ON MODULES THAT COMPLEMENT DIRECT SUMMANDS

Andreas ZÖLLNER

(Received October 5, 1984)

A module M is said to complement direct summands if every direct summand of M has the exchange property with respect to completely indecomposable modules, or in other words if for each direct summand B of M and for each decomposition $M=\underset{I}{\oplus} A_{i}$, where every A_{i} is completely indecomposable (i.e. has local endomorphism ring), there exists a subset K of I with $M=$ $B \oplus \underset{K}{\oplus} A_{k}$.
There are several characterisations by a theorem of Harada [3, 3.1.2].
Theorem. Let $M=\underset{I}{\oplus} A_{i}$ be a c. indec. decomposition. Equivalent are
(1) M satisfies the take-out property.
(2) Every direct summand of M has the exchange property in M.
(3) M complements direct summands.
(4) $\left(A_{i}: I\right)$ is a locally-semi-T-nilpotent family.
(5) $J^{\prime} \cap \operatorname{End}(M)$ is equal to the Jacobson radical of $\operatorname{End}(M)$.

One step of the proof, " $(4) \Rightarrow(5)$ ", does merit a certain attention. In an earlier version of the theorem by Harada and Sai [2, Thm 9], the proof of that step uses assumptions stronger than at hand [2, Lemma 12]. We would like to present an alternative and elementary proof of that step. In particular one does not need transfinite induction as in [3, Lemma 2.2.3]. All notation may be found in [3]. For the proofs let perpetually be $M=\underset{I}{\oplus} A_{i}$ a completely indec. decomposition and let $\left(e_{i}: I\right)$ be a related set of orthogonal idempotents (i.e. $e_{i}(M)=A_{i}$).

By definition, for an element f of $\operatorname{End}(M)$ not contained in J^{\prime}, there exist some elements $i, j \in I$ and $g \in \operatorname{End}(M)$ with $g e_{j} f e_{i}=e_{i}$. Thus the Jacobson radical of $\operatorname{End}(M)$ is always contained in $J^{\prime} \cap \operatorname{End}(M)$, otherwise it would contain a nonzero idempotent.

Lemma 1. For all $t \in J^{\prime} \cap \operatorname{End}(M)$ and for all $i \in I, e_{i} t$ and te e_{i} are elements of the Jacobson radical.

Proof. Write $e_{i}=v p$, where v is the inclusion of A_{i} in M and p is the projection onto A_{i} induced by e_{i}. $\quad J^{\prime} \cap \operatorname{End}(M)$ is an ideal, thus the composition pstv is not an isomorphism for all endomorphisms s. As $\operatorname{End}\left(A_{i}\right)$ is local, $1_{A}-p s t v$ is an isomorphism. By Beck [1, Lemma 1.1], $1_{M}-s t e_{i}$ is also an isomorphism and so $t e_{i}$ is an element of the radical. The other case works similarly.

Corollaries.

(a) For all $t \in J^{\prime} \cap \operatorname{End}(M), 1-t$ is a monomorphism.
(b) $J^{\prime} \cap E n d(M)$ does not contain nonzero idempotents.
(c) Lemma 1 is also true for arbitrary local idempotents and for finite sums of orthogonal local idempotents.
(d) Suppose J is a finite subset of I, take $x \in \underset{J}{\oplus} A_{j}$ and $d:=\sum_{J} e_{j}$. Then $x=(1-$ $d t)(1-d t d)^{-1}(x) . \quad($ Condition $(\S))$.

Proofs. The definition of J^{\prime} does not depend on a particular decomposition of M and this implies the first statement of (c). The second statement of (c) and (d) are obtained by a straightforward calculation. For (a), take $0 \neq x \in M$. There exists a finite subset J of I with $x \in \underset{J}{\oplus} A_{j}$. By (c), $t d$ is in the radical and $1-t d$ is an isomorphism, where $d=\sum_{J} e_{j}$. Thus $(1-t)(x)$ $=(1-t d)(x) \neq 0$. (b) follows from that, as $1-e$ is not monic for each nonzero idempotent e.
Having (a) in mind, in order to complete the proof of "(4) $\Rightarrow(5)$ " it is enough to show $1-t$ is an epimorphism for all $t \in J^{\prime} \cap \operatorname{End}(M)$. This is where (4) turns up. The idea is to apply the König-Graph-Lemma somehow.

Lemma 2. Let $\left(A_{i}: I\right)$ be a locally-semi-T-nilpotent family and take $t \in J^{\prime} \cap \operatorname{End}(M)$. Then $1-t$ is an epimorphism.

Proof. For an arbitrary $j \in I$ and $x \in e_{j} M$ there is constructed a $f_{x} \in \operatorname{End}(M)$ with $(1-t) f_{x}(x)=x$. Then $e_{i} M \subset(1-t) M$ for all $i \in I$ and $1-t$ is onto. Let $j \in I$ and $x \in e_{j} M$ be as above. Sequences $\left(f_{n}: N\right),\left(g_{n}: N\right),\left(h_{n}: N\right),\left(d_{n}: N\right)$ with elements in $\operatorname{End}(M)$ and $\left(K_{n}: \boldsymbol{N}\right),\left(I_{n}: N\right)$ with subsets of I are constructed by induction, having the following properties:
(A) d_{n} is an idempotent
(B) $K_{n} \cap I_{n-1}=\varnothing$ and $\{j\} \cup K_{1} \cup \cdots \cup K_{n}=I_{n}$
(C) $1-g_{n}=(1-t) f_{n}$
(D) $g_{n}(x)=\prod_{1 \leq i \leq n} \sum_{k_{i} \in K_{i}} e_{k_{i}}\left(1-d_{i}\right) t h_{i}(x)$
$n=1$ Define $d_{1}:=e_{j}, \quad I_{0}:=\{j\}, h_{1}:=\left(1-d_{1} t d_{1}\right)^{-1}, \quad f_{1}:=h_{1}, \quad g_{1}:=1-(1-t) f_{1}$. (A) and (C) are valid per def. Now, $\left(1-g_{1}\right)(x)=(1-t) h_{1}(x)=\left(1-d_{1} t\right) h_{1}(x)$ $-\left(1-d_{1}\right) t h_{1}(x)$. As by Condition (§), $\left(1-d_{1} t\right) h_{1}(x)=x$, follows $g_{1}(x)=$
$\left(1-d_{1}\right) t h_{1}(x)$ and so $j \notin \operatorname{supp}\left(g_{1}(x)\right)=: K_{1}$ (for $y \in M, \operatorname{supp}(y)$ is the finite set of $i \in I$ with $\left.e_{i}(y) \neq 0\right) . \quad g_{1}(x)=\sum_{k_{1} \in K_{1}} e_{k_{1}}\left(1-d_{1}\right) t h_{1}(x)$. Take $I_{1}:=K_{1} \cup I_{0}$ and get (D) and (B).
$n \leadsto n+1$ Define $d_{n+1}:=\sum_{i \in I_{n}} e_{i}, h_{n+1}:=\left(1-d_{n+1} t d_{n+1}\right)^{-1}, f_{n+1}:=f_{n}+h_{n+1} g_{n}, g_{n+1}:=$ $1-(1-t) f_{n+1}, K_{n+1}:=\operatorname{supp}\left(g_{n+1}(x)\right), I_{n+1}:=K_{n+1} \cup I_{n} . \quad$ Again, (A) and (C) are valid per def. For the rest:

$$
\begin{aligned}
\left(1-g_{n+1}\right)(x) & =(1-t)\left(f_{n}+h_{n+1} g_{n}\right)(x) \\
& =x-g_{n}(x)+\underbrace{\left(1-d_{n+1} t\right) h_{n+1} g_{n}(x)}_{=0}-\left(1-d_{n+1}\right) t h_{n+1} g_{n}(x) \\
& \underbrace{}_{n}(x) \text { by Condition }(\S)
\end{aligned}
$$

From $g_{n+1}(x)=\left(1-d_{n+1}\right) t h_{n+1} g_{n}$ one gets (D) by insertion. It is easy to see that $K_{n+1} \cap I_{n}=\varnothing$, which gives (B).

The construction is now complete. All summands in (D) are nonisomorphisms (as compositions with t) between certain A_{i}, and none of these A_{i} occur twice. Now by locally-semi-T-nilpotency and the König-Graph-Lemma there exists a natural number m with $g_{m}(x)=0$. (C) implies $x=(1-t) f_{m}(x)$.

References

[1] I. Beck: On modules whose endomorphism ring is local, Israel J. Math. 29 (1978), 393-407.
[2] M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
[3] M. Harada: Applications of factor categories to completely indecomposable modules, Publ. Dép. Math. Lyon 11 (1974).

Mathematisches Institut der Universität Theresienstrasse 39
8000 München 2
West Germany

