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1. Introduction

Let ¢ be an odd prime power, where 2 is a non-square in GF(q). The
aim of this paper is to construct a new class of translation planes of order ¢*
and to determine their linear translation complements. Their kernels are
isomorphic to GF(q). If ¢=3, then the linear translation complement of any
plane of this class has exactly two orbits of length 2 and ¢*—1 on the line at
infinity and it is of order 3(g—1)(¢*—1). If ¢=3, then the plane is the Hering
plane of order 27 and the translation complement is isomorphic to SL(2, 13).

The planes also differ from those which are generalized André planes [1]
and semifield planes.

2. Preliminaries

We list some results that will be required in the calculations of the linear
translation complements.
Let g be a prime power. For a €GF(¢®) put @=a’ and ¥=a?’. Set

Oy O Oy
M3, @) =1|an ap oy a;=GF(g)
\Qy; Ol Qg
and
aaa
A=18 B B|eGL3, ¢} .
YT
Then €€ if and only if

U ™ N
<A i Ql

o
E=|RB
v
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and @, B, 7 are linearly independent over GF(g). Set

a a B
[ﬁ}= Ba?).
v Y B a

Lemma 2.1 (T. Oyama [3]). If e then

a a
M@, 9 = [/3} eM(, q“)} and GL(3, )" = {B €GLS, 9)
v v
Since € is any element of 2, we denote M(3, q)* by M(3, ¢)* and GL(3, q)*
by GL(3, ¢)*.
Set GF(¢°)*=GF(¢®)—{0}. Let ¢ be a generator of the multiplicative group
t 0
GF(g)*. Set Wzli 0 |and T=| 1
0 0

The following statements hold:

Lemma 2.2,

() o(W) (the order of W)=¢*—1 and o(T)=3.

(i) T‘WTr=w-".

Lemma 23. If o(W') ) q—1, then Ny KWD)=<W,T)> and
CGL(S.q)"‘(<Wi>)=<W>'

Proof. Let A&Ng.; «(KW*>). There exists an integer j with Wid=
a
AW, Write A=| 8 |. Then at = at, B =Bt and yE=qt9. Assume
Y
a=0. Then #i=t7. Since t=7, B=0 and v=0. Thus A€{W). Assume
a=0. If 80 and y=0, then ##=#. This is a contradiction. Thus 8=0 or
v=0 and hence A<{W, T »>. Therefore Ng,,y*KW*>)S<W, T>. On the
other hand Ny, «(KW*>)2{W, T> by Lemma 2.2 (ii) and thus Ng,¢ y«(KW*)
<W, T>.
Similarly, using #=#, we obtain Cgy e (WD) =<W>.

Lemma 2.4. Let A=GL(3, ¢)* and o(A)=¢*—1. Then {A) is conjugate
to KW in GL(3, g)*.

Proof. Since (¢—1, ¢*+q+1)=1 or 3, there exists a prime 7 such that
rA'q—1 and that 7|¢°+¢+1. From this r|o(W) and r ¥ ¢*(g+1)(¢g—1)* follow.
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Since |GL(3, ¢)* | =¢%(q+1)(¢—1)(¢*+g+1), <W> includes a Sylow r-subgroup
{W*> of GL(3, ¢)*. Thus there exists BEGL(3, q)* with B '{W>B=<4".
Since o(W*) ¥ q—1, Cgra,gKW>)=<W) by Lemma 2.3. Therefore <A> <
Cer,0"(KAD)=B"'C;r,*KWD)B=B XKW »B. Considering the order of <4,
we get {A>=RB"KW>B.

1
Lemma 2.5. Set I=| 0 | Let A=GL(3, q)* and assume that det(A—xI)
0
+0 for any x=GF(q). The following statements hold :

(1) o(4)|¢—1 and o(4) ¥ ¢—1.

(it) There exists B€ GL(3, q)* with o(B)=¢*—1 and Ae<{B).

Proof. Let €. Set V="V(3, q) and C=A4"". There exists a 2-di-
mensional subspace V; of V' such that V,C=+V,. Let V;NV,C=<{VC>. Since
det(4A—xI)=det(C—xI)=0 for any x& GF(q), v, vC, vC? are linearly indepen-
dent over GF(q). Hence C is conjugate to

01 0
0 0 1
G 4 &

in GL(3, q), where ay, a;, a,EGF(q) and vC3®=aww-+a,9C+a,wC? Let A be a
root of the characteristic polynomial of C. Then AN&GF(¢®) and A\3=ay+ar+
a)\?.  Set

1 11
p=|A X X
KZ X2 TZ
Since
0 1 0\* Y
0 01} =]0],
a a a, 0
A
A*" is conjugate to | 0 | in GL(3, ¢)*. From this (i) and (ii) follow.
0

3. Description of the class of translation planes

Let ¢ be an odd prime power where 2 is a non-square over GF(g).
Any translation plane is defined by a spread. We define the spreads using
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the Oyama’s Method (T. Oyama [3]). For a € GF(¢®) put ((@))=(a, @, a).
X={(a))|a=GF(¢®)} becomes a vector space of dimension 3 over GF(g),
when-and scaler product are defined by ((t))4((8))=((@+B)) and a((ct))=((acx)).
We may assume that V'=X@X is the outer sum of two copies of X. Set
V(e0)=A{(0, (&) | (@) eX}. If there exists a subset 33 of GL(3, g)*U {0}
such that 0€X}, |3}|=¢ and det(M;—M,)==0 for all M,+=M,E>), then
we can costruct a translation plane z(23) of order ¢* such that it’s kernel con-
tains GF(q), as follows:

(a) The points of z(3]) are the vectors in V.

(b) The lines are all cosets of all the components of [I={V(M)|Me>U
{co}}, where V(M)={(((a)), ((@))M|((@) =X} for M.

(c) Incidence is inclusion.
We call 37 a spread set of degree 3 over GF(q).

Set S={a?|a=GF(¢*)*}. For a=GF(¢®) put n(a)=aaa and tr(a)=a-+

a
a+a. Clearly n(a), tr(@)eGF (¢) and det| B |=n(a)+n(B)+n(v)—tr(aB7).
Y
(24 a
For a=S put M(a)=| | and N(a)—[ a }
0 —aaat

Theorem 3.1. >={M(a), N(a)|acS} U {0} is a spread set of degree 3

over GF(q).
a™ aa a™
Proof. Let a=S. Since M(a)=|0 }M(l) [0 and N(a)= {0 ]N(l)

aa 0 0 0
0 |, det(M(a))=2-n(a)=0 and det(N(cr))=4+n(cr)=0.
0

If a=1, then det(M(a)—M(1))=2-n(a—1)=+0. Hence det(M(a)—M(B))
=0 for any a+=B€S.

If a1, then det(N(a)—N(1))=4(n(a)+tr(ct)—tr(ac)—1)=4(a—1)-
(@—1)(@—1)==0. Hence det(N(a)—N(B))=*0 for any a=R<S.

Suppose det(M(a)—N(1))=0. Since det(M(a)—N(1))=2+n(a)—(tr(c))’+
4etr(a)—4, 2=(tr(a)—2)(n(t""))?, where a=1¢*, a contradiction. Hence we
have det (M(a)—N(B))=0 for any o, BES.

Clearly | 23| =¢® and the results follow.

Let z be the translation plane which corresponds to the spread set >3 of
Theorem 3.1 and G its linear translation complement. Set >1*=31U {co} and

O={V(M)|Mex*}.
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4. The linear translation complement of =

In this section we show the linear translation complement G of . We
describe the Sherk’s Theorem in the case #=3 using the Oyama’s Method.

Lemma 4.1 (F.A. Sherk [2]). Let i€ {l,2}. Let X; be a spread set of
degree 3 over GF(q) with 0€3; and n; be the translation plane of order ¢ which
corresponds to the spread set X Set TI;={V(M)|M&>X;U{}}. Then =,
and 7, are isomorphic if and only if there exist A, B, C and D in M(3, ¢)* and 0 in
Aut(GF(q)) with the following properties .

(2) det(;l g)w.

(b) Ome of the following holds

(1) B=0, det(A)*0 and >,={A(C+M°D)|MEX}; or

(i) det(B)=0, B'DEX),, there is My, such that A+M3B=0 and for
any M e, —{My}, det(A+M°B)=0 and (A+M°B)"(C+M*D)e >,

Each 7= G induces a permutation on ] which we denote by .
Theorem 4.2. If g=3, then = is the Hering plane of order 27.
Proof. Let t&GF(27) and #=—1+¢t. Then GF(27)*=<t>. Set

111
8=(t 3 ?)eGL(s, 27).

£E P
F.A. Sherk [2] gave a spread set
0 —1 1\*¥ 0 -1 1 1 -1 —1
Sg=14|—1 ll)R—l 1 1|R={0 1 1
1 -1 1 1 -1 1 0 0 1
-1 1 1
or 0 —1 -1} 1=<:<13:U{0}
0 0-—1
defining the Hering plane of order 27. Since
0—-1 1 7 1 —-1-1 2
EN—-1 1 1le=|& |,&e0 1 1)€= -1
1 -1 1 t 0 0 1 —t7
-1 1 o0 $

and €Y 0 —1 —1 |e=| £ |, &S, =
0 0 —I —#
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'd 3i t7_i [l I
£ | R|E R={—1j’ or[ £, 1§i§13}U{0}
tlz tlz_j ___t7 __12

Set §1S,6=3", and II ;= {V(M)|ME X, U{oo}}. Set ¢=(84- B?)EGL(V),

—t [t

where A=| | and B=| —1|. By a computation, we get [I*=II5. Thus
— 7

Thorem 4.2 is proved.

The following statements hold:

Lemma 4.3. 70
(1) IfesGF(q)N S, then (0 E)EGV(N),V(,), where E =

S O o

. 02T 0
(i1) Set 7= (I 0 ), where T=| 1 ‘\ Then 710G and ¥=
0]
(V(e0), V(0))(V(M(1)), V(M(1)))---.
(i) Set T={V(M(a))|asS}, A={V(N(a))|aeS} and H={p,|a <= S},

4.0 a ad
where ¢¢=( OaB ), A,=|0 | and B,=|0 |. Then T and A are H-orbits
* 0 0

on I1 and H <Gy y()-
al 0
Lemma 4.4. Set K=
0 al

Then 0
(i) L=<(§ ;)>K where T:{ 1 J
0

(i) If acS—GF(q), then Lyquay=K.

a€GF(q)—{0} } and L=Gy )y, vaw)-

Proof.
Step 1. If @ €S, then {V(M()), V(M(ar)), V(M(a))} is an L-orbit.

TO
Since (0 T)EL, there exists an L-orbit containing {V(M(a)), V(M (@)),

V(M(@))}-
Let r&L. Since V(oo)'=V (o), V() =V(0) and V(M(L)) = V(M(1)),
A4 0 . -

T= (0 M(l)“AM(l)) for some A€GL(3, ¢)*. Set B=M(1)"'AM(1). Let

a<S. Suppose that A-'M(a)B=N(RB) for some S&S. Then A-M(a)M(1)'4
=N(B)M(1)"'. Hence det(M(c))=det(N(B)). From this n(aB~")=2 follows.
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This is a contradiction since 2 is a nonsquare. Thus A~ 'M(a)B=M(B) for
some BES. Therefore A M(a)M(1)*A=M(B)M(1)"'. Let x=GF(q). Since

a—x B—x
det(A™*M(a)M(1)"'A—xl)= det(M(B)M(1)'—xI), det a—x:\ =det {B——x} .
0 0
Hence n(a)—x-tr(ad)+*-tr(a) — x*=n(B) —x+tr(BB)+*+tr(8)—>. From this
n(a)=n(R), tr(aa)=tr(BB) and tr(c)=1tr(R) follow. This implies that (8—ar)-
(B—a)(B—a)=0. Thus B {a, a, a}.
Step 2. L=Lyway-

Let rL. Then T=<A 0
0 M(1)'AM(1)

B=M{(1)"'AM(1). By Step 1, A7'N(1)B=N(a) for some a<S. Since
A N(D)M(1)7'4 = N(@)M(1)™* and A'M(1)N(1)'4 = M(1)Na)™},
AP NDM(1) " +MUN1) ™A = N@)M(1)~+M1)Ne)™
From this, since
NOMQ1) ' +M()N(1)™ = (5/2)I and N(a@)M(1)"*+M(1)N(x)™*
a+a+aaa'+a +a’

) for some AeGL(3, g)*. Set

= 12| a—a—aaa " H-a! ,
oz—az—oca@_'—l—l—a—“T
0 =a—a—aaa *+a™ 4.1)
and 0=a—a—aaa"+a! (4.2)
follow. From (4.1),
0=a—a—aaa'+a (4.3)

follows. Subtracting (4.3) from (4.2) we have 0=2a—2a&. Therefore a=0ca
and so a=GF(q). From this and (4.3), a=1 follows. Thus V(N(1))'=
V(N(1)).

Step 3. Proof of (ii). 4 0

Let aeS—GF(q) and 1€ Ly(y(s). Then 7=(0 M(l)‘lAM(l)) for some
AEeGL(3, ¢)*. Since V(M(a)) = V(M(e)), A M(a) M(1)"'A = M(a) M(1)7%.
Suppose that 7eE K. Since det(M(a)M(1)"'—xI)=0 for any x& GF(g), there
exists WeGL(3, ¢)* such that o( W)=g>—1 and <W)>> M(a)M(1)~! by Lemma
2.5. By Lemma 2.3 and Lemma 2.5, C;1¢,0+(M(a)M(1)™")=<W>. Thus we
get AW and Cgy,p(A)=<W). By Step 2, AT'N(1)M(1)"'A=N(1)M(1),
hence N()M(1)'e<{W>. Clearly 2I e<{W) and N(1)M(1)"'=2I. Therefore
N1)M(1)"*—2I €<{W)» by Lemma 2.4 and so det(N(1)M(1)™'—2I)=0, a con-
tradiction. Thus we get (ii).
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Step 4. Proof of (i).
Let a € S—GF(q). By Step 3, Lyywy =K. Furthermore {V(M(a)),

— TO
V(M(a)), V(M(@))} is an orbit of both L and <(O T)> by Step 1. Hence

1={(y oK

Lemma 4.5. T o 0
D Gyy,vo,van =<(0 T)>.K’ where T—= (1)
(i) If aeS—GF(g), then Gy, yo.vivan,vinan=K.
Proof.
Q) Si . T 0) (T 0 c @ o
ince = ” = - —
To 0T To 0 T)’ V(=),v(0),V(N()) V(0),V (=), V(M)

<(OT ,?,)>K by Lemma 4.4 (i).

(i) Let acS—GF(q). Since V(M(@™)o—V(N(a)),
Gy (), v,y v, v (v =(Gr@,v),varan,var@-1) ©=K by Lemma 4.4 (ii).

Lemma 4.6. GV(oo)z G‘V(m).v(o).

Proof.

Case (a). ¢q=3.

Suppose false. By Lemma 4.3 (jii), there exists 7€ Gy with V(0)'=
V(M(1)) or V(N(1)). As V(oo)"=V/(c0), there exist 4, B, C €M(3, g)* such

4 C
that T=(O B)' Since |GF(g)NS|=(¢q—1)/2=2, there exists eES NGF(q)
e
I0
with esF1. Since (0 E)EG where E=| 0 |, 1={A"'"MB+A"'C|MeX}=
0
{EA'MB+A7'C|M&X}. Assume that V(0)’=V(M(1)). Then A~'C=
M(1). There exists Mye>X) with A-'M,B+M(1)=N(1), Therefore A~*M,B=
0 1
0| and EA"'M,B+M(1)=| 1|€3). From this e=1 follows, a contradic-
—1 —e
tion.
Next assume that V(0)"=V(N(1)). Then by the similar argument above,
we have a contradiction again.
Case (b). ¢=3.
Assume that Gy is transitive on [I—{V(eo}). Then G is 2-transitive

on JI. Sincez has not a Baer subplane, 7 is a desarguesian plane by Theorem
39.3 of [4]. This is a contradiction.
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Assume that Gy()F Gy vy Then {V(0)} UT or {V(0)} UA is Gy)-
orbit on JI. Write this orbit by Q. Gy(. induces the permutation group
Gy/K on Q by Lemma 4.4 (ii) and Lemma 4.5 (ii). Since |Q]|=14 and
Gy /K is a 2-transitive permutation group on Q, Gy)/K >PSL(2, 13). Since
| Q| =14, the permutation group PSL(2,13) on Q contains an involution g which
fixes exactly two points of Q. There exists 7€ Gy, with g=7K. Since
|K|=2, o(t)=2 or 4. Suppose that 0()=2. As = has not a Baer subplane, 7
is a ((0, 0), L.)-perspectivity. Therefore 7 fixes any component of Q, a con-
tradiction. Suppose that o(t)=4. As 7?is a ((0, 0), L.)-perspectivity, any cycle
of 7 on V(o0)—{(0,0), V(o°)N I} is 4-cycle. Therefore 4|26, a contradic-
tion.

Lemma 4.7. Gyx=Gyo,v)-
Proof. Gy=(Gy()"=(Gy(),v) =Gy ©,v-
Lemma 4.8. Set ¥={V(c0), V(0)}. Then ¥ is a G-block on II.

Proof. Suppose &G and ¥YN¥=+¢p. We may assume that V(o) =
V(o) or V(0)*=V(o0). Assume V(o0)?=V(c0). Then ¢ EGy ()= Gy, v
and so V(0)*=V(0). Assume V(0)*=V(c0). Then Gy v =CGye)=GCGrw?=
Gy()? v0?=Gy)?v). From this and Lemma 4.3 (iii), V(o0)*=V/(0) follows.
Therefore ¥¥="1.

Lemma 4.9. T and A are Gy(.y-orbits on II.

Proof. Suppose false. By Lemma 4.3 (iii) there exists 7 € Gy with
. . 4 0
V(M(1))’=V(N(1)). Since V(0)"=V(0), 7—(0 M(l)‘lAN(l)) for some A€
GL(3, ¢9)*. Set B=M(1)"'"AN(1). Assume A~'N(1)B=N(«a) for some a €S.
From det(4™'N (1)B)=det(N(a)), n(a)=2 follows, a contradiction. —Thus
A7'N(1)B=M(ct) for some a€S. Let g=p" with p a prime.

Step 1. p=3orp=>5. If p=3, then A'N(1)B=2M(1). If p=35, then

A7'N(1)B=M(—1).
(M(l)(])\f M M(l(; N(l))' Since p"E Gy(e),vo.vivan =<p>* K,
p'=bp or bp? for some b&GF(q). Therefore 7 fixes {V(M)|V(M)’=V (M)} —
{V(o0), V(0)} ={V(M(x)), V(N(x)) | xS NGF(q)} as a set. Thus a €SN
GF(q). Set a=a. Clearly V(N(1))'=V(M(a)).

Let x=GF(q). Clearly A7'N(1)M(1)"*A=M{(a)N(1)"'. Since
det(A'N(1)M(1)7'4A — xI) = det (M (a)N(1)"'—«I), det((N(1)—M(x))N(1))=
det((M(a)—N(x))M(1)). From this (12a—18)x*+ (24—9a%)x + 2a°* —8=0.
Therefore 3a¢=9/2 and &*=4. If p=3, then a=1. If p=%3, then p=5 and

Set p=7f=



782 C. SUETAKE

a=—1.

Step 2. 34f¢—1.

If p=3, then 3 f¢—1.

Assume p=5. Suppose that n is even. Then 2 is a square in GF(5"), a
contradiction. Therefore # is odd. Then 5'—1=(—1)"—1= —2 (mod 3).

Thus 3 ¥ ¢—1. 0
TO\ (TO
Step 3. Set T=|1|. Then = . If p=3 then “?€
0 0T 0T

<(§ ;)‘)>K If p=>5, then -ﬁe<(g‘ _;)>K

TO
If P=3, then TZEGV(N).V(M(I))=<<O T)>'K If p=5, then 7€

T 0
<(O —T)>.K as V(o0)” = V(o) and V(M(1))”" = V(M(—1)). Since

TO T 0\ TO T? 0
(Gvteor,varan) = Gvcoe).v(zva»:<(0 T)>.K’ (O T) Za(o T) or a(o Tz) for

T 0\
some a&GF(q). From this a*=1 follows as 0((0 T) )=3. Thus since
3/ ¢—1, we have a=1.

S (T 0)"_(T2 O) Th (A“TA 0 )__ (T2 O) S;
uppose or) =\o 1) en o se)~\o 1) ince

a
A'TA=T?, Az[ﬁ} for some a=GF(¢°)—GF(q). If a& S, then we take et

a
instead of 7 with e GF(q)—GF(q)>. Thus we may assume that «€S. Since

tr(a?)
A% 0 T O
A= tr(aa)} and ) E< >-K, tr(aa)=0 and #r(a?)=0. Set
[tr(aa) (0 B) (0 iT)

Q,
ir(a)=>b. Since BP=tr(a®)+2-tr(aa)=tr(a?), b=*0. Set V(M(a))'= V([az ).

b—4a o

By an easy computation, B=M(1)"'"AN(1)=—1/2 [6—4'6,' follows. Since

all alfb—4a b—4a
A"M(a)B——-—l/Zb'zliﬁ } a b—4a} , —20a,=b@+a’+2aa+ 2aa)—

all0llb—4a
4(n(a)+a*+ aa’+ aa’+aa’+aa?) and —2b%a,=b(a’+a*+2aa+-2ac)—4(n(a)
+a3+aa’+aat-+ad’-+aa?). Since —2b0a,=—2ba, we get b(@+2aa)=
b(a?+2a@). Since b=+0, a*+2aa =a’+2aa. Therefore (@—a)(a+a—2a)
=0 and so @+a=2a. From this b=3a follows. Thus a=GF(g), a contradic-
tion.
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Step 4. Contradiction.
a

Since A7'TA=T, A= [ b | for some a,b,ceGF(q). Assume p=3. Since
c

0 1
A-N(1)B=M(1), | 1 A=A[—1 . From this c=—(a+b) follows. But

1 —1
a
det (A):de’{ b =a*+b—(a+b) =0, a contradiction. Assume p=>5.
—(a+b)
a*+2bc ) a®+2bc] [ O
Since A?=| ¢*+2ab | and ( O)e<( T 0>>K A= 0 |, |c+2ab
0 B? 0-—-T
b*+4-2ac 0 L 0
0 a?--2bcT
or 0 |. LetaeS—GF(q). We consider the case A?>=| 0 |. Then
b?+2ac 0
®+2ab=b°+2ac=0. Suppose b=0. Then ¢c=0, A=al and B=M(1)"?AN(1)
—1 Ar—1 —A+2X
=a| 2|. Therefore V(MMN\)'=V(| r }{ 2} )=V(| —xr+2Xx |). Thus
2 0 2 A+2N

—A+2X=(—A+2X). This implies A&GF(qg), a contradicion. Suppose b=0.
Substituting a=—c?/2b in b*+2ac=0, we getb=c and a=2b. From this
2

1} and B = M(1)"AN(1)=bI follow. Therefore V(M(\))" =
1

A=b

—1 20—Xx
14¢ [ 2 —A42%
2 22X
GF(g), a contradiction. Also when A?=
have a contradiction.

. Thus 2,—X=(—A+2X). This implies A&
0 0
c24-2ab| or 0
0 bB-+2ac

Theorem 4.10. If q=3, then G has two orbits of length 2 and length ¢—1
on II.

Proof. Let g=3. Suppose false. Then G is transitive on JI. Since
{V(e0), V(0)} is a G-block by Lemma 4.8, there exists V(M) Il —{V(e0),
V(0), V(M(1))} such that A={V(M(1)), V(M)} is a G-block. Since
V(M(1))e=V(M(1)), A=A and so V(M)s=V(M). Therefore M=M(a) or
N(a) for some a€ S N GF(q).

MO)=V(

, similarly we
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I 0
Assume that A={V(M(1)), V(M(a))} is a G-block. Set p=(0 I)EG.
a

Then A*={V(M(a)), V(M(a®)} =A. Therefore M(a*)=M(1) and so a= —1
as a=*1. Since {{p,|aEeS}, 7,,<G by Lemma 4.3, {V(M), V(—M)} is a

I 0
G-block for any V(M)eIl—{V(e), V(0)}. Set a'1=( 0 I)E G. Now o

fixes exactly two components V(o) and V(0) in JI. Furthermore o, fixes any
G-block on JI. Since G is transitive on IJ, there exists o, such that o, is
conjugate to o, and fixes exactly two components V(M(1)), V(M(—1)) in IT and
all G-blocks on JII. Therefore o0,7 € Gy(eyvw- But V(M (1)) 1% o=
V(N(—1)). This is contrary to Lemma 4.9.

Next assume that {V(M(1)), V(N(a))} is a G-block. Since {V(M(1)),
V(N(a)) }?a={V(M(c)), V(N(ac))} is a G-block for any a €S, G is 2-transitive
on the set of G-blocks. Therefore there exists @ €G such that ¢ interchanges

{V{(c0), V(0)} and {V(M(1)), V(N(a))}. Let ¢:(§ g) Suppose that =
(V(eo), V(M(1)))(V(0), V(N(a))) -+ on II. Then

_( A AN(a) )
=\ —ma)y4 —myam))

Let b€ SN GF(q) with b==1. Then

V(M®B)”

— V(A—MBM(L)™4)(AN(@)—MB)M(1)*AM(1))
= V(A—bA)(AN(a)—bAM(1)))

= V(1—8)"(N(@)— M)

a—b
Hence (1—5)"'(N(a)—M(b))=(1—b)"" [a—b

so b=0, a contradiction. Suppose that $=(V(c0), V(N(a)))(V(0), V(M(1)))--
I 0 ~
on JI. Set ’T'=To(0 aI)' Since F#=(V (o), V(0))(V(M(1)), V(N(a))):**, pT=

(V(o0), V(M(1)))(V(0), V(IN(@)))---. This is the above case, a contradiction.
Suppose that @= (V' (o), V(M(1)), V(0), V(N(a)))- on II. Then o=

A4 AN(a) ) v
(_ N4 — N(a)“AM(l))' Let b S N GF(q) with b=a. Then V(N(b))*=
V((1—ba™")"(N(a)—M(ba™"))). Thus b=0 by the similar argument above, a
contradiction. Suppose that @ = (V' (o), V(N(a)), V(0), V(M(1))):-- on II.
Then @s=(V(e0), V(M(1)), V(0), V(IN(a))):--. This is a contradiction.

e>). Since a*0, a—b=a and
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Theorem 4.11. If q¢=3, then |G | =3(q—1)(¢*—1).

Proof. By Lemma 4.4, Lemma 4.6, Lemma 4.9 and Theorem 4.10, |G |=
[V(0)¢] | Gyiwy| =2 Gye) | =2| Gy o) varan | | VIM(1))7 | =3(g—1)(¢—1).

Theorem 4.12. If g=3, then G =SL(2, 13).

Proof. Since G is transitive on II [5], |G|=28|Gy(|. By Lemma 4.4,
Lemma 4.6 and Lemma 4‘9, ]GV(w)l = lGV(w) V(M(l))] | V(M(l))GV(‘”)I =6-13.
Therefore |G|=23-3-7-13. On the other hand since |SL(2, 13)|=|G| and
G>SL(2, 13) by [5], G=SL(2, 13).

Theorem 4.13. 7 is not a generalized André plane.

Proof. Assume that z is a generalized André plane. Then there exist

(o 0 0
SUEH{| 0 [laesGF(@)*}, 2,S{|a|lasGF(@)* and 2,S{|0||ac
0 0 o
GF(¢*)*} such that 33,27 and X,=>3,U >3, U >, U {0} is the spread set de-
a B 0
fining z. If a*+B&GF(¢)* and n(a)=n(B), then [0 |,| 0 (€, |a |,
0 0 0 0 0 0
BleX,or|0],| 0 X, Letz(3l,) is the translation plane z which is
0 a g

constructed by >1,. Now since the order of 7 is ¢% z is an André plane by
Corollary 12.5 of [4]. Let G(Z,) is the linear translation complement of 7z(33,).
t

W o
Set 'r=(0 W) where W=| 0 [. Then <D< G ,)vw.vevp and 1) is
0
transitive on V(0)—{(0, 0), V(0)NZ.}. This is contrary to Theorem 12.1 of [4].
Let g==3. Since the translation complement of any proper semifield plane
have an orbit of length 1 on [, = differs from any semifield plane.
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