Iwamoto, T. Osaka J. Math. 23 (1986), 859-865

DENSITY PROPERTIES OF COMPLEX LIE GROUPS

Таказні ІШАМОТО

(Received January 24, 1985)

0. Introduction

Let G be a locally compact group. A subgroup H of G is called of *finite* covolume if H is closed and G/H has a finite G-invariant Radon measure.

A. Borel studied properties of subgroups of finite covolume in semi-simple Lie groups without compact factors [1] and proved:

Theorem (Borel's density theorem). Let G be a semi-simple Lie group without compact factors and H a subgroup of finite covolume in G. Let f be a finite dimensional linear representation of G. Then every f(H)-invariant vector subspace is f(G)-invariant.

H. Furstenberg showed that Borel's theorem holds for minimally almost periodic groups and those subgroups of finite covolume [2].

In this paper, applying Furstenberg's idea to some more general situations, we shall prove complex Lie group version of Borel's theorem, that is:

Theorem. Let G be a complex analytic group and H a subgroup of finite covolume in G. Let f be a holomorphic representation of G on a finite dimensional complex vector space. Then every f(H)-invariant vector subspace is f(G)-invariant.

Using this theorem, we obtain properties of subgroups of finite covolume in a complex analytic group [see Section 3].

1. Preliminary results

Let G be a locally compact group and V a finite dimensional vector space over the field K, where K is the real number field R or the complex number field C. Let f be a continuous representation of G on V.

DEFINITION 1. (G, f) is said to have property (A) if the following conditions are satisfied:

(1) G has no closed subgroup of finite index.

(2) For any f(G)-invariant subspace W of $V, f(G)|_W \subset K \cdot 1_W$ or

{ $|\det f(g)|_W$ | $^{-1/\dim W} \cdot f(g)|_W; g \in G$ }

is unbounded in GL(W), where $f(g)|_W$ and det $f(g)|_W$ are the restriction of f(g) to W and its determinant, respectively.

Let P(V) denote the projective space corresponding to V. For a subset $A \subset V$, \overline{A} denotes the canonical image of A in P(V). For a vector subspace $W \subset V$, \overline{W} is called a linear subvariety. Following Furstenberg's terminology, we call a finite union of linear subvarieties a *quasi-linear subvariety*. For simplicity we denote a quasi-linear subvariety by "q.l.v.". By the descending chain condition for all the algebraic sets, we have that for any subset $B \subset P(V)$ there exists a minimal q.l.v. containing B. In this case this q.l.v. is determined uniquely. We denote it by q(B). For a linear map t of a subspace $W \subset V$ to V, \overline{t} denotes the map of $\overline{W} \setminus \ker t$ to P(V) corresponding to t. The following lemma is essentialy due to Furstenberg.

Lemma 1. Let $\{t_k\}_{k=1}^{\infty}$ be in GL(V) such that

 $|\det t_k|/||t_k||^n \to 0 \quad as \quad k \to \infty$

where $n = \dim W$ and || || is a suitable norm on End(V).

Then there exist a transformation T on P(V) whose range is a proper $q.l.v. \subseteq P(V)$ and a suitable subsequence $\{t'_k\}_{k=1}^{\infty}$ of $\{t_k\}_{k=1}^{\infty}$ such that

$$\overline{t}'_k(x) \to T(x) \quad as \quad k \to \infty$$

for any $x \in P(V)$.

Proof. Let W be a subspace of V. Passing to a subsequence and taking suitable constants a_k 's such that $||a_k \cdot t_k|| = 1$ (where $|| \quad ||$ is a suitable norm on Hom(W, V)), we may assume that $a_k \cdot t_k$ converges to a nonzero linear map h of W into V with respect to the natural topology in Hom(W, V). We note that for $v \in W \setminus \ker h$

 $\overline{t}_k(\overline{v}) \to \overline{h}(\overline{v})$ as $k \to \infty$.

Set $W_0 = V$. There exist a subsequence $\{t_k(0)\}$ of $\{t_k\}$ and a linear map h_0 of $W_0 = V$ to V such that $\{\overline{t_k(0)}\}$ converges pointwise to $\overline{h_0}$ on $P(V) \setminus \overline{\ker h_0}$.

We shall define for $i=1, 2, 3, \dots$, subspaces W_i , subsequences $\{t_k(i)\}$ of $\{t_k\}$ and linear maps h_i of W_i to V, inductively. Set $W_i = \ker h_{i-1}$. Take a subsequence $\{t_k(i)\}$ of $\{t_k(i-1)\}$ and a linear map h_i such that for $v \in W_i \setminus \ker h_i$

$$t_k(v)(\bar{v}) \rightarrow \bar{h}_i(\bar{v}) \quad \text{as} \quad k \rightarrow \infty$$
.

Since dim $V < +\infty$, there exists an integer *m* such that dim W_{m+1} =dim ker $h_m = 0$.

Set $T(v) = \overline{h}_i(v)$ for $v \in W_i \setminus W_{i+1}$, where $i=0, 1, 2, \cdots$. Let $\{t_k\} = \{t_k(m)\}$.

Then the range of T is $\bigcup \overline{h}_i(\overline{W}_i)$ and $\{\overline{t}'_k\}$ converges pointwise to T on P(V). In order to show that the range of T is proper, it is sufficient to prove det $h_0=0$. By the assumption we have that

$$|\det h_0| = |\det \lim a_k \cdot t_k(0)|$$
$$= \lim |\det a_k \cdot t_k(0)| / ||a_k \cdot t_k(0)||^n$$
$$= \lim |\det t_k| / ||t_k||^n = 0$$

where || || is a norm on End (V)=Hom(W_0 , V) and a_k is a scalar constant. q.e.d.

Lemma 2. Let W_i for $i=1, 2, 3, \dots, k$, be a subspace of V. If a subspace $W \subset V$ is contained in $\bigcup_{i=1}^k W_i$, there exists an integer $1 \leq i' \leq k$ such that $W \subset W_{i'}$.

Proof. Suppose that W is not contained in any W_i . Then for every $i = 1, 2, 3, \dots, k$, there exists a nonzero vector $v_i \in W$ which is not contained in W_i .

We shall prove that for $j=1, 2, 3, \dots, k$, there exist j real numbers t_i 's such that $\sum_{i=1}^{j} t_i \cdot v_i$ is not contained in $\bigcup_{i=1}^{j} W_i$, by induction on j. By the assumption of induction we can find (j-1) real numbers t_i 's such that $u=\sum_{i=1}^{j-1} t_i \cdot v_i$ is not contained in $\bigcup_{i=1}^{j-1} W_i$. If $u \notin W_j$, set $t_j = 0$. Assume that $u \notin W_j$. Since $\bigcup_{i=1}^{j-1} W_i$ is closed, we can find a sufficiently small number t_j such that $u+t_j \cdot v_j \notin \bigcup_{i=1}^{j-1} W_i$. Since $u \notin W_j$ and $t_j \cdot v_j \notin W_j$, we have that $\sum_{i=1}^{j} t_i \cdot v_i = u+t_j \cdot v_j \notin W_j$. Consequently we can find k real numbers t_i 's such that $\sum_{i=1}^{k} t_i \cdot v_i \notin \bigcup_{i=1}^{k} W_i$.

However $\sum_{i=1}^{k} t_i \cdot v_i \in W \subset \bigcup_{i=1}^{k} W_i$ leads to a contradiction. q.e.d.

Lemma 3. Assume that (G, f) has a property (A). Let \overline{f} be a representation of G on P(V) induced by f and μ a finite $\overline{f}(G)$ -invariant Radon measure on P(V). Then the support of μ consists of $\overline{f}(G)$ -fixed points.

Proof. If $f(G) \subset K \cdot 1_V$, there is nothing to prove. Hence we may assume that there exists a sequence $\{g_k\} \subset G$ such that

$$\{|\det f(g_k)|^{-1/\dim V} \cdot f(g_k); k = 1, 2, 3, \cdots\}$$

is unbounded in End(V). If necessary taking a subsequence we may assume, by Lemma 1, that there exists a transformation T on P(V) whose range is a proper q.l.v. Q and that $\overline{f}(g_k)$ converges pointwise to T.

Let D(x) be the distance from x to Q for some metric on P(V). By the bounded convergence theorem, we have that for any $x \in P(V)$

$$0 = \int_{P(V)} D(T(x)) d\mu$$
$$= \int_{P(V)} \lim D(\bar{f}(g_k)(x)) d\mu$$

Т. Іwамото

$$= \lim \int_{P(V)} D(\bar{f}(g_k)(x)) d\mu$$
$$= \int_{P(V)} D(x) d\mu$$

This implies that supp $\mu \subset Q$.

Let X be the unique minimal q.l.v. containing supp μ . X can be denoted by $X = \bigcup_{i=1}^{m} \overline{W}_i$ where W_i is a subspace of V. We may assume that there is no inclusion relation among W_i 's. Remark that X is also proper in P(V). Since supp μ is $\overline{f}(G)$ -invariant and X is the smallest q.l.v. containing supp μ , X is $\overline{f}(G)$ invariant. For every $g \in G$, $f(g) \ W_i \subset \bigcup_{i=1}^{m} W_i$. By Lemma 2, there exists for every $i=1, 2, 3, \dots, m$, there exists an integer s(i) such that $f(g) \ W_i \subset \bigcup_{i=1}^{m} W_{s(i)}$. Since there is no inclusion relation among W_i 's, $\bigcup_{i=1}^{m} W_i = f(g) \bigcup_{i=1}^{m} W_i \subset \bigcup_{i=1}^{m} W_{s(i)} \subset \bigcup_{i=1}^{m} W_i$ implies that $f(g) \ W_i = W_{s(i)}$ for $i=1, 2, 3, \dots, m$. Thus G permutes W_i 's. Since G has no closed subgroup of finite index, G leaves each W_i invariant.

We shall show that $f(G)|_{W_i} \subset K \cdot 1_{W_i}$ for $i=1, 2, 3, \dots, m$.

Suppose that there exists $W_{i'}$ such that $f(G)|_{W_{i'}} \subset K \cdot 1_{W_{i'}}$. The same argument as above with respect to $\overline{W}_{i'}$, $f|_{W_{i'}}$, and $\mu | \overline{W}_{i'}$ shows that there exists a *q.l.v.* X' contained properly in $\overline{W}_{i'}$ such that supp $\mu |_{\overline{W}_{i'}} \subset X'$. Thus X contains $(\bigcup_{i \neq i'} W_i) \cup X'$ properly. This contradicts the definition of X.

Therefore $f(G)|_{W_i} \subset K \cdot 1_{W_i}$ for $i=1, 2, 3, \dots, m$. q.e.d.

2. Main theorem

Let G be a locally compact group and f a continuous representation of G on a finite dimensional vector space V over K.

Lemma 4. Assume that (G, f) has property (A). Let H be a subgroup of finite covolume in G. Then for 1-dimensional subspace W of V, W is f(G)-invariant if and only if W is f(H)-invariant.

Proof. In order to prove the lemma it is sufficient to show "if" part. Set $p = \overline{W} \in P(V)$. Define the map π of G/H to P(V) by

$$\pi\colon G/H \ni g H \mapsto \overline{f(g) p} \in P(V) .$$

Then π carries a finite G-invariant measure on G/H to a finite $\overline{f}(G)$ -invariant measure on P(V). Since p is contained in the support of this measure, by Lemma 3, p is a $\overline{f}(G)$ -fixed point. q.e.d.

For a representation f of G on a vector space V, the k-th exterior product representation $\Lambda_k f$ of f on $\Lambda_k V$ is defined by

$$\begin{aligned} \Lambda_k f(g) \left(v_1 \Lambda v_2 \Lambda v_3 \Lambda \cdots \Lambda v_k \right) \\ = f(g) v_1 \Lambda f(g) v_2 \Lambda f(g) v_3 \Lambda \cdots \Lambda f(g) v_k \end{aligned}$$

862

where $g \in G$ and $v_i \in V$.

DEFINITION 2. (G, f) is said to have property (B) if for $k=1, 2, 3, \dots$, dim $V, (G, \Lambda_k f)$ has property (A).

Theorem 1. Assume that (G, f) has property (B). Let H be a subgroup of finite covolume in G. Then for any subspace W of V, W is f(G)-invariant if and only if W is f(H)-invariant.

Proof. In order to prove the theorem it is sufficient to show "if" part. Let k be dim W. Taking k-th exterior product of f, we can reduce the proof to Lemma 4.

Proposition 1. Let G be a complex analytic group and f a holomorphic representation of G on a finite dimensional complex vector space V. Then (G, f) has property (B).

Proof. If f is holomorphic, so is $\Lambda_k f$. Thus, in order to prove the proposition, it is sufficient to show that (G, f) has property (A). Since G is connected G has no closed subgroup of finite index. In order to show the condition (2) of Definition 1 we may assume that W=V, for the restriction $f|_W$ of f to a invariant subspace W is also holomorphic.

Let G' denote the complex linear group f(G) and \hat{G}' its Lie algebra. For $A=(a_{ij})\in \operatorname{End}(V)$, we define the norm of A by $||A||=(\sum_{i,j}|a_{ij}|^2)^{1/2}$.

For nonzero $X \in \hat{G}'$, set

$$f_{\mathbf{X}}(z) = ||\exp n \, z \, X|| / |\det \, \exp \, z \, X|$$

where $n = \dim V$ and $z \in C$. We note that $f_x(z)$ can be written the form;

 $f_{X}(z) = (|f_{1}(z)|^{2} + |f_{2}(z)|^{2} + \dots + |f_{m}(z)|^{2})$

where $m = n^2$ and $f_i(z)$ is a holomorphic function of z. Thus there exist only two possible cases:

Case 1. There exists a nonzero $X \in \hat{G}'$ such that $f_X(z)$ is unbounded. Since $f_X(z) = ||\exp n z X||/|\det \exp z X| \leq ||\exp z X||^n/|\det \exp z X|$, we have that

{
$$|\det \exp z X|^{-1/n} \cdot \exp z X; z \in C$$
}

is unbounded.

Case 2. For every $X \in \hat{G}'$, $f_x(z)$ is constant. In this case each element of the matrix $(\exp n z X)/(\det \exp z X)$ is constant. Substituting 0 for z, we have that

$$(\exp n z X)/(\det \exp z X) = 1_v$$

for all $z \in C$ and all $X \in \hat{G}$. Consequently we have that

$$\exp z X \in C \cdot 1_v \quad \text{for all} \quad X \in \hat{G}.$$

Since f(G) = G' is connected, $f(G) \subset C \cdot 1_v$.

From Theorem 1 and Proposition 1, it follows that:

Theorem 2. Let G be a complex analytic group and H a subgroup of finite covolume in G. Let f be a holomorphic representation of G on a finite dimensional complex vector space. Then every f(H)-invariant subspace is f(G)-invariant.

REMARK. There are several other cases in which property (B) holds. If G is minimally almost periodic and f is an arbitrary representation, or if G is an analytic group and f is a unipotent representation (G, f) has property (B). In both the cases Theorem 1 holds [2, 4].

3. Density properties

In this section G always denotes a complex analytic group, H a subgroup of finite covolume in G and f a holomorphic representation of G on a finite dimensional complex vector space V.

Corollary 1. Every element of f(G) is a linear combination of elements of f(H).

Proof. Let W be the subspace spanned by the elements of f(H) in End(V). The action of G on End(V)

$$G \times \operatorname{End}(V) \ni (g, A) \mapsto f(g) \circ A \in \operatorname{End}(V)$$

defines a holomorphic representation of G on End(V). Since W is H-invariant under this action Theorem 2 concludes that W is G-invariant. Thus we have that for every $g \in G$

$$f(g) = f(g) \circ 1_V \in W.$$
q.e.d.

From Corollary 1, it follows immediately that:

Corollary 2. The centralizer of f(H) in GL(V) coincides with the centralizer of f(G).

Corollary 3. f(G) and f(H) has the same Zariski closure in GL(V).

Proof. Let G' and H' be the Zariski closures of f(G) and f(H), respectively. Clearly $H' \subset G'$. By Chevalley's theorem we can find a rational representation r of GL(V) on a complex vector space E and a nonzero vector $v \in E$ such that

$$H' = \{x \in \operatorname{GL}(V); r(x)v \in C \cdot v\}.$$

864

q.e.d.

Since $r \circ f$ is a holomorphic representation of G and $C \cdot v$ is $r \circ f(H)$ -invariant, by Theorem 2, $C \cdot v$ is $r \circ f(G)$ -invariant. Thus we have that $f(G) \subset H'$. q.e.d.

Appendix. Professor Goto pointed a criterion for property (A). This criterion seems to make the meaning of property (A) clear.

Let V be a finite dimensional complex vector space. An endmorphism A on V is called *conformal* if A is semi-simple and the real part of every eigen value of A is equal to each other. Let the totality of the conformal endomorphisms on V be denoted by c(V). For a representation f of a Lie group by df we denote the associated representation of its Lie algebra.

Proposition (M. Goto). Let G be an analytic group and \hat{G} its Lie algebra. Let f be a representation of G on a finite dimensional complex vector space V. Assume that for every f(G)-invariant subspace W of V $df(\hat{G})|_W \subset c(W)$ implies that $df(\hat{G})|_W \subset C \cdot 1_W$. Then (G, f) has property (A).

References

- [1] A. Borel: Density properties of certain subgroups of semi-simple groups without compact components, Ann. of Math. 72 (1960), 179–188.
- [2] H. Furstenberg: A note on Borel's density theorem, Proc. Amer. Math. Soc. 55 (1976), 209-212.
- [3] J. von Neumann and E.P. Wigner: *Minimally almost periodic groups*, Ann. of Math. **41** (1940), 746-750.
- [4] A.I. Mal'cev: On a class of homogeneous spaces, Amer. Math. Soc. Transl. 39 (1951).

Department of Mathematics Kyushu University 33 Hakozaki, Fukuoka 812 Japan