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1. Introduction

In [3], [4], [5], [6] and [7], P. Levy has introduced the notion of the con-

jugate sets associated with Gaussian random fields (G.r.f.'s) and studied the

properties of these sets. Recently, in [1] and [2], we have also shown that

this notion is effective to discuss the independence structures of G.r.f.'s. In

this paper, we shall be concerned with the characterization of G.r.f.'s with

parameter space Rd in terms of the conjugate sets associated with them.

Let S be the class of all the functions on [0, oo) expressed in the form

(1.1) r(t) = cf+ Γ(l- e-'2>-Wγ(M) (t>0),
Jo

where c is a non-negative constant and γ denotes a measure on (0, oo) such that

[°{\+u)-ιdj{u)<oo and r(l) = 1.
Jo

An important subclass of S is given by

(1.2) L= ir(t) = t«; 0<a<2}.

Then it is well known that for every r(t) £Ξ S and every d > 1 there exists a mean

zero G.r.f. X={X(x); x^Rd} with homogeneous and isotropic increments

that is determined by the structure function r(t)y i.e.,

E[(X(x)-X(y))2] = r(\x-y\) for every xyy^Rd

and

E[X(x)] = 0 for every xEΞRd .

We can determine this G.r.f. X uniquely except for additional Gaussian random

variables with mean zero. We may identify two G.r.f.'s on Rd which are de-

termined by the same structure function, because such G.r.f.'s have the same

probabilistic structure related to conditional dependence. From this point

of view, we often use the notation (X, r(t)) instead of X. For details of these

G.r.f.'s, see [2], [8], [9], [13] and Remark 2 in Section 2.
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We now consider a G.r.f. (X, r(ή) on Rd. For every EdRd (EΦφ), the

symbol μr(x\E) denotes the conditional expectation of X(x) conditioned by

{X{z)\ z^E} in the sense of [6]. In other words, choosing zo^E arbitrarily,

we set

μr(x\E) = X(zo)+E[X(x)-X(zo)\X(z)-X(zo);

The conditional covariance function of (X, r(t)) is defined by

Rr(x, y\E) = E[(X(x)-μr(x\E))(X(y)-μr(y\E))] (x,

We can now define, after P. Levy, the maximal conjugate set 3ίχ(x\E) of x

relative to E as follows:

(1.3) 3jix\E) = ίy(ΞRd; Rr(x, y\E) = 0}.

Since (X, r(t)) is Gaussian; the set ΞFχ{x\E) proves to be the locus of y^Rd for

which X(x) and X(y) are conditionally independent under the conditioning

by {X(z)\ z^E}. Throughout this paper the phrase "conjugate set" means

the phrase "maximal conjugate set". We also use the notation St to indicate

the similar transformation on Rd defined by Stx=tx (t>0> x^Rd). We are

now in a position to state our problems:

PROBLEM 1. Let (X, r(t)) be a G.r.f. on Rd. Suppose that, given another

G.r.f. (XL, rλ(t)) on Rd

} the relation

(1.4) ^

holds for certain pairs {xy E}, x^Rd, EdRd. Then is it true that r1(t)=r(t)}

PROBLEM 2. Let (X, r(t)) be a G.r.f. on Rd. Suppose that the relation

(1.5) EFx{Stx\StE) = StEFx{x\E) for every t>0

holds for certain pairs {x, E}y x^Rd, EdRd. Then is it true that

Formerly we studied the special case that E contains at most two points

([!]> P]) The main purpose of this paper is to give affirmative answers to

these problems for more general finite sets E under certain reasonable condi-

tions (see Section 2). Generally speaking, if E is finite, Problems 1 and 2 will

be reduced to solve some functional equations for f(x)=r1(r~1(x)) and r{t) re-

spectively (see Section 5). Here we shall illustrate the intuitive meanings of

our problems. The inclusion (1.4) tells us the following: If a random vari-

able X(y) is conditionally independent of X(x) under the conditioning by

{X(z)\ Z^LE} in the G.r.f. (X, r(t)), the same statement holds also for the cor-

responding random variables in the G.r.f. (X1? r^t)). Therefore, if Problem

1 is solved affirmatively, the family {SFχ{x \ E)} is thought of as a characteristic of
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the G.r.f. (X, r(t))y so far as the conditional independence is concerned. On

the other hand, if Problem 2 is solved affirmatively, we can claim that the scale

invariance of (X, r(t)) in the sense of [9] (also see Remark 2 in Section 2) is

derived from the invariance property (1.5) of the family {S!χ(x\E)}.

The organization of this paper is as follows. Our main results will be

stated in Section 2. In Section 3 we shall discuss the non-degeneracy of

3ϊx{x\E), which is guaranteed by the condition (R) mentioned in Section 2.

Next we prepare, in Section 4, several lemmas necessary for the proofs of the

results mentioned above. By using these lemmas, we shall prove our main re-

sults in Section 5. Section 6 is devoted to the proofs of all the propositions

stated in Section 3. Finally, in Section 7, we shall give some remarks about

Problems 1 and 2.

2. Main results

Let (X, r(ΐ)) be a G.r.f. on Rd and £ be a non-empty subset of Rd.

Throughout this paper we promise that the parameter space Rd is equipped

with the following orthogonal decomposition into subspaces G and H:

, and d i m £ Γ = 2 .

We always assume that E is finite and expressed as follows:

(2.1) E={ak}1<k<u and n=#E>l ,

where #E denotes the cardinal number of E. Then the conditional expectation

μr(x IE) can be expressed in the form

(2.2) μr{x\E) = ±X{ak)Ύ

k

r{x\E) (x<=B?)

with certain real numbers <γ;(x\E) ( l<£<w) satisfying the equation Σ

= 1. We are interested in the case that E satisfies one of the following con-

ditions:

(A.I) The points of E are independent, i.e., # £ = 1 , or else the vectors ak—aλ

(2<&<#) are linearly independent; and

(A.2) The points of Έ are symmetric, i.e., the set {| a,j—ak \} 1<k<n is independent

of j (1 < / <w), including the multiplicities.

Further we shall direct our attention to the case that E is contained in a sphere

S(l)={x^Rd; I JCI =/> (/>0). Now we can give answers to Problems 1 and

2 simultaneously.

Theorem 1. Let (X, r(ή) be a G.r.f. on Rd rigged with {α, E}, where
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r(t)^Sy a^H and EaG. Suppose that {α, Ey r(t)} satisfies the conditions (A.I)

and

(R) αφO and Rr(a, —a\E)<0; and further

(2.3) #E>2 and y}(a\E)yk

r(a\E)Φθ for some j} k (jφk).

(i) For another G.r.f (Xl9 r^ή) on Rd with Γ ^ J G S , the identity r^ή^r

holds if and only if

(2.4) ^

(ii) It holds that r(t) (=Lif and only if

(2.5) %x(Sta\StE) = Sβχ(a\E) for any t>0 .

Theorem 2. Let (X, r(ή) be a G.r.f. on Rd rigged with {a, £} , where

r(t)GS,αGff andEcS(l) Π G. Suppose that {α, Ey r(t)} satisfies the condition (R).

(i) For another G.r.f. (Xly r^t)) on Rd with rx(t)<=Sy the identity r1(t)=r(t)

holds if and only if there exists an open interval (t19 t2) ( ^ < l < ί 2 ) s u c n t n a t

(2.6) ΞFχ{Sta\E)nH(Z^Xi(Sta\E)f]H for any t<=Ξ(tlyt2).

(ii) It holds that r(t) ̂ Lif and only if

(2.7) ζFχ{StxIStE) ΠH= (StΞFχ{x\E))f]H for any x(ΞH and any t>0 .

It is meaningful to restate the second parts of the above theorems by using

the notion of the projective invariance of G.r.f.'s in the sense of [8] (see Re-

mark 2). We denote by 3(Rd; E) the set of transformations onRd which con-

sists of all translations, orthogonal transformations, similar transformations

and inversions with respect to spheres with centers contained in E. Then

we can easily obtain the following corollaries.

Corollary 1. Let (X, r(t)) with {a, E} be a G.r.f. on Rd satisfying the same

conditions stated in Theorem 1. Then it holds that r(t)^L if and only if

(2.8) 3χ(TaI TE) = TEFj^a\ E) for any Γ G 2(Rd E).

Corollary 2. Let (X, r(t)) with {a, E} be a G.r.f. on Rd satisfying the same

conditions stated in Theorem 2. Then it holds that r(t)^L if and only if

(2.9) ΞFx{Tx\TE)nH=(TSx{x\E))Γ]H

for any x<=H and any Γ G 2(Rd; E).

As for the answer to Problem 1, we have also the following

Theorem 3. Let (X, r(t)) be a G.r.f. on Rd rigged with {α, E}, where

S(l) ΠH and E CS{ΐ) Π G. Suppose that {α, E, r(t)} satisfies the con-
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ditions (A.2) and (R). Then, for another G.r.f. (Xu r}(t)) on Rd with
the identity r1(t)=r(t) holds if and only if there exists an open interval (tly t2) such
that

(2.10) ΞFx(Sta\StE)nHd^Xi(Sta\StE)f]H for any te(tl9t2).

REMARK 1. As was stated above, our results are given under the assump-
tion that E is finite. But we can also show that Theorem 2 holds even if E
is infinite.

REMARK 2. We denote by Sd the class of all the functions on [0, oo) ex-
pressed in the form

(2.11) r(t) = cdf+Γ{l-Yd(tu)}dLd(u) (ί>0),
Jo

(2.12) Yd{t) = T(dl2)(2lt)«-wj(d_2)/2(t) ( ί>0) ,

where J^{t) is the Bessel function of order v and cd is a non-negative constant
and further Ld denotes a measure on (0, oo) such that

\~u\\+u2yιdLd{u)<oo and r(l) = 1 .
Jo

Then there exists a one-to-one correspondence between the class Sd and the
class of those G.r.f.'s (X, r(t)) ( r( l)=l) on Rd which are continuous in quadrat-
ic mean ([10], [13]). The class S defined by (1.1) is also characterized by the
relation S= Π Sd. As for the class L, we note that a G.r.f. (X, r(t)) is scale

invariant in the sense of [9] (and also protective invariant in the sense of [8])
if and only if r(t) £Ξ L.

3. The non-degeneracy of S3?χ(x\E) and the classes of structure
functions

In the preceding section we have considered G.r.f.'s (X, r(t)) on Rd rigged
with {α, E}> for which {α, E> r(t)} satisfies the condition (R) stated in Theo-
rem 1. This assumption plays an important role in our discussion about the
non-degeneracy of the conjugate sets ΞFx(x\E) concerned. Precisely speaking,
the non-degeneracy of these sets is guaranteed by the following two proposi-
tions.

Proposition 1. Let (X, r{t)) be a G.r.f. on Rd rigged with {α, Z?}, where
r(t)^S, a^H and EdG. Suppose that {α, E, r(t)} satisfies the conditions (A.I)
and (R). Then there exists a sequence {Λ}i<£<« of open intervals such that

(3.1) Φ*(β)eΠ/ 4 cΠ( |o 4 | ,oo)
k l k l



368 K. INOUE

(3.2) i

where we set Φ E{x)={\x—aλ\,- -, \x~an\)for

Proposition 2. Let (X, r(t)) be a G.r.f. on Rd rigged with {α, E}y where

r(ί)GS, a(=H and EdS(l)f)G. Suppose that {α, E, r(t)} satisfies the condition

(R). Then there exists an open interval I such that

(3.3) Ψ£(α)<Ξ/c(/, oo) and

(3.4) I(ZΨE(EFx{x\E)nH) for any x^ΨE\I)f]Hy

where we set ΨE(x) = \x—αj for x^Rd.

In what follows we shall give some examples of {a, E, r(t)} satisfying the

condition (R). As for the case E= {0}, we have the following

Proposition 3. (i) Suppose that r(t)^S is strictly convex on (0, t0) for

some t0 (0<tQ<oo). Then {α, {0}, r(t)} satisfies the condition (R) for any a^H

with sufficiently small \a\ > 0 .

(ii) Suppose that r(t)^S is strictly concave on (0, t0), strictly convex on (tQy oo)

for some t0 (0<*0<oo) and r '(+0) <r'(oo). Then {a, {0}, r(t)} satisfies the

condition (R)for any a^H with sufficiently large \a\ > 0 .

We now proceed to the more general case of finite sets E with §E >2 . Let

ieι}\<i<d be the canonical orthonormal basis of Rd and assume that the sub-

space G is spanned by {̂ }i<t<i/_2- Let us introduce the sets Ej

n(ΐ) (/>0,

defined as follows:

/O C\ Ώ 1 / 7\ t

(ό.D) £»(/) = {ak -
n y=i

(3.6) El{l) = {ah = /(-l)W+i)/2]; K Λ < » } (»: even);

(3.8) E\(l) = {αA = (/cos 2/?τr//z)e1+(/sin 2kn\n)e2\ l<Λ<w},

where we set %(&|/)=1 for Λ^/ and %(&|/)=0 otherwise. We note that each

set EJ

n(l) given above is contained in S(l) and satisfies the condition (A.2).

Moreover the set Eι

n(ϊ) satisfies the condition (A.I). Since each set E3

n(l)

( l < j < 3 ) consists of all the vertices of a high-dimensional regular polyhedron,

the number n=#EJ

n(l) should be dominated by some constant related to the

dimension d of Rd. In particular, when EJ

n(l) ( l < j < 3 ) is contained in G,

we must assume the following:

d-2 for y = 1 ,

(3.9) n = P ί (/ )< • 2(d—2) for j = 2 ,

2d~2 for i = 3 .
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By using the sets E'JJ) given above, we can describe the condition (R) for

Proposition 4. Let a^S(l)f]H and r(t)^S be given arbitrarily. Then,

for each j ( l < j < 3 ) , {α, EJ

n(l), r(t)} satisfies the condition (R) provided that n is

chosen to be sufficiently large under the restriction (3.9).

Before stating the results on the class L> we shall introduce here the real

number p[E] which corresponds to each set EdS(l) (/>0, #Z?>2). When

we set

(3.10) F(a) = F(a; E) = 2(vT)--2--i- £ (K-αJ//)" (0<α<2),
n *=i

we see that the function F(a) is strictly concave on (0, 2] and satisfies the in-

equalities F(+0) = ~>0>F(2). Then the real number p[E] is defined as the

n

unique solution of F(a)=0 in (0, 2). Obviously the equality p[StE]=p[E]

holds for each t>0. Further we see that F(a)>0 on (0, p[E]) and F(a)<0

on (p[E], 2]. Thus setting

(3.11) L(β) = \r{t) = t«; β<a<2} (0</3<2),

we have the following

Proposition 5. Let aeS(l) Γ\Hy EdS(l) Π G and r(t)(ΞLbegiven. Sup-

pose that E satisfies the conditions (A.2) and # £ > 2 . Then {α, E, r(t)} satisfies

the condition (R) if and only if r(t) e L(p[E]).

We can extend this result to the case of regularly varying functions, which

correspond to G.r.f.'s with non-degenerate scaling limits (see [9] and [11]).

In general, a function r(t) is called a regularly varying function with exponent a

(r.v.f (a)) for some α > 0 if r(t) is a positive continuous function defined on

some interval (0, t0) and satisfies the equality

(3.12) lim r(xt)/r(t) = x* for any x>0 .

We denote by L the class of r.v.f.'s r(t)^S with exponent a for some αG(0, 2].

Obviously we have LdL. More general examples of subclasses of L will be

given in the next section. Now setting

(3.13) L(β) = {r{t)(=S; r{t) is a r.v.f. (a) for some αe(/3, 2]} (0</3<2),

we have the following

Proposition 6. Let a e S(l) ΓϊH, Ed S(l) Π G and r(t) e L(p[E]) be given.

Suppose that E satisfies the conditions (A.2) and #Z?>2. Then {Spa, Sp E, r(t)}
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satisfies the condition (R)/or sufficiently small p>0.

Consequently, we can describe the condition (R) for the classes L and

L by using Propositions 5, 6 and the following

Proposition 7. When we set (Xnj=p[E3

n(l)] (#>2, 1 <y <4), we have

(3.14) Y\maΛj= 0 (1<;<4); and so

(3.15) L={JL(anj) and L=\JL(anj)

It is difficult in general to describe the value of p[E] explicitly. In the
special case of E=Eι

n(ΐ), however, we can find an analogue an of ccnl=p[El(l)]
defined by

(3.16)
log(2(n+l)/n)

Proposition 8. Suppose that αe5(\/(n+l)/(n—1)/)Π Jϊ, />0 and 2<n
—2. Then the following assertions hold:

(i) Given r(t)<=L} {a, Eι

n{ΐ), r(t)} satisfies the condition (R) if and only if r(t)<=
L(an).

(ii) Given r(t)<^L(an), | S > , SpE
ι

n(ΐ), r(t)} satisfies the condition (R) for suffi-
ciently small p>0.

Obviously we see that lim an=0 and so

L = U L(an) and L = U Z ( α n ) .

We also note that, inspired by the defining condition (3.12) of r.v.f. (α), we
can similarly discuss the case that r(t)^S satisfies the equality lim r(xt)lr(t)=xΛ

for any #>0. AH the propositions stated in this section will be proved in
Section 6.

4. Lemmas

In this section, we shall provide some preliminary lemmas. Let (X> r(t))
be a G.r.f. on Rd and £ b e a subset of Rd given by (2.1). First we see that
μr(x\z)—X(z) and so

Rr(x,y\z)= ir(\x-z\)+r(\y~z\)-r(\x-y\)}\l2 (x, y, zϊΞRd).

In general, we can employ the expression (2.2) of μr{x\E) (#£ l>2). Strictly
speaking, the coefficients γΛ=γί(x|2?) (1<&</Z) satisfy the following equa-
tions:
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T
I Σ RJaj, ak I a^k=Rr{a}, x \ a,) (2<> <n).

Moreover, if we assume that r(t) e S (r(t) ί ί2), the solution of these equations
can be determined uniquely on account of the property (iv) of Lemma 5. It is
convenient to introduce the following notations:

(4.2) A,(x,y\E) = ±r(\y-ak\)7k

r(x\E) (x, y(ΞRd) and

(4.3) Λ(r; E) = Ar(0,ai\E) = ±r(\ai-ak\)yk

r(0\E).
k = l

Then we immediately obtain the following expression: For any x,

(4.4) 2Rr(x, y\E) = r d x - a J J + A , ^ , y\E)-r(\x-y\)-Ar(x, aλ\E).

Lemma 1. Let (X, r(ή) be a G.r.f. on Rd and let EdS(l)ΠG be given
arbitrarily. Then the coefficients yk

r(x\E) (1 <&</*) in the expression (2.2) may
be chosen to satisfy the relation

(4.5) tf(x\E) - Ύk

r(0\E) (x€=£Γ, Kk^n).

Moreover Rr(x, y\E) has the following expression: For any x> y^H,

(4.6) 2Rr(xy y\E) = r(\x-a1\)+r(\y-a1\)-r(\x-y\)-A(r; E); and

(4.7) 0<Λ(r;£)<2r(/).

Proof. It follows from the assumption on E that

Rr(aj,x\aι) = r{\aj-aι\)β for any xeJBΓ (2<;<n).

Therefore the solution γ^γ^JclZ?) (1<&<TZ) of (4.1) for each JCGH depends
only on E> which implies the relation (4.5). The expression (4.6) immediately
follows from (4.4). The inequalities (4.7) are derived from the following:
Λ(r; E)=2{r(l)-Rr(0y 0\E)} and 0<Rr(0,0\E)<:Rr(0J0\a1)=r(l). The proof
is thus completed.

Now we shall consider the roles of the conditions (A.I) and (A.2) to be
imposed on E. For the sake of convenience, we assume that the space Rd is
realized by row vectors. Then we shall employ the expression ak={akly ••*, akd)
(l^k^ή) and assume that l^n^d. On the other hand, given a=(aly •••,
ad)<=Rd and I=(iu ••-,*„) (l<iι<~'<iH<d), we set aj=(aiι9 •• , α ί j and

u u n

<*i[y] = (ai> ~'>yi> '~>yn, * > ^ ) for every y= (vi, ~,yn)&R .

F u r t h e r we shall introduce t h e following notat ions : F o r every y=(yiy •••,
n, we set
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and

ff(y)=

Given y^Rn and δ>0, we denote by Vδ(y) the open ball in Rn with center
y and radius δ. Then we see that the Jacobian of the mapping Fτ a E: Rn-j>Rn

for each# (α 7 [#]$£) is given by

(4.8) (£Fi,.,E)(v) = (Πlβ/M-β.irVfίiO

By using this relation, we can discuss the regularity of FItUtE under the assump-
tion (A.I) on E.

Lemma 2. Let a^Rd and E dRd (1 <#E < d) be given such that the points
α, aly ~,an are independent, i.e., the vectors a—ak (ί^k^ή) are linearly inde-
pendent. Then there exist I=(iι, ••-,/») ( l < ί Ί < </M<^) and δ > 0 such that
the mapping

(4.9) Fr,ay. F θ ( β / ) - Ut(I, a, E)

provides a homeomorphism, where we set Uδ(I, α, E)=FIfβtE(V8(aI)).

Proof. Because of the assumption on the arrangement of a and Ey there
exists I=(ily -",in) ( 1 < Z Ί < < Z M < J ) such that/f(α 7 )Φ0. This implies that
there exists δ > 0 such that

(4.10) /f(lf)Φ0 and at[y]^E for any ifGF,(α 7).

It follows from (4.8) and (4.10) that the mapping FItβtE is regular on Fδ(α7).
Thus we see by using the inverse mapping theorem that the mapping (4.9)
provides a homeomorphism for a sufficiently small δ.

It is notable that, if EdS(l) Π G satisfies the condition (A.2), we may choose
the real numbers yk

r(x\E) (l<β<τz) as follows:

In the preceding section we have introduced several sets E which satisfy the
conditions (A.2) and E dS(l) for some />0. We note that such sets will be
also constructed by using the following lemma.

Lemma 3. Let E{ (/=1, 2) be two finite subsets of Rd satisfying the condi-
tions (A.2) and ί jCSf t ) ( ί = l , 2). Suppose that (JC, y)=0 for any x G ^ and
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any y^E2. Then the set

E= {x+y; x^E19 yt=E2}

satisfies the conditions (A.2) and £cS(v7f+/I) .

The proof is elementary, and so is omitted. We shall now discuss the
properties of functions in the class S.

Lemma 4. Suppose that r(t)^S is given by (1.1). Then r(t) admits the
following expression:

(4.11) r{t) = c?+\{l- Yd{tu)}fd(u)ud-ιdu
Joo

where fί(u) is defined by

fd(u) = [2d-ιT{dβ)}A~s-w-'e-^d^s) (u>0).
Jo

Proof. Let us introduce the formula

(4.12) e~t2s = Γ Yd{tu)[2d-lT{dl2)}-ls-d^ud-le-u2/Asdu (ί> 0, s>0).
Jo

This will be easily shown by using the following alternative expression of Yd(t):

z) (t = IxI,

where σd is the uniform probability measure on the unit sphere Sd~1—{z^Rd\
| j2r|=l}. We now immediately obtain the desired expression (4.11) by com-
bining (1.1) and (4.12).

Lemma 5. Each function r(t) G S satisfies the following properties:
( i ) r(t) is strictly increasing and analytic on (0, oo);
(ii) r~ι(x) is strictly increasing and analytic on (0, r(oo));
(iii) r{y/ΊΓ) is strictly concave on (0, oo) except the case r(t) = t2;
(iv) For any n distinct points xk^Rd\{0} ( d > l , # > 1 , 1 <&<«), the positive
definit quadratic form

Qr(B) = Σ Rrixjy Xk I O)ξjξk > B = (ξl9 , ξn) e Rn,

is non-degenerate except the case r(t) = t2. In other words, Qr(Ξ) = 0 implies
that Ξ=0.

Proof. Suppose that r{t) is given by (1.1). Then we have

r\t) = 2t{c+ [°°e-t2udy(u)} > 0 for any t>0 .
Jo
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It follows that r(t) is strictly increasing on (0, oo). Further we can extend
this function analytically to the function r(z) on the complex domain {#eC;
|arg#|<ττ/4} ([12]). Therefore we obtain the assertions (i) and (ii). The
assertion (iii) will be seen by the following fact: If r(t)^fy we have

t ) = — [°°e-tuudγ(u)<0 for any t>0 .
Jo

We shall now proceed to the proof of the assertion (iv). On account of the
expression (4.11) of r(t), we see that

r(\x\) = c\x\2+k I*•<*">-11\2ωd)-ιΓd(\z\)dz (x^R"),

where we set ωd=2πdβlT{dβ). Further we have, for any JC, y^Rd,

Rr(x, y\0) = c(x, |0+j Λ < (β'ί «-l)(β- ί<' >-l)(2ω<)-1/3(\z|)dz .

Thus we obtain the following representation of Qr{S):

Qr(Ξ) = ίl

Now we assume that r(t)^f and Qr(S)=0. Then we have γ((0, oo))>0 and
so the function f}(u) is positive and continuous on (0, oo). This implies that

(4.13) Σ?*(e i ( l* « ) -l) = 0 for any zε=Rd.
k = l

Now we set

; (xk> z)Φ0 α<ft<w) and (xj9 z)Φ(xk, z)

for any j> k

It is easy to see that V is a non-empty open subset of Rd and satisfies the rela-
tion StV=V for any t>0. Let us choose a point zo^VC]Sd~1 arbitrarily and
set ck=i(xk> z0) (l^k^ή). Then, setting z=tz0 in (4.13), we have the equality

2 f ^ ) = 0 for any t>0 .

Further differentiating in t, we have

j * = 0 for any t>0 .

By the way, the constants ck (l^k^ή) satisfy the following conditions:
( l<Λ<n) and Cj3=ck for any j,k ( l < ^ < ^ < w ) . Therefore we can easily show
that ξk=0 (!<&<τz), which completes the proof.
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Before stating the next lemma, we shall introduce some notations. For
every r(t)^Sd and every probability measure λ on (0, 1], we set ^[λ]—inf{sup-
port of λ} and further

r\t) = [r(tγd\(p) and rλ(t) = [r(tηd\(p) (t>0) .
Jo Jo

The following lemma provides various examples of r.v.f.'s r(t)^S.

Lemma 6. Let X be a probability measure on (0, 1].
(i) Assume that s*\X\>§ and r(t)^Sd is a r.υ.f. (a) for some a>0. Then r\t)
and rλ(t) are r.v.f.'s {s*\X\a).
(ii) For every r(t) e S, it holds that rλ(t) e S and rλ(t) e S.

The details of the proof are omitted. We can obtain the assertion (i)
by elementary calculation. As for the assertion (ii), we may employ the theory
of the inner transformations of completely monotone functions ([10]). We
shall next consider an interesting functional equation related to Problem 2.

Lemma 7. Let p(t), q(t), f(t) and g{t) be functions on (0, oo) such that
p[t)^O and q(t)^O, and let h(u, v) be a positive function on IxJ, where I and
J are open intervals contained in (0, oo). Assume that these functions satisfy the
functional equation

(4.14) f(th(u, v)) = P(ήf(tu)+q(t)f(tv)+g(t)

for any (t> u, v)EΞ(0r oo)χ/χJΓ) and further assume that f(i) is twice differentiable
and strictly monotone on (0, oo). Thenf(t) admits the following expression:

(4.15) f(t) = Cλt«+C2 or f(t) = β log t+C3 (t>0),

where a, β and C, (1</ <3) are arbitrary real constants {aCλ ΦO, /3Φ0).

Proof. First we can show by using the equation (4.14) and the assumption
on f(t) that h(u> v) is twice differentiable on / X / . By differentiating the
both sides of (4.14) in u or v, we have the following two equations: For any
(ί, u, v)(Ξ(0, oo)χ/χ/,

f(th(u, v))ψ{u, v) = p(t)f(tu) and
du

f\th{u,v))ψ{uyv) = q{t)f\tv).
dv

Therefore we see that —(u, v) — (u, v)Φ0 for any (u, v)^lxj, because there
du dv

exist tly t2^(0, oo) such that p(ti)q(t2) 4= 0. Now differentiating the both sides of
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the last equation in u, we have the following: For any (t> u, v)^(0y °°)xlxj,

f"(th(u, v))tψ(μ, v)ψ(u, v)+f'(th(u, v))^L(u, v) =
du dv dudv

and further

f"(th(u, v))t _ f"(h(u, v))

f'(th(u, v)) f'(h{u, v)) "

By the change of variables this equation can be replaced by the following:

Therefore the both sides of this equation are identically equal to a certain real

constant a which is independent of the variables t, u and v. It follows that,

for any £>0,

£M = A or equivalents — log/ϊί) - — .
f\t) t 4 y d t *J K J t

Then we have the expression f'(i)=bf (£=t=0) and further

= (bl(a+l)}t*+1+C or f(t) = b log t+C (ί>0)

according as αφ —1 or a— — 1 respectively. Thus we obtain the desired ex-

pression (4.15).

REMARK 3. As for the assumptions on f(t) in Lemma 7, the phrase

"strictly monotone" may be replaced by the phrase "non-constant" provided that

2Lnάp(t)q{t)*0 for each f>0.

5. Proofs of main results

Proof of Theorem 1. Without loss of generality, we may assume that
rγl(a\E)rγ2

r(a\E)Φ0. It follows from Proposition 1 that there exists a sequence

Uk}i<k<n °f open intervals, for which the conditions (3.1) and (3.2) hold. There-
n

fore, for each u=(uly •• ,wM)eΠΛ> there exists y[u]^EFx(a\E) such that
k l

ΦE(y[u]) = u or equivalently |i/[î ]—«^ I ~ uk

In order to show the part (i), it suffices to prove the "if" part. We note

that the sets r(Ik) (l^k^ή) are non-empty open intervals contained in (0, oo)

and we set Δf(p)=(r-1(/>1)f ~'>r~\P»)) for everyp=(^, •• , ^ ) e Π K Λ ) T h e n

we see that, for every p G Π r(/Λ), we have Δ i p ) G Π Ik and
k=l k=l
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I y[\{p)]^3x{a \ E) <z2Xl(a \E),

I Iυ[Mp)\-ah I = r-\pk) (1 <Λ<n).

Therefore we can show by (4.4) the following two equations: For every

|r(|ί,[Δr(p)]-α|) =
(5.1)

[r1(\y[A,(p)]-a\) = ±i

where we set rγk=
rγk

r(a\E))

 rγl=fγkri(a\E) ( 1 < & < W ) , M=r(\a—«i|) —Λr(α, ax\E)
and M1=r1(\a—a1\)—Ari(a,a1\E). Let f(x) be the function on [0, r(oo))
defined b y / ^ ^ r ^ r " " 1 ^ ) ) . Then we obtain from (5.1) the following functional

H

equation: For any (pl9 , p J e Π r(/Λ),

n n

k=l k=l

We note that/(#) is analytic on (0, r(oo)) and the range of the function

n n

X — / i pfctyfι~τ~lVL \\Ply ''' y ftn) ̂ ^ Ax ^ \ k ) )
k=i k=i

contains an interior point because of the assumption 7i72

=f=0. Now differ-
entiating the both sides of (5.2) in^j and^>2 successively, we have the following:

/"(ΣPkΎk+M) = 0 for any (p19 - , Λ ) G Π r{Ik).
k=l k=l

Therefore we see by the analyticity of f"(x) that f"(x) = 0 on (0, r(oo)). Fur-
ther we have/(#)=# on [0, r(oo)) by using the conditions /(0)=0 a n d / ( l ) = l .
This implies that, for any ί>0, r1(t)=r1(r-1(r(t)))=f(r(t))=r(t). The proof
of the part (i) is thus completed.

We now proceed to the proof of the part (ii). It suffices to prove the
n

"if" part. Let us again use the notation y[u] for every « G Π 4 which was

introduced above. Then we see by the assumption (2.5) that

(5.3) Sty[u]EΞΞFx(Sta\StE) for any (ί, ic)e(0, oo)χ Π /*.
* = 1

For the sake of convenience, we shall introduce the following functions:

) = Ύk

r{Sta\StE) (ί>0, K K β ) ,

= r(t\a-a1\)-±r(t\a1-ak\)pk(t) (ί>0) and

,, - , u.) = r~\± r(uk)pk(ί)+g(l)) ((«,, - ,
* 1
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Then we can derive from (5.3) the following functional equation: For any

(tyuly " ,OeΞ(0, o o ) χ Π 4

(5.4) r(th(uly - , un)) = ± r(tuk)pk(t)+g(t).

It should be noted that p1(ί)p2(l)Φθ and h(uly •••, un)>0 on Π h- By apply-

ing Lemma 7 to the equation (5.4), we see that r(t) can be expressed in the

form

r(t) = Cλt«+C2 or r(ΐ) = β log t+C3 (f > 0 ) ,

where α, /3 and Ot ( l < / < 3 ) are real constants (αCΊΦO, /3Φ0). Therefore we
obtain the desired expression r(t)=t" (0<α<2) by using the conditions r(0)=0
and r(l)=ί and also the concavity of r(\/~Γ). The proof of the part (ii) is
thus completed.

Proof of Theorem 2. It follows from Proposition 2 that there exists an
open interval / such that the conditions (3.3) and (3.4) hold. If we set a= \ a \
and a(u)=(\/W—p\ά)a (u>ΐ), we have O{U)^ΨE\I) Π Hfor any u<=I. There-
fore, for any u, v^I, there exists b(u, v)^ΞFχ(a(u)\E) Π H such that

ΨE(b(u, v)) = v or equivalently | b(u, v)—a1\ = v.

In order to show the part (i), it suffices to prove the "if" part. Without

loss of generality, we may assume that / c ( χ / ^ α 2 + / 2 , Vtlrf+l2)- Then
r(I) is a non-empty open interval contained in (0, oo). Further we set, for
every p, q(=r(I)y

a[p] = a(r-\p)) and b[p, q] = b(r-\p)y r~\q)) .

Then it follows from the assumption (2.6) that, for any/), q^.r(I),

b[p, ql^SFxialp]\E)f]Hcz3Xl(a[p]\E)ΠH.

Therefore we can show by (4.6) the following two equations: For every

ir(\a[p]-b[p, q]\) - p + q - A ,

1 r,(Ia[p]-b[p, q]\) = rι{r-\p))+r1(r-\q))-Aι,

where we set A=A(r; E) and A1—Λ(rx; E). Now setting f(x)=r1(r~1(x)) for
Λ?G[0, r(oo)), we can derive from the above equations the following functional
equation:

f(p+q-A)=f(p)+f(q)-A1 for any py q(Ξr(I).
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Therefore we see that/(#)=# on [0, r(oo)) by using the analyticity of f(x) and
the conditions /(0) = 0 and / ( 1 ) = 1 . Thus we have the desired identity

r1(ί)=r(0
We now proceed to the proof of the part (ii). It suffices to prove the

"if" part. Let us again use the notations a(u) and b(u, v) for every u>
which were introduced above. Then we see by the assumption (2.7) that

(5.5) Stb(u, v)tΞ3x{Sta{u)\StE)nH for any (ί, n, «?)e(0, o o ) χ / χ / .

Therefore setting

(g(t) = -Λ(r; S,Z?) (*>0),

1 h(uy v) = r-1(r(^)+r

we can derive from (5.5) the following functional equation: For any (t, u> v)^
(0, oo)χ/χ/,

r(*%, i;)) = r(tu)+r(tv)+g(t).

Thus we obtain the desired expression r(t)=ta (0<α<2) by the same discus-
sion as the proof of Theorem 1.

Proof of Theorem 3. It suffices to prove the "if" part. We see by Pro-
position 2 that there exists an open interval / such that Ψ £ ( α ) e / c ( / , oo) and
I dΨE(EFχ{a IE) Π H). Therefore, for any MG/, there exists b[u] GSx(q\ E) Π H
such that

Ψ£(6[w]) = u or equivalently |6[w] — α j = u .

By using the assertion (ii) of Theorem 2 and the assumption (2.10), we have
the following: For any (w,

Stb[u] ̂ 3χ{Sta I StE) f]HdΞFXj(Sta \ StE) n H,

where we s e t / = ( ^ , t2). Therefore we obtain by (4.6) the following two equa-
tions: For every (u,

f r(t\a-b[u] I) = r(ut)+r(VΎlή-A(r; StE),

I rx{t\a-b[u]] I) = φή+r.iVΎlή-Air,; StE).

For the sake of convenience, we set Λ0=r(\/~27) and Ak=r(\aι—
Then we have

(5.7) Λ(r
n *=i

because the set StE satisfies the condition (A.2). Now setting f{χ)=rι{r~\x))
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for #e[0, r(oo)), we can derive from (5.6) and (5.7) the following functional
equation: For any (s> q)^r(I)Xr(J),

f(sq+Aq) =f(sq)+f(Aoq)—*- ±f(Akq),
n *=i

1 n

where Λ=Λ 0—— Σ Λ*. Further setting p=sq, this equation can be replaced
n *=i

by the following: For any (/>, q) e U,

(5.8) f(p+M) = f(P)+f(Kq)- - ΣM*ί) >
ft * = i

where ί/ denotes a domain of R2 defined by

U = {(p, q)(ΞR>; q^r(J),plq<Er(I)} .

On the other hand, by using the property (iii) of Lemma 5 and (4.7), we have

(5-9) Λ(r; E) = - Σ
n k=

Then combining (5.7) and (5.9), we have Λ>0. In the special case Λ=0,
1 *we have r(t)=t2 and — Σ Λ ^ Λ Q . Therefore, if we assume that
n *=i

the function f(x)=r1(\/~x~) is strictly concave. Thus we see by (5.8) that

f(Aoq) = 1 Σ/(Λ*?)</(- Σ Λ,ί) =/(Λ0?).

Consequently we have the desired identity r1(ί)=r(/) by contradiction. As
for the case Λ>0, we can easily obtain the expression f(x)=x on [0, r(oo))
from (5.8) by using the analyticity of f(x) and the conditions /(0) = 0 and
/(1) = 1. Thus we have the identity rι{t)=r(t)i which completes the proof.

6. Proofs of Propositions in Section 3

In Section 3, we have assumed that {e, }1<f<i is the canonical orthonormal
basis of Rd and further the subspaces G and H are spanned by {et)ι<i<d-2 and
ied-u ed} respectively. In order to prove Proposition 1 we shall introduce the
family {Tθ; 0<#<7r} of orthogonal transformations on Rd defined as follows:

Tβed_x = ed_! cos θ+ed sin θ ,

Tθed = —•^_1sin(9+^ cos (9 .
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Proof of Proposition 1. It immediately follows from the assumption
that the points α, au ~,aH are independent and l<τz<d— 1. Therefore we
see by Lemma 2 that there exist I=(ily •••,*») (1 <z'i<•••</«<d), δ > 0 and a
domain U8(I> a> E) of Rn such that the mapping

Us(I,a, E)

provides a homeomorphism. In particular, we have ΦE(ά) = FIatE(aI) €Ξ
[7δ(7, α, £ ) . Therefore there exists a sequence {/*}i<A<M of open intervals satis-

fying the conditions (3.1) and Π A c £/δ(7, α, £*). We denote by κδ(α7) the

inverse image of Π h by the mapping Fτ a E. Then the mapping

is also a homeomorphism. Now we shall introduce a continuous function
f(θ, x) on [0, π] xRd defined by

f(θ, x) = Rr(ay Tθx IE) ({θ, x) e [0, π] X Λrf).

Because of the property (iv) of Lemma 5 and the assumption (R), we have

/(0, a) = Rr(a, a\E)>0 and f(π, a) = Rr(ay -a\E)<0 .

Further by choosing the above-mentioned δ sufficiently small, we have the
following: For any y^ Kδ(α7),

/(0, αz[|f])>0 and /(*, aT[y])<0 .

Therefore we see by using the intermediate value theorem that, for any y^. V^{aj)y

there exists Θ(#)e(0, π) such that f(θ(y), aI[y]) = 0. In other words, we
have

for any yϊΞ

Then we see that, for any y^ Fδ(α7),

and so we have JF7>β>£(Fδ(α/))cΦ£(2ΓjC(α|£1)). Thus we obtain the relation
(3.2), which completes the proof.

Before we proceed to the proof of Proposition 2, we shall introduce an
alternative expression of i?r(x, y\E) restricted to HxH. Suppose that £ c
S(l) Π G. Then we have, for any x>

(6.1) 2Rr(x,y\E)=f?(\x\,
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where Z_(x, y) denotes the angle between the vectors x and y (0 < Z_(x, y) < π)
and ff (ξ, η, θ) denotes a continuous function on [0, oo) x [0, oo) x [0, π] defined
by

/?(£, η, θ) = r(Vψ+ΐ2)+r(Vψ+Γ2)-rWξ2+v

2-2ξv cos 0)-Λ(r; E).

Proof of Proposition 2. Because of the property (iv) of Lemma 5 and
the assumption (R), we have

ff(a, a, 0) = 2Rr(a, a\E)>0 and ff(a, a, π) = 2Rr(a9 -a\E)<0 ,

where we set a= \a\. Further there exists an open interval (tl9t2) ( 0 < ί 1 < l < ί 2 )
such that we have, for any s, t&(tly t2),

ff(as, at, 0)>0 and f?(as, at, τr)<0 .

Then we see by using the intermediate value theorem that, for any s, t^(lly t2),
there exists θ(s, t) e (0, π) such that ff (as, at, θ(s, t)) = 0. It follows that,
g i v e n x(s)eH s a t i s f y i n g | x(s) \ =as, t h e r e e x i s t s y(s, t)^ΞFχ(x(s) \E)ΠH s u c h

that

(6.2) \y(s,t)\ = at and Z{x(s), y(s9 t)) = θ(s, t).

If we set I=(\Za2t\ + l2y Va2t2

2+l2), we immediately obtain (3.3): ψE(a)=
\Za2-\-l2^Ia(l, oo). Therefore we have only to prove (3.4). Given XG
Ψϊ^/) Π J5Γ and u(=I, we set s=VψE(x)2—I2\a and t=\/tf^-ϊ2\a. Then we
have s, t^(tλ, t2) and |JC| =as. Therefore setting x(s)=x, there exists y(s, t)^
3r

x(x(s)\E)Γ\H such that the condition (6.2) holds. Then we see that u=
Ψjs(tf(*, t))^ΨE(Sχ{x\E) Π JET), which implies the property (3.4).

Proof of Proposition 3. Let us consider the function g(t) on [0, oo) de-
fined by g(t)=2r(t)—r(2t). Then we have

2Rr(x, -x10) = g( I x I) for any x<=Rd .

Therefore, given a^H (αφO), {a, {0}, r(t)} satisfies the condition (R) if and
only if g(a)<0, where we set a=\a\. Under the assumption stated in the
part (i), we have g(0)=0 and g'(t)<0 on (0, ίo/2). Then we have ^ ) < 0 for
any αG(0, to/2), which completes the proof of the part (i). We now proceed
to the proof of the part (ii). We may assume that a>t0. Because of the strict
convexity of r(t) on (tQ, oo) we see that G(t)=r(t+a)—r(t) is strictly increasing
on (t0, oo). It follows that G(to)<G(a) and so we have

g(a)<-r(to+a)+r(a)+r(to) = -tor'(a+θto)+r(to)

for some θ (O<0<1). On the other hand, r\t) and^(ί) are strictly decreasing
on (0, t0) and on (t0, oo) respectively. Therefore we see that
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lίrng(a) < -t/(oo)+r{t0) < _ίor'(+O)+r(ίo)

= \'Oir'(t)-r'(+O)}dt<O.
Jo

Consequently we have g(a)<0 for a sufficiently large a, which completes the
proof of the part (ii).

Proof of Proposition 4. First we note that we have

ykr(x\Ei(I)) = — (xelΓ, l < * < n ) ,

because of the property (A.2) of E'n(l) ( 1 < J < 3 ) . Then we obtain the follow-
ing equalities:

(6.3) 2Rr(a, -a\Eί(l)) = 2r(VYl)-r(2l)-A(r; £>(/))

( K V 2 « / ( B - 1 ) 0 («-1)/» (/ = 1),

Λ(r; £>(/)) = {K2/)+(«-2)r(v/T0>/« 0' = 2),

( ( )

(6.4) lim Λ(r;

As for the equalities (6.4), the cases j=l and j=2 are obvious. We can show
the case j=3 by using the following formula derived from the de Moivre-
Laplace theorem: For any p, q (0 < p< q < 1);

1 if l/2e(>>,g),

1/2 if p = 1/2 or q = 1/2 ,

0 if

lim

Therefore we obtain from (6.3) and (6.4) that

lim 2Rr(a, -a |Eί(l)) = r(VTl)-r(2l)<0

Consequently we have the inequalities Rr(a, —a\EJ

n(l))<0 ( l < j < 3 ) if n is
chosen to be sufficiently large under the restriction (3.9).

Proof of Proposition 5. In what follows we shall employ the notation
rΛ(t)=t" (0<α<2) . Then we see by (3.10) and (6.1) that

2Rrm(a, -a\E) =/fΛ(/, /, π) = l«F(a; E) (0<α<2).

Therefore we see by using the property of p[E] that the inequality Rroύ(a, —a \E)
< 0 holds if and only if p[E]<a*ζ2, which means the assertion of Proposition
5.
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Proof of Proposition 6. Assume that r(t) is a r.v.f. (a) for some a G (p[E], 2].
Then we see by (3.10) and (6.1) that

lim 2Rr(Spcij —SpCi \ SpE)lr(p}

= lim {2r(VτiP)lr(p)-r(2lp)lr(p)-±- ί

Therefore the inequality Rr(Spa, — Spa\SpE)<0 holds for sufficiently small
p>0, which means the assertion of Proposition 6.

Proof of Proposition 7. We see by (3.10) and (4.3) that

F(a; Eί(l))

Therefore by using the property (6.4) and the approximation property of the

J rf/2
UVL* xdx, we can show that, for each j ( l < / < 4 ) , the func-

o

tions FnJ(a)=F(a; EJ

n(l)) (/z>2) converge to a certain function Fj(a) on (0, 2]
as τz-> oo. In fact, we have

Fj(a) =

Since we have Fj(a)<0 on (0, 2] (1 < j <4), we immediately obtain the equalities
lim αB. = 0 (1< / <4) and also the relations in (3.15).

Proof of Proposition 8. First we have, for any « e ( 0 , 2],

2Rra(a, -a|£i(Z))

r - l > 2 - ( 2"Γ((Q :+ 1)/ 2) - l ) ( = 4)

Therefore the inequality ΛrαJ(α, — α|JBί(/))<0 holds if and only if an<a<2y

which means the assertion (i). In order to prove the part (ii) we assume that
r(/)GS is a r.v.f. (a) for some αG(α Λ ) 2]. Then we see by using the assertion
(i) that

limRr(5pα, -Spa\SpE
ι

n(l))lr(P)=Rr(ύ(ay - α | £ i ( / ) ) < 0 .
p-> + 0

Therefore the inequality Rr(Spa, — 5pα|iSfp£lJ(/))<0 holds for sufficiently small
p>0, which means the assertion (ii).

7. Additional results

In this section we shall be concerned with certain modifications of our
problems stated in Section 1. Let (X, r(r)) be an arbitrary G.r.f. on Rd. In
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[2], we have introduced a family of subsets of Rd defined as follows: For every

ay bG:Rd and every q^R, we set

Cx(a, b; q) = {xG^; μf(x\ay b) = X(a)(l-q)β+X(b)(l+q)β} .

It is interesting to see that the sets Cχ{ay b; q) and 3"χ{x \ E) have some properties

in common. In particular, the increments X(x)—X(y) and X(a)—X(b) are

mutually independent if and only if there exists q^R such that xy y^Cχ(ay b; q).

It is obvious to see that Cχ(ay b; l)=Sχ{a\b)y Cx(ay b\ q)=Cχ{bya — q) and

(7.1) CjAa, b; q) = {*€=#; r(\x-a\) = r{\x~b\)+qr(\a-b\)}

; R,(x, a\b) = r(\a-b\)(ί-q)β} .

Therefore the set Cχ{ay b; q) proves to be a solid of revolution with axis con-

taining a and b. For this reason, we shall consider the set Cχ(ay b; q) under

the following restriction: a, b^H and q>0. Now setting, for every

and every q>0,

Ώl = i(uy v)^R2

y u>0y v>0y r(\u-v\)<r(u)+qr(v)<r(u+υ)} ,

we have the following results.

Theorem 4. Let (Xy r(ή) be a G.r.f. on Rd

y where r(t)^S. Suppose

that D9

r contains an interior point for some q>0.

(i) For another G.r.f. (Xly r^ή) on Rd with rx{t)(=Sy the identity r1(t)=r(t)

holds if and only if there exists qλ>0 such that

(7.2) Cχ(ay 6; q) Π HdCXl(ay b; qx) Π H for any ayb^H.

(ii) It holds that r(t)GL if and only if

(7.3) G K S Λ Stb;q)ΠH= (StCχ(aτ b;q))ΠH

for any ay b^H and any t>0 .

In order to prove this theorem we shall employ the following lemma.

Lemma 8. Let (Xy r(ή) be a G.r.f. on Rd, where r(t)<=S. Suppose that

Dq

r contains an interior point for some q>0. Then there exist open intervals I

and J contained in (0, oo), for which the following statement holds: For any

(u, v)^lxj and any α, b^H satisfying \a—b\ = υy there exists x[uy v]^

Cχ{ay b; q) Π Hsuch that |x[uy v]—b\ =u.

Proof. We see by the assumption that there exist open intervals / and /

contained in (0, oo) such that IxJdDq

r. Let us choose (u> v)^lxj and

α, b^H (\a—b\—v) arbitrarily. Then we have r(u)-\-qr(v)^Iuvy where we

set /„,„—[r(\u—v\)y r(w+^)]. If x^H runs over the circle with center b and
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radius u, the range of the function r(\x—a\) coincides with the interval Iuυ.

It follows from the intermediate value theorem that there exists x\uy v]^H

such that \x[u, v]—b\=u and r(\x[u, v] —a\)=r(u)+qr(v). In other words,

we see by (7.1) that x[u, v]^Cx(a> b; q), which completes the proof.

Proof of Theorem 4. Let / and / be the open intervals stated in Lemma

8. Then, for any (w, v)^lxj and any α e / f ( |α | =v), there exists x[u, v]^

Cχ(a, 0; q)f)H such that \x[uy v] \ =u. In order to show the part (i), it suf-

fices to prove the "if" part. To this end, setting f(x)==r1{r"\x)) for x^

[0, r(oo)), we have only to prove that f(χ)=χ on [0, r(oo)). We can show by

(7.1) and (7.2) the following two equations: For any (u, v)^lxj and any

(\a\=v),

f r(Ix[u9 v]-a\) = r(u)+qr(v),

I r,( I x[u, v]—a \) = r^iή

Then we obtain from these equations the following functional equation:

f(x+qy)=f(x)+qj(y) for any (*,y)<Ξr(I)Xr{J).

Thus we can easily show that/(#)—x on [0, r(oo)) in the same way as the proof

of Theorem 1. In order to show the part (ii), it suffices to prove the "if" part.

We see by (7.3) that

Stx[u, v]tΞCχ(Sta9 5,0; q)ΠH for any (f, ιι, ©)e(0, oo)χ/χJΓ.

Therefore, setting h(u> v)~r~1(r(u)J

rqr(v)) for (w, v)^lxj, we obtain by (7.1)

the following functional equation:

r(th(u, v)) = r(tu)+qr(tv) for any (ί, uy v)^(0, oo)χIχJ .

Consequently we obtain the desired expression r(t)=t* (0<α<2) by using

Lemma 7.

Finally we shall give a result about the existence of interior points in Dq

r.

Proposition 9. Assume that r(t)^S and #>0. In order that there exists an

interior point in Dq

ry it is sufficient that the pair {r(t), q} satisfies one of the follow-

ing four conditions:

(i) 0 < # < l and r(t) is arbitrary

(ii) <7>1 and r(t) is strictly convex on (0, t0) with qr\+ϋ)<r\tQβ) for some
t0(0<t0<oo);

(iii) #>1 and r(t) is strictly convex on (t0, oo) with qf'{+0)<r'(°o) for some

U (O<*o<°°)> where we set F'(+0) = fiϊn r\t)\ and

(iv) q=\andr(t)=t.
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Proof. Because of the continuity of r(t), it suffices to prove that there

exist u>0 and v>0 such that

(7.4) r(\u-vI)<r(u)+qr(v)<r(u+v).

Let us consider the case (i). For any v>0, we have 0 < ( l — q)r(v)<r(v). Then

there exists u such that 0<u<v and r(u)=(l—q)r(υ) or equivalently r(v) =

r(u)-{-qr(v)j from which we obtain (7.4). By the way, the first inequality of (7.4)

holds for each #> 1, u>0 and v>0y since we have r(\u—v\)<max{r(u)> r(v)}<

r(u)+qr(v). Therefore, in the case # > 1 , we have only to show the second

inequality of (7.4). We now proceed to the proof of the case (ii). Noting

that r\t) is strictly increasing on (0, t0) and qr'(+O)<r'(to/2), we can choose

v satisfying 0<v<t0β and r\-\-ϋ)<qr\v)<r\toβ). Then there exists u such

that 0<u<t0l2 and r\u)=qr\v). Therefore we have qr'(t)<qr'(v)=r'(u)<

r'(u+t) for any *e(0, v). It follows that

(7.5) r(u+υ)-r(u)-qr(v) = Γ {r'(u+t)-qr'(t)}dt>0 ,
Jo

which completes the proof of the case (ii). In the case (iii), we can choose u

satisfying u>t0 and qr'(-\-0)<r'(u). Then there exists v>0 such that the

inequalities <7r'(*)<r'(#)<>'(«+£) hold on (0, υ). Thus we again obtain (7.5),

which completes the proof of the case (iii). The proof of the case (iv) is ob-

vious, since we have Dl=(0, oo)χ(0, oo).
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