Hashimoto, S. Osaka J. Math. 23 (1986), 307-312

A NOTE ON SOME PERIODICITY OF Ad-COHOMOLOGY GROUPS OF LENS SPACES

SHIN HASHIMOTO

(Received February 12, 1985)

1. Introduction

Let p be an odd prime and $q=p^r$. We choose a positive integer k such that the class of k in \mathbb{Z}/p^2 generates the group of units $(\mathbb{Z}/p^2)^{\times}$.

Let K^* be the K-cohomology theory and $K^*_{(p)}$ its *p*-localized theory. The Adams operation ψ^k on K induces a stable operation ψ^k on $K^*_{(p)}$. We denote by $K_{(p)}$ the spectrum which represents the $K^*_{(p)}$ -cohomology theory. Since stable operations induce maps of spectra, we have the following cofibration of spectra

$$K_{(p)} \xrightarrow{1-\psi^k} K_{(p)} \longrightarrow C_{1-\psi^k}.$$

We define a spectrum Ad as $\Sigma^{-1}C_{1-\psi^k}$ and its associated cohomology theory Ad^* . When k is a prime power, the associated connective theory of Ad^* coincides with the cohomology theory defined by Seymour [9] and Quillen [8].

Let *m* and *n* be positive integers. We identify \mathbb{Z}/m with the set of *m*-th root of 1 in *C*, and S^{2n+1} with the unit sphere in C^{n+1} . The complex vector space structure on C^{n+1} induces a \mathbb{Z}/m -action on S^{2n+1} and we define the standard Lens space mod *m* as $S^{2n+1}(\mathbb{Z}/m)$. As is well known, the standard Lens space $L^n(m)$ has a *CW*-complex structure

$$L^n(m) = \bigcup_{i=1}^{2n+1} e^i$$

and we denote its 2*n*-skeleton by $L_0^n(m)$. Since the canonical inclusion $C^{n+1} \subset C^{n+2}$ induces a cellular inclusion $L^n(m) \subset L^{n+1}(m)$, we have a *CW*-complex $L^{\infty}(m) = \operatorname{colim} L^n(m)$. This space $L^{\infty}(m)$ is a classifying space $B\mathbb{Z}/m$ of \mathbb{Z}/m . We consider the case $m = p^r$. Main results are the following.

Theorem 1.1. Let M(n) = r + [(n-1)/(p-1)]. For any integers *i*, *j* satisfying $i-j\equiv 0 \pmod{(p-1)p^{M(n)-1}}$, there holds the following isomorphisms.

$$\begin{aligned} Ad^{2i}(L_0^n(p^r)) &\simeq Ad^{2j}(L_0^n(p^r)) \\ \widetilde{A}d^{2i+1}(L_0^n(p^r)) &\simeq \widetilde{A}d^{2j+1}(L_0^n(p^r)) \,. \end{aligned}$$

Theorem 1.2. We put $N=r+\nu_p(i)$. Let j be an integer which satisfies $\nu_p(i)=\nu_p(j)$ and $i-j\equiv 0 \pmod{(p-1)p^{N-1}}$. Then, there holds the following isomorphism:

$$\widetilde{Ad}^{2i}(L_0^n(p^r)) \simeq \widetilde{Ad}^{2j}(L_0^n(p^r)).$$

We used the computer of Osaka City University computer center to calculate the samples of the group structure of $Ad^*(L_0^n(p^r))$.

The author expresses his hearty gratitude to Professors S. Araki, Z. Yosimura and A. Kono.

2. Preliminaries

Let G be a compact Lie group and R(G) be its complex representation ring. The augmentation ideal I is the kernel of the induced ring homomorphism $R(G) \rightarrow R(\{1\})$.

Proposition 2.1 (Atiyah, Atiyah-Segal). There holds the following natural isomorphism:

$$\alpha \colon R(G)_I^{\wedge} \to K(BG) \; .$$

In case $G=S^1$, $R(S^1)=\mathbb{Z}[H, H^{-1}]$ where H is the canonical representation of S^1 . Let x be e(H)=H-1, the euler class of H. Since I=(x), $K(BS^1)=\mathbb{Z}$ $[x]_x^2=\mathbb{Z}[[x]]$ and $K^1(BS^1)=0$. We consider the case $G=\mathbb{Z}/q$. There is the canonical inclusion $i: \mathbb{Z}/q \subset S^1$, and we write $i^*(H)=H$ and $i^*(x)=x$. Then $R(\mathbb{Z}/q)$ $=\mathbb{Z}[H]/(H^q-1)$ and I=(x). Thus $K(B\mathbb{Z}/q)=(\mathbb{Z}[x]/((x+1)^q-1))_x^2$ and K^1 $(B\mathbb{Z}/q)=0$. We denote $R=K_{(p)}(B\mathbb{Z}/q)=(\mathbb{Z}_{(p)}[x]/((x+1)^q-1))_x^2$. The definition of the completion induces

Lemma 2.2. There exists a continuous surjection

$$Z_{(p)}[x]_{x}^{\wedge}/((x+1)^{q}-1) \rightarrow (Z_{(p)}[x]/((x+1)^{q}-1))_{x}^{\wedge}$$

The K-ring of finite Lens spaces is given by Mahammed [7]. That is

(2.3)
$$K(L_0^n(q)) = \mathbf{Z}[x]/((x+1)^q - 1, x^{n+1})$$
$$K^1(L_0^n(q)) = 0,$$

where x is the restriction of x, the euler class of the canonical line bundle.

Lemma 2.4. The ring $K_{(p)}(L_0^n(q))$ is isomorphic to $R/(x^{n+1})$ and the inclusion $L_0^n(q) \subset L^{\infty}(q)$ induces the projection $R \rightarrow R/(x^{n+1})$.

We denote $L_0^{\infty,n}(q) = L^{\infty}(q)/L_0^n(q)$ and $L_{0,0}^{m,n}(q) = L_0^m(q)/L_0^n(q)$. Then we have the following exact sequence.

(2.5)
$$0 \to \tilde{K}(L_0^{\infty,n}(q)) \to K(L^{\infty}(q)) \to K(L_0^n(q)) \to 0.$$

308

Thus we have

Lemma 2.6. $\tilde{K}(L_0^{\infty,n}(q)) = x^{n+1} R$ $\tilde{K}^1(L_0^{\infty,n}(q)) = 0$.

It is easy to see that $L_{0,0}^{n+1,n}(q) = S^{2n+1} \bigcup_{q} e^{2n+2}$. Thus we have

Lemma 2.7. $\hat{K}(L_{0,0}^{n+1,n}(q)) \cong \mathbb{Z}/q$ $\hat{K}^{1}(L_{0,0}^{n+1,n}(q)) = 0$.

On the other hand, the exact sequence

$$0 \to \tilde{K}(L_0^{\infty,n+1}(q)) \to \tilde{K}(L_0^{\infty,n}(q)) \to \tilde{K}(L_{0,0}^{n+1,n}(q)) \to 0$$

shows that $\tilde{K}(L_{0,0}^{n+1,n}(q)) = x^n R/x^{n+1}$, which is a cyclic group generated by x^n . So we have

Proposition 2.8. When $m-n\equiv 0 \pmod{p-1}$, we put $t=\min(r, \nu_p(m)+1)$. Then

$$\widetilde{Ad}^{2^{m}}(L_{0,0}^{n+1,n}(q)) \cong \widetilde{Ad}^{2^{m+1}}(L_{0,0}^{n+1,n}(q)) \cong \begin{cases} \mathbf{Z}/p^{t} & \text{if } n-m \equiv 0 \pmod{p-1} \\ 0 & \text{if } n-m \equiv 0 \pmod{p-1} \end{cases}.$$

3. Proof of Theorems

We identify $K_{(p)}^{2m}(X)$ with $K_{(p)}(X)$ using the Bott periodicity. We denote the stable operation ψ^k on $K_{(p)}^{2m}(X)$ by $\psi^{k,m}$. Then $\psi^{k,m} = k^{-m}\psi^k$ under this identification.

Lemma 3.1. Under the above identification, when $m-m' \equiv 0 \pmod{p-1}$,

 $\mathrm{Im}((1-\psi^{k,m})-(1-\psi^{k,m'})) \subset p^{1+\nu_p(m-m')} \mathrm{Im}(\psi^k) \,.$

Kobayashi, Murakami and Sugawara [6] have computed the explicit abelian group structure of $K(L_{n}^{n}(q))$. One corollary of their results is

Proposition 3.2.

$$p^{r+[(n-1)/(p-1)]} \tilde{K}_{(p)} (L_0^n(q)) = 0.$$

Let
$$M(n) = r + [(n-1)/(p-1)]$$
 and $M' = (p-1)p^{M(n)-1}$. Then

Corollary 3.3. Under the above identification

$$1 - \psi^{k,m} = 1 - \psi^{k,m+M'} \colon K(L_0^n(q)) \to K(L_0^n(q)) .$$

When $i-j\equiv 0 \pmod{M'}$, we consider the following commutative diagram where horizontal lines are exact:

S. HASHIMOTO

where the vertical isomorphism are induced from the Bott periodicity. This completes the proof of Theorem 1.1.

We took k as a generator of $(\mathbf{Z}/p^2)^{\times}$. It is easy to see the following lemmata.

Lemma 3.4. The class of k in Z/p^r is a generator of $(Z/p^r)^{\times}$ for every r.

Lemma 3.5. Let
$$W = (p-1) p^{r-1}/2$$
. Then $k^w \equiv -1 \pmod{p^r}$.

Let U=(p-1)/2. Lemma 3.5 induces

Corollary 3.6.

$$k^{(p-1)p^{r-2}U} \times k^{(p-1)p^{r-2}/2} \equiv -1 \pmod{p^r}$$

Definition 3.7.

$$A = \prod_{i=0}^{p-1} (\boldsymbol{H}^{k^{i(p-1)p^{r-2}}} - 1) = \prod_{i=0}^{p-1} (\boldsymbol{\psi}^{k^{(p-1)p^{r-2}}})^i (\boldsymbol{H} - 1)$$

We compute the action of the Adams operation on the element A, and using Corollary 3.6 we have

Lemma 3.8. There exists a natural number t such that

$$(\psi^k)^{(p-1)^{r-2/2}} A = -H^t A.$$

The proof is only a computation. The natural number $t = -\sum_{j=1}^{p-1} k^{j(p-1)p^{r-2}}$, but we don't need it. Let $Q = (p-1)p^{r-2}/2$.

Lemma 3.9. There exists a natural number s such that

$$(m{\psi}^k)^{(p-1)p^{r-2}/2} \, (m{H}^s\!A) = -m{H}^s\!A$$
 .

Proof. Using Lemma 3.8, we need to solve the following equation in Z/q.

$$k^{(p-1)^{r-2/2}}s+t=s$$
.

Since Q is not a multiple of p-1, $\nu_p(1-k^q)=0$. This implies that $1-k^q$ is invertible in \mathbb{Z}/p^r . Thus the above equation has a solution.

DEFINITION 3.10. We put $B = H^s A$ and $C = \sum_{j=0}^{Q-1} (\psi^k)^j B$. This element C is a polynomial of H, so we write C = C(H). It is easy to see that $\psi^k B = -B$,

310

 $\psi^{k}C = -C$ and B and C are in the ideal $(H-1)^{p}$. So we define $D(H) = (H-1)^{-p} \times C(H)$.

Lemma 3.11. The integer D(1) is prime to p.

Proof. Let $f(X) = (X^{u} - 1)/(X - 1)$, then f(1) = u. Thus

$$D(1) = \sum_{j=0}^{Q-1} k^j \times k^{j+2Q} \times \cdots \times k^{j+2Q(p-1)}$$

= $k^{v} (1-k^{Q})/(1-k^{p})$.

Since $\nu_p(1-k^q)=0$, the proof is completed.

Lemma 3.12. The ideal generated by C coincides with the ideal $(H-1)^p$ in R.

Proof. We write D as a polynomial of x=H-1. Then D=D(1)+higher. So D is an invertible element in $\mathbf{Z}_{(p)}[x]_{x}^{\uparrow}$. By Lemma 2.2 D is invertible in R. Since $C=(H-1)^{p}D$, the Lemma is proved.

Proposition 3.13. When $n \equiv 0, -1 \pmod{p}$, then

$$\widetilde{Ad}^{2m+1}(L_0^{\infty,n}(q)) = \bigoplus_{j=1}^r \mathbb{Z}/p^{j+\nu_p(m)}$$
.

Proof. By Lemma 2.6 $\tilde{K}(L_0^{\infty,n}(q)) = x^{n+1}R$. The assumption implies $n = tp - \varepsilon$, where t is a positive integer and ε is 0 or -1. We choose an additive basis of $x^{n+1}R$ as $\{g_n(i, j); 1 \le j \le r, 1 \le i \le (p-1) p^{j-1} - 1\}$ where $g_n(i, j) = (-C)^t \times (\mathbf{H}^{p^{r-j_k i}} + \varepsilon - 1)$. As same as in computation in [4], we have the required result.

Consider the following exact sequence

$$\begin{aligned} 0 &\to \widetilde{Ad}^{2m}(L_{0,0}^{n,n-1}(q)) \to \widetilde{Ad}^{2m+1}(L_0^{\infty,n}(q)) \\ &\to \widetilde{Ad}^{2m+1}(L_0^{\infty,n-1}(q)) \to \widetilde{Ad}^{2m+1}(L_{0,0}^{n,n-1}(q)) \to 0 \;. \end{aligned}$$

By Proposition 2.8, we have

Corollary 3.14. If $n-m \equiv 0 \pmod{p-1}$, we have an isomorphism:

$$\widetilde{Ad}^{2m+1}(L_0^{\infty,n}(q)) \simeq \widetilde{Ad}^{2m+1}(L_0^{\infty,n-1}(q)) .$$

Proposition 3.13 and Corollary 3.14 imply

Lemma 3.15. Let $N(m) = r + \nu_{b}(m)$. Then

 $p^{N(m)} \cdot Ad^{2m+1}(L_0^{\infty,n}(q)) = 0.$

The exact sequence

S. HASHIMOTO

$$0 \to \widetilde{Ad}^{2m}(L_0^n(q)) \to \widetilde{Ad}^{2m+1}(L_0^{\infty,n}(q)) \to \widetilde{Ad}^{2m+1}(L^{\infty}(q))$$

induces

Corollary 3.16.
$$p^{N(m)} \cdot \widetilde{Ad}^{2m+1}(L_0^n(q)) = 0$$
 for any integer n.

Lemma 3.1 and Corollary 3.16 imply Theorem 1.2. This completes the proof.

References

- [1] J.F. Adams: On the groups J(X)-II, Topology 3 (1965), 137–171.
- [2] M.F. Atiyah: Characters and cohomology of finite groups, Publ. Math. I.H.E.S. 9 (1961), 23-64.
- [3] M.F. Atiyah and G.B. Segal: Equivariant K-theory and completions, J. Differential Geom. 3 (1969), 1-18.
- [4] S. Hashimoto: Note on Ad*-cohomology groups of Lens spaces, to appear.
- [5] K. Knapp: Some applications of K-theory to framed bordism: e-invariant and transfer, Habilitationschrift (1979).
- [6] T. Kobayashi, S. Murakami and M. Sugawara: Note on J-groups of Lens spaces, Hiroshima Math. J. 7 (1977), 387–409.
- [7] N. Mahammed: A propos de la K-theorie des espaces lenticulaires, C.R. Acad. Sci. Paris 271 (1970), 639-642.
- [8] D. Quillen: On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), 552-586.
- [9] R.M. Seymour: Vector bundles invariant under the Adams operations, Quart. J. Math. Oxford (2) 25 (1974), 359-414.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan

312