a finite convex combination of distinct extremal elements in $\partial_{e} P\left(R^{G}\right)$. Under the assumption that R is a finitely generated projective right R^{G}-module, we shall show that for any extremal element $Q \in \partial_{e} P\left(R^{G}\right)$, there exist some $P \in P(R)$ some $Q^{\prime} \in P\left(R^{G}\right)$ and some real number $0<\alpha \leqq 1$ such that $\left.P\right|_{R^{G}}=\alpha Q+(1-\alpha) Q^{\prime}$.

1. Extensions of pseudo-rank functions

Let R be a regular ring and we use $F P(R)$ to denote the set of all finitely generated projective left R-modules. For modules $A, B, A \leqq B$ implies that A is isomorphic to a submodule of B.

Definition [2, p. 226]. A pseudo-rank function on R is a map $N: R \rightarrow[0,1]$ such that
(1) $N(1)=1$.
(2) $N(r s) \leqq N(r)$ and $N(r s) \leqq N(s)$ for all $r, s \in R$.
(3) $N(e+f)=N(e)+N(f)$ for all orthogonal idempotents $e, f \in R$.

If, in addition
(4) $N(r)>0$ for all non-zero $r \in R$,
then N is called a rank function. We use $B(R)$ to denote the set of all pseudorank functions on R.

Definition [2, p. 232]. A dimension function on $F P(R)$ is a map $D: F P(R)$
$\rightarrow \boldsymbol{R}^{+}$such that
(1) $D\left({ }_{R} R\right)=1$
(2) If $A, B \in F P(R)$ and $A \leqq B$, then $D(A) \leqq D(B)$.
(3) $D(A+B)=D(A)+D(B)$ for all $A, B \in F P(R)$.

Let $D(R)$ denote the set of all dimension functions on $F P(R)$.
Pseudo-rank functions on R and dimension functions on $F P(R)$ are equivalent functions as follows.

Lemma 1 [2, Prop. 16.8]. There is a bijection $\Gamma_{R}: P(R) \rightarrow D(R)$ such that $\Gamma_{R}(P)(R r)=P(r)$ for all $P \in P(R)$ and $r \in R$.

We always view R as a subring $R^{*} G$ via the embedding $r \rightarrow r 1$. Then there exists a restriction-map $\theta: P\left(R^{*} G\right) \rightarrow P(R)$. We consider the same connections between $D\left(R^{*} G\right)$ and $D(R)$. For all $D \in D\left(R^{*} G\right)$ and $A \in F P(R)$, define $\left(\left.D\right|_{R}\right)(A)=D\left(R^{*} G \otimes_{R} A\right)$. We can easily see that $\left.D\right|_{R}$ is a dimension function on $F P(R)$ and $\left.\Gamma_{R^{*} G}(N)\right|_{R}=\Gamma_{R}\left(\left.N\right|_{R}\right)$.

Lemma 2. Let N be in $P\left(R^{*} G\right)$ and D be in $D\left(R^{*} G\right)$. Then we have that $\left(\left.N\right|_{R}\right)(r)=\left(\left.N\right|_{R}\right)\left(r^{\tilde{x}}\right)$ and that $\left(\left.D\right|_{R}\right)(R r)=\left(\left.D\right|_{R}\right)\left(R r^{\tilde{x}}\right)$ for all $r \in R$ and all $x \in G$.

Proof. Since $R^{*} G \otimes_{R} R r \cong R^{*} G r \cong R^{*} G x^{-1} r x=R^{*} G r x \cong R^{*} G \otimes_{R} R r^{\tilde{x}}$, we have $\left(\left.D\right|_{R}\right)(R r)=\left(\left.D\right|_{R}\right)\left(R r^{\tilde{\tilde{r}}}\right)$ and $\left(\left.N\right|_{R}\right)(r)=\left(\left.N\right|_{R}\right)\left(r^{\tilde{x}}\right)$.

Now we shall define an extended dimension function on $R^{*} G$ for a G invariant $D \in D(R)$. Note that for $A \in F P\left(R^{*} G\right),{ }_{R} A \in F P(R)$.

Proposition 3. Let D be a G-invariant dimension function on $\operatorname{FP}(R)$. Put $D^{G}(A)=|G|^{-1} D\left({ }_{R} A\right)$ for all $A \in F P\left(R^{*} G\right)$. Then D^{G} is a dimension function on $F P\left(R^{*} G\right)$ and $\left.D^{G}\right|_{R}=D$.

Proof. Since ${ }_{R}\left(R^{*} G\right)$ isomorphic to $|G|$ copies of $R, D^{G}\left(R^{*} G\right)=1$. We can easily check that D^{G} satisfies the properties (2) and (3). Since ${ }_{R}\left(R^{*} G r\right) \cong$ $\oplus_{x \in G} R r^{\tilde{x}}$ and D is G-invariant, then we have $D^{G}\left(R^{*} G r\right)=|G|^{-1} \sum_{x \in G} D\left(R r^{\tilde{x}}\right)=$ $D(R r)$ for all $r \in R$. Every $A \in F P(R)$ is isomorphic to a finite direct sum of cyclic left ideals of R. Therefore we have $\left(\left.D^{G}\right|_{R}\right)(A)=D(A)$ for all $A \in F P(R)$.

Corollary 4. Let P be a G-invariant pseudo-rank function on R. Define $P^{G}(\alpha)=\left(\Gamma_{R}(P)\right)^{G}\left(R^{*} G \alpha\right)$ for all $\alpha \in R^{*} G$, then
(1) P^{G} is a pseudo-rank function on $R^{*} G$ and $\left.P^{G}\right|_{R}=P$
(2) We have $P^{G}(\alpha)=|G|^{-1} \sum_{1}^{n} P\left(r_{i}\right)$, if ${ }_{R}\left(R^{*} G \alpha\right) \cong \oplus_{1}^{n} R r_{i}$, where $r_{i} \in R$.

Proof. (1) is clear by lemma 1 and Proposition 3. Recall that $\Gamma_{R}(P)$ is G-invariant dimension function on $F P(R)$ by Lemma 1 . Since $P^{G}(\alpha)=$ $\left.\left.|G|^{-1} \Gamma_{R}(P)\right)_{R}\left(R^{*} G \alpha\right)\right)=|G|^{-1} \sum_{1}^{n} \Gamma_{R}(P)\left(R r_{i}\right)=|G|^{-1} \sum_{1}^{n} P\left(r_{i}\right)$, we have completed the proof.

Lemma 5. Let N be a pseudo-rank function on $R^{*} G$. Then we have that $N(\alpha) \leqq|G|\left(\left.N\right|_{R}\right)^{G}(\alpha)$ for all $\alpha \in R^{*} G$.

Proof. Put $\left.N\right|_{R}=P$. Since $\left.\Gamma_{R^{*} G}(N)\right|_{R}=\Gamma_{R}(P)$, then we have $\left.\Gamma_{R}(P){ }_{R}\left(R^{*} G \alpha\right)\right)=\left(\left.\Gamma_{R^{*} G}(N)\right|_{R}\right)\left(\left(_{R}\left(R^{*} G \alpha\right)\right)=\Gamma_{R^{*} G}(N)\left(R^{*} G \otimes_{R} R^{*} G \alpha\right)\right.$. On the other hand, there exists a natural epimorphism $\left(R^{*} G \otimes_{R} R^{*} G \alpha\right) \rightarrow R^{*} G \alpha$. Since this map splits, we have $N(\alpha)=\Gamma_{R^{*} G}(N)\left(R^{*} G \alpha\right) \leqq \Gamma_{R^{*} G}(N)\left(R^{*} G \otimes_{R} R^{*} G \alpha\right)$. We have obtained that $N(\alpha) \leqq|G| P^{G}(\alpha)$ by Corollary 4.

Definition [2, Ch. 19]. Let P be in $P(R) . \quad R$ admits a pseudo-metric δ by the rule: $\delta(r, s)=P(r-s)$. Note that δ is a metric if and only if P is a rank function. We call δ the P-metric. Let \bar{R} be the completion of R with respect to δ and we call it the P-completion of $R . \quad \bar{R}$ is a unit-regular, left and right self-injective ring by [2, Th. 19.7]. There exists a natural ring map $\phi: R \rightarrow \bar{R}$ and a continuous map $\bar{P}: \bar{R} \rightarrow[0,1]$ such that $\bar{P} \phi=P$. By [23, Th. 19.6], \bar{P} is a rank function on \bar{R}. Put ker $P=\{r \in R: P(r)=0\}$, which is a two-sided ideal. P induces the rank function \tilde{P} on $R / \operatorname{ker} P$. Then R is equal to the \tilde{P}-completion of $R / \operatorname{ker} P$ and $\operatorname{ker} \phi=\operatorname{ker} P$.

Now let $R^{*} G$ be a given crossed product of a finite group G over a regular ring R and let P be a G-invariant pseudo-rank function. Since P is G-invariant, ker P is G-invariant ideal and therefore each automorphism \tilde{x} induces an automorphism $\tilde{\tilde{x}}$ of $R / \operatorname{ker} P$ and $\tilde{\tilde{x}}$ is uniformly continuous with respect to the induced metric. Consequently we have an automorphism of \bar{R}, which is again denoted by \tilde{x}, such that $\phi(r)^{\tilde{x}}=\phi\left(r^{\tilde{x}}\right)$ for all $r \in R$. Let a map $t^{\prime}: G \times G \rightarrow U(\bar{R})$ be $t^{\prime}(x, y)=\phi(t(x, y))$ for all $x, y \in G$. Here of course $t: G \times G \rightarrow U(R)$ is the given map for $R^{*} G$. We define a crossed product $\bar{R}^{*} G$ of G over \bar{R} using multiplication formula $(a \bar{x})(b \bar{y})=\left(a b^{\tilde{x}-1} t^{\prime}(x, y)\right) \overline{x y}$ for $a, b \in R$ and $x, y \in G$, and define a map $\bar{\phi}: R^{*} G \rightarrow \bar{R}^{*} G$ by the rule: $\bar{\phi}\left(\sum_{x \in G} \boldsymbol{r}_{x} \bar{x}\right)=\sum_{x \in G} \phi\left(r_{x}\right) \bar{x}$. Then $\bar{\phi}$ is a ring homomorphism and the following diagram is commutative

Proposition 6. Let P be a G-invariant pseudo-rank function on R, let \bar{R} be a P-completion, let \bar{P} be a continuous extension of P and let $\phi: R \rightarrow \bar{R}$ the natural map. Then we have the relationship between P^{G} and $(\bar{P})^{G}$ such that the following diagram is commutative

$$
\begin{aligned}
& R^{*} G \xrightarrow{P^{G}}[0,1] \\
& \bar{\phi} \mid \\
& \bar{R}^{*} G \xrightarrow{(\bar{P})^{G}}[0,1]
\end{aligned}
$$

Proof. For $\alpha \in R^{*} G$, we assume that ${ }_{R}\left(R^{*} G \alpha\right) \cong \oplus_{1}^{n} R r_{i}$, where $r_{i} \in R$. We have

$$
\begin{aligned}
\Gamma_{\bar{R}}(\bar{P})\left(\bar{R}\left(\bar{R} \otimes_{R} R^{*} G \alpha\right)\right. & =\Gamma_{\bar{R}}(\bar{P})\left(\oplus_{1}^{n} \bar{R} \phi\left(r_{i}\right)\right) \\
& =\sum_{1}^{n} \Gamma_{\bar{R}}(\bar{P})\left(\bar{R} \phi\left(r_{i}\right)\right) \\
& =\sum_{1}^{n} \Gamma_{R}(P)\left(R r_{i}\right) \\
& =\Gamma_{R}(P)\left({ }_{R}\left(R^{*} G \alpha\right)\right) \cdots(*)
\end{aligned}
$$

Consider the natural map v: $\bar{R} \otimes_{R}\left(R^{*} G \alpha\right) \rightarrow \bar{R} \bar{\phi}\left(R^{*} G \alpha\right)=(\bar{R} * G) \bar{\phi}(\alpha)$.
Since v is an epimorphism as a \bar{R}-module, we have

$$
{ }_{\bar{R}}\left(\left(\bar{R}^{*} G\right) \bar{\phi}(\alpha)\right) \leq \bar{R} \otimes_{R}\left(R^{*} G \alpha\right)
$$

Therefore we have

$$
\begin{aligned}
(\bar{P})^{G}(\bar{\phi}(\alpha)) & =\left(\Gamma_{\bar{R}}(\bar{P})\right)^{G}\left(\left(\bar{R}^{*} G\right) \bar{\phi}(\alpha)\right) \\
& =|G|^{-1} \Gamma_{\bar{R}}(\bar{P})\left(\bar{R}^{(}\left(\bar{R}^{*} G\right) \bar{\phi}(\alpha)\right) \\
& \leqq|G|^{-1} \Gamma_{\bar{R}}(\bar{P})\left(\overline{\bar{R}}\left(\bar{R} \otimes_{R}\left(R^{*} G \alpha\right)\right)\right. \\
& =|G|^{-1} \Gamma_{R}(P)\left(_{R}\left(R^{*} G \alpha\right)\right) \cdots(\text { by }(*)) \\
& =P^{G}(\alpha) .
\end{aligned}
$$

Since $(\bar{P})^{G}(\bar{\phi}(\alpha)) \leqq P^{G}(\alpha)$ for all $\alpha \in R^{*} G$, we have $(\bar{P})^{G} \bar{\phi}=P^{G}$ by [2, Lemma 16.13].

Definition [2, Ch. 16 and Appendix]. For a regular ring R, we view $P(R)$ as a subset of the real vector space \boldsymbol{R}^{R}, which we equip with the product topology. Then $P(R)$ is a compact convex subset of \boldsymbol{R}^{R} by [2, Prop. 16.17]. A extreme point of $P(R)$ is a point $P \in P(R)$ which cannot be expressed as a positive convex combination of distinct two points of $P(R)$. We use $\partial_{e} P(R)$ to denote the set of all extreme points of $P(R)$. The important result is that $P(R)$ is equal to the closure of the convex hull of $\partial_{e} P(R)$ by Krein-Milman Theorem.

Theorem 7. Let $R^{*} G$ be a crossed product of a finite group G over a regular ring R with $|G|^{-1} \in R$. Let P be a G-invariant extreme point of $P(R)$, let \bar{R} be the P-completion of R, let $\phi: R \rightarrow \bar{R}$ be the natural ring map and let \bar{P} be the continuous extension of P over \bar{R}.
(1) The crossed product $\bar{R}^{*} G$ of G over \bar{R} defined above, is the completion of $R^{*} G$ with respect to P^{G}-metric.
(2) The extension P^{G} can be expressed as a positive convex combination of finite distinct elements in $\partial_{e}\left(R^{*} G\right)$, i.e., $P^{G}=\sum_{1}^{n} \alpha_{i} N_{i}$, where $N_{i} \in \partial_{e} P\left(R^{*} G\right)$, $0<\alpha_{i}<1$ and $\sum_{1}^{n} \alpha_{i}=1$.

Proof. Since $P \in \partial_{e} P(R), \bar{R}$ is a simple, left and right self-injective, regular
ring by [2, Th. 19.2 and Th. 19.14]. Since $|G|$ is invertible in \bar{R}, we can easily check that $\bar{R}^{*} G$ is self-injective on both sides by the routin way. Since \bar{R} is a simple ring, $\bar{R}^{*} G$ is a finite direct product of simple rings by [8, Cor. 3.10]. Therefore, by [2, Cor. 21.12 and Th. 21.13], $R^{*} G$ is complete with respect to the metric induced by any rank function and so is especially with respect to the $(\bar{P})^{G}$-metric. We have already shown that $(\bar{P})^{G} \bar{\phi}=P^{G}$ by Proposition 6. Finally we shall show that $\operatorname{Im} \bar{\phi}$ is dense in $\bar{R}^{*} G$ with respect to $(\bar{P})^{G}$-metric. For any $\alpha=\sum_{x \in G} a_{x} \bar{x} \in \bar{R}^{*} G$ and any $\varepsilon>0$, there exist $r_{x} \in R$ for each a_{x} such that $\bar{P}\left(a_{x}-\phi\left(r_{x}\right)\right)<\varepsilon|G|^{-1}$. Put $\beta=\sum_{x \in G} r_{x} x$. Then we have that

$$
\begin{aligned}
(\bar{P})^{G}(\alpha-\bar{\phi}(\beta)) & =(\bar{P})^{G}\left(\sum_{x \in G}\left(a_{x}-\phi\left(r_{x}\right)\right) \bar{x}\right) \\
& \leqq \sum_{x \in G}(\bar{P})^{G}\left(\left(a_{x}-\phi\left(r_{x}\right)\right) \bar{x}\right) \\
& \leqq \sum_{x \in G}(\bar{P})^{G}\left(\left(a_{x}-\phi\left(r_{x}\right)\right)\right. \\
& <\varepsilon .
\end{aligned}
$$

Thus we have completed the proof of (1). Since the P^{G}-completion $\bar{R}^{*} G$ of $R^{*} G$ is a finite direct product of simple rings, P^{G} is a positive convex combination of finite distinct extreme points in $P\left(R^{*} G\right)$ by [2, Th. 19.19].

A simple, left and right self-injective, regular ring R has a unique rank function N and it is complete with respect to N-metric and these rings are classified into two types according to the range of N, namely
(1) R is artinian if and only if the range of N is a finite set.
(2) R is non-artinian if and only if the range of N equal to [0,1] ([4]).

For a given $Q \in \partial_{e} P(R)$, the Q-completion \bar{R} of a regular ring R is a simple, left and right self-injective, regular ring by [2, Th. 19.14]. Hence we call Q to be discrete if \bar{R} is artinian and to be continuous if \bar{R} is non-artinian.

Definition. Let P be a G-invariant pseudo-rank function on R. If $P^{G}=\sum_{1}^{n} \alpha_{i} N_{i}$, where $N_{i} \in \partial_{e} P\left(R^{*} G\right), 0<\alpha_{i}<1$ and $\sum_{1}^{n} \alpha=1$, then we call N_{1}, \cdots, N_{t} to be associated with P.

Proposition 8. For a given crossec product $R^{*} G$, let P be a G-invariant extremal pseudo-rank function on R and let N_{1}, \cdots, N_{t} be extremal pseudo-rank functions associated with P. Then the following conditions are equivalent:
(1) P is discrete.
(2) N_{i} is discrete for some i.
(3) N_{j} is discrete for all $j=1, \cdots, t$.

Consequently the following conditions are also equivalent:
(1) P is continuous.
(2) N_{i} is continuous for some i.
(3) N_{j} is continuous for all $j=1, \cdots, t$.

Proof. Let \bar{R} be the P-completion of R and let \bar{P} be the extension of P on R. By Theorem 7, the crosseds product $\bar{R}^{*} G$ is the P^{G}-completion of $R^{*} G$ and $(\bar{P})^{G}$ is the extension of P^{G}. Let \bar{N}_{i} be the continuous extension of N_{i} on $\bar{R}^{*} G$. The each ker \bar{N}_{i} is a maximal two-sided ideal and each $\bar{R} * G / \operatorname{ker} \bar{N}_{i}$ is a regular, left and right self-injective ring by [2, Th. 9.13]. Since $0=\operatorname{ker}(\bar{P})^{G}$ $=\cap_{i=1}^{i} \operatorname{ker} \bar{N}_{i}$, then we have $\bar{R}^{*} G \cong \prod_{i=1}^{i} \bar{R}^{*} G / \operatorname{ker} \bar{N}_{i}$.

And $\bar{R}^{*} G / \operatorname{ker} \bar{N}_{i}$ is isomorphic to the N_{i}-completion of $R^{*} G$. We assume that P is discrete. So $\vec{R}=R / \operatorname{ker} P$ is a simple artinian ring. Then the crossed product $\bar{R}^{*} G$ is semi-simple by [9, Lemma 1.1]. In particular each $\bar{R}^{*} G / \operatorname{ker} \bar{N}_{j}$ is an artinian ring, and thus N_{j} is discrete for all j. Next we assume that some N_{i} (say $i=1$) is discrete. Let $\overline{\bar{N}}_{1}$ be the induced rank function on $\bar{R}^{*} G /$ ker \bar{N}_{1} by \bar{N}_{1} and let $\pi: \bar{R} \rightarrow \bar{R}^{*} G / \operatorname{ker} \bar{N}_{1}$ be the map obtained by compositing $\bar{R} \rightarrow \bar{R}^{*} G \rightarrow \bar{R}^{*} G / \operatorname{ker} \bar{N}_{1}$. Then π is monomorphism and we have $\overline{\bar{N}}_{1} \pi=\bar{P}$. By the assumption, the range of $\overline{\bar{N}}_{1}$ is a finite set and so is the range of \bar{P}. Then P is discrete. Since each extremal pseudo-rank function is either discrete or continuous, latter assertion is clear.

For $N \in \partial_{e} P\left(R^{*} G\right)$, we have the following relationship between N and $\left(\left.N\right|_{R}\right)^{G}$.

Theorem 9. Let $R^{*} G$ be a crossed product of a finite group G over a regular ring R with $|G|^{-1} \in R$ and let N be extremal pseudo-rank function on $R^{*} G$. Then we have $\left(\left.N\right|_{R}\right)^{G}=\alpha N+(1-\alpha) N^{\prime}$ for some $N^{\prime} \in P\left(R^{*} G\right)$ and some positive real number $\alpha \leq 1$.

Proof. Put $\left.N\right|_{R}=P$, then P is G-invariant by Lemma 2. Let T be the P^{G}-completion on $R^{*} G$ and let $\overline{P^{G}}$ be the extension of P^{G} on T. Since N is uniformly continuous with respect to P^{G}-metric by Lemma 5 , we have the continuous extension \bar{N} of N on T. By [2, Th. 19.22], there exists a non-zero central idempotent $e \in T$ such that ker $\bar{N}=(1-e) T$ and $T e$ is a simple ring. Since $T e$ has the unique rank function, $\overline{P^{G}}$ and \bar{N} induce the same rank function Q on Te, i.e., $Q(t e)=\overline{P^{G}}(e)^{-1} \overline{P^{G}}(t e)=\bar{N}(t e)=\bar{N}(t)$ for all $t e \in T e$. Put $L(t)=$ $\overline{P^{G}}(1-e)^{-1} \overline{P^{G}}(t(1-e))$ for any $t \in T$, then L is a pseudo-rank function on T. We have

$$
\overline{P^{G}}=\overline{P^{G}}(e) N+\overline{P^{G}}(1-e) L
$$

by investigating the decomposition $T=T e \oplus T(1-e)$. Let $\phi: R^{*} G \rightarrow T$ be the natural map and let $N^{\prime}=L \phi$ and let $\alpha=\overline{P^{G}}(e)$. Then we have that $\left(\left.N\right|_{R}\right)^{G}$ $=\alpha N+(1-\alpha) N^{\prime}$.

Remark. For a G-invariant element $P \in \partial_{e} P(R)$, let N_{1}, \cdots, N_{t} be elements in $\partial_{e} P\left(R^{*} G\right)$ associative with P. We can easily prove that $\left\{N_{1}, \cdots, N_{t}\right\}$ is
equal to the set $\left\{N \in \partial_{e} P\left(R^{*} G\right): \theta(N)=\left.N\right|_{R}=P\right\}$, where $\theta: P\left(R^{*} G\right) \rightarrow P(R)$, by theorem 7 and Theorem 9 . Unfortunately we don't know whether $\left.N\right|_{R}$ is always extremal for any extremal pseudo-rank function N on $R^{*} G$ or not.

Now we consider a pseudo-rank function P which is not necessarily G invariant. For each $x \in G$, put $P^{x}(r)=P\left(r^{\tilde{x}-1}\right)$ for all $r \in R$. Then P^{x} is also a pseudo-rank function and $\operatorname{ker} P^{x}=(\operatorname{ker} P)^{\tilde{x}}$. Put $t(P)=\sum_{x \in G}|G|^{-1} P^{x}$, then $t(P)$ is G-invariant pseudo-rank function with $P \leqq|G| t(P)$. We call $t(P)$ to the trace of P.

Proposition 10. Let $R^{*} G$ be a crossed product of a finite group G over a regular ring R whit $|G|^{-1} \in R$. Let P be in $\partial_{e} P(R)$ which is not necessarily G-invariant and let $t(P)$ be the trace of P. Then the extension $t(P)^{G}$ can be expressed as a positive convex combination of finite distinct elements in $\partial_{e} P\left(R^{*} G\right)$.

Proof. Let \bar{R} be the $t(P)$-completion of R. Since $t(P)$ is a finite convex combination of extreme points in $P(R), \bar{R}$ is a finite direct product of simple regular self-injective rings by [2, Th. 19.19], $R^{*} G$ is also a finite direct product of simple regular self-injective rings. In the same way as in the proof of Theorem 7, we can prove that $\bar{R}^{*} G$ is the $t(P)^{G}$-completion of $R^{*} G$ and that $t(P)^{G}=\sum_{1}^{n} \alpha_{i} N_{i}$, where $N_{i} \in \partial_{e} P\left(R^{*} G\right), 0<\alpha_{i}<1$ and $\sum_{1}^{n} \alpha_{i}=1$.

Corollary 11. Let $R^{*} G$ be a crossed product of a finite group G over a regular ring R with $|G|^{-1} \in R$. If $\partial_{e} P(R)$ is a finite set, then $\partial_{e} P\left(R^{*} G\right)$ is also a finite set.

Proof. Let $\partial_{e} P(R)=\left\{P_{1}, \cdots, P_{t}\right\}$ and let $\left\{N_{i j}: j=1, \cdots, s(i)\right\}$ be extremal pseudo-rank functions associated with $t\left(P_{i}\right)$ for each $i=1, \cdots, t$ by Proposition 10. We shall show that $\partial_{e} P\left(R^{*} G\right)=\left\{N_{i j}: i=1, \cdots, t j=1, \cdots, s(i)\right\}$. We choose $N \in \partial_{e} P\left(R^{*} G\right)$ and put $P=\left.N\right|_{R}$. Since $P(R)$ is equal to the convex-hull of $\left\{P_{1}, \cdots, P_{t}\right\}$ by [2, A.6], $P=\sum_{1}^{n} \alpha_{i} P_{i}$, for some $0<\alpha_{i}<1$ and $\sum_{1}^{n} \alpha_{i}=1$. Put $Q=\sum_{1}^{t} \alpha_{i} t\left(P_{i}\right)$, then Q is G-invariant and $Q^{G}=\sum_{1}^{t} \alpha_{i} t\left(P_{i}\right)^{G}$. Since $P_{i} \leqq|G| t\left(P_{i}\right)$ for each $i=1, \cdots, t, P \leqq|G| Q$ and so $P^{G} \leqq|G| Q^{G}$. Let T be the Q^{G}-completion of $R^{*} G$ and $\overline{Q^{G}}$ (resp. $\overline{P^{G}}$) be the extension of Q^{G} (resp. P^{G}) on T. Since $N \leqq|G| P^{G}$ on $R^{*} G$ by Lemma $5, \bar{N} \leqq|G| \overline{P^{G}}$ on T, where \bar{N} is the extension of N on T. Since $\bar{N} \leqq|G|^{2} \overline{Q^{G}}$ on T, ker $\overline{Q^{G}} \subset \operatorname{ker} \bar{N}$. Let $\bar{N}_{i j}$ be the extension of $N_{i j}$ on T for each i, j. Since Q^{G} is a convex combination of $\left\{N_{i j}: i=1, \cdots, t j=1, \cdots, s(i)\right\}$ in $\partial_{e} P(R), \bar{Q}^{G}$ is a convex combination of $\left\{\bar{N}_{i j}: i=1, \cdots, t j=1, \cdots, s(i)\right\}$ in $P(T)$. Then we have $\cap_{i, j} \operatorname{ker} \bar{N}_{i j}=\operatorname{ker} \overline{Q^{G}}$ and therefore $\operatorname{ker} \bar{N}_{i j} \subset \operatorname{ker} \bar{N}$ for some i, j by primeness of ker \bar{N}. Since ker $\bar{N}_{i j}$ is also a maximal ideal by [2, Th. 19.22], $\operatorname{ker} \bar{N}_{i j}=\operatorname{ker} \bar{N}$. Consequently we have $\bar{N}_{i j}=\bar{N}$ by [5, Prop. II. 14.5] and hence $N_{i j}=N$.

2. Directly finite left self-injective regular rings

In this section, we consider a crossed product of a finite group G over a directly finite, left self-injective, regular ring R with $|G|^{-1} \in R$. K.R. Goodearl has constructed a structure theory on self-injective regular rings. Now we refer to [3, Ch. 10] for definitions and notations. We study types of crossed products $R^{*} G$. We begin with the following lemma.

Lemma 12 [4, II. 14.5]. Let R be a directly finite, left self-injective, regular ring. We define a map $v: \partial_{e} P(R) \rightarrow \operatorname{Max}(R)$ by the rule: $v(P)=\operatorname{ker} P$. Then v is a bijection.

Theorem 13. Let R be a directly finite, left self-injective, regular ring and let G be a finite group such that $|G|^{-1} \in R$. Then the following conditions are equivalent.
(1) A crossed product $R^{*} G$ of G over R is of $T y p e ~ I I_{f}$.
(2) R is of Type $I I_{f}$.

Proof. We know that $R^{*} G$ is a directly finite, left self-injective, regular ring.
$(1) \Rightarrow(2)$. It suffices to prove that R has no simple artinian homomorphic images, by [3, Th. 7.10 and Th. 10.24]. Assume that there exists $M \in \operatorname{Max}(R)$ such that R / M is artinian. By Lemma 12 , we have $P \in \partial_{e} P(R)$ such that ker $P=M$. Let H be the stabilizer of M in G and let Λ be a transversal for H in G with $1 \in \Lambda$. Let $J=\bigcap_{y \in \Lambda} M^{\tilde{y}}$, then J is G-invariant and $R / J \cong \Pi_{y \in \Lambda} R / M^{\tilde{y}}$. Since each \tilde{x} induces an automorphism on R / J, there gives rise to a crossed product $(R / J)^{*} G$ of G over R / J with the natural map $\psi: R^{*} G \rightarrow(R / J)^{*} G$. Since R / J is a semi-simple ring, so is the crossed product $(R / J)^{*} G$ by [9, Lemma 1]. Since ψ is epimorphism, $R^{*} G$ has a simple artinian homomorphic image. This contradicts that $R^{*} G$ is of Type $I I_{f}$ by [2, Th. 10.29].
(2) $\Rightarrow(1)$. Assume that there exists $N \in \partial_{e} P\left(R^{*} G\right)$ such that $R^{*} G / \operatorname{ker} N$ is artinian. Put $P=\left.N\right|_{R}$. Since $\operatorname{ker} P=\operatorname{ker} N \cap R$ and $\operatorname{ker} N$ is a maximal ideal of $R^{*} G$, $\operatorname{ker} P=\cap_{x \in G} I^{\tilde{x}}$, where I is a maximal ideal of R by [7, p. 295]. Let K be the stabilizer of I in G and let Λ be a transversal for K in G with $1 \in \Lambda$. Then $R /$ ker $P \cong \Pi_{y \in \Lambda} R / I^{\tilde{y}}$, where $R / I^{\tilde{y}}$ is a simple, left and right self-injective, regular ring. We claim that all $R / I^{\tilde{y}}$ is artinian. Since ker P is a G-invariant ideal, there exists a crossed product $(R / \operatorname{ker} P)^{*} G$ of G over $R /$ ker P such that $R^{*} G /(\operatorname{ker} P)^{*} G \cong(R / \operatorname{ker} P)^{*} G$. By [8, Cor. 3.10], $R^{*} G /(\operatorname{ker} P)^{*} G$ is a finite direct of simple, left and right self-injective, regular rings. Since $(\operatorname{ker} P) * G \subset \operatorname{ker} P^{G} \subset \operatorname{ker} N, R^{*} G / \operatorname{ker} N$ is isomorphic to a simple component of $R^{*} G /(\operatorname{ker} P)^{*} G \cong(R / \operatorname{ker} P)^{*} G$. By considering $\quad \Pi_{y \in \Lambda} R / I^{\tilde{y}} \cong R / \operatorname{ker} P \subset$ $(R / \operatorname{ker} P)^{*} G$, we find a ring homomorphism $f: \prod_{y \in \Lambda} R / I^{\tilde{y}} \rightarrow R^{*} G / \operatorname{ker} N$. Then we have a ring-monomorphism $f^{\prime}: T=\Pi_{y \in \Lambda^{\prime}} R / I^{\tilde{y}} \rightarrow R^{*} G /$ ker N for some
$\Lambda^{\prime} \subset \Lambda$. Let N be the unique rank function of $R^{*} G / \operatorname{ker} N$ and let P_{y} be the unique rank function of $R / I^{\tilde{y}}$ and put $Q=N f^{\prime}$. This is a rank function on T. Let e_{y} be a central idempotent of T which is identity element for $R / I^{\tilde{y}}$. By the uniqueness of rank function on $R / I^{\tilde{y}}$, we have $P_{y}(\alpha)=Q\left(e_{y}\right)^{-1} Q(\alpha)$ for all $\alpha \in R / I^{\tilde{y}}$. By our assumption, the range of N is a finite set and so is the range of Q. Consequently the range of P_{y} is a finite set. Therefore $R / I^{\tilde{y}}$ is a simple artinian ring by [4]. This is a contradiction by [2, Th. 10.29].

Even when R is a self-injective regular ring, $\left.N\right|_{R}$ is not necessarily extremal for $N \in \partial_{e} P\left(R^{*} G\right)$. If each maximal ideal of R is G-invariant, then $\left.N\right|_{R}$ is extremal. In fact, since $\operatorname{ker}\left(\left.N\right|_{R}\right)=\operatorname{ker} N \cap R$ is a maximal ideal by [7, p. 295], $\left.N\right|_{R}$ is extremal by Lemma 12. Hence we shall consider the map $\theta: \partial_{e} P\left(R^{*} G\right)$ $\rightarrow \partial_{e} P(R)$. We denote the set of all central idempotents of R by $B(R)$.

Lemma 14. Let R be a directly finite, left self-injective, regular ring and let G be a finite group of automorphisms of R. The following conditions are equivalent;
(1) Every maximal ideal of R of G-invariant.
(2) Every extremal pseudo-rank function on R is G-invariant.
(3) Every central idempotent of R is G-invariant.

Proof. (1) \Rightarrow (2) It is clear by Lemma 12.
$(1) \Rightarrow(3)$ Take $e \in B(R)$ and $g \in G$. For $M \in \operatorname{Max}(R)$, we have $e \in M$ or $1-e \in M$ by [3, Th. 8.20]. Since $e-e^{g}=\left(1-e^{g}\right)-(1-e), e-e^{g} \in$ $\cap\{M: M \in \operatorname{Max}(R)\} . \quad$ By [3, Cor. 8.19], we conclude $e=e^{g}$.
(3) $\Rightarrow(1)$. Let M be any maximal ideal of R and let g be any element in G. By [3, Th. 8.20 and Cor. 8.22], $(B(R) \cap M) R$ is a G-invariant, minimal prime ideal. Since any minimal prime ideal of R is contained in a unique maximal ideal by [3, Cor. 8.23], $M=M^{g}$.

In [4], the Grothendieck group $K_{0}(R)$ of a regular ring R is investigated as a partially ordered abelian group with order-unit. We refer to [4, 8] for the terminologies of partially ordered abelian groups.

We shall study conditions under which θ is a homeomorphism.
Theorem 15. Let R be a left self-injective, regular ring of Type $I I_{f}$ and $R^{*} G$ be a crossed product of a finite group G over R with $|G|^{-1} \in R$. We assume any $M \in \operatorname{Max}(R)$ is G-invariant. Let $\theta: \partial_{e} P\left(R^{*} G\right) \rightarrow \partial_{e} P(R)$ be a natural restriction map. Then the following conditions are equivalent:
(1) θ is a homeomorphism.
(2) The natural map $f: K_{0}(R) \rightarrow K_{0}\left(R^{*} G\right)$, defined by $f([A])=\left[R^{*} G \otimes_{R} A\right]$ for $A \in F P(R)$, is an isomorphism as a partially ordered abelian group with orderunit.
(3) $B(R)=B\left(R^{*} G\right)$.

Proof. We know that $R^{*} G$ is a left self-injective regular ring of Type $I I_{f}$ by Theorem 13.
$(1) \Rightarrow(2)$. By Lemma 12, $\partial_{e} P(R)$ and $\partial_{e} P\left(R^{*} G\right)$ are compact. Combining [8, Th. 3.6] with [9, Prop. II. 3.13], we see that $\left(K_{0}(R),[R]\right) \cong\left(C\left(\partial_{e} P(R), \boldsymbol{R}\right), 1\right)$ and $\left(K_{0}\left(R^{*} G\right),\left[R^{*} G\right]\right) \cong\left(C\left(\partial_{e} P\left(R^{*} G\right), \boldsymbol{R}\right), 1\right)$, where 1 is the constant function with value 1. Therefore we have that $f:\left(K_{0}(R),[R]\right) \cong\left(K_{0}\left(R^{*} G\right),\left[R^{*} G\right]\right)$ is an isomorphism.
$(2) \Rightarrow(3)$. Let e be any element in $B\left(R^{*} G\right)$. For the element $\left[R^{*} G e\right] \in$ $K_{0}\left(R^{*} G\right)$, we choose an element $[A] \in K_{0}(R)$, such that $f([A])=\left[R^{*} G e\right]$, where $A \in F P(R)$. First we shall show that $A \leqq R$. In fact, since $\left[R^{*} G \otimes_{R} A\right]=$ [$\left.R^{*} G e\right], R^{*} G \otimes_{R} A \cong R^{*} G e$ by [3, Prop. 15.2]. Let $A \cong \oplus_{1}^{n} R r_{i}$, where $r_{i} \in R$. For any $P \in \partial_{e} P(R)$

$$
\begin{aligned}
\sum_{1}^{n} P\left(r_{i}\right) & =\sum_{1}^{n} \Gamma_{R}(P)\left(R r_{i}\right) \\
& =\Gamma_{R}(P)(A) \\
& =\Gamma_{R^{*} G}\left(P^{G}\right)\left(R^{*} G \otimes A\right) \\
& =\Gamma_{R^{*} G}\left(P^{G}\right)\left(R^{*} G e\right) \\
& \leqq 1
\end{aligned}
$$

Then we have $A \leqq R$ by [8, Cor. 2.7]. We may assume that $R^{*} G e \cong R^{*} G h$ for some idempotent $h \in R$. As e is central, we have $e=h$. On the other hand, since any $h^{\prime} \in B(R)$ is G-invariant by Lemma $14, h^{\prime}$ is central in $R^{*} G$.
$(3) \Rightarrow(1)$. In general, θ is a continuous epimorphism. We shall that θ is a monomorphism. Assume that there exist $N_{1} \neq N_{2} \in \partial_{e} P\left(R^{*} G\right)$ such that $\theta\left(N_{1}\right)=\theta\left(N_{2}\right)$. By Lemma 12, $\operatorname{ker} N_{1} \neq \operatorname{ker} N_{2}$ and so $B\left(R^{*} G\right) \cap \operatorname{ker} N_{1} \neq$ $B\left(R^{*} G\right) \cap \operatorname{ker} N_{2}$ by [3, Th. 8.25]. Then there exists $e \in B\left(R^{*} G\right)$ such that $N_{1}(e)=0$ and $N_{2}(e)=1$. However since $e \in B(R)$ and $\theta\left(N_{1}\right)=\theta\left(N_{2}\right)$, we have a contradiction. Hence θ is a monomorphism. Next let W be any clopon set in $\partial_{e} P\left(R^{*} G\right)$. Then $W=\left\{N \in \partial_{e} P\left(R^{*} G\right): N(e)=0\right\}$ for some $e \in B\left(R^{*} G\right)$. Now it is easy to see that $\theta(W)=\left\{P \in \partial_{0} P(R): P(e)=0\right\}$. Therefore $\theta(W)$ is an also clopon set in $\partial_{e} P(R)$ and so θ is a homeomorphism.

3. Fixed subrings of a finite group of automorphisms

In this section, let R be a regular ring and let G be a finite group of automorphisms of R with $|G|^{-1} \in R$. We shall consider a relationship between $P(R)$ and $P\left(R^{G}\right)$. For any $P \in P(R)$, the restriction of P on R^{G}, which is denoted by $\left.P\right|_{R^{G}}$, is also a pseudo-rank function on R^{G}. If P is extremal, then we have the following result.

Proposition 16. For $P \in \partial_{e} P(R),\left.P\right|_{R^{G}}$ can be the expressed as a positive convex combination of finite distinct elements in $\partial_{e} P\left(R^{G}\right)$.

Proof. Since P is not necessarily G-invariant, we consider the trace $t(P)$ of P instead of P. Let \bar{R} be the $t(P)$-completion of R. Since $t(P)$ is a finite convex combination of extreme points in $P(R), \bar{R}$ is a finite direct product of simple regular self-injective rings by [2, Th. 19.19]. Let $\overline{t(\bar{P})}$ be the extension of $t(P)$ on \bar{R}. Since $\left.P\right|_{R^{G}}=\left.t(P)\right|_{R^{G}}$ on $R^{G},(\bar{R})^{G}$ is the $\left.P\right|_{R^{G} \text {-completion of }}$ R^{G}. By [8, Cor. 3.10], $(\bar{R})^{G}$ is also a direct product of simple regular selfinjective rings. Therefore $\left.P\right|_{R^{G}}$ can be the expressed as a positive convex combination of finite distinct elements in $\partial_{e} P\left(R^{G}\right)$ by [2, Th. 19.19].

In this section, $R^{*} G$ implies the skew group ring of G over R. Put $e=|G|^{-1} \sum_{g \in G} g$ in $R^{*} G$, then e is an idempotent. Between $e R^{*} G e$ and R^{G}, there exists an isomorphism by the rule: $a \rightarrow e a$. Put $X=e R^{*} G$, then X is a ($R^{G}, R^{*} G$)-bimodule. Throughout this section, we assume
(*) R is a finitely generated projective right R^{G}-module
Since $\operatorname{Hom}_{R^{*} G}\left(X, R^{*} G\right) \cong R^{*} G e \cong R$ as a right R^{G}-module, $\operatorname{Hom}_{R^{*} G}(X, A)$ is a finitely generated projective right R^{G}-module for all $A \in F P\left(R^{*} G\right)$. Therefore, for $D \in D\left(R^{G}\right), D\left(\operatorname{Hom}_{R^{*} G}(X, A)\right)$ gives an unnormalized dimension function on $F P\left(R^{*} G\right)$. We note that $D\left(R_{R^{G}}\right) \geqq 1$, because $R_{R^{G}} \supset R^{G}$. We define

$$
D^{R^{*} G}(A)=D\left(R_{R^{\beta}}\right)^{-1} D(\operatorname{Hom}(X, A)) \quad \text { for } \quad A \in F P\left(R^{*} G\right),
$$

then $D^{R^{*} G}$ is a dimension function on $F P\left(R^{*} G\right)$. For a given pseudo-rank function Q on R^{G}, put $D_{Q}=\Gamma_{R^{G}}(Q)$. We define

$$
N_{Q}(x)=D_{Q}\left(R_{R^{\xi}}\right)^{-1} D_{Q}\left(\operatorname{Hom}\left(X, x R^{*} G\right)\right) \quad \text { for } \quad x \in R^{*} G
$$

Then by Lemma $1, N_{Q}$ is a pseudo-rank function on $R^{*} G$. Especially for an idempotent $x \in R^{*} G$, we have

$$
N_{Q}(x)=D_{Q}\left(R_{R^{G}}\right)^{-1} D_{Q}\left(\left(x R^{*} G e\right)_{R^{G}}\right),
$$

because $\operatorname{Hom}_{R^{*} G}\left(X, x R^{*} G\right) \cong x R^{*} G e$ as a right R^{G}-module. For the induced pseudo-rank function $N_{Q} \in P\left(R^{*} G\right)$ by $Q \in P\left(R^{G}\right)$, the restriction-function on R, denoted by P_{Q}, is also a pseudo-rank function on $R .\left.\quad P_{Q}\right|_{R^{G}}$ is not necessarily equal to Q, but we have the following relations between them.

Lemma 17. Let R be a regular ring, let G be a finite group of automorphisms of R with $|G|^{-1} \in R$ and let $R^{*} G$ be a skew group ring of G over R. We assume that R satisfies the condition (*). Then for a given $Q \in P\left(R^{G}\right)$, we have the following relation;

$$
Q(a) \leqq D_{Q}\left(R_{R^{G}}\right)\left(\left.P_{Q}\right|_{R^{G}}\right)(a) \quad \text { for all } \quad a \in R^{G} .
$$

Proof. For any idempotent $b \in R^{G}$,

$$
Q(b)=D_{Q}\left(b R^{G}\right)=D_{Q}\left(b e R^{*} G e\right)=D_{Q}\left(e b R^{*} G e\right)
$$

Since there exists a natural epimorphism $b R^{*} G e \rightarrow e b R^{*} G e$ as a R^{G}-module, we have $e b R^{*} G e \leqq b R^{*} G e$. Then we have

$$
Q(b) \leqq D_{Q}\left(b R^{*} G e\right)=D_{Q}\left(R_{R^{G}}\right)\left(\left.P_{Q}\right|_{R^{G}}\right)(b) .
$$

Proposition 18. Let R be a regular ring and let G be a finite group of automorphisms of R with $|G|^{-1} \in R$. We assume that R satisfies the condition (*). Then, for a given extremal pseudo-rank function Q on R^{G}, we have

$$
\left.P_{Q}\right|_{R^{G}}=\alpha Q+(1-\alpha) Q^{\prime}
$$

for some $Q^{\prime} \in P\left(R^{G}\right)$ and some $0<\alpha \leqq 1$.
Proof. We consider R as a ring with $\left.P_{Q}\right|_{R^{G}-\text { metric. By Lemma } 17, Q \text { is }}$ continuous with respect to the metric. Therefore there exist some $Q^{\prime} \in P\left(R^{G}\right)$ and some real number $0<\alpha \leqq 1$ such that $\left.P_{Q}\right|_{R^{f}}=\alpha Q+(1-\alpha) Q^{\prime}$, using the same way as Theorem 9.

References

[1] E.M. Alfsen: Compact convex sets and boundary integrals, Springer-Verlag, Berlin, 1971.
[2] K.R. Goodearl: Von Neumann regular rings, Pitman
[3] K.R. Goodearl: Directly finite aleph-nought-continuous regular rings, Pacific J. Math. 100 (1982), 105-122.
[4] K.R. Goodearl and D.E. Handelman: Simple self-injective rings, Comm. Algebra 3 (1975), 797-834.
[5] K.R. Goodearl, D.E. Handelman and J.W. Lawrence: Affine representations of Grothendieck groups and applications to Rickart $C *$-algebras and $\boldsymbol{\aleph}_{0}$-continuous regular rings, Mem. Amer. Math. Soc. 234.
[6] M. Lorenz and D.S. Passman: Prime ideals in crossed products of finite groups, Israel J. Math. 33 (1979), 89-132.
[7] M. Lorenz and D.S. Passman: Integrality and normalizing extensions of rings, J. Algebra 61 (1979), 289-297.
[8] M. Lorenz and D.S. Passman: Observation on crossed products and fixed rings, Comm. Algebra 8 (1980), 743-779.
[9] D.S. Passman: It's essentially Mascke's Theorem, Rocky Mountain J. Math. 13 (1983), 37-54.

