ON ALGEBRAS OF SECOND LOCAL TYPE, III

HIDETO ASASHIBA

Dedicated to Professor Hisao Tominaga on his 60th birthday

(Received November 5, 1985)

Throughout this paper, *A* denotes a (left and right) artinian ring with identity 1, *J* the Jacobson radical of *A,* and all modules are assumed to be (unitary) finitely generated one-sided A -modules unless otherwise stated. Further *k* denotes an algebraically closed field and by the word algebra we mean a finite dimensional algebra over *k.*

As defined in [I], we say that *A* is a ring of *right 2nd local type* in case the 2nd top top² $M := M/MJ^2$ of every indecomposable right A -module M is indecomposable. In [II, sections 3 and 4], we have determined all possible structures of indecomposable projective right and left modules over an algebra of right 2nd local type; and proved that conversely this classification condition on indecomposable projectives is sufficient for left serial algebras to be of right 2nd local type. Here we will generalize these results. Namely in section 1, corresponding to the first result above, we give a complete classification of local left and right modules over an arbitrary artinian ring of right 2nd local type (Theorem I). And in section 2, we prove the same statement as the second result above is still true for left serial rings with selfduality (Theorem II). In the last section, as examples of algebras of right 2nd local type, we give all the sincere simply connected (representation-finite) algebras of right 2nd local type using the method outlined in Ringel [10], and then characterize such algebras in terms of their ordinary quivers which include interpretations of lemmas used in the proof of the classification theorem above (Theorem III). This characterization leads us to necessary and sufficient conditions for representation-finite algebras to be of right 2nd local type (Theorem IV), by making use of the covering technique developed in [5], [7] and [6].

Since the property to be of right 2nd local type is Morita invariant, we may and will assume throughout that *A* is a basic ring. We keep the notation and terminology used in [I] or [II].

1. Classification of local modules

We prove the following theorem.

Theorem I. *Assume that A is a ring of right 2nd local type. Then*

- *(R) Every local right A-module P has one of the following structures:*
	- *(RJ P is uniserial.*
	- (R_2) P is of height 2 with the socle of length $>$ 2.
	- *(R³) P is non-unίserial of height* 3 *and colocal.*
	- *(R⁴) PJ is a direct sum of a simple right module and a non-uniseri colocal right module of height 2.*
	- *(R⁵) PJ is a direct sum of two non-zero uniserial right modules.*
- *(L) Every local left A-module P has one of the following structures :*
	- $(L₁)$ *P* is uniserial.
	- *(L²) P is non-uniserίal of height* 2.
	- (L³) *P is non-unίserial of height* 3 *and colocal.*
	- (L⁴) *P is non-unίserial of height* 4 *with J*P a uniserial waist in P.*
- *If, in addition, A is a ring with selfduality, the case of* (L⁴) *does not occur.*

At present we have no example of a ring of right 2nd local type having a local left module of type (L_{4}) . To prove the theorem we assume up to the end of this section that *A* is a ring of right 2nd local type. We quote the following as a special case of [II, Theorem 2.5 (1R) \Rightarrow (2R)].

Lemma 1.0. Let L_1 and L_2 be local right modules and S_i a simple sub*module of L_i* for each *i* such that $S_1 \le L_1 J$ and $S_2 \le L_2 J^2$. Then for every iso*morphism* α : $S_1 \rightarrow S_2$, α *is extendable to a homomorphism* $L_1 \rightarrow L_2$ *or* α^{-1} *is extendable to a homomorphism* $L_2 \rightarrow L_1$.

Lemma 1.1. Let P_A be a local module of height 3, L_A a local module of *height 2 and* S_A *a simple submodule of LJ. Then every homomorphism* α *:* $S{\rightarrow}P J^2$ *is extendable to a homomorphism* $L \rightarrow P$.

Proof. We may assume that α is not zero, whence is a monomorphism. By Lemma 1.0, we have only to show that α^{-1} : Im $\alpha \rightarrow S$ is not extendable to any homomorphism $\varphi: P \rightarrow L$. But otherwise, $3 = h(\text{Coim }\varphi) = h(\text{Im }\varphi) \leq h(L) = 2$, a contradiction.

Lemma 1.2. *Let P^A be a local module of height* 3 *and L^A a local submodule of PJ and put* $\operatorname{soc} L = S_1 \oplus \cdots \oplus S_n$ with each S_i simple. Then there is a uni- $\sum_{i=1}^{n}$ $+L_{n-1} = L_1 \oplus L_2 \oplus \cdots L_{n-1} \oplus L_n$. In particular, L is contained in a sum of uniserial *modules.*

Proof. By induction on *n*. If $n=1$, then the assertion holds for $L_n := L$. So assume $n > 1$. Then $h(L) = 2$. Put $M := L/(S_2 \oplus \cdots \oplus S_n)$ and $S := \text{soc } M$ $(\simeq S_1)$. Then by Lemma 1.1, the canonical injection $\alpha: S \rightarrow S_1 \leq PJ^2$ is extendable to a homomorphism $\varphi: M \rightarrow P$. Put L_1 :=Im φ . Then L_1 is uniserial

of length 2 and $\operatorname{soc} L_1 = S_1$. Since $\varphi \pi: L \to L_1$ is an extension of the identity map of $S_1 = L \cap L_1$ (where $\pi: L \to M$ is the canonical projection), we have $L + L_1 = L_1 \oplus L'$ where L' is the image of the map $1_L - \varphi \pi : L \rightarrow L + L_1$ (whence *L f* is a local submodule of *PJ).* In addition, as easily verified we have $\operatorname{soc} L' = S_2 \oplus \cdots \oplus S_n$. Applying the induction hypothesis to L' , we have uniserial modules L_2, \dots, L_n such that $\operatorname{soc} L_i = S_i$ for all $i \in \{2, \dots, n\}$ and $L' + L_2 + \dots +$ $L_{n-1} = L_2 \oplus \cdots \oplus L_{n-1} \oplus L_n$. Hence $L + L_1 + \cdots + L_{n-1} = L_1 + L' + L_2 + \cdots + L_{n-1} = L_2 \oplus \cdots \oplus L_{n-1} \oplus L_n$. $L_1+(L_2\oplus\cdots\oplus L_{n-1}\oplus L_n)$ and the last sum is direct since soc $L_i=S_i$ for all $i \in \{1, ..., n\}.$ //

Proposition 1.3. *If P^A is a local module of height* 3, *then PJ is expressed as an ίrredundant sum of uniserial modules.*

Proof. Clear from Lemma 1.2. //

Lemma 1.4. *Let L be a right module. Then the following are equivalent'.* (1) *L is uniserial.*

- (2) top²L is uniserial.
- (3) soc²L is uniserial.

Proof. The implications (1) \Rightarrow (2) and (1) \Rightarrow (3) are clear.

 $(2) \rightarrow (1)$. Assume that top²L is uniserial but L is not. Let t be the smallest natural number such that $|Lf'|LJ^{t+1}|>1$. Then by assumption $t>1$. Put $P := LJ^{t-2}/LJ^{t+1}$. Then *P* is a local module of height 3 and *PJ* is also local. Hence PJ is uniserial by Proposition 1.3. This implies $1 = |PJ^2| = |Lf^t/LJ^{t+1}| > 1$, a contradiction.

 $(3) \rightarrow (1)$. Assume that soc²L is uniserial but L is not. Let t be the smallest natural number such that $|\sec^{t+1} L / |\sec^t L| > 1$. Then by assumption $t > 1$. Put $P := soc^{t+1} L / soc^{t-2}L$. Then *P* is of height 3 and soc² $P = soc^{t} L / soc^{t-2}L$ is uniserial. Again by assumption $|\text{top } P| > 1$. Hence P is expressed as an irredundant sum of at least two local modules L_i . Put $M := L_1 + L_2$. *.* Then soc²M=soc²P and $L_1 J = \text{soc}^2 M = L_2 J$. Hence, in particular, L_1 and L_2 are uniserial of length 3. By Lemma 1.1 $1_{\text{soc }M}$ is extendable to a homomorphism $\varphi: L_1 \to L_2$. Putting $L' := (l_{L_1} - \varphi)(L_1) \neq 0$, we have $M = L' + L_2$ and $|L' \cap L_2| < |L_1 \cap L_2|$ = $|\operatorname{soc}^2 M| = 2$. Since *M* is indecomposable, $L' \cap L_2$ \neq 0 whence $L' \cap L_2 = \text{soc} M$. Then $1 = |\text{soc}^2 M / |\text{soc} M| = |\text{soc}(M / |\text{soc} M)| = |\text{soc}((L' + L_2) / |\text{soc} M|)$ $(L' \cap L_2))$ = 2, a contradiction. //

Lemma 1.5 ([2]). *Let L be a non-zero proper submodule of a right module M. Then L is a waist in M iff LILJ is a waist in M/LJ. //*

Corollary 1.6. Let L be a right module of height > 2 such that $top^2 L$ is *colocal. Then L is uniserial.*

110 H. ASASHIBA

Proof. Since top²L=L/LJ² is colocal, we have $LJ/LJ^2 =$ soc(L/LJ²) is a waist in *L/LJ² .* Hence by Lemma 1.5, *LJ* is a waist in L. We first show that *LJ* is uniserial. Let *x* be any element in $L\setminus LJ$. Then $xe \notin LJ$ for some $e \in \text{pi}(A)$. Putting $N := xeA$, N is a local submodule of L with $N \leq L$. By the above, $L\llbracket *I* \right| < N$. Then since $N\llbracket \leq L\llbracket *I* \right)$ and N is local, we have $N\llbracket = L\llbracket$ and $N J/N J^2 {=} L J/L J^2$ is simple. Thus top² N is uniserial. Hence by Lemma 1.4, N is uniserial. So LJ is uniserial since $LJ < N$. Now put $h := h(L)$. Since $Lf = soc^{h-1}L$ is uniserial and $h-1>1$, soc²L is uniserial, whence so is L by Lemma 1.4. //

Lemma 1.7. *Let L be a local right module. If L]² is simple, then* $|\text{soc } L| \leq 2$; more precisely L is colocal or LJ is a direct sum of a simple right *module and a colocal right module of height* 2.

Proof. Since *LJ³=0* and *A/J³* is also a ring of right 2nd local type, we may assume that $J^3=0$. Consider the following exact sequence

$$
(1) \t\t 0 \to I \hookrightarrow eA \to L \to 0
$$

where $e \in \mathrm{pi}(A)$ and eA is the projective cover of *L*. Put $T := eJ^2 \cap I$, $M := eA/T$ and $S := MI^2$. Then *M* is local and $S = eJ^2/T \simeq LJ^2$ is simple.

We first show that $|\text{soc }M| \leq 2$. Assume $|\text{soc }M| \geq 3$. Then there are simple right modules S_1 and S_2 such that $S_1 \oplus S_2 \oplus S \le$ soc *M*. Define an isomorphism α by the following commutative diagram

$$
S \xrightarrow{\qquad} S
$$

\n
$$
\begin{array}{c}\n S \xrightarrow{\qquad} S \\
\downarrow \\
(S \oplus S_1)/S_1 \xrightarrow{\qquad} (S \oplus S_2)/S_2\n \end{array}
$$

where the vertical maps are the canonical isomorphisms. Then it follows from $(S \oplus S_i)/S_i$ $=$ $(M/S_i)f^2$ for each i that α is extendable to a homomorphism $\beta: M/S_1 \to M/S_2$ or α^{-1} is extendable to a homomorphism $\beta: M/S_2 \to M/S_1$. In either case *β* is an isomorphism. In fact, *(M/S^J² ^* Ker /3 implies h(Im *β)* $=$ 3, thus β is an epimorphism, whence is an isomorphism since $\vert M/S_{\bf 1} \vert$ $=$ $\vert M/S_{\bf 2} \vert$ Therefore we may suppose that α is extendable to some β : $M/S_1 \rightarrow M/S_2$. Let S'_i be the unique submodule of eA containing *T* such that $S'_i/T=S_i$ for each *i.* Then $M/S_i \cong eA/S'$ for each *i*. The homomorphism *β* induces an isomorphism β': eA/S² →eA/S² which is clearly given by the left multiplication by an element *t* in $eAe\backslash eJe$. Thus $tS'_{1}=S'_{2}$. Taking $S=eJ^{2}/T$ into account it follows from $S_i \cap S = 0$ that $S'_i \cap eJ^2 = T$ for each *i*. Hence $tT = t(S'_1 \cap eJ^2) =$ $tS_1' \cap t eJ^2 = S_2' \cap eJ^2 = T$. Thus the left multiplication by *t* induces an automorphism γ of M. As easily checked γ is a lift of β , i.e. the diagram

is commutative where the vertical maps are the canonical epimorphisms. Then since $\gamma(S) = \gamma(MJ^2) = MJ^2 = S$, the diagram above induces the following commutative diagram

Thus $\gamma | S = 1_s$. This means that $t - e \in e J e$, whence $t = e + j$ for some Then $S'_2 = tS'_1 = (e+j)S'_1 \le eS'_1 + jS'_1 \le S'_1 + eJ^2$ since $jS'_1 \le j\in J \le eJ^2$. Thus $S_2 \leq S_1 \oplus S$, a contradiction. Accordingly we must have $|\sec M| \leq 2$.

Since $T \leq I$, (1) induces an exact sequence

$$
0 \to K \hookrightarrow M \to L \to 0.
$$

 Lf^2+0 implies $MJ^2 \nleq K$. Hence $K \cap MJ^2=0$ since MJ^2 is simple. By [II, Lemma 3.2.2] $MJ = K \oplus H$ for some $H \leq MJ$. Hence $|\sec L| = |\sec LJ| =$ $|\sec(MJ/K)| = |\sec H| \leq |\sec MJ| = |\sec M| \leq 2$. This completes the proof of the first part of the statement. Now suppose that *L* is not colocal. Then by the above $|\sec L| = 2$. Since Lf^2 is simple, $\sec L = X \bigoplus Lf^2$ for some simple *X* \leq *L.* In particular $X \cap L$ ^{*p*}=0. It follows from *X* \leq *LJ* that *LJ*=*X* \oplus *Y* for some $Y \leq LJ$ by [II, Lemma 3.2.2]. Since $Lf^2 = YJ$ is simple, $h(Y) = 2$. Further *Y* is colocal since $2 = |\text{soc } L| = |\text{soc } L| = |X| + |\text{soc } Y|$. Hence *L* is a direct sum of a simple X and a colocal Y of height 2. $\left| \right|$

Proposition 1.8. *If* P_A *is a local module, then* $|PJ^2/PJ^3| \leq 2$.

Proof. We may assume that $h(P)=3$. Suppose that $|PJ^2|\geq 3$. Then by Proposition 1.3 we have an irredundant sum $PI=\sum L_i$ of PI for some uniserial modules L_i . So $PJ^2 = \sum_{i=1}^{n} L_i J$ where $L_i J$ is simple or zero, whence we may assume that $PI^2 = \bigoplus_{i=1}^{m} L_i J$ for some $m \geq 3$. Put $L := P/(\bigoplus_{i=1}^{m} L_i J)$ and $\pi: P \rightarrow L$ to be the canonical epimorphism. Then *L* is local and $Lf^2 \approx L_1J$ is simple. Hence by Lemma 1.7 $|\sec L| \leq 2$. But by construction $3 = |\pi L_1 J \oplus$ $\frac{1}{2}$ \leq $|\sec L|$, a contradiction. //

Proposition 1.9. Let P_A be a local module. If $|PJ^2|PJ^3| = 1$, then P has

one of the following structures:

(1) *P is colocal of height* 3.

(2) *PJ is a direct sum of a simple right module and a colocal right module of height 2.*

(3) P *is uniserial.*

(4) *PJ is a direct sum of a simple module and a nonzero uniserial module.*

Proof. If $h(P)=3$, then by Lemma 1.7 *P* is of type (1) or (2). So we may assume that $h(P) > 3$. By Lemma 1.7 P/PJ^3 is of type (1) or (2).

(a) In case P/PJ^3 is of type (1). Since $top^2(PJ) = PJ/PJ^3$ is colocal and $h(PJ) \geq 3$, *PJ* is uniserial by Corollary 1.6. Thus *P* is of type (3).

(b) In case P/PJ^3 is of type (2). Put $PJ/PJ^3 = X \oplus Y$ where X is simple and Y is colocal of height 2. Then since $top^2(PJ)=PJ/PJ^3$ is decomposable, so is PJ. Let $PJ = X' \oplus Y'$ where X' and Y' are non-zero. Then $X \oplus Y \cong Y$ $\mathfrak{top}^2 X' \oplus \mathfrak{top}^2 Y'.$ By Krull-Schmidt's theorem we may assume that $X \cong \mathfrak{t}$ and $Y \cong \text{top}^2 Y'$. Since *X* is simple, so is *X'* by Nakayama's lemma. Thus h(Y') \geq 3 since $0 + P J^3 = Y' J^2$. Then since top² $Y' \cong Y$ is colocal, Y' is uniserial by Corollary 1.6. Hence P is of type (4). //

Lemma 1.10. Let P_A be a local module of height 3. If $|PJ^2| = 2$, then

- (1) *Every colocal submodule of PJ is uniserial*'; *and*
- (2) soc $P = PI^2$ (i.e. PJ has no simple direct summand).

Proof. (1) Let C be a colocal submodule of PJ. If $h(C)=1$, then the assertion is trivial. So we may assume that $h(C)=2$. Since $C_J=\text{soc }C$ is simple and $|Pf^2|=2$, $Pf^2=CJ\oplus S$ for some simple $S\leq Pf^2$. Put $L:=P/CJ$. Then *L* is local and $Lf^2 \approx S$ is simple. Hence by Lemma 1.7 $|\sec L| \leq 2$. Then since $C/CJ \cap LJ^2=0$, $C/CJ \oplus LJ^2 \leq \text{soc }L$, whence $|C/CJ|=1$. Thus C is uniserial.

(2) Assume that $\operatorname{soc} P \neq Pf^2$. Then P has a simple direct summand S. By Proposition 1.3 there are uniserial modules L_i such that $PI = \sum_{i=1}^{n} L_i$ is an irredundant sum. Since $|PJ^2|=2$, we may assume that $PJ^2=L_1J\oplus L_2J$. Put $L:=P/L_2J$ and $\pi: P \to L$ to be the canonical epimorphism. Then *L* is local and $Lf^2 \approx L_1J$ is simple. So by Lemma 1.7 $|\sec L| \leq 2$. But $3 \leq |\pi L_1J \oplus \pi L_2 \oplus$ $|\pi S| \leq |\sec L|$, a contradiction. //

Lemma 1.11. Let P_A be a local module of height 3 with $|PJ^2| = 2$ and P **J** $=$ $\sum_{i=1}^{n}$ L_i be an irredundant sum of uniserial modules. Then soc L_i \neq soc L_j for *each* $i \neq j$ *in* $\{1, ..., n\}$.

Proof. Assume $\operatorname{soc} L_i = \operatorname{soc} L_j = :S$. If the identity map 1_s of S is ex-

tendable to a homomorphism $\varphi: L_i \to L_j$, then $L_i+L_j = L \oplus L_j$ where $L :=$ $(1_L - \varphi)(L_i)$ is simple. So since $PJ = \sum_{i=1}^{N} L_i + L + L_j$ is an irredundant sum of local modules, *PJ* has a simple direct summand L. This contradicts Lemma 1.10 (2). Hence 1_s is not extendable to any homomorphism $L_i \rightarrow L_j$. Therefore $L_i + L_j$ is colocal by [12, Lemma 1.2 (2)]. Hence $L_i + L_j$ is uniserial by Lemma 1.10 (1). Thus $L_i = L_i$, i.e. $i = j$. //

Proposition 1.12. Let P_A be a local module. If $|PJ^2|PJ^3| = 2$, then PJ *is a direct sum of two non-zero uniserial modules.*

Proof. First we prove the assertion in the case of $h(P)=3$. By Proposition 1.3 $PI = \sum_{i=1}^{n} L_i$ is an irredundant sum of some uniserial modules L_i . Put $S_i:=L_iJ$ for each *i*. By Lemma 1.10 (2) $|L_i| = h(L_i) = 2$ for each *i*. Since $|PJ^2| = 2$, we may assume that $\sec PJ = PJ^2 = S_1 \oplus S_2$. We show that $n=2$. Assume $n \ge 3$. Define α_i : $S_3 \rightarrow S_i$ by $\alpha_i := \pi_i |_{S_3}$ where $\pi_i : S_1 \oplus S_2 \rightarrow S_i$ is the canonical projection for each $i=1, 2$. Then $\alpha_1 \neq 0$ and $\alpha_2 \neq 0$. For, otherwise, say $\alpha_1=0$, we would have $S_3=S_2$ contradicting Lemma 1.11. By Lemma 1.1 *(X₁* is extendable to a monomorphism $\varphi: L_3 \rightarrow P$. If $\varphi(L_3) + L_1$ is colocal, then $\varphi(L_3) = L_1$ by Lemma 1.10 (1). In this case we put $\lambda := 1_{L_1}$. If $\varphi(L_3) + L_1$ is not colocal, then 1_{S_1} is extendable to an isomorphism $\varphi(L_3) \rightarrow L_1$. In this case we put λ to be this isomorphism. In either case we have a commutative diagram

$$
L_3 \xrightarrow{\varphi} \varphi(L_3) \xrightarrow{\lambda} L_1
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \downarrow
$$

\n
$$
S_3 \xrightarrow{\qquad \qquad \downarrow} S_1 \xrightarrow{\qquad \qquad} S_1.
$$

Then $L_1 + L_3 = L_1 + L_3'$ where $L_3' := (1_{L_3} - \lambda \varphi)(L_3)$. Since $(1_{L_3} - \lambda \varphi)|_{S_3} = 1_{S_3} -$ Then $L_1 + L_3 = L_1 + L_3$ where $L_3 := (l_{L_3} - \lambda \varphi)(L_3)$. Since $(l_{L_3} - \lambda \varphi)|_{S_3} = l_{S_3} - \alpha_1 = \alpha_2 \neq 0$, $l_{L_3} - \lambda \varphi$: $L_3 \rightarrow L_3'$ is an isomorphism. Hence soc $L_3' = (l_{L_3} - \lambda \varphi)$ $(\operatorname{soc} L_3) = \alpha_2 S_3 = S_2 = \operatorname{soc} L_2$. But the sum $PI = \sum_{i \neq 3} L_i + L'_3$ is also an irredundant sum of uniserial modules. This contradicts Lemma 1.11. As a consequence $n \le 2$. If $n=1$, then $|PJ^2|=1$, a contradiction. Hence $n=2$. Thus *PJ=Ll@L² .*

In the general case, since $h(P/PJ^3) = 3$, we have $top^2 PJ = PJ/PJ^3 = L_1 \oplus L_2$ for some uniserial modules L_i of length 2 by the special case above. Then *PJ* is decomposable. Put $PI = X_1 \oplus X_2$ with $X_i \neq 0$ for each *i*. Then $L_1 \oplus L_2 =$ $\text{top}^2 X_1 \oplus \text{top}^2 X_2$. By Krull-Schmidt's theorem each top² X_i is uniserial. Hence each X_i is uniserial by Lemma 1.4. //

The following statement holds without the assumption that *A* is a ring of right 2nd local type.

114 H. ASASHIBA

Lemma 1.13. Let e be in $pi(A)$ such that $eJ=U\oplus V$ for some uniserial *right modules U and V which are of length* 2, *and f and g be in* pi *(A) with* top $U \simeq fA/fJ$ and soc $U \simeq gA/gJ$. Assume that Af and Ag are nniserial left *modules' Then every local submodule L of eJ with* top $L \approx fA/fJ$ is uniserial.

Proof. If $h(L)=1$, then the statement is trivial. So we may assume that *h(L)=2.* Assume that *L* is not uniserial. Then *LJ=eJ² .* Put *L=uλA* and $U=u_2A$ where $u_i \in eJf\left\{eJ^2f\right\}$ for each *i*. Since $L \cap U = \text{soc }U \approx gA/gJ$, we have $0 = u_1 a_1 = u_2 a_2$ for some $a_i \in f J g \backslash f J^2 g$. Since Ag is uniserial, $J g / J^2 g$ is simple, whence there is some $t \in f\mathcal{A}f\backslash f\mathcal{J}f$ such that $a_2 \in a_1t + J^2$ *g.* Thus $u_1a_1 = u_2a_2 = u_2ta_1$ since $u_2f^2g \le e f^3 = 0$. Hence $(u_1 - u_2t)a_1 = 0$. Consider the homomorphism $\alpha: Af \rightarrow Ag$ defined by the right multiplication by a_1 . Since *Af* is uniserial and $\alpha(f) \ni u_1a_1 \neq 0$, Ker $\alpha \leq f^2f$. As a consequence $u_1-u_2t \in f^2f$. Thus $L = u_1 A \le u_2 t A + e f^2 f A \le U + e f^2 = U \oplus VJ$. Comparing the composition lengths, we see that $L=U\oplus VJ$ which contradicts that *L* is local. //

REMARK. In the above it is necessary that *Af* is uniserial as the following example says. Let $A^{\circ p}$ be an algebra defined by the bounden quiver

$$
1 \frac{\alpha}{\beta} 2 \frac{\gamma}{\delta} \frac{3}{4} \text{; } \delta \alpha = \gamma \beta = 0
$$

Then $e_1 J = \alpha A \oplus \beta A$ with αA and βA uniserial, and top $\alpha A \simeq e_2 A/e_2 J$ and $\sec \alpha A{\approx}e_{3}A/e_{3}J$. But $e_{1}J$ has a non-uniserial local module $L{\mathop:}=(\alpha{+}\beta)A$ with In this case *Ae³* is uniserial but *Ae²* is not.

Proof of Theorem I. The statement (R) immediately follows from Propositions 1.8, 1.9 and 1.12. We show the statement (L). By [II, Theorem 2.5 (1R) \Rightarrow (3-iL)] $\int^2 e$ is a uniserial waist in Ae if $\int^2 e \neq 0$ for each $e \in \text{pi}(A)$. Hence we have only to show that every local left module *P* of height 5 is uniserial. Further since *A/J⁵* is also a ring of right 2nd local type, we may assume that $J^5=0$ and $P=Ah$ for some $h \in \text{pi}(A)$. Let $Jh/J^2h \approx \bigoplus_{i=1}^{n} Ag_i/Jg_i$, $J^2h/J^3h \approx$ *Af*/*Jf* and $J^3h/J^4h \approx Ae/Je$ where *e*, f and g_i are in pi(A). Then all Ag_i and *Af* are uniserial by the argument used in the proof of [I, Proposition 2.4.1]. It is enough to show that $n=1$. Suppose that $n>1$. Then there are some $x_i \in g_iJh\mathcal{E}_iJ^2h$ for $i=1, 2$ such that the sum $Y:=Ax_1+Ax_2$ is irredundant and $Ax_1 \cap Ax_2 = Jx_1 = Jx_2 = J^2h = JY.$ Hence we have $y_1x_1 = y_2x_2$ and $Ayx_1 = J^2h$ for some $y_i \in fJg_i\backslash fJ^2g_i$. Further there is some $z \in eJf\backslash eJ^2f$ such that $Azy_1x_1 = J^3h$. Consider a homomorphism

$$
\alpha := (\cdot z y_1, \cdot z y_2): Ae/Je \to A g_1/J^3 g_1 \oplus A g_2/J^3 g_2
$$

where for each $t \in A$, $\cdot t$ is the map defined by the right multiplication by *t*. By the argument similar to that used in the proof of the implication $(3) \rightarrow (1)$ in Lemma 1.4, it follows from the structure of Y/J^3Y that α is infusible. Therefore by [I, Corollary 1.4.2] the map

$$
\alpha^* := (zy_1 \cdot, \, zy_2 \cdot): \, g_1A/g_1J \oplus g_2A/g_2J \rightarrow eJ^2/eJ^3
$$

is a monomorphism where for each $t \in A$, $t \cdot$ is the map defined by the left multiplication by *t*. Thus $[zy_1]A\oplus [zy_2]A\leq eJ^2/eJ^3$ where $[zy_i]:=zy_i+eJ^3$ for each *i*. By the statement (R), we have $eJ/eJ^3 = U_1 \oplus U_2$ for some uniserial modules U_i of length 2. Hence $eJ^2/eJ^3 = [zy_1]A \oplus [zy_2]A \leq [z]A$ where $[z] :=$ $z + eJ^3$. On the other hand, since $eJf/eJ^2f + 0$, we have $fA/fJ \approx$ top U_i for some i, say $i=1$. Further since soc U_1 is a direct summand of $[zy_1]A \oplus [zy_2]A$, soc $U_1 \approx g_i A/g_i J$ for some *j*. Hence by Lemma 1.13, [x]*A* must be a uniserial module, a contradiction. This completes the proof of (L). Finally assume that A is a ring with selfduality. Then by Lemma 1.4, the following holds.

(a) Let L be a left module. If soc² L is uniserial, then so is L . As easily seen this implies that every local left module of height ≥ 4 is uniserial. Hence in this case (L_4) does not occur. //

2. Left serial rings with selfduality

Theorem Π. *Assume that A is a left serial ring with selfduality. Then the following are equivalent-.*

(1) *A is of right 2nd local type.*

(2) For every $e \in pi(A)$, if $h(eA) > 2$, then eJ is a direct sum of two uniserial *modules.*

(3) Every indecomposable right module of height $>$ 2 is local.

Proof. The proof is quite similar to that of [II, Theorem 4.1]. The implication (3) \Rightarrow (1) is trivial, and (1) \Rightarrow (2) follows from Theorem I and the selfduality of *A.* By the selfduality of *A* the condition (3) is equivalent to the following.

(3') Every indecomposable left module of height $>$ 2 is colocal.

The implication $(2) \rightarrow (3')$ also follows as in [II], with the following (necessary) changes and additions.

First the definition of a simple left module being of V -type is changed.

DEFINITION. Let *S* be a simple left module. Then *S* is said to be of *V-type* in case $E(S)/S$ is a direct sum of two uniserial left modules and ef is a direct sum of two uniserial right modules where $E(-)$ denotes the injective hull of (-) and *e* is an element in $pi(A)$ such that $Ae/e \approx S$.

Then the following lemma (quite similar to [II, Lemma 4.3]) holds.

Lemma 2.1. *Assume that A is a left serial ring with selfduality which satisfies the condition* (2) *of Theorem II. Let S be a simple left module. If* $S \cong$ soc *L* for some left module *L* of height > 2, then *S* is of *V*-type.

Proof. Let *D* be a selfduality of *A*. Since $h(E(S)) \geq h(L) > 2$, $D(E(S))J$ is a direct sum of two uniserial modules by the condition (2) of Theorem II, whence so is $E(S)/S \approx D(D(E(S))I)$. Let *e* be in pi*(A)* such that $S \approx Ae/Fe$. There is some local submodule M of L such that $h(M) > 2$. Since A is left serial, $M \approx Af/J^h f$ for some f in pi(A) where $h := h(M) > 2$. Since $Ae/Je \approx S =$ soc $L = \sec M \approx J^{h-1} f / J^h f$, $eJ^{h-1} f \neq 0$. Thus $eJ^{h-1} \neq 0$, i.e. $h(eA) \geq h > 2$. Hence *ej* is a direct sum of two uniserial right modules by the condition (2) of Theorem II. //

Lemma 2.2. *Let L be a quasi-projective uniserial left module of length 2 such that* soc*L is of V-type.* Then $\dim_{D_2(L)} D_1(L) \leq 2$ ([II, 4.2]).

Proof. Assume that $\dim_{D_2(L)} D_1(L) \geq 3$. Then there exist α_2 and α_3 in $D_1(L)$ such that $\{1_s, \alpha_s, \alpha_s\}$ is a linearly independent set in $D_2(L)D_1(L)$. Put $S := \text{soc } L$ and $\alpha := \begin{pmatrix} \alpha_2 & -1_S & 0 \\ \alpha_3 & 0 & -1_S \end{pmatrix}$: $S^{(2)} \rightarrow L^{(3)}$. Since L is quasi-projective, $M:=\text{Coker }\alpha$ is a colocal left module of height 2 and $|M/S|=3$ by the argument used in [12, Lemma 5.3] (or the dual version of [1, Theorem]). This contradicts that *S* is of *V*-type, since $M \leq E(S)$. //

Completion of the proof of Theorem II. The above lemma enables us to prove [II, Lemma 4.8] in the selfdual artinian case by the argument used in [12, Lemma 3.7]. Now the proof of the implication $(2) \rightarrow (3')$ of Theorem II proceeds along the same way of that of [II, Theorem 4.1 (2) \Rightarrow (3)']. //

3. Examples: representation-finite algebras of right 2nd local type

In this section we give necessary and sufficient conditions for representation-finite algebras to be of right 2nd local type, using the method outlined in Ringel [10]. This gives many examples of algebras of right 2nd type, and helps further considerations. Throughout this section, we assume that our algebra *A* is (basic) representation-finite and, in addition, (without loss of generality) is connected. Following Ringel [11], we say that a left ^4-module *M* is *sincere* in case $eM \neq 0$ for every *e* in pi(*A*), and that an algebra is *sincere* if it has a sincere indecomposable left module. First we give the result for sincere, simply connected (in the sense of Bongartz-Gabriel [5]) algebras, and

then reduce the general case to this special one. We identify algebras with their isomorphism classes and with their bounden quivers below.

EXAMPLE 3.1. (1) Consider the following list $\mathcal L$ of sincere simply connected algebras:

 (A_n) Quiver algebras of (Dynkin) type A_n with the following orientation.

- (D_n)) Quiver algebras of type D_n of height 2 (n
- (E_n) Quiver algebras of type E_n of height 2 ($n=6, 7, 8$).
- (X⁴) A bounden quiver algebra

$$
\bigotimes_{\beta}^{\alpha} \bigotimes_{\delta}^{\gamma} ; \ \ \beta\alpha = \delta\gamma \, .
$$

 (X_n) Bounden quiver algebras (*n*

(Y⁵) An algebra defined by the quiver

with full commutativity relations.

Then it is easy to see that all algebras in $\mathcal L$ are of right 2nd local type.

(2) The quiver algebras in the following list *S* are not of right 2nd local type:

where each edge represents an arrow with an arbitrary orientation.

The two lists in Example 3.1 determines the right 2nd local type for sincere simply connected algebras as the following theorem says.

Theorem III. *Assume that A is a sincere simply connected algebra. Then the following are equivalent:*

- (1) *A is of right 2nd local type.*
- (1) A is *by right zhat weat type.*
(2) $e_{E}Ae_{E} \notin S$ for any $E \subseteq \text{pi}(A)$.
- (3) $A \in \mathcal{L}$.

where we put $e_E := \sum_{\substack{m=1 \\ m \neq n}} e$ *.*

Proof of $(3) \rightarrow (1)$ and $(1) \rightarrow (2)$. Example 3.1 (1) says the implication (3) \Rightarrow (1). By Example 3.1 (2), the implication (1) \Rightarrow (2) follows from the next statement for an arbitrary artinian ring *A. *

Proposition 3.2. *If A is a ring of right 2nd local type, then so is eAe for every idempotent e in A.*

Proof. Obviously we may assume that $e \neq 0$. Put $B := eAe$ and denote by *T* and by *H* the functors $-\otimes_{B}eA$: mod *B* \rightarrow mod *A* and Hom_{*A*}(*eA*, $-$): mod *A* \rightarrow mod B, respectively where mod C denotes the category of finitely generated right C-modules for $C = A$ and B. Then T is a left adjoint of H and $HT \approx 1_{\text{mod }B}$, the identity functor of mod *B.* We first claim

(i) *T preserves indecomposables.*

In fact, let *M* be an indecomposable module in mod *B* and assume that *TM* is decomposable, say $TM=X\oplus Y$ with $X, Y\neq 0$. Then $M\cong HTM=HX\oplus HY$. Since *M* is indecomposable, we may assume that $HX=0$. But then $0\neq \text{Hom}_A$ $(TM, X) \cong \text{Hom}_B(M, HX) = 0$, a contradiction.

Next putting j :=eJe, direct calculation shows

(ii) Let M be in mod B and $\alpha: Mj^2 \to M$ the inclusion map. Then $\alpha_*(T(Mj^2)) \le (TM)J^2$ where $\alpha_* := T(\alpha) \colon T(Mj^2) \to T(M)$.

Now since T is right exact, $T(\text{top}^2 M) \cong TM/\alpha_*(T(M)^2)$. Assume that *B* is not of right 2nd local type, thus top²*M*=*X*^{\oplus}*Y* with *X*, *Y* \neq 0 for some indecomposable M in mod B . Then by (i), TM is indecomposable in mod A

but top²(TM) is decomposable as follows.
\n
$$
\text{top}^2(TM) = TM/(TM)J^2 \simeq \frac{TM/\alpha_*(T(Mj^2))}{(TM)J^2/\alpha_*(T(Mj^2))} = \frac{TM/\alpha_*(T(Mj^2))}{[TM/\alpha_*(T(Mj^2))]J^2}
$$
\n
$$
\simeq \frac{T(\text{top}^2 M)}{[T(\text{top}^2 M)]J^2} \simeq \text{top}^2(TX) \oplus \text{top}^2(TY). \quad ||
$$

We denote by *n(A)* the number of isomorphism classes of simple right *A*-modules, i.e. $n(A)$ is equal to the cardinality of $pi(A)$. The following result in [11] makes it possible to prove the implication $(2) \rightarrow (3)$ in Theorem III by induction on $n(A)$. We put $D:=Hom_k(-,k)$ to be the usual selfduality *of A.*

Proposition 3.3 ([11, Proposition 6.5 (2)]). *Assume that A is a sincere (τ>* **p\ I** *or a one-point coextension* $\begin{pmatrix} B & 0 \ D R & k \end{pmatrix}$ *of a sincere simply connected algebra B by an indecomposable left B-module R such that* $\text{Hom}_{B}(R, N)$ \neq 0 σ $\text{Hom}_{B}(N, R)$ \neq 0 *for some sincere indecomposable left B-module N, respectively.*

Proof of $(2) \rightarrow (3)$ of Theorem III. First note that this assertion is easily verified for quiver algebras and for bounden quiver algebras whose relation ideal is generated by a single commutativity relation. The proof proceeds by induction on $n(A)$. If $n(A)=1$, then $A=k$, and so there is nothing to show. Assume $n(A) > 1$. Then by Proposition 3.3 A is a one-point extension or a one-point coextension of a sincere simply connected algebra *B* by an indecomposable left *B*-module *R* such that $\text{Hom}_B(R, N) \neq 0$ or $\text{Hom}_B(N, R) \neq 0$ for some sincere indecomposable left β-module *N,* respectively. Assume that *A* satisfies the condition (2) of Theorem III. Then so does *B* since $B\cong eAe$ where $e := \begin{pmatrix} 1_B & 0 \\ 0 & 0 \end{pmatrix}$. By the induction hypothesis it follows from $n(B)=n(A)-1$ that B is in \mathcal{L} . Hence it suffices to check that the algebras obtained by the above type of one-point extension and one-point coextension from some *B* in $\mathcal L$ are again in $\mathcal L$ if they are representation-finite and satisfy the condition (2) of Theorem III. In doing so, as noted above, we can remove the quiver algebras and the bounden quiver algebras whose relation ideal is generated by a single commutativity relation. Further the condition that *A* is representationfinite requires that (i) $|\text{top } R| \leq 3$ (resp. $|\text{soc } R| \leq 3$) in the one-point extension (resp. coextension) case, and (ii) dim $R(a) \leq 1$ for the vertex *a* of (D_n) or (E_n) in $\mathcal L$ which has three neighbours. In particular, the second condition yields that dim $R(a) \le 1$ for all vertices a of (D_n) or (E_n) in \mathcal{L} . This makes the verification easy, and details are left to the reader. Above all, since the condition $\text{Hom}_B(R, N) \neq 0$ (resp. $\text{Hom}_B(N, R) \neq 0$) in the extension (resp. coextension) case guarantees that the obtained algebras are sincere, we can ignore nonsincere algebras from the start. //

REMARK, (a) In Theorem III, the condition (2) is equivalent to the following condition which is easier to check.

 $(2')$ $e_E A e_E \notin S$ for any set of vertices $E \subseteq \text{pi}(A)$ of any connected subquiver *of the ordinary quiver of A.*

For, the verification of (2) \Rightarrow (3) is, in fact, done by that of (2') \Rightarrow (3).

(b) In case $n(A) > 13$, the implication (2) \Rightarrow (3) of Theorem III is easily verified by Bongartz' theorem [4, Klassifikationssatz] (see also [11, Theorem $6.3(1)]$.

We go on to the general case. This is done as usual by the covering technique developed in [5], [7] and [6]. Put Γ to be the Auslander-Reiten quiver of *A* and $\tilde{\Gamma}$ the universal cover of Γ (see [5]). By mod *A* and by ind *A* we denote the category of finite dimensional right A -modules and the full subcategory of mod *A* consisting of the chosen representatives of isomorphism classes of indecomposable right A -modules where projective indecomposables are canonical ones, respectively. Then as well known, there exists a well-behaved ([9]), covering functor $E: k(\tilde{\Gamma}) \to \text{ind }A$ where $k(\tilde{\Gamma})$ is the mesh category of $\tilde{\Gamma}$. Let \tilde{A} be the full subcategory of $k(\tilde{\Gamma})$ consisting of projective vertices of $\tilde{\Gamma}$. Then it is well known that $k(\tilde{\Gamma}) \approx \text{ind }\tilde{A}$ by which we identify these categories. We have a commutative diagram

$$
A \longrightarrow \text{ind } A
$$

$$
F \downarrow \qquad \qquad E
$$

$$
A \longrightarrow \text{ind } A
$$

where the horizontal functors are Yoneda embeddings, and *E* and *F* are covering functors. Since ind A is locally bounded and ind \tilde{A} is basic, ind \tilde{A} is locally bounded by [7, Proposition 1.2 a)], i.e. \tilde{A} is locally representation-finite. Hence by [7, Proposition 2.7], the push down F_{λ} : mod $\tilde{A} \rightarrow$ mod A preserves Auslander-Reiten sequences and $E\!\cong\! F_{\lambda}|_{\rm ind}\,\tilde{\bf a}.$ In particular, for every $M\!\!\in$ mod $\tilde{A},$ *M* is indecomposable iff so is $F_{\lambda}(M) \in \mathbf{mod}\,A$.

Proposition 3.4. *A is of right 2nd local type iff so is A.*

Proof. Note that for every $M\!\in$ ind A , $M\!=\!F_{\lambda}(\tilde{M})$ for some $\tilde{M}\!\in$ ind \tilde{A} by [7, Proposition 1.2 b)]. Now let M be in ind A and \tilde{M} in ind \tilde{A} such that $M = F_{\lambda}(\tilde{M})$. Since F_{λ} is an exact functor and preserves the radical by [5, Proposition 3.2], $F_{\lambda}(\text{top}^2 \tilde{M}) \approx \text{top}^2 M$. Hence by the above top² \tilde{M} is indecomposable iff so is top²M. //

Note that by [6, Remark 3.3 (a)] *A* is directly constructed from *A.* Since *A* is representation-finite, there exists a connected subquiver Q of $Q_{\tilde{A}}$ with the set Q_0 of vertices finite such that for every $M \in \text{ind } A$, there exists an \tilde{M} \in ind \tilde{A} such that $F_{\lambda}(\tilde{M})$ $=M$ and ${\rm sp}\,M$ \subseteq Q_0 , where ${\rm sp}\,\,\tilde{M}$ is the *support* of \tilde{M} , i.e. the set of vertices v of $Q_{\tilde{A}}$ such that $\tilde{M}(v)$ ± 0 . By \bar{A} we denote the factor category of \tilde{A} by the ideal generated by all the vertices v of $Q_{\tilde{A}}$ such that $v \notin Q_0$. Since *A* has only a finite number of objects, *A* can be regarded as a representation-finite algebra. Further the Auslander-Reiten quiver Γ of *A* has no oriented cycle since so does Γ.

Theorem IV. *Assume that A is a (basic, connected) representation-finite algebra (of finite dimension over k). Then the following are equivalent.*

- (1) *A is of right 2nd local type.*
- (2) $e_E \overline{A} e_E \notin S$ for every $E \subseteq \text{pi}(\overline{A})$.
- (3) $\text{Sp}(\overline{M}) \in \mathcal{L}$ for every indecomposable right \overline{A} -module \overline{M} .

In the above, $Sp(\overline{M})$ denotes the *support algebra* of \overline{M} , i.e. $Sp(\overline{M})$:= $e_s\overline{A}e_s$ where $S:=sp(M)$.

Proof. (1) \Rightarrow (2). Assume that *A* is of right 2nd local type. Then so is \tilde{A} by Proposition 3.4, and so is \tilde{A} since \tilde{A} is a factor of \tilde{A} . Hence $e_{E}\tilde{A}e_{E} \in \mathcal{S}$ for every $E \subseteq \text{pi}(\overline{A})$ by Proposition 3.2.

 $(2) \rightarrow (3)$. Assume that (2) holds, and let $\overline{M} \in \text{ind } \overline{A}$. Then $e_E \text{Sp}(\overline{M})e_E \notin \mathcal{S}$ for every $E\subseteq \text{sp}(\bar M)$, and $\text{Sp}(\bar M)$ is a sincere representation-finite algebra. Further the Auslander-Reiten quiver of $Sp(\overline{M})$ has no oriented cycle since so does $\overline{\Gamma}$. Hence Sp(\overline{M}) is a sincere tilted algebra by [8, Corollary 8.3]. Thus $Sp(\overline{M})$ is a sincere simply connected algebra by [3, Theorem 3.1]. Hence by Theorem III, $Sp(\overline{M}) \in \mathcal{L}$.

 $(3) \rightarrow (1)$. Let $M \in \text{ind } A$. Then $M = F_{\lambda}(\overline{M})$ for some $\overline{M} \in \text{ind } \overline{A}$. Clearly we can regard $\overline{M} \in \text{ind Sp}(\overline{M})$. Since $\text{Sp}(\overline{M}) \in \mathcal{L}$ is of right 2nd local type, top $^2\bar{M}$ is indecomposable, whence so is top 2M . //

REMARK. The list *S* is closely related to Lemmas 1.4 and 1.7 and to the conditions (R) and (L) in Theorem I. In fact, it is possible to describe the condition (2) in Theorems III and IV by certain conditions on local ^4-modules.

References

- [I] H. Asashiba: *On algebras of second local type,* I, Osaka J. Math. 21 (1984), 327-342.
- [II] H. Asashiba: *On algebras of second local type,* II, Osaka J. Math. 21 (1984), 343-364.
- [1] H. Asashiba and M. Harada: *On maximal submodules of a finite direct sum of hollow modules* V, Osaka J. Math. 23 (1986) ,835-839.
- [2] M. Auslander, E.L. Green and I. Reiten: *Modules with waists,* Illinois J. Math. 19 (1975), 467-478.
- [3] R. Bautista, F. Larriόn and L. Salmerόn: *On simply connected algebras,* J. London Math. Soc. 27 (1983), 212-220.
- [4] K. Bongartz: *Treue einfach zusammenhangende Algebren I,* Comment. Math. Helv. 57 (1982), 282-330.

122 H. ASASHIBA

- [5] K. Bongartz and P. Gabriel: *Covering spaces in representation theory,* Invent. Math. 65 (1982), 331-378.
- [6] O. Bretscher and P. Gabriel: *The standard form of a representation-finite algebra,* Bull. Soc. Math. France 111 (1983), 21-40.
- [7] P. Gabriel: *The universal cover of a representation-finite algebra,* Proc. Puebla 1980. Springer Lect. Notes 903 (1981), 68-105.
- [8] D. Happel and C.M. Ringel: *Tilted algebras,* Trans. Amer. Math. Soc. 274 (1982), 399-443.
- [9] C. Riedtmann: *Algebren, Darstellungskό'cher, Uberlagerungen und zuruck,* Comment. Math. Helv. 55 (1980), 199-224.
- [10] C.M. Ringel: *Kawada's theorem,* Proc. Abelian group theory, Springer Lect. Notes 874 (1981), 431-447.
- [11] C.M. Ringel: *Tame algebras and integral quadratic forms,* Springer Lect. Notes 1099 (1984).
- [12] T. Sumioka: *Tachikawa's theorem on algebras of left colocal type,* Osaka J. Math. 21 (1984), 629-648.

Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558, Japan