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1. Introduction

Let q be an odd prime power, where 2 is a non-square in GF(q). The
aim of this paper is to construct a new class of translation planes of order q*
and to determine their linear translation complements. Their kernels are
isomorphic to GF(q). If #Φ3, then the linear translation complement of any
plane of this class has exactly two orbits of length 2 and (f— 1 on the line at
infinity and it is of order 3(q— !)(<?— 1). If ί=3, then the plane is the Hering
plane of order 27 and the translation complement is isomorphic to SL(2, 13).

The planes also differ from those which are generalized Andrέ planes [1]
and semifield planes.

2. Preliminaries

We list some results that will be required in the calculations of the linear
translation complements.

Let q be a prime power. For a^GF((f) put oL=aq and Έ = aqZ. Set

f/α u a12 a13]

M(3,Λ = | Ua «22

and

Then £eU if and only if
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and α, β, 7 are linearly independent over GF(q). Set

" α "

Lemma 2.1 (T. Oyama [3]).

L 7 J

β

L 7 J
ΞM(3,

a

Since £ is any element of Sϊ, we denote Λf(3, ?)ε by Λf(3, f)* and GL(3, j)8

by GL(3, ?)*.
Set GF(q*)*=GF(q3)— {0}. Let Z be a generator of the multiplicative group

GF((?)*. 0

L o
and T=

0

0

The following statements hold :

l and o(T)=3.

Lemma 2.3. // 0(Wi)^q~ly then NGL(3>qΓ(<Wi>}=-<W> Γ> and

'». There exists an integer j with

Lemma 2.2.
(i) o(W) (the order of W)=
(ii) T-1WT=W9.

Proof. Let

AWiJ. Write ^4=

a

Then ati = atij, βti = βίij' and Jti=^tii. Assume

. Then ί'=ί'Λ Since ί''Φ*', y8— 0 and 7=0. Thus ,4eΞ<PF>. Assume

α=0. If /3ΦO and γΦO, then ?==?. This is a contradiction. Thus /8=0 or
7=0 and hence AϊΞ<W, T >. Therefore NGLw«W» ^<W, Γ>. On the
other hand ΛΓGZ(3>ί)*«H^»^<ίF, Γ> by Lemma 2.2 (ii) and thus NGL<s.q)*«Wi»

is conjugate

Similarly, using fφf , we obtain CGL(3,9)*«PFί»—

Lemma 2.4. Leί ^4^GL(3, q)* and o(Λ)=f—\. Then
to <Wy in GL(3, q)*.

Proof. Since (q— 1, q2-\-q-\-V) = \ or 3, there exists a prime r such that
— 1 and that r \ q2+q+ 1 . From this r\o(W) and r/f^

3(?+ l)(q— I)3 follow.
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Since | GL(3, q)* \ =^(?+l)(2-l)3(?2+?+l), <W> includes a Sylow r-subgroup
<W"> of GL(3, q)*. Thus there exists £(ΞGL(3, q)* with JB-1<ϊΓl>B
Since 0(PF'V?-1, CGL(3>qΓ«Wi» = <W> by Lemma 2.3. Therefore

' Considering the order of

/=

we get (Ay=

Lemma 2.5. ^4eGL(3, #)* and assume that det(A—xI)

x^GF(q). The following statements hold:

-1 and o(A)Xq-l.
£eGL(3, ?)* wiϊA (̂β)̂ :̂ 3— 1

ΦO /or

(i)

(ii)

Proof. Let £e3l. Set F= F(3, 9) and C = A*~\ There exists a 2-di-
mensional subspace Vl of F such that FjCΦ Fj. Let Γj Π FιC=<FC>. Since
det(^4— ,r/)=det(C— Λ?/)ΦO for any x^GF(q\ v, vC, vC2 are linearly indepen-
dent over GF(q). Hence C is conjugate to

in GL(3, q)y where a0, a^ θ2^GF(q) and vC3=aQv-\-a1vC-\-a2vC2. Let λ be a

root of the characteristic polynomial of C. Then \^GF(f) and \3=a0-\-ai\+
a9\

2. Set

Since

/Ό 1

0 0

is conjugate to

L o J

0

L O J

in GL(3, q)*. From this (i) and (ii) follow.

3. Description of the class of translation planes

Let q be an odd prime power where 2 is a non-square over GF(q).
Any translation plane is defined by a spread. We define the spreads using
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the Oyama's Method (T. Oyama [3]). For a<=GF((?) put ((«)) = (α, a, a).

X={((a)}\a^GF((f)} becomes a vector space of dimension 3 over GF(q),

when-fand sealer product are defined by ((α))+(G8)) = ((α+/8)) and a((a))=((aa)).

We may assume that V=X@X is the outer sum of two copies of X. Set

7(oo)={(0, ((α)))|((α))eJ5Γ}. If there exists a subset Σ of GL(3, ί)*U{0}

such that OeΣ, IΣI^?3 and det(M1-M2)Φθ for all Af^AT2e2> then

we can costruct a translation plane τr(Σ) of order 5̂  such that it's kernel con-

tains GF(q)9 as follows:

(a) The points of τr(Σ) are the vectors in V.

(b) The lines are all cosets of all the components of Π = {V(M) \ MeΣ U

{oo}}, where V(M)={(((a)), ((α)))M|((α))eX> for MeΣ

(c) Incidence is inclusion.

We call Σ a spread set of degree 3 over GF(q).

Set S={a2\a&GF(<f)*}. For a<=GF(<f) put n(ά)=aaa and fr(α)=a+

Q:+α.

For

Theorem 3.1. Σ={Λf(ct), ΛΓ(cr)|Gfe5} U {0} w a spread set of degree 3
over GF(q).

Clearly n(a\ tr(ά)^GF(q) and det

S put M(a)=

~α~
a and N(a)=

a'

β

-Ύ-

= ?

a
a

Proof. Let a e 5. Since M(α)=

and

0 and N(a)=

If αΦl, then det(M(α)-M(l))=2 n(α-l)ΦO. Hence det(M*(a)-M(/3))
ΦOfor any a^β^S.

If αΦl, then det(ΛΓ(α)-ΛΓ(l)) = 4<n(α)+^α)-ίKαα)--l) = 4(α--l)
(es:—1)(3—1)ΦO. Hence det(ΛΓ(α)-ΛΓ(/5))Φθ for any αΦ/ϊeS'.

Suppose det(M(α)-JV(l))=0. Since det(M(a)-N(l))=2 n(a)-(tr(a))2+

4 tr(α)-— 4, 2=(/r(α)—2)2(w(ί"f'))2, where c£ = Z2ί, a contradiction. Hence we

have det (Λf(α)—ΛΓ(/S))ΦO for any a, β(=S.

Clearly | ΣI =<f and the results follow.

Let π be the translation plane which corresponds to the spread set Σ of

Theorem 3.1 and G its linear translation complement. Set Σ*=Σ U {°o} and
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4. The linear translation complement of π

In this section we show the linear translation complement G of π. We
describe the Sherk's Theorem in the case n=3 using the Oyama's Method.

Lemma 4.1 (F.A. Sherk [2]). Let *e{l, 2}. Let Σ. ** * Jpraw/ set of
degree 3 o^βr GF(q) with OeΣί <z#^ ττ, be the translation plane of order <f which
corresponds to the spread set Σt Set ΐli = {V(M)\MEz*ΣiU {°°}} Then πλ

and π2 ore ίsomorphic if and only if there exist A, B, C and D in Λf(3, q)* and θ in
Ant (GF(f)) with the following properties.

(A C\
(a) det[^ JΦO.

(b) One of the following holds

(i) B=0, det(A)*Q and Σβ={^ 1(C+Af Z))|MeΣι> or
(ii) del (B) Φ 0, B~1D <= Σ2> there is M0<= Σi such that A+Mβ

0B=Q and for

any M<=Σι-<M0}, det(A+MβB)*0 and (A+MeB)-l(C+MeD)e^2-

Each reG induces a permutation on Π which we denote by ¥.

Theorem 4.2. If q=Z, then π is the Hering plane of order 27.

Proof. Let ίeGF(27) and /»=-!+«. Then 0 (̂27)* ==</>. Set

, 27).

7 Ί*ϊ

F.A. Sherk [2] gave a spread set

(I 0-1 1\*

Sff = | -1 1 1

( \ 1 - 1 1

/-I 1 1

or 0-1 -1

\ 0 0-1

defining the Hering plane of order 27. Since

U{0}

and

0

-1

1

/
ΊI

— 1

1

-1

0

0

ι\
i
ll
1

-1

0

6 =

Ύ~

t»
Ja.

/i
, Ho

\o

°\
-lU

-I/

• ί3 -
f

.-?-
,

-1 _ lx

1 lU

o il

" t* -
-1

_-f_

S^SaS -
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-f-
f

_ta_

3i

R

't7'

f

-t12.

i

D

' t9'

-1

_—t7.
or

- ί3"

t2

.—?_

, 1^/^13 U{0}

Set ε-1Sa£=ΣB and n*= k Setφ=

where A=

—t

f and £=

_-ί5J
Thorem 4.2 is proved.

-1

f

A-1 0\

B
-:GL(V),

. By a computation, we get Π*>=Πjir Thus

The following statements hold:

Lemma 4.3.

(i) Ife£ΞGF(q)Γ\S, then

/O 2Γ\
(ii) Set τβ=^ Q J,

eGy(.).yω, wfere £ =

•O'

1

_ 0 _

e

0

_ 0 _

. Then rΛ^G and fo=

(F(oo),

(iii) Set Γ=

0>-=!

ow Π and H<Gv^tV^.

and BΛ =

al 0

aa

. Then T and Δ are H-orbits

-{Q} and L=Lemma 4.4. Set K=

Then Γ O

L O .
(ii) // atΞS-GF(q), then Lv(M(a»=K.

Proof.
Step 1. If αeS, then {Γ(M(α)), F(M(σ)), F(M(α))} is an L-orbit.

(T 0\
Since I JeL, there exists an L-orbit containing {V(M(ά)}> V(M(a)\

Let reL. Since F(oo)τ=F(oo), F(0)T = F(0) and F(M(1))T

- Let

. Suppose that A-lM(ά)B=N(β) for some /3e 5. Then A-lM(a)M(\)~lA
=N(β)M(l)~\ Hence det(M(α))=det(Λr(/9)). From this n(aβ~l)=2 follows.
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This is a contradiction since 2 is a nonsquare. Thus A~lM(ά)B=M(β) for
some/3eS. ThereforeA~1M(a)M(iγ1A=M(β)M(iγ1. LetxEΞGF(q). Since

?—xa—x

a—x

. 0

-1—#7), det a—x =det β—x

0 .
Hence n(a)—x tr(aa)+x2 tr(a)—^=n(β)—x tr(ββ)+x? tr(β)—x3. From this
n(a}=n(β\ tr(aa)=tr(βj5) and tr(a)=tr(β) follow. This implies that (/3—α)
(/8—σ)(/8—α)=0. Thus /3e{#, a, a}.

Step 2. Z,=L7(ΛΓ(1)).

Let for some A*GL(3, ,)•. Set

for some a(=S. Since

Then r=

. By Step 1,

1^ = N(a)M(iγl and

A-\N(\)M(\γl+M(\)N(\γl)A = N(ά)M(\γl+M(l)N(aγ\

From this, since

N(\)M(\γl+M(\]N(\γl = (5/2)7 and N(a)M(iγl+Ά^l)N(aYl

= 1/2 a—a—aaa l+a

.a—a—aaa 1+a~

and

follow. From (4.1),

0 = a—a—aaa 1+a~1

0 = a—a—c

0 = a—a—

(4.1)

(4.2)

(4.3)

follows. Subtracting (4.3) from (4.2) we have Q=2a— 2cί. Therefore cί = a
and so a<=GF(q). From this and (4.3), α=l follows. Thus V(N(l))r =

Λ4Step 3. Proof of (ii). Λ
LetαeS— σF(y)andτeLy(M(fl>)). Then r— ί

,4eGL(3, 9)*. Since Γ(M(α))τ - V(M(a)), A
Suppose that τ&K. Since det(M(α)M(l)"1— Λ?/)ΦO for any x^GF(q), there
exists PF^GL(3, 9)* such that ^(W7)-^3-! and <PF>aM'(α)M(l)-1by Lemma
2.5. By Lemma 2.3 and Lemma 2.5, CGL(3tq}*(M(a)M(\γl}= <PF>. Thus we
get ^^<PF> and CGL(z>q}*(A)=<Wy. By Step 2, 4-W(l)M(l)-U=ΛΓ(l)M(l)-1

>

hence ΛΓ(l)M(l)-1e<ίF>. Clearly 27 e<PF> and ΛΓ(1)M(1)-1Φ27. Therefore
ΛΓ(l)M(l)-1-27e<I^>by Lemma 2.4 and so det (AΓ(1)M(1)-1-27)ΦO, a con-
tradiction. Thus we get (ii).
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Step 4. Proof of (i).
Let a<ΞS—GF(q). By Step 3, LV(M(<Λ» = K. Furthermore \V(M(ά)),

V(M(a)\ V(M(a))} is an orbit of both L and <f V> by Step 1. Hence
0\

Vo τ)^"κ'
ro

L=
Lemma 4.5.
(i) GV(oo),κ(o),

To zσλere T=

(ii) Ifa(ΞS-GF(q),thenGv

Proof.
,/T1 0\ /Γ 0

(i) Since r^1 TO=
V Π T ' / V Π T 1

T 0\v

 vυ ^ x w ^
o rj> ^ by Lemma 4.4 (i).

(ii) Let at=S-GF(q). Since Γ(M(O)τo-Γ(ΛΓ(α)),
-1)))

τo=jK' by Lemma 4.4 (ii).

that τ=

with

Lemma 4.6.

Proof.
Case (a).
Suppose false. By Lemma 4.3 (iii), there exists τeGF(oo) with F(0)τ=

or F(ΛΓ(1)). As F(oo)τ^F(oo), there exist ^4, 5, CeM(3, g)* such

Since |GF(?)n5 | =(g-l)/2>2, there exists

f1 ° ̂• SmceUJ where S—

M(l). There exists
01

and EA"lM0B+M(l)=

Assume that V(0)r=V(M(l)). Then ^^C^
with A'1MJ3+M(1)=N(1)9 Therefore A~lM<β=

Γ

From this e=ί follows, a contradic-0

L-U
tion.

Next assume that V(0)r=V(N(l)). Then by the similar argument above,
we have a contradiction again.

Case (b). q=3.
Assume that GV(^ is transitive on Π —{J^(°°}) Then G is 2-transitive

on Π Since π has not a Baer subplane, π is a desarguesian plane by Theorem
39.3 of [4]. This is a contradiction.
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Assume that GvM^GvMtV^. Then {F(0)> UΓ or {F(0)} UΔ is Gv(ooΓ

orbit on Π Write this orbit by Ω. Gv^ induces the permutation group
GV^/K on Ω by Lemma 4.4 (ii) and Lemma 4.5 (ii). Since |Ω|=14 and
GγM/K is a 2-transitive permutation group on Ω, GV(00)IK>PSL(29 13). Since
|Ω| =14, the permutation group P*SL(2,13) on Ω contains an involution g which
fixes exactly two points of Ω. There exists τeGV(oo) with g = rK. Since
\K\ =2, o(τ)=2 or 4. Suppose that 0(τ)=2. As TT has not a Baer subplane, r
is a ((0, 0), /oo)-ρerspectivity. Therefore r fixes any component of Ω, a con-
tradiction. Suppose that o(r)=4. As τ2 is a ((0, 0), /oo)-perspectivity, any cycle
of T on F(oo)— {(0, 0), F(oo)n/oo} is 4-cycle. Therefore 4|26, a contradic-
tion.

Lemma 4.7. GV(0)= GV(O),F(~)

Proof. G!F(θ) = (Gr7(oo))Tθ = (Gy(oo),F(θ))Tθ=GίF(θ),F(~)

Lemma 4.8. Set ψ= {F(oo), J7(0)} . Γfen Ψ w a G-block on Π.

Proof. Suppose φ^G and Ψ^ΠΨΦφ. We may assume that V(°°)φ =
V(oo) or V(0)*=V(oo). Assume F(oo)^ = J7(oo). Then φ^Gv(^ = Gv(oo}>v(^

and so V(0)*= F(0). Assume Γ(0)*= Γ(oo). Then GF(0),r(co)-GF(oo) = Gy(0)^-
GV(^<p >v(ύ)φ=GV(00)

(pγ(00). From this and Lemma 4.3 (iii), V(°°)φ= V(0) follows.
Therefore Ψ*'— Ψ.

Lemma 4.9. Γ α/zrf Δ are Gv (^-orbits on Π

Proof. Suppose false. By Lemma 4.3 (iii) there exists r e GF(oo) with

Since

GL(3, q)*. Set B=M(l)-1AN(l). Assume ^-W(l)β=JV(α) for some αe 5.
From det(-4~W(l)β) = det(ΛΓ(α)), »(α) = 2 follows, a contradiction. Thus
^4~W(l)J5=M(α) for some αe 5. Let g=p" with j> a prime.

Step 1. p = 3 or p = 5. If p = 3, then Λ- W(l)5 = M(l). If ̂  = 5, then
M(-V).

τ§=ί Q

 Sίnce

pτ=bp or op2 for some b(=GF(q). Therefore T ikes {V(M) \ V(M)"= V(M)} -
{F(oo), F(0)} = <F(M(*)), F(ΛΓ(*)) | *e 5 n GF(i)} as a set. Thus α e 5 n

Setα=α. Clearly V(N(V))"=V(M(a)).
Let x<=GF(q). Clearly ^-W(l)M(l)-1^=M(α)ΛΓ(l)-1. Since

(l)Λf (l)-1^ - */) = det(M(a)N(l)-1-xI), det((N(l)-M(x))N(l)) =
det((M(α)— JV(*))M(1)). From this (12α— 18)̂  + (24-9α> + 2α3— 8 = 0.
Therefore 3α=9/2 and α3=4. If p=3, then <z=l. If /)Φ3, then ^>=5 and
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β=-l.
Step 2.

If/>=3,

Assume ^>=5. Suppose that w is even. Then 2 is a square in GF(5"), a

contradiction. Therefore n is odd. Then 5"—1 = (— 1)"—1 = — 2 (mod 3).

Thus 3ΛY-1.

Step 3. Set T=

L o j

Γ. If p=5, then

IT OY (T 0\

• '"-'(or)-(or) I t ί=3 the"

T 0

T
If p=3, then τ»eGV(.).7ϋfω)=< L „, L> ^ If j> = 5, then τ2<Ξ

x/T 0V W -«/
/ JJ>.χ as F(oo)τ2 = F(oo) and F(M(l))τ2 = F(M(-1)). Since

1 1 τ 2
0 0 T 0

or
0

for

Thus since

Since

((T OYΛ
some a^GF(q). From this c?=\ follows as ol I I 1=3.

— 1, we have a=\.

(T OY /Γ2 0\ (A~1TA 0 \ (T2

Suppose (o J =(Q Γ2J. Then ( Q ̂  - (Q a

for some a<=GF((?)—GF(q). Ifa&S, then we take βr

instead of r with e^GF(q)—GF(q)2. Thus we may assume that αe*S. Since

~tr(c?) Ί

_*r(αrff)J
ir(ά)=b. Since b2=tr(a2)+2-tr(aa)=tr(a2), &ΦO. Set

By an easy computation, fi=

-4-1M(α)B=- l/2έ-2

LόfJ

α

O j

= — 1/2 6—te follows. Since

J>-4a
= i(^2 + α2 + 2or^ + 2αα) —

-2i2αr2-έ(α2+α2+2α^+2^α)-4(n(α)

+α3+αα2+αα2+αα2+αα2). Since ~2b2α1=-Wά2ί we get &(α2

έ(α2+2ό?S). Since 6ΦO, S2+2αof-:α2+2^α. Therefore (α-

=0 and so α+α=2c£. From this b=3cί follows. Thus α^GF(q), a contradic-

tion.
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Step 4. Contradiction.

783

Since A~1TA=T, A=

. c

A=A

for somea,b,cG.GF(q). Assumep=3. Since

. From this c = —-(a+b) follows. But

= α34-δ3—(α+ό)3 = 0, a contradiction. Assume p = 5.

Since A2=

'a2+2bc

c*+2ab

_b2+2ac_

~a2+2bc

0

0

or 0

,b2+2ac.

. Let\eS—GF(q). We consider the case A2=

a2+2bc

0

. 0 .

• o
<?+2ab

. 0 .

. Then

(*+2ab=P+2ac=0. Suppose 6=0. Then c=0, A=al and B=M(l)~1AN(l)

==a

-r
2

2

Therefore F(M(X))T=

χ-
λ

_ 0 .

- J-

2

2.

) = F(

--X+2X-

Λ/~r~^ λ»

. λ+2X.

). Thus

—X+2λ=(—λ+2λ). This implies \^GF(q), a contradicion. Suppose
Substituting α=—c2/2δ in i2+2αc = 0, we getό = c and a = 2b. From this

'2'

-r
2

2

and 5 = M(iγlAN(l) = bl follow. Therefore F(M(λ))τ =

2λ-X

— λ+2X

2λ+2X.

. Thus 2λ—X=(—λ+2X). This implies

GF(q), a contradiction. Also when A2=
have a contradiction.

Theorem 4.10.

0

(?+2ab

0

or

0

0

b2+2ac.

, similarly we

, then G has two orbits of length 2 and length q3—!

Proof. Let ^ΦS. Suppose false. Then G is transitive on Π Since
{F(oo), F(0)} is a G-block by Lemma 4.8, there exists F(M)eΠ— {V(°o)}

F(0), V(M(\})} such that Λ= {V(M(\)\ V(M)} is a G-block. Since
F(M(l))τo=F(M(l)), ΛT»=Λ and so V(M)^=V(M). Therefore M=M(a) or
N(a) for some αeS Π GF(q).
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Assume that Λ={F(M(1)), V(M(ά)}} is a G-block. Set p= <ΞG.

Then Λp={F(M(β)), F(M(α2))}=Λ. Therefore Λf(«2) = M(l) and so a= -1
as αΦl. Since <.{φa\a<=S}, τ0><G by Lemma 4.3, {F(M), F(— M)} is a

G-block for any F(M)eΠ-{F(oo), F(0)}. Set σι -(' Ίlθ -l)
eG. Now

fixes exactly two components F(oo) and V((f) in Π Furthermore σl fixes any
G-block on Π Since G is transitive on Π, there exists <r2 such that σ2 is
conjugate to σλ and fixes exactly two components F(M(1)), V(M(— 1)) in Π and
all G-blocks on Π Therefore a^2r0e GF(oo),F(0). But Γ(M(l))σιVo=:
F(ΛΓ(—1)). This is contrary to Lemma 4.9.

Next assume that {V(M(\)\ V(N(a))} is a G-block. Since {F(M(1)),
V(N(a)} }φ«={V(M(ά)\ V(N(aά))} is a G-block for any a(ΞS, G is 2-transitive
on the set of G-blocks. Therefore there exists φ£ΞG such that φ interchanges

(A C\
{F(oo), Γ(0)} and {V(M(\)\ V(N(d))}. Let 9>=ί ). Suppose that φ=

fJ7(oo), ^(Mίl^C^O), V(N(d)}) - on Π Then

^ ^ΛΓ(α)

ί(l)-^ -M(1)-^M(1V

Let b e S Π GF(g) with 6 Φ1. Then

_ /

~~ \-

Hence l- Since αΦθ, a—b = a and

so 6=0, a contradiction. Suppose that #=(7(oo), V(N(a)))(V(Q), F(M(l))) -

on Π. Set r=τβ °Y Since τ=(F(oo), F(0))(Γ(M(1)), Γ(ΛΓ(α))) , ?Γ=\o α/y
(F(oo), V(M(1)))(V(Q), F(ΛΓ(α))) . This is the above case, a contradiction.
Suppose that Φ = (V(°o), V(M(l)), V(Q), V(N(a))) on Π. Then φ =

A
Md) *.. Then

— ftα"1)"1^^)—M^β"1))). Thus ό=0 by the similar argument above, a
contradiction. Suppose that φ = (V(<*>), V(N(a)\ F(0), F(M*(1))) on Π.
Then £s=(F(oo), F(M(1)), Γ(0), F(JV(α)))- . This is a contradiction.
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Theorem 4.11. 7/JΦ3, then \G\ =3(j-l)(βs-l).

Proof. By Lemma 4.4, Lemma 4.6, Lemma 4.9 and Theorem 4.10, | G \ =

°°r\ I G V C - > I =2| GW-) I =

Theorem 4.12. // g=3, then G^SL(2, 13).

Proof. Since G is transitive on Π [5], | G \ =28 \ G7(θo) |. By Lemma 4.4,
Lemma 4.6 and Lemma 4.9, \GvM \ = |GF(oo) 7(Jf(1)) | | F(M(l))G^c~>| =6-13.
Therefore |G| =23 3 7 13. On the other hand since \SL(2, 13)| = |G| and
G>SL(2, 13) by [5], G^SL(2, 13).

Theorem 4.13. π is not a generalized Andre plane.

Proof. Assume that π is a generalized Andre plane. Then there exist

0

0
GF(<f)*} such that

fining π. If

or 0

Γ O

0

and Σ3£

and S^=S1US2US3U {0} is the spread set de-

and n(a)=n(β), then

«

a

L o J

β'
0

L o J
Let is the translation plane π which isβ

. O J
constructed by Σ^ Now since the order of π is <?3, π is an Andrά plane by
Corollary 12.5 of [4], Let G(ΣA) is the linear translation complement of π(ΣA).

t ~

0 . Then <τ>< G(ΣA)v^,vM.vω and <τ> is

0 _
transitive on V(0)— {(0, 0), V(0) Π L}. This is contrary to Theorem 12.1 of [4].

Let #Φ3. Since the translation complement of any proper semifield plane

have an orbit of length 1 on /<„, π differs from any semifield plane.

Set τ = where W=
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