ON HASSE-SCHMIDT HIGHER DERIVATIONS

Sadi Abu-SAYMEH

(Received March 19, 1985)

Let k be a field of characteristic zero and let A be a commutative k-algebra. A higher derivation D of A over k is a sequence

$$
\underline{D}=\left\{D_{0}, D_{1}, D_{2}, \cdots\right\}
$$

of additive k-endomorphisms D_{i} 's such that D_{0} is the identity map of A and $D_{n}(a b)=\sum_{m=0}^{n} D_{m}(a) D_{n-m}(b)$ for every $a, b \in A$. This interesting notion of higher derivations was introduced by H. Hasse and F.K. Schmidt in [1].

In this paper we shall prove that a higher derivation \underline{D} of A over k is represented uniquely by a certain sequence of derivations of A over k.

Let n, r be positive integers such that $n \geq r$. We shall denote by $P_{n, r}$ the set of ordered partitions of n into r-positive integers, i.e.,

$$
P_{n, r}=\left\{\left(n_{1}, \cdots, n_{r}\right) \mid \sum_{i=1}^{r} n_{i}=n, n_{i} \in \boldsymbol{N}_{+}\right\}
$$

It is easily seen that the cardinality $\left|P_{n, r}\right|$ of the set $P_{n, r}$ is given by

$$
\left|P_{n, r}\right|=\binom{n-1}{r-1} .
$$

Proposition 1. Let $\underline{D}=\left(D_{0}, D_{1}, D_{2}, \cdots\right)$ be a higher derivation on A and let $\delta_{n}(n \geq 1)$ be defined by the equations

$$
\delta_{n}=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum_{\left(n_{1}, \ldots, n_{r}\right) \in P_{n, r}} D_{n_{1}} D_{n_{2}} \cdots D_{n_{r}}
$$

Then we have
(i) $\delta_{n}(n=1,2, \cdots)$ is a k-derivation,
(ii) $D_{n}=\sum_{r=1}^{n} \frac{1}{r!} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \delta_{n_{1}} \delta_{n_{2}} \cdots \delta_{n_{r}}$.

Proof. (i) For $n=1$ we have $\delta_{1}=D_{1}$ which is clearly k-derivation.

For $n \geq 2$, and $a, b \in A$ we have

$$
\begin{aligned}
& \delta_{n}(a b)=D_{n}(a b)+\sum_{r=2}^{n} \frac{(-1)^{r+1}}{r} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} D_{n_{1}} D_{n_{2}} \cdots D_{n,}(a b) \\
& =\sum_{m=0}^{n} D_{m}(a) D_{n-m}(b)+\sum_{r=2}^{n} \frac{(-1)^{r+1}}{r} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \sum_{0 \leq m_{i} \leq n_{i}} \\
& \quad \cdot D_{m_{1}} D_{m_{2}} \cdots \ldots D_{m_{r}}(a) D_{n_{1}-m_{1}} D_{n_{2}-m_{2}} \cdots D_{n_{r}-m_{r}}(b) \\
& =a \delta_{n}(b)+\delta_{n}(a) b+\sum_{m=1}^{n-1} D_{m}(a) D_{n-m}(b) \\
& \quad+\sum_{r=2}^{n} \frac{(-1)^{r+1}}{r} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \sum_{\text {and at least one } 0<m_{i}<n_{i}} \\
& \quad \cdot D_{m_{1}} D_{m_{2}} \cdots D_{m_{r}}(a) D_{n_{1}-m_{1}} D_{n_{2}-m_{2}} \cdots D_{n_{r}-m_{r} r}(b)
\end{aligned}
$$

Hence to prove the assertion it suffices to show that

$$
\begin{gathered}
\sum_{m=1}^{n-1} D_{m}(a) D_{n-m}(b)+\sum_{r=2}^{n} \frac{(-1)^{r+1}}{r} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \sum_{0 \leq m_{i} \leq n_{i}} \sum_{\text {and at least one } 0<m_{i}<n_{i}} \\
\cdot D_{m_{1}} D_{m_{2}} \cdots D_{m_{r}}(a) D_{n_{1}-m_{1}} \cdots D_{n_{r}-m_{r}}(b)=0 .
\end{gathered}
$$

Let $h(e, s)$ be the coefficients of $D_{l_{1}} D_{k_{2}} \cdots D_{l_{e}}(a) D_{j_{1}} D_{j_{2}} \cdots D_{j_{s}}(b)$ in the reduced expression of the left hand side where l_{i} 's and j_{i} 's are positive integers such that $l_{1}+\cdots+l_{e}+j_{1}+\cdots+j_{s}=n$. Such a term can occur only if $r=e, e+1, \cdots, e+s$. Hence if $e \geq s \geq 1$ then it is seen without essential difficulty that we have

$$
h(e, s)=\sum_{p=0}^{s} \frac{(-1)^{e+p+1}}{e+p}\binom{e+p}{e}\binom{e}{s-p} .
$$

The sum correspond to the case $r=e, \cdots, r=e+s$ respectively and $\binom{e+p}{e}$ is the number of times one can select e number of m_{i} 's to be euqal to l_{i} 's and setting the other p-number of m_{i} 's to be zero, while $\binom{e}{s-p}$ is the number of times one can select $s-p$ numbers of $\left(n_{i}-m_{i}\right)$'s to be equal to the j 's. Since

$$
\frac{1}{e+p}\binom{e+p}{p}=\frac{1}{e}\binom{e+p-1}{p}
$$

Then we get

$$
h(e, s)=\frac{(-1)^{e+1}}{e} \sum_{p=0}^{s}(-1)^{p}\binom{e+p-1}{p}\binom{e}{s-p}
$$

Setting $s-p=q$ we obtain

$$
h(e, s)=\frac{(-1)^{e+s+1}}{e} \sum_{q=0}^{s}(-1)^{q}\binom{e+s-q-1}{s-q}\binom{e}{q} .
$$

Hence $h(e, s)=0$ by [2, identity (35) p. 41]. Similarly $h(e, s)=0$ if $s>e \geq 1$. Hence δ_{n} is a k-derivation.
(ii) We use induction on n. For $n=1$ we have $\delta_{1}=D_{1}$. Since

$$
D_{n}=\delta_{n}+\sum_{r=2}^{n} \frac{(-1)^{r}}{r} \sum_{\left(n_{1}, \ldots, n_{r}\right) \in P_{n, r}} D_{n_{1}} D_{n_{2}} \cdots D_{n_{r}} \text { for } n \geq 2
$$

and the induction assumption on n implies that

$$
\begin{gathered}
D_{n_{i}}=\sum_{s=1}^{n_{i}} \frac{1}{s!} \sum_{\left(n_{i 1}, \cdots, n_{i s}\right) \in P_{n i, s}} \delta_{n i 1} \delta_{n i 2} \cdots \delta_{n i s} \\
\text { for every } 1 \leq n_{i}<n .
\end{gathered}
$$

Hence after collecting similar terms we get

$$
\begin{aligned}
D_{n} & =\delta_{n}+\sum_{r=2}^{n} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \\
& \left.\sum_{-p=2}^{r} \frac{(-1)^{p}}{p} \sum_{\left(m_{1}, \cdots, m_{p}\right) \in P_{r, p}} \frac{1}{\left(m_{1}\right)!\cdots\left(m_{p}\right)!}\right] \delta_{n_{1}} \delta_{n_{2}} \cdots \delta_{n_{r}}
\end{aligned}
$$

On the other hand the coefficient of χ^{r} (for every $r \geq 2$) in the Taylor's series expansion of $\chi=\ln \left[1+\left(e^{x}-1\right)\right]$ is

$$
\frac{1}{r!}-\sum_{p=2}^{r} \frac{(-1)^{p}}{p} \sum_{\left(m_{1}, \ldots, m_{p}\right) \in P_{r, p}} \frac{1}{\left(m_{1}\right)!\cdots\left(m_{p}\right)!}=0 .
$$

Hence

$$
D_{n}=\sum_{r=1}^{n} \frac{1}{r!} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \delta_{n_{1}} \delta_{n_{2}} \cdots \delta_{n_{r}}
$$

A higher derivation $\underline{D}=\left\{D_{n} ; n \geq 0\right\}$ is called iterative if it satisfies the condition

$$
D_{i} D_{j}=\binom{i+j}{i} D_{i+j}
$$

for any pair of integers (i, j). Then we have the
Corollary. Let \underline{D} be a higher derivation of A over k and $\left\{\delta_{n}, n=1,2, \cdots\right\}$ be a corresponding sequence of dervations defined in Proposition 1. Then \underline{D} is
iterative if and only if $\delta_{n}=0$ for all $n \geq 2$.
Proposition 2. Let $\left\{\delta_{1}, \delta_{2}, \cdots\right\}$ be a sequence of k-derivations on A and set

$$
D_{n}=\sum_{r=1}^{n} \frac{1}{r!} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \delta_{n_{1}} \delta_{n_{2}} \cdots \delta_{n_{r}}(n \geq 1)
$$

Then we have
(i) $\underline{D}=\left\{D_{0}=i d, D_{1}, D_{2}, \cdots,\right\}$
is a higher derivation, and
(ii) $\delta_{n}=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} D_{n_{1}} D_{n_{2}} \cdots D_{n_{r}}$.

Proof. (i) The assertion is clear for $n=1$.
Next we show that $D_{n}(a b)=\sum_{m=0}^{n} D_{m}(a) D_{n-m}(b)$ for every $a, b \in A$ and $n \geq 2$. For convenience let δ_{m}^{0} satnds for the identity mapping and δ_{m}^{1} sands for δ_{m}. Then we have

$$
\begin{aligned}
& D_{n}(a b)=\sum_{r=1}^{n} \frac{1}{r!} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \delta_{n_{1}} \delta_{n_{2}} \cdots \delta_{n_{r}}(a b) \\
& =\sum_{r=1}^{n} \frac{1}{r!} \sum_{\left(n_{1}, \ldots, n_{r}\right) \in P_{n, r}} \sum_{0 \leq e_{i} \leq 1} \\
& \delta_{n_{1}}^{e_{1}} \delta_{n_{2}}^{e_{2}} \cdots \delta_{n_{r}}^{e_{r}^{r}}(a) \delta_{n_{1}}^{1-e_{1}} \delta_{n_{2}}^{1-e_{2}} \cdots \delta_{n_{r}}^{1-e_{r}}(b) \\
& =a D_{n}(b)+D_{n}(a) \cdot b+\sum_{r=2}^{n} \frac{1}{r!} \sum_{\left(n_{1}, \ldots, n_{r}\right) \in P_{n, r}} \sum_{\substack{0 \leq \sum_{i} \leq 1 \\
\text { such that }}} \\
& { }_{1 \leq{ }_{1}+\cdots+e_{r} \leq r-1}
\end{aligned}
$$

$$
\begin{aligned}
& =a D_{n}(b)+D_{n}(a) \cdot b+\sum_{r=2}^{n} \sum_{(t, s) \in P_{r, 2}} \frac{1}{(t+s)!}\binom{t+s}{t} \\
& { }_{\left(m \mathrm{I}, \cdots, m_{t}, l_{1}, \cdots, l_{s}\right) \in P_{n, t+s}} \\
& \delta_{m_{1}} \delta_{m_{2}} \cdots \delta_{m_{t}}(a) \cdot \delta_{l_{1}} \delta_{l_{2}} \cdots \delta_{l_{s}}(b) .
\end{aligned}
$$

Note that $\binom{t+s}{t}$ is the number of ways of selecting t number of e_{i} 's equal to one in the expression

$$
\delta_{n_{1}}^{e_{1}} \delta_{n_{2}^{2}}^{e_{2}} \cdots \delta_{n_{r}}^{e_{r}}(a) \cdot \delta_{n_{1}}^{1-e_{1}} \delta_{n_{2}}^{1-e_{2} \cdots} \delta_{n_{r}}^{1-e_{r}}(b) \quad \text { where } r=t+s
$$

On the other hand we have

$$
\begin{aligned}
& \sum_{m=0}^{n} D_{m}(a) D_{n-m}(b)=a D_{n}(b)+D_{n}(a) b \\
& \quad+\sum_{m=1}^{n-1}\left[\left(\sum_{t=1}^{m} \frac{1}{t!} \sum_{\left(m_{1}, \cdots, m_{t}\right) \in P_{m, t}} \delta_{m_{1}} \delta_{m_{2}} \cdots \delta_{m_{t}}(a)\right)\right. \\
&\left.\left(\sum_{s=1}^{n-m} \frac{1}{s!} \sum_{\left(l_{1}, \cdots, l_{s}\right) \in P_{n-m, s}} \delta_{l_{1}} \delta_{l_{2}} \cdots \delta_{l_{s}}(b)\right)\right] \\
&= a D_{n}(b)+D_{n}(a) \cdot b+\sum_{r=2}^{n} \sum_{(t, s) \in P_{r, 2}} \frac{1}{t!s!} \\
& \sum_{\left(m_{1}, \cdots, m t, l_{1}, \cdots, l_{s}\right) \in P_{n, t+s}} \\
& \delta_{m_{1}} \delta_{m_{2}} \cdots \delta_{m_{t}}(a) \cdot \delta_{l_{1}} \delta_{l_{2}} \cdots \delta_{l_{s}}(b) .
\end{aligned}
$$

Since $\frac{1}{(t+s)!}\binom{t+s}{t}=\frac{1}{t!s!}$ we have $D_{n}(a b)=\sum_{m=0}^{n} D_{m}(a) D_{n-m}(b)$
(ii) Since $\underline{D}=\left\{D_{0}, D_{1}, D_{2}, \cdots,\right\}$ is a higher derivation we can associate to \underline{D} a sequence of derivations $\left\{\delta_{1}^{\prime}, \delta_{2}^{\prime}, \cdots\right\}$ by Proposition 1(i). From Proposition 1(ii) it follows that

$$
D_{n}=\delta_{n}^{\prime}+\sum_{r=2}^{n} \frac{1}{r!} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \delta_{n_{1}}^{\prime} \delta_{n_{2}}^{\prime} \cdots \delta_{n_{r}}^{\prime}
$$

On the other hand

$$
D_{n}=\delta_{n}+\sum_{r=2}^{n} \frac{1}{r!} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \delta_{n_{1}} \delta_{n_{2}} \cdots \delta_{n_{r}}
$$

by definition of D_{n}. Since $\delta_{1}=D_{1}=\delta_{1}^{\prime}$ we get easily $\delta_{n}=\delta_{n}^{\prime}$ by induction on n.
The following theorem follows from Propositions 1 and 2.
Theorem. There is a one to one correspondence between the set of ordered sequences of k-derivations on A and the set of higher derivations on A in such a way if $\left\{\delta_{n}: n \geq 0, \delta_{0}\right.$ identity, δ_{n} is a k-derivation $\}$ and the higher derivation $\underline{D}=$ $\left\{D_{n}: n \geq 0\right\}$ correspond, then

$$
D_{n}=\sum_{p=1}^{n} \frac{1}{r!} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} \delta_{n_{1}} \delta_{n_{2}} \cdots \delta_{n_{r}}
$$

and

$$
\delta_{n}=\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r} \sum_{\left(n_{1}, \cdots, n_{r}\right) \in P_{n, r}} D_{n_{1}} D_{n_{2}} \cdots D_{n_{r}}
$$

for every $n \geq 1$ and $D_{0}=\delta_{0}$.
Corollary. Let $D_{A / k}$ be the set of all higher derivations on A. Let $\underline{\operatorname{D}}, \underline{E} \in$
$D_{A / k}$ correspond respectively to the sequences $\left\{\delta_{1, n}: n \geq 0\right\}$ and $\left\{\delta_{2, n}: n \geq 0\right\}$ of k derivations on A. Then $D_{A / k}$ is a Lie algebra with respect to the operations $\alpha \underline{D}+$ $\underline{E}=\underline{L}$ and $[\underline{D}, \underline{E}]=\underline{G}$ where $\alpha \in k$ and \underline{L} is the higher derivation corresponding to the sequence $\left\{\delta_{0}, \alpha \delta_{1, n}+\delta_{2, n}: n \geq 1\right\}$ and \underline{G} is the higher derivation corresponding to the sequence $\left\{\delta_{0},\left[\delta_{1, n}, \delta_{2, n}\right]=\delta_{1, n} \delta_{2, n}-\delta_{2, n} \delta_{1, n}: n \geq 1\right\}$ respectively.

Proof. It follows easily from the fact that the set of k-derivations on A is a Lie algebra.

References

[1] H. Hasse and F.K. Schmidt: Noch eine Bergründung der Theorie der höheren Differentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten, J. Reine Angew. Math. 177 (1937), 215-237.
[2] N. Vilenkin: Combinatorics, Academic Press, New York, 1971.

Department of Mathematics Yarmouk University Irbid, Jordan

